fenv.nim 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. #
  2. #
  3. # Nim's Runtime Library
  4. # (c) Copyright 2015 Andreas Rumpf
  5. #
  6. # See the file "copying.txt", included in this
  7. # distribution, for details about the copyright.
  8. #
  9. ## Floating-point environment. Handling of floating-point rounding and
  10. ## exceptions (overflow, division by zero, etc.).
  11. {.deadCodeElim:on.}
  12. when defined(Posix) and not defined(haiku):
  13. {.passl: "-lm".}
  14. var
  15. FE_DIVBYZERO* {.importc, header: "<fenv.h>".}: cint
  16. ## division by zero
  17. FE_INEXACT* {.importc, header: "<fenv.h>".}: cint
  18. ## inexact result
  19. FE_INVALID* {.importc, header: "<fenv.h>".}: cint
  20. ## invalid operation
  21. FE_OVERFLOW* {.importc, header: "<fenv.h>".}: cint
  22. ## result not representable due to overflow
  23. FE_UNDERFLOW* {.importc, header: "<fenv.h>".}: cint
  24. ## result not representable due to underflow
  25. FE_ALL_EXCEPT* {.importc, header: "<fenv.h>".}: cint
  26. ## bitwise OR of all supported exceptions
  27. FE_DOWNWARD* {.importc, header: "<fenv.h>".}: cint
  28. ## round toward -Inf
  29. FE_TONEAREST* {.importc, header: "<fenv.h>".}: cint
  30. ## round to nearest
  31. FE_TOWARDZERO* {.importc, header: "<fenv.h>".}: cint
  32. ## round toward 0
  33. FE_UPWARD* {.importc, header: "<fenv.h>".}: cint
  34. ## round toward +Inf
  35. FE_DFL_ENV* {.importc, header: "<fenv.h>".}: cint
  36. ## macro of type pointer to fenv_t to be used as the argument
  37. ## to functions taking an argument of type fenv_t; in this
  38. ## case the default environment will be used
  39. type
  40. Tfenv* {.importc: "fenv_t", header: "<fenv.h>", final, pure.} =
  41. object ## Represents the entire floating-point environment. The
  42. ## floating-point environment refers collectively to any
  43. ## floating-point status flags and control modes supported
  44. ## by the implementation.
  45. Tfexcept* {.importc: "fexcept_t", header: "<fenv.h>", final, pure.} =
  46. object ## Represents the floating-point status flags collectively,
  47. ## including any status the implementation associates with the
  48. ## flags. A floating-point status flag is a system variable
  49. ## whose value is set (but never cleared) when a floating-point
  50. ## exception is raised, which occurs as a side effect of
  51. ## exceptional floating-point arithmetic to provide auxiliary
  52. ## information. A floating-point control mode is a system variable
  53. ## whose value may be set by the user to affect the subsequent
  54. ## behavior of floating-point arithmetic.
  55. proc feclearexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
  56. ## Clear the supported exceptions represented by `excepts`.
  57. proc fegetexceptflag*(flagp: ptr Tfexcept, excepts: cint): cint {.
  58. importc, header: "<fenv.h>".}
  59. ## Store implementation-defined representation of the exception flags
  60. ## indicated by `excepts` in the object pointed to by `flagp`.
  61. proc feraiseexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
  62. ## Raise the supported exceptions represented by `excepts`.
  63. proc fesetexceptflag*(flagp: ptr Tfexcept, excepts: cint): cint {.
  64. importc, header: "<fenv.h>".}
  65. ## Set complete status for exceptions indicated by `excepts` according to
  66. ## the representation in the object pointed to by `flagp`.
  67. proc fetestexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
  68. ## Determine which of subset of the exceptions specified by `excepts` are
  69. ## currently set.
  70. proc fegetround*(): cint {.importc, header: "<fenv.h>".}
  71. ## Get current rounding direction.
  72. proc fesetround*(roundingDirection: cint): cint {.importc, header: "<fenv.h>".}
  73. ## Establish the rounding direction represented by `roundingDirection`.
  74. proc fegetenv*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
  75. ## Store the current floating-point environment in the object pointed
  76. ## to by `envp`.
  77. proc feholdexcept*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
  78. ## Save the current environment in the object pointed to by `envp`, clear
  79. ## exception flags and install a non-stop mode (if available) for all
  80. ## exceptions.
  81. proc fesetenv*(a1: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
  82. ## Establish the floating-point environment represented by the object
  83. ## pointed to by `envp`.
  84. proc feupdateenv*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
  85. ## Save current exceptions in temporary storage, install environment
  86. ## represented by object pointed to by `envp` and raise exceptions
  87. ## according to saved exceptions.
  88. var FP_RADIX_INTERNAL {. importc: "FLT_RADIX" header: "<float.h>" .} : int
  89. template fpRadix* : int = FP_RADIX_INTERNAL
  90. ## The (integer) value of the radix used to represent any floating
  91. ## point type on the architecture used to build the program.
  92. var FLT_MANT_DIG {. importc: "FLT_MANT_DIG" header: "<float.h>" .} : int
  93. var FLT_DIG {. importc: "FLT_DIG" header: "<float.h>" .} : int
  94. var FLT_MIN_EXP {. importc: "FLT_MIN_EXP" header: "<float.h>" .} : int
  95. var FLT_MAX_EXP {. importc: "FLT_MAX_EXP" header: "<float.h>" .} : int
  96. var FLT_MIN_10_EXP {. importc: "FLT_MIN_10_EXP" header: "<float.h>" .} : int
  97. var FLT_MAX_10_EXP {. importc: "FLT_MAX_10_EXP" header: "<float.h>" .} : int
  98. var FLT_MIN {. importc: "FLT_MIN" header: "<float.h>" .} : cfloat
  99. var FLT_MAX {. importc: "FLT_MAX" header: "<float.h>" .} : cfloat
  100. var FLT_EPSILON {. importc: "FLT_EPSILON" header: "<float.h>" .} : cfloat
  101. var DBL_MANT_DIG {. importc: "DBL_MANT_DIG" header: "<float.h>" .} : int
  102. var DBL_DIG {. importc: "DBL_DIG" header: "<float.h>" .} : int
  103. var DBL_MIN_EXP {. importc: "DBL_MIN_EXP" header: "<float.h>" .} : int
  104. var DBL_MAX_EXP {. importc: "DBL_MAX_EXP" header: "<float.h>" .} : int
  105. var DBL_MIN_10_EXP {. importc: "DBL_MIN_10_EXP" header: "<float.h>" .} : int
  106. var DBL_MAX_10_EXP {. importc: "DBL_MAX_10_EXP" header: "<float.h>" .} : int
  107. var DBL_MIN {. importc: "DBL_MIN" header: "<float.h>" .} : cdouble
  108. var DBL_MAX {. importc: "DBL_MAX" header: "<float.h>" .} : cdouble
  109. var DBL_EPSILON {. importc: "DBL_EPSILON" header: "<float.h>" .} : cdouble
  110. template mantissaDigits*(T : typedesc[float32]) : int = FLT_MANT_DIG
  111. ## Number of digits (in base ``floatingPointRadix``) in the mantissa
  112. ## of 32-bit floating-point numbers.
  113. template digits*(T : typedesc[float32]) : int = FLT_DIG
  114. ## Number of decimal digits that can be represented in a
  115. ## 32-bit floating-point type without losing precision.
  116. template minExponent*(T : typedesc[float32]) : int = FLT_MIN_EXP
  117. ## Minimum (negative) exponent for 32-bit floating-point numbers.
  118. template maxExponent*(T : typedesc[float32]) : int = FLT_MAX_EXP
  119. ## Maximum (positive) exponent for 32-bit floating-point numbers.
  120. template min10Exponent*(T : typedesc[float32]) : int = FLT_MIN_10_EXP
  121. ## Minimum (negative) exponent in base 10 for 32-bit floating-point
  122. ## numbers.
  123. template max10Exponent*(T : typedesc[float32]) : int = FLT_MAX_10_EXP
  124. ## Maximum (positive) exponent in base 10 for 32-bit floating-point
  125. ## numbers.
  126. template minimumPositiveValue*(T : typedesc[float32]) : float32 = FLT_MIN
  127. ## The smallest positive (nonzero) number that can be represented in a
  128. ## 32-bit floating-point type.
  129. template maximumPositiveValue*(T : typedesc[float32]) : float32 = FLT_MAX
  130. ## The largest positive number that can be represented in a 32-bit
  131. ## floating-point type.
  132. template epsilon*(T : typedesc[float32]): float32 = FLT_EPSILON
  133. ## The difference between 1.0 and the smallest number greater than
  134. ## 1.0 that can be represented in a 32-bit floating-point type.
  135. template mantissaDigits*(T : typedesc[float64]) : int = DBL_MANT_DIG
  136. ## Number of digits (in base ``floatingPointRadix``) in the mantissa
  137. ## of 64-bit floating-point numbers.
  138. template digits*(T : typedesc[float64]) : int = DBL_DIG
  139. ## Number of decimal digits that can be represented in a
  140. ## 64-bit floating-point type without losing precision.
  141. template minExponent*(T : typedesc[float64]) : int = DBL_MIN_EXP
  142. ## Minimum (negative) exponent for 64-bit floating-point numbers.
  143. template maxExponent*(T : typedesc[float64]) : int = DBL_MAX_EXP
  144. ## Maximum (positive) exponent for 64-bit floating-point numbers.
  145. template min10Exponent*(T : typedesc[float64]) : int = DBL_MIN_10_EXP
  146. ## Minimum (negative) exponent in base 10 for 64-bit floating-point
  147. ## numbers.
  148. template max10Exponent*(T : typedesc[float64]) : int = DBL_MAX_10_EXP
  149. ## Maximum (positive) exponent in base 10 for 64-bit floating-point
  150. ## numbers.
  151. template minimumPositiveValue*(T : typedesc[float64]) : float64 = DBL_MIN
  152. ## The smallest positive (nonzero) number that can be represented in a
  153. ## 64-bit floating-point type.
  154. template maximumPositiveValue*(T : typedesc[float64]) : float64 = DBL_MAX
  155. ## The largest positive number that can be represented in a 64-bit
  156. ## floating-point type.
  157. template epsilon*(T : typedesc[float64]): float64 = DBL_EPSILON
  158. ## The difference between 1.0 and the smallest number greater than
  159. ## 1.0 that can be represented in a 64-bit floating-point type.