123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737 |
- #
- #
- # The Nim Compiler
- # (c) Copyright 2015 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## This file implements the new evaluation engine for Nim code.
- ## An instruction is 1-3 int32s in memory, it is a register based VM.
- const
- debugEchoCode = false
- traceCode = debugEchoCode
- import ast except getstr
- import
- strutils, astalgo, msgs, vmdef, vmgen, nimsets, types, passes,
- parser, vmdeps, idents, trees, renderer, options, transf, parseutils,
- vmmarshal
- from semfold import leValueConv, ordinalValToString
- from evaltempl import evalTemplate
- from modulegraphs import ModuleGraph
- when hasFFI:
- import evalffi
- type
- TRegisterKind = enum
- rkNone, rkNode, rkInt, rkFloat, rkRegisterAddr, rkNodeAddr
- TFullReg = object # with a custom mark proc, we could use the same
- # data representation as LuaJit (tagged NaNs).
- case kind: TRegisterKind
- of rkNone: nil
- of rkInt: intVal: BiggestInt
- of rkFloat: floatVal: BiggestFloat
- of rkNode: node: PNode
- of rkRegisterAddr: regAddr: ptr TFullReg
- of rkNodeAddr: nodeAddr: ptr PNode
- PStackFrame* = ref TStackFrame
- TStackFrame* = object
- prc: PSym # current prc; proc that is evaluated
- slots: seq[TFullReg] # parameters passed to the proc + locals;
- # parameters come first
- next: PStackFrame # for stacking
- comesFrom: int
- safePoints: seq[int] # used for exception handling
- # XXX 'break' should perform cleanup actions
- # What does the C backend do for it?
- proc stackTraceAux(c: PCtx; x: PStackFrame; pc: int; recursionLimit=100) =
- if x != nil:
- if recursionLimit == 0:
- var calls = 0
- var x = x
- while x != nil:
- inc calls
- x = x.next
- msgWriteln($calls & " calls omitted\n")
- return
- stackTraceAux(c, x.next, x.comesFrom, recursionLimit-1)
- var info = c.debug[pc]
- # we now use the same format as in system/except.nim
- var s = toFilename(info)
- var line = toLinenumber(info)
- if line > 0:
- add(s, '(')
- add(s, $line)
- add(s, ')')
- if x.prc != nil:
- for k in 1..max(1, 25-s.len): add(s, ' ')
- add(s, x.prc.name.s)
- msgWriteln(s)
- proc stackTrace(c: PCtx, tos: PStackFrame, pc: int,
- msg: TMsgKind, arg = "", n: PNode = nil) =
- msgWriteln("stack trace: (most recent call last)")
- stackTraceAux(c, tos, pc)
- # XXX test if we want 'globalError' for every mode
- let lineInfo = if n == nil: c.debug[pc] else: n.info
- if c.mode == emRepl: globalError(lineInfo, msg, arg)
- else: localError(lineInfo, msg, arg)
- proc bailOut(c: PCtx; tos: PStackFrame) =
- stackTrace(c, tos, c.exceptionInstr, errUnhandledExceptionX,
- c.currentExceptionA.sons[3].skipColon.strVal)
- when not defined(nimComputedGoto):
- {.pragma: computedGoto.}
- proc myreset(n: var TFullReg) = reset(n)
- template ensureKind(k: untyped) {.dirty.} =
- if regs[ra].kind != k:
- myreset(regs[ra])
- regs[ra].kind = k
- template decodeB(k: untyped) {.dirty.} =
- let rb = instr.regB
- ensureKind(k)
- template decodeBC(k: untyped) {.dirty.} =
- let rb = instr.regB
- let rc = instr.regC
- ensureKind(k)
- template declBC() {.dirty.} =
- let rb = instr.regB
- let rc = instr.regC
- template decodeBImm(k: untyped) {.dirty.} =
- let rb = instr.regB
- let imm = instr.regC - byteExcess
- ensureKind(k)
- template decodeBx(k: untyped) {.dirty.} =
- let rbx = instr.regBx - wordExcess
- ensureKind(k)
- template move(a, b: untyped) {.dirty.} = system.shallowCopy(a, b)
- # XXX fix minor 'shallowCopy' overloading bug in compiler
- proc createStrKeepNode(x: var TFullReg; keepNode=true) =
- if x.node.isNil or not keepNode:
- x.node = newNode(nkStrLit)
- elif x.node.kind == nkNilLit and keepNode:
- when defined(useNodeIds):
- let id = x.node.id
- system.reset(x.node[])
- x.node.kind = nkStrLit
- when defined(useNodeIds):
- x.node.id = id
- elif x.node.kind notin {nkStrLit..nkTripleStrLit} or
- nfAllConst in x.node.flags:
- # XXX this is hacky; tests/txmlgen triggers it:
- x.node = newNode(nkStrLit)
- # It not only hackey, it is also wrong for tgentemplate. The primary
- # cause of bugs like these is that the VM does not properly distinguish
- # between variable defintions (var foo = e) and variable updates (foo = e).
- include vmhooks
- template createStr(x) =
- x.node = newNode(nkStrLit)
- template createSet(x) =
- x.node = newNode(nkCurly)
- proc moveConst(x: var TFullReg, y: TFullReg) =
- if x.kind != y.kind:
- myreset(x)
- x.kind = y.kind
- case x.kind
- of rkNone: discard
- of rkInt: x.intVal = y.intVal
- of rkFloat: x.floatVal = y.floatVal
- of rkNode: x.node = y.node
- of rkRegisterAddr: x.regAddr = y.regAddr
- of rkNodeAddr: x.nodeAddr = y.nodeAddr
- # this seems to be the best way to model the reference semantics
- # of system.NimNode:
- template asgnRef(x, y: untyped) = moveConst(x, y)
- proc copyValue(src: PNode): PNode =
- if src == nil or nfIsRef in src.flags:
- return src
- result = newNode(src.kind)
- result.info = src.info
- result.typ = src.typ
- result.flags = src.flags * PersistentNodeFlags
- result.comment = src.comment
- when defined(useNodeIds):
- if result.id == nodeIdToDebug:
- echo "COMES FROM ", src.id
- case src.kind
- of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
- of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
- of nkSym: result.sym = src.sym
- of nkIdent: result.ident = src.ident
- of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
- else:
- newSeq(result.sons, sonsLen(src))
- for i in countup(0, sonsLen(src) - 1):
- result.sons[i] = copyValue(src.sons[i])
- proc asgnComplex(x: var TFullReg, y: TFullReg) =
- if x.kind != y.kind:
- myreset(x)
- x.kind = y.kind
- case x.kind
- of rkNone: discard
- of rkInt: x.intVal = y.intVal
- of rkFloat: x.floatVal = y.floatVal
- of rkNode: x.node = copyValue(y.node)
- of rkRegisterAddr: x.regAddr = y.regAddr
- of rkNodeAddr: x.nodeAddr = y.nodeAddr
- proc putIntoNode(n: var PNode; x: TFullReg) =
- case x.kind
- of rkNone: discard
- of rkInt: n.intVal = x.intVal
- of rkFloat: n.floatVal = x.floatVal
- of rkNode:
- if nfIsRef in x.node.flags: n = x.node
- else: n[] = x.node[]
- of rkRegisterAddr: putIntoNode(n, x.regAddr[])
- of rkNodeAddr: n[] = x.nodeAddr[][]
- proc putIntoReg(dest: var TFullReg; n: PNode) =
- case n.kind
- of nkStrLit..nkTripleStrLit:
- dest.kind = rkNode
- createStr(dest)
- dest.node.strVal = n.strVal
- of nkCharLit..nkUInt64Lit:
- dest.kind = rkInt
- dest.intVal = n.intVal
- of nkFloatLit..nkFloat128Lit:
- dest.kind = rkFloat
- dest.floatVal = n.floatVal
- else:
- dest.kind = rkNode
- dest.node = n
- proc regToNode(x: TFullReg): PNode =
- case x.kind
- of rkNone: result = newNode(nkEmpty)
- of rkInt: result = newNode(nkIntLit); result.intVal = x.intVal
- of rkFloat: result = newNode(nkFloatLit); result.floatVal = x.floatVal
- of rkNode: result = x.node
- of rkRegisterAddr: result = regToNode(x.regAddr[])
- of rkNodeAddr: result = x.nodeAddr[]
- template getstr(a: untyped): untyped =
- (if a.kind == rkNode: a.node.strVal else: $chr(int(a.intVal)))
- proc pushSafePoint(f: PStackFrame; pc: int) =
- if f.safePoints.isNil: f.safePoints = @[]
- f.safePoints.add(pc)
- proc popSafePoint(f: PStackFrame) =
- # XXX this needs a proper fix!
- if f.safePoints.len > 0:
- discard f.safePoints.pop()
- proc cleanUpOnException(c: PCtx; tos: PStackFrame):
- tuple[pc: int, f: PStackFrame] =
- let raisedType = c.currentExceptionA.typ.skipTypes(abstractPtrs)
- var f = tos
- while true:
- while f.safePoints.isNil or f.safePoints.len == 0:
- f = f.next
- if f.isNil: return (-1, nil)
- var pc2 = f.safePoints[f.safePoints.high]
- var nextExceptOrFinally = -1
- if c.code[pc2].opcode == opcExcept:
- nextExceptOrFinally = pc2 + c.code[pc2].regBx - wordExcess
- inc pc2
- while c.code[pc2].opcode == opcExcept:
- let excIndex = c.code[pc2].regBx-wordExcess
- let exceptType = if excIndex > 0: c.types[excIndex].skipTypes(
- abstractPtrs)
- else: nil
- #echo typeToString(exceptType), " ", typeToString(raisedType)
- if exceptType.isNil or inheritanceDiff(exceptType, raisedType) <= 0:
- # mark exception as handled but keep it in B for
- # the getCurrentException() builtin:
- c.currentExceptionB = c.currentExceptionA
- c.currentExceptionA = nil
- # execute the corresponding handler:
- while c.code[pc2].opcode == opcExcept: inc pc2
- discard f.safePoints.pop
- return (pc2, f)
- inc pc2
- if c.code[pc2].opcode != opcExcept and nextExceptOrFinally >= 0:
- # we're at the end of the *except list*, but maybe there is another
- # *except branch*?
- pc2 = nextExceptOrFinally+1
- if c.code[pc2].opcode == opcExcept:
- nextExceptOrFinally = pc2 + c.code[pc2].regBx - wordExcess
- if nextExceptOrFinally >= 0:
- pc2 = nextExceptOrFinally
- if c.code[pc2].opcode == opcFinally:
- # execute the corresponding handler, but don't quit walking the stack:
- discard f.safePoints.pop
- return (pc2+1, f)
- # not the right one:
- discard f.safePoints.pop
- proc cleanUpOnReturn(c: PCtx; f: PStackFrame): int =
- if f.safePoints.isNil: return -1
- for s in f.safePoints:
- var pc = s
- while c.code[pc].opcode == opcExcept:
- pc = pc + c.code[pc].regBx - wordExcess
- if c.code[pc].opcode == opcFinally:
- return pc
- return -1
- proc opConv*(dest: var TFullReg, src: TFullReg, desttyp, srctyp: PType): bool =
- if desttyp.kind == tyString:
- if dest.kind != rkNode:
- myreset(dest)
- dest.kind = rkNode
- dest.node = newNode(nkStrLit)
- let styp = srctyp.skipTypes(abstractRange)
- case styp.kind
- of tyEnum:
- let n = styp.n
- let x = src.intVal.int
- if x <% n.len and (let f = n.sons[x].sym; f.position == x):
- dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
- else:
- for i in 0.. <n.len:
- if n.sons[i].kind != nkSym: internalError("opConv for enum")
- let f = n.sons[i].sym
- if f.position == x:
- dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
- return
- dest.node.strVal = styp.sym.name.s & " " & $x
- of tyInt..tyInt64:
- dest.node.strVal = $src.intVal
- of tyUInt..tyUInt64:
- dest.node.strVal = $uint64(src.intVal)
- of tyBool:
- dest.node.strVal = if src.intVal == 0: "false" else: "true"
- of tyFloat..tyFloat128:
- dest.node.strVal = $src.floatVal
- of tyString:
- dest.node.strVal = src.node.strVal
- of tyCString:
- if src.node.kind == nkBracket:
- # Array of chars
- var strVal = ""
- for son in src.node.sons:
- let c = char(son.intVal)
- if c == '\0': break
- strVal.add(c)
- dest.node.strVal = strVal
- else:
- dest.node.strVal = src.node.strVal
- of tyChar:
- dest.node.strVal = $chr(src.intVal)
- else:
- internalError("cannot convert to string " & desttyp.typeToString)
- else:
- case skipTypes(desttyp, abstractRange).kind
- of tyInt..tyInt64:
- if dest.kind != rkInt:
- myreset(dest); dest.kind = rkInt
- case skipTypes(srctyp, abstractRange).kind
- of tyFloat..tyFloat64:
- dest.intVal = int(src.floatVal)
- else:
- dest.intVal = src.intVal
- if dest.intVal < firstOrd(desttyp) or dest.intVal > lastOrd(desttyp):
- return true
- of tyUInt..tyUInt64:
- if dest.kind != rkInt:
- myreset(dest); dest.kind = rkInt
- case skipTypes(srctyp, abstractRange).kind
- of tyFloat..tyFloat64:
- dest.intVal = int(src.floatVal)
- else:
- let srcDist = (sizeof(src.intVal) - srctyp.size) * 8
- let destDist = (sizeof(dest.intVal) - desttyp.size) * 8
- when system.cpuEndian == bigEndian:
- dest.intVal = (src.intVal shr srcDist) shl srcDist
- dest.intVal = (dest.intVal shr destDist) shl destDist
- else:
- dest.intVal = (src.intVal shl srcDist) shr srcDist
- dest.intVal = (dest.intVal shl destDist) shr destDist
- of tyFloat..tyFloat64:
- if dest.kind != rkFloat:
- myreset(dest); dest.kind = rkFloat
- case skipTypes(srctyp, abstractRange).kind
- of tyInt..tyInt64, tyUInt..tyUInt64, tyEnum, tyBool, tyChar:
- dest.floatVal = toBiggestFloat(src.intVal)
- else:
- dest.floatVal = src.floatVal
- else:
- asgnComplex(dest, src)
- proc compile(c: PCtx, s: PSym): int =
- result = vmgen.genProc(c, s)
- when debugEchoCode: c.echoCode result
- #c.echoCode
- template handleJmpBack() {.dirty.} =
- if c.loopIterations <= 0:
- if allowInfiniteLoops in c.features:
- c.loopIterations = MaxLoopIterations
- else:
- msgWriteln("stack trace: (most recent call last)")
- stackTraceAux(c, tos, pc)
- globalError(c.debug[pc], errTooManyIterations)
- dec(c.loopIterations)
- proc recSetFlagIsRef(arg: PNode) =
- arg.flags.incl(nfIsRef)
- for i in 0 ..< arg.safeLen:
- arg.sons[i].recSetFlagIsRef
- proc setLenSeq(c: PCtx; node: PNode; newLen: int; info: TLineInfo) =
- # FIXME: this doesn't attempt to solve incomplete
- # support of tyPtr, tyRef in VM.
- let typ = node.typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc})
- let typeEntry = typ.sons[0].skipTypes(abstractInst+{tyRange}-{tyTypeDesc})
- let typeKind = case typeEntry.kind
- of tyUInt..tyUInt64: nkUIntLit
- of tyRange, tyEnum, tyBool, tyChar, tyInt..tyInt64: nkIntLit
- of tyFloat..tyFloat128: nkFloatLit
- of tyString: nkStrLit
- of tyObject: nkObjConstr
- of tySequence: nkNilLit
- of tyProc, tyTuple: nkPar
- else: nkEmpty
- let oldLen = node.len
- setLen(node.sons, newLen)
- if oldLen < newLen:
- # TODO: This is still not correct for tyPtr, tyRef default value
- for i in oldLen .. <newLen:
- node.sons[i] = newNodeI(typeKind, info)
- proc rawExecute(c: PCtx, start: int, tos: PStackFrame): TFullReg =
- var pc = start
- var tos = tos
- var regs: seq[TFullReg] # alias to tos.slots for performance
- move(regs, tos.slots)
- #echo "NEW RUN ------------------------"
- while true:
- #{.computedGoto.}
- let instr = c.code[pc]
- let ra = instr.regA
- #if c.traceActive:
- when traceCode:
- echo "PC ", pc, " ", c.code[pc].opcode, " ra ", ra, " rb ", instr.regB, " rc ", instr.regC
- # message(c.debug[pc], warnUser, "Trace")
- case instr.opcode
- of opcEof: return regs[ra]
- of opcRet:
- # XXX perform any cleanup actions
- pc = tos.comesFrom
- tos = tos.next
- let retVal = regs[0]
- if tos.isNil:
- #echo "RET ", retVal.rendertree
- return retVal
- move(regs, tos.slots)
- assert c.code[pc].opcode in {opcIndCall, opcIndCallAsgn}
- if c.code[pc].opcode == opcIndCallAsgn:
- regs[c.code[pc].regA] = retVal
- #echo "RET2 ", retVal.rendertree, " ", c.code[pc].regA
- of opcYldYoid: assert false
- of opcYldVal: assert false
- of opcAsgnInt:
- decodeB(rkInt)
- regs[ra].intVal = regs[rb].intVal
- of opcAsgnStr:
- decodeBC(rkNode)
- createStrKeepNode regs[ra], rc != 0
- regs[ra].node.strVal = regs[rb].node.strVal
- of opcAsgnFloat:
- decodeB(rkFloat)
- regs[ra].floatVal = regs[rb].floatVal
- of opcAsgnComplex:
- asgnComplex(regs[ra], regs[instr.regB])
- of opcAsgnRef:
- asgnRef(regs[ra], regs[instr.regB])
- of opcRegToNode:
- decodeB(rkNode)
- putIntoNode(regs[ra].node, regs[rb])
- of opcNodeToReg:
- let ra = instr.regA
- let rb = instr.regB
- # opcDeref might already have loaded it into a register. XXX Let's hope
- # this is still correct this way:
- if regs[rb].kind != rkNode:
- regs[ra] = regs[rb]
- else:
- assert regs[rb].kind == rkNode
- let nb = regs[rb].node
- case nb.kind
- of nkCharLit..nkUInt64Lit:
- ensureKind(rkInt)
- regs[ra].intVal = nb.intVal
- of nkFloatLit..nkFloat64Lit:
- ensureKind(rkFloat)
- regs[ra].floatVal = nb.floatVal
- else:
- ensureKind(rkNode)
- regs[ra].node = nb
- of opcLdArr:
- # a = b[c]
- decodeBC(rkNode)
- if regs[rc].intVal > high(int):
- stackTrace(c, tos, pc, errIndexOutOfBounds)
- let idx = regs[rc].intVal.int
- let src = regs[rb].node
- if src.kind in {nkStrLit..nkTripleStrLit}:
- if idx <% src.strVal.len:
- regs[ra].node = newNodeI(nkCharLit, c.debug[pc])
- regs[ra].node.intVal = src.strVal[idx].ord
- else:
- stackTrace(c, tos, pc, errIndexOutOfBounds)
- elif src.kind notin {nkEmpty..nkFloat128Lit} and idx <% src.len:
- regs[ra].node = src.sons[idx]
- else:
- stackTrace(c, tos, pc, errIndexOutOfBounds)
- of opcLdStrIdx:
- decodeBC(rkInt)
- let idx = regs[rc].intVal.int
- let s = regs[rb].node.strVal
- if s.isNil:
- stackTrace(c, tos, pc, errNilAccess)
- elif idx <=% s.len:
- regs[ra].intVal = s[idx].ord
- else:
- stackTrace(c, tos, pc, errIndexOutOfBounds)
- of opcWrArr:
- # a[b] = c
- decodeBC(rkNode)
- let idx = regs[rb].intVal.int
- let arr = regs[ra].node
- if arr.kind in {nkStrLit..nkTripleStrLit}:
- if idx <% arr.strVal.len:
- arr.strVal[idx] = chr(regs[rc].intVal)
- else:
- stackTrace(c, tos, pc, errIndexOutOfBounds)
- elif idx <% arr.len:
- putIntoNode(arr.sons[idx], regs[rc])
- else:
- stackTrace(c, tos, pc, errIndexOutOfBounds)
- of opcLdObj:
- # a = b.c
- decodeBC(rkNode)
- let src = regs[rb].node
- if src.kind notin {nkEmpty..nkNilLit}:
- let n = src.sons[rc + ord(src.kind == nkObjConstr)].skipColon
- regs[ra].node = n
- else:
- stackTrace(c, tos, pc, errNilAccess)
- of opcWrObj:
- # a.b = c
- decodeBC(rkNode)
- let shiftedRb = rb + ord(regs[ra].node.kind == nkObjConstr)
- let dest = regs[ra].node
- if dest.kind == nkNilLit:
- stackTrace(c, tos, pc, errNilAccess)
- elif dest.sons[shiftedRb].kind == nkExprColonExpr:
- putIntoNode(dest.sons[shiftedRb].sons[1], regs[rc])
- else:
- putIntoNode(dest.sons[shiftedRb], regs[rc])
- of opcWrStrIdx:
- decodeBC(rkNode)
- let idx = regs[rb].intVal.int
- if idx <% regs[ra].node.strVal.len:
- regs[ra].node.strVal[idx] = chr(regs[rc].intVal)
- else:
- stackTrace(c, tos, pc, errIndexOutOfBounds)
- of opcAddrReg:
- decodeB(rkRegisterAddr)
- regs[ra].regAddr = addr(regs[rb])
- of opcAddrNode:
- decodeB(rkNodeAddr)
- if regs[rb].kind == rkNode:
- regs[ra].nodeAddr = addr(regs[rb].node)
- else:
- stackTrace(c, tos, pc, errGenerated, "limited VM support for 'addr'")
- of opcLdDeref:
- # a = b[]
- let ra = instr.regA
- let rb = instr.regB
- case regs[rb].kind
- of rkNodeAddr:
- ensureKind(rkNode)
- regs[ra].node = regs[rb].nodeAddr[]
- of rkRegisterAddr:
- ensureKind(regs[rb].regAddr.kind)
- regs[ra] = regs[rb].regAddr[]
- of rkNode:
- if regs[rb].node.kind == nkNilLit:
- stackTrace(c, tos, pc, errNilAccess)
- if regs[rb].node.kind == nkRefTy:
- regs[ra].node = regs[rb].node.sons[0]
- else:
- ensureKind(rkNode)
- regs[ra].node = regs[rb].node
- else:
- stackTrace(c, tos, pc, errNilAccess)
- of opcWrDeref:
- # a[] = c; b unused
- let ra = instr.regA
- let rc = instr.regC
- case regs[ra].kind
- of rkNodeAddr: putIntoNode(regs[ra].nodeAddr[], regs[rc])
- of rkRegisterAddr: regs[ra].regAddr[] = regs[rc]
- of rkNode: putIntoNode(regs[ra].node, regs[rc])
- else: stackTrace(c, tos, pc, errNilAccess)
- of opcAddInt:
- decodeBC(rkInt)
- let
- bVal = regs[rb].intVal
- cVal = regs[rc].intVal
- sum = bVal +% cVal
- if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
- regs[ra].intVal = sum
- else:
- stackTrace(c, tos, pc, errOverOrUnderflow)
- of opcAddImmInt:
- decodeBImm(rkInt)
- #message(c.debug[pc], warnUser, "came here")
- #debug regs[rb].node
- let
- bVal = regs[rb].intVal
- cVal = imm
- sum = bVal +% cVal
- if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
- regs[ra].intVal = sum
- else:
- stackTrace(c, tos, pc, errOverOrUnderflow)
- of opcSubInt:
- decodeBC(rkInt)
- let
- bVal = regs[rb].intVal
- cVal = regs[rc].intVal
- diff = bVal -% cVal
- if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
- regs[ra].intVal = diff
- else:
- stackTrace(c, tos, pc, errOverOrUnderflow)
- of opcSubImmInt:
- decodeBImm(rkInt)
- let
- bVal = regs[rb].intVal
- cVal = imm
- diff = bVal -% cVal
- if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
- regs[ra].intVal = diff
- else:
- stackTrace(c, tos, pc, errOverOrUnderflow)
- of opcLenSeq:
- decodeBImm(rkInt)
- #assert regs[rb].kind == nkBracket
- let high = (imm and 1) # discard flags
- if (imm and nimNodeFlag) != 0:
- # used by mNLen (NimNode.len)
- regs[ra].intVal = regs[rb].node.safeLen - high
- else:
- # safeArrLen also return string node len
- # used when string is passed as openArray in VM
- regs[ra].intVal = regs[rb].node.safeArrLen - high
- of opcLenStr:
- decodeBImm(rkInt)
- assert regs[rb].kind == rkNode
- regs[ra].intVal = regs[rb].node.strVal.len - imm
- of opcIncl:
- decodeB(rkNode)
- let b = regs[rb].regToNode
- if not inSet(regs[ra].node, b):
- addSon(regs[ra].node, copyTree(b))
- of opcInclRange:
- decodeBC(rkNode)
- var r = newNode(nkRange)
- r.add regs[rb].regToNode
- r.add regs[rc].regToNode
- addSon(regs[ra].node, r.copyTree)
- of opcExcl:
- decodeB(rkNode)
- var b = newNodeIT(nkCurly, regs[ra].node.info, regs[ra].node.typ)
- addSon(b, regs[rb].regToNode)
- var r = diffSets(regs[ra].node, b)
- discardSons(regs[ra].node)
- for i in countup(0, sonsLen(r) - 1): addSon(regs[ra].node, r.sons[i])
- of opcCard:
- decodeB(rkInt)
- regs[ra].intVal = nimsets.cardSet(regs[rb].node)
- of opcMulInt:
- decodeBC(rkInt)
- let
- bVal = regs[rb].intVal
- cVal = regs[rc].intVal
- product = bVal *% cVal
- floatProd = toBiggestFloat(bVal) * toBiggestFloat(cVal)
- resAsFloat = toBiggestFloat(product)
- if resAsFloat == floatProd:
- regs[ra].intVal = product
- elif 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
- regs[ra].intVal = product
- else:
- stackTrace(c, tos, pc, errOverOrUnderflow)
- of opcDivInt:
- decodeBC(rkInt)
- if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
- else: regs[ra].intVal = regs[rb].intVal div regs[rc].intVal
- of opcModInt:
- decodeBC(rkInt)
- if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
- else: regs[ra].intVal = regs[rb].intVal mod regs[rc].intVal
- of opcAddFloat:
- decodeBC(rkFloat)
- regs[ra].floatVal = regs[rb].floatVal + regs[rc].floatVal
- of opcSubFloat:
- decodeBC(rkFloat)
- regs[ra].floatVal = regs[rb].floatVal - regs[rc].floatVal
- of opcMulFloat:
- decodeBC(rkFloat)
- regs[ra].floatVal = regs[rb].floatVal * regs[rc].floatVal
- of opcDivFloat:
- decodeBC(rkFloat)
- regs[ra].floatVal = regs[rb].floatVal / regs[rc].floatVal
- of opcShrInt:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal shr regs[rc].intVal
- of opcShlInt:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal shl regs[rc].intVal
- of opcBitandInt:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal and regs[rc].intVal
- of opcBitorInt:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal or regs[rc].intVal
- of opcBitxorInt:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal xor regs[rc].intVal
- of opcAddu:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal +% regs[rc].intVal
- of opcSubu:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal -% regs[rc].intVal
- of opcMulu:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal *% regs[rc].intVal
- of opcDivu:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal /% regs[rc].intVal
- of opcModu:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal %% regs[rc].intVal
- of opcEqInt:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].intVal == regs[rc].intVal)
- of opcLeInt:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].intVal <= regs[rc].intVal)
- of opcLtInt:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].intVal < regs[rc].intVal)
- of opcEqFloat:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].floatVal == regs[rc].floatVal)
- of opcLeFloat:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].floatVal <= regs[rc].floatVal)
- of opcLtFloat:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].floatVal < regs[rc].floatVal)
- of opcLeu:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].intVal <=% regs[rc].intVal)
- of opcLtu:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].intVal <% regs[rc].intVal)
- of opcEqRef:
- decodeBC(rkInt)
- regs[ra].intVal = ord((regs[rb].node.kind == nkNilLit and
- regs[rc].node.kind == nkNilLit) or
- regs[rb].node == regs[rc].node)
- of opcEqNimrodNode:
- decodeBC(rkInt)
- regs[ra].intVal =
- ord(exprStructuralEquivalent(regs[rb].node, regs[rc].node,
- strictSymEquality=true))
- of opcSameNodeType:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].node.typ.sameTypeOrNil regs[rc].node.typ)
- of opcXor:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].intVal != regs[rc].intVal)
- of opcNot:
- decodeB(rkInt)
- assert regs[rb].kind == rkInt
- regs[ra].intVal = 1 - regs[rb].intVal
- of opcUnaryMinusInt:
- decodeB(rkInt)
- assert regs[rb].kind == rkInt
- let val = regs[rb].intVal
- if val != int64.low:
- regs[ra].intVal = -val
- else:
- stackTrace(c, tos, pc, errOverOrUnderflow)
- of opcUnaryMinusFloat:
- decodeB(rkFloat)
- assert regs[rb].kind == rkFloat
- regs[ra].floatVal = -regs[rb].floatVal
- of opcBitnotInt:
- decodeB(rkInt)
- assert regs[rb].kind == rkInt
- regs[ra].intVal = not regs[rb].intVal
- of opcEqStr:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].node.strVal == regs[rc].node.strVal)
- of opcLeStr:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].node.strVal <= regs[rc].node.strVal)
- of opcLtStr:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].node.strVal < regs[rc].node.strVal)
- of opcLeSet:
- decodeBC(rkInt)
- regs[ra].intVal = ord(containsSets(regs[rb].node, regs[rc].node))
- of opcEqSet:
- decodeBC(rkInt)
- regs[ra].intVal = ord(equalSets(regs[rb].node, regs[rc].node))
- of opcLtSet:
- decodeBC(rkInt)
- let a = regs[rb].node
- let b = regs[rc].node
- regs[ra].intVal = ord(containsSets(a, b) and not equalSets(a, b))
- of opcMulSet:
- decodeBC(rkNode)
- createSet(regs[ra])
- move(regs[ra].node.sons,
- nimsets.intersectSets(regs[rb].node, regs[rc].node).sons)
- of opcPlusSet:
- decodeBC(rkNode)
- createSet(regs[ra])
- move(regs[ra].node.sons,
- nimsets.unionSets(regs[rb].node, regs[rc].node).sons)
- of opcMinusSet:
- decodeBC(rkNode)
- createSet(regs[ra])
- move(regs[ra].node.sons,
- nimsets.diffSets(regs[rb].node, regs[rc].node).sons)
- of opcSymdiffSet:
- decodeBC(rkNode)
- createSet(regs[ra])
- move(regs[ra].node.sons,
- nimsets.symdiffSets(regs[rb].node, regs[rc].node).sons)
- of opcConcatStr:
- decodeBC(rkNode)
- createStr regs[ra]
- regs[ra].node.strVal = getstr(regs[rb])
- for i in rb+1..rb+rc-1:
- regs[ra].node.strVal.add getstr(regs[i])
- of opcAddStrCh:
- decodeB(rkNode)
- #createStrKeepNode regs[ra]
- regs[ra].node.strVal.add(regs[rb].intVal.chr)
- of opcAddStrStr:
- decodeB(rkNode)
- #createStrKeepNode regs[ra]
- regs[ra].node.strVal.add(regs[rb].node.strVal)
- of opcAddSeqElem:
- decodeB(rkNode)
- if regs[ra].node.kind == nkBracket:
- regs[ra].node.add(copyValue(regs[rb].regToNode))
- else:
- stackTrace(c, tos, pc, errNilAccess)
- of opcGetImpl:
- decodeB(rkNode)
- let a = regs[rb].node
- if a.kind == nkSym:
- regs[ra].node = if a.sym.ast.isNil: newNode(nkNilLit)
- else: copyTree(a.sym.ast)
- else:
- stackTrace(c, tos, pc, errFieldXNotFound, "symbol")
- of opcEcho:
- let rb = instr.regB
- if rb == 1:
- msgWriteln(regs[ra].node.strVal, {msgStdout})
- else:
- var outp = ""
- for i in ra..ra+rb-1:
- #if regs[i].kind != rkNode: debug regs[i]
- outp.add(regs[i].node.strVal)
- msgWriteln(outp, {msgStdout})
- of opcContainsSet:
- decodeBC(rkInt)
- regs[ra].intVal = ord(inSet(regs[rb].node, regs[rc].regToNode))
- of opcSubStr:
- decodeBC(rkNode)
- inc pc
- assert c.code[pc].opcode == opcSubStr
- let rd = c.code[pc].regA
- createStr regs[ra]
- regs[ra].node.strVal = substr(regs[rb].node.strVal,
- regs[rc].intVal.int, regs[rd].intVal.int)
- of opcParseFloat:
- decodeBC(rkInt)
- inc pc
- assert c.code[pc].opcode == opcParseFloat
- let rd = c.code[pc].regA
- var rcAddr = addr(regs[rc])
- if rcAddr.kind == rkRegisterAddr: rcAddr = rcAddr.regAddr
- elif regs[rc].kind != rkFloat:
- myreset(regs[rc])
- regs[rc].kind = rkFloat
- regs[ra].intVal = parseBiggestFloat(regs[rb].node.strVal,
- rcAddr.floatVal, regs[rd].intVal.int)
- of opcRangeChck:
- let rb = instr.regB
- let rc = instr.regC
- if not (leValueConv(regs[rb].regToNode, regs[ra].regToNode) and
- leValueConv(regs[ra].regToNode, regs[rc].regToNode)):
- stackTrace(c, tos, pc, errGenerated,
- msgKindToString(errIllegalConvFromXtoY) % [
- $regs[ra].regToNode, "[" & $regs[rb].regToNode & ".." & $regs[rc].regToNode & "]"])
- of opcIndCall, opcIndCallAsgn:
- # dest = call regStart, n; where regStart = fn, arg1, ...
- let rb = instr.regB
- let rc = instr.regC
- let bb = regs[rb].node
- let isClosure = bb.kind == nkPar
- let prc = if not isClosure: bb.sym else: bb.sons[0].sym
- if prc.offset < -1:
- # it's a callback:
- c.callbacks[-prc.offset-2].value(
- VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[pointer](regs),
- currentException: c.currentExceptionB,
- currentLineInfo: c.debug[pc]))
- elif sfImportc in prc.flags:
- if allowFFI notin c.features:
- globalError(c.debug[pc], errGenerated, "VM not allowed to do FFI")
- # we pass 'tos.slots' instead of 'regs' so that the compiler can keep
- # 'regs' in a register:
- when hasFFI:
- let prcValue = c.globals.sons[prc.position-1]
- if prcValue.kind == nkEmpty:
- globalError(c.debug[pc], errGenerated, "canot run " & prc.name.s)
- let newValue = callForeignFunction(prcValue, prc.typ, tos.slots,
- rb+1, rc-1, c.debug[pc])
- if newValue.kind != nkEmpty:
- assert instr.opcode == opcIndCallAsgn
- putIntoReg(regs[ra], newValue)
- else:
- globalError(c.debug[pc], errGenerated, "VM not built with FFI support")
- elif prc.kind != skTemplate:
- let newPc = compile(c, prc)
- # tricky: a recursion is also a jump back, so we use the same
- # logic as for loops:
- if newPc < pc: handleJmpBack()
- #echo "new pc ", newPc, " calling: ", prc.name.s
- var newFrame = PStackFrame(prc: prc, comesFrom: pc, next: tos)
- newSeq(newFrame.slots, prc.offset+ord(isClosure))
- if not isEmptyType(prc.typ.sons[0]) or prc.kind == skMacro:
- putIntoReg(newFrame.slots[0], getNullValue(prc.typ.sons[0], prc.info))
- for i in 1 .. rc-1:
- newFrame.slots[i] = regs[rb+i]
- if isClosure:
- newFrame.slots[rc].kind = rkNode
- newFrame.slots[rc].node = regs[rb].node.sons[1]
- tos = newFrame
- move(regs, newFrame.slots)
- # -1 for the following 'inc pc'
- pc = newPc-1
- else:
- # for 'getAst' support we need to support template expansion here:
- let genSymOwner = if tos.next != nil and tos.next.prc != nil:
- tos.next.prc
- else:
- c.module
- var macroCall = newNodeI(nkCall, c.debug[pc])
- macroCall.add(newSymNode(prc))
- for i in 1 .. rc-1:
- let node = regs[rb+i].regToNode
- node.info = c.debug[pc]
- macroCall.add(node)
- let a = evalTemplate(macroCall, prc, genSymOwner)
- a.recSetFlagIsRef
- ensureKind(rkNode)
- regs[ra].node = a
- of opcTJmp:
- # jump Bx if A != 0
- let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
- if regs[ra].intVal != 0:
- inc pc, rbx
- of opcFJmp:
- # jump Bx if A == 0
- let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
- if regs[ra].intVal == 0:
- inc pc, rbx
- of opcJmp:
- # jump Bx
- let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
- inc pc, rbx
- of opcJmpBack:
- let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
- inc pc, rbx
- handleJmpBack()
- of opcBranch:
- # we know the next instruction is a 'fjmp':
- let branch = c.constants[instr.regBx-wordExcess]
- var cond = false
- for j in countup(0, sonsLen(branch) - 2):
- if overlap(regs[ra].regToNode, branch.sons[j]):
- cond = true
- break
- assert c.code[pc+1].opcode == opcFJmp
- inc pc
- # we skip this instruction so that the final 'inc(pc)' skips
- # the following jump
- if not cond:
- let instr2 = c.code[pc]
- let rbx = instr2.regBx - wordExcess - 1 # -1 for the following 'inc pc'
- inc pc, rbx
- of opcTry:
- let rbx = instr.regBx - wordExcess
- tos.pushSafePoint(pc + rbx)
- assert c.code[pc+rbx].opcode in {opcExcept, opcFinally}
- of opcExcept:
- # just skip it; it's followed by a jump;
- # we'll execute in the 'raise' handler
- let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
- inc pc, rbx
- while c.code[pc+1].opcode == opcExcept:
- let rbx = c.code[pc+1].regBx - wordExcess - 1
- inc pc, rbx
- #assert c.code[pc+1].opcode in {opcExcept, opcFinally}
- if c.code[pc+1].opcode != opcFinally:
- # in an except handler there is no active safe point for the 'try':
- tos.popSafePoint()
- of opcFinally:
- # just skip it; it's followed by the code we need to execute anyway
- tos.popSafePoint()
- of opcFinallyEnd:
- if c.currentExceptionA != nil:
- # we are in a cleanup run:
- let (newPc, newTos) = cleanUpOnException(c, tos)
- if newPc-1 < 0:
- bailOut(c, tos)
- return
- pc = newPc-1
- if tos != newTos:
- tos = newTos
- move(regs, tos.slots)
- of opcRaise:
- let raised = regs[ra].node
- c.currentExceptionA = raised
- c.exceptionInstr = pc
- let (newPc, newTos) = cleanUpOnException(c, tos)
- # -1 because of the following 'inc'
- if newPc-1 < 0:
- bailOut(c, tos)
- return
- pc = newPc-1
- if tos != newTos:
- tos = newTos
- move(regs, tos.slots)
- of opcNew:
- ensureKind(rkNode)
- let typ = c.types[instr.regBx - wordExcess]
- regs[ra].node = getNullValue(typ, c.debug[pc])
- regs[ra].node.flags.incl nfIsRef
- of opcNewSeq:
- let typ = c.types[instr.regBx - wordExcess]
- inc pc
- ensureKind(rkNode)
- let instr2 = c.code[pc]
- let count = regs[instr2.regA].intVal.int
- regs[ra].node = newNodeI(nkBracket, c.debug[pc])
- regs[ra].node.typ = typ
- newSeq(regs[ra].node.sons, count)
- for i in 0 .. <count:
- regs[ra].node.sons[i] = getNullValue(typ.sons[0], c.debug[pc])
- of opcNewStr:
- decodeB(rkNode)
- regs[ra].node = newNodeI(nkStrLit, c.debug[pc])
- regs[ra].node.strVal = newString(regs[rb].intVal.int)
- of opcLdImmInt:
- # dest = immediate value
- decodeBx(rkInt)
- regs[ra].intVal = rbx
- of opcLdNull:
- ensureKind(rkNode)
- let typ = c.types[instr.regBx - wordExcess]
- regs[ra].node = getNullValue(typ, c.debug[pc])
- # opcLdNull really is the gist of the VM's problems: should it load
- # a fresh null to regs[ra].node or to regs[ra].node[]? This really
- # depends on whether regs[ra] represents the variable itself or wether
- # it holds the indirection! Due to the way registers are re-used we cannot
- # say for sure here! --> The codegen has to deal with it
- # via 'genAsgnPatch'.
- of opcLdNullReg:
- let typ = c.types[instr.regBx - wordExcess]
- if typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc}).kind in {
- tyFloat..tyFloat128}:
- ensureKind(rkFloat)
- regs[ra].floatVal = 0.0
- else:
- ensureKind(rkInt)
- regs[ra].intVal = 0
- of opcLdConst:
- let rb = instr.regBx - wordExcess
- let cnst = c.constants.sons[rb]
- if fitsRegister(cnst.typ):
- myreset(regs[ra])
- putIntoReg(regs[ra], cnst)
- else:
- ensureKind(rkNode)
- regs[ra].node = cnst
- of opcAsgnConst:
- let rb = instr.regBx - wordExcess
- let cnst = c.constants.sons[rb]
- if fitsRegister(cnst.typ):
- putIntoReg(regs[ra], cnst)
- else:
- ensureKind(rkNode)
- regs[ra].node = cnst.copyTree
- of opcLdGlobal:
- let rb = instr.regBx - wordExcess - 1
- ensureKind(rkNode)
- regs[ra].node = c.globals.sons[rb]
- of opcLdGlobalAddr:
- let rb = instr.regBx - wordExcess - 1
- ensureKind(rkNodeAddr)
- regs[ra].nodeAddr = addr(c.globals.sons[rb])
- of opcRepr:
- decodeB(rkNode)
- createStr regs[ra]
- regs[ra].node.strVal = renderTree(regs[rb].regToNode, {renderNoComments, renderDocComments})
- of opcQuit:
- if c.mode in {emRepl, emStaticExpr, emStaticStmt}:
- message(c.debug[pc], hintQuitCalled)
- msgQuit(int8(getOrdValue(regs[ra].regToNode)))
- else:
- return TFullReg(kind: rkNone)
- of opcSetLenStr:
- decodeB(rkNode)
- #createStrKeepNode regs[ra]
- regs[ra].node.strVal.setLen(regs[rb].intVal.int)
- of opcOf:
- decodeBC(rkInt)
- let typ = c.types[regs[rc].intVal.int]
- regs[ra].intVal = ord(inheritanceDiff(regs[rb].node.typ, typ) >= 0)
- of opcIs:
- decodeBC(rkInt)
- let t1 = regs[rb].node.typ.skipTypes({tyTypeDesc})
- let t2 = c.types[regs[rc].intVal.int]
- # XXX: This should use the standard isOpImpl
- let match = if t2.kind == tyUserTypeClass: true
- else: sameType(t1, t2)
- regs[ra].intVal = ord(match)
- of opcSetLenSeq:
- decodeB(rkNode)
- let newLen = regs[rb].intVal.int
- if regs[ra].node.isNil: stackTrace(c, tos, pc, errNilAccess)
- else: c.setLenSeq(regs[ra].node, newLen, c.debug[pc])
- of opcReset:
- internalError(c.debug[pc], "too implement")
- of opcNarrowS:
- decodeB(rkInt)
- let min = -(1.BiggestInt shl (rb-1))
- let max = (1.BiggestInt shl (rb-1))-1
- if regs[ra].intVal < min or regs[ra].intVal > max:
- stackTrace(c, tos, pc, errGenerated,
- msgKindToString(errUnhandledExceptionX) % "value out of range")
- of opcNarrowU:
- decodeB(rkInt)
- regs[ra].intVal = regs[ra].intVal and ((1'i64 shl rb)-1)
- of opcIsNil:
- decodeB(rkInt)
- let node = regs[rb].node
- regs[ra].intVal = ord(node.kind == nkNilLit or
- (node.kind in {nkStrLit..nkTripleStrLit} and node.strVal.isNil))
- of opcNBindSym:
- decodeBx(rkNode)
- regs[ra].node = copyTree(c.constants.sons[rbx])
- of opcNChild:
- decodeBC(rkNode)
- let idx = regs[rc].intVal.int
- let src = regs[rb].node
- if src.kind notin {nkEmpty..nkNilLit} and idx <% src.len:
- regs[ra].node = src.sons[idx]
- else:
- stackTrace(c, tos, pc, errIndexOutOfBounds)
- of opcNSetChild:
- decodeBC(rkNode)
- let idx = regs[rb].intVal.int
- var dest = regs[ra].node
- if dest.kind notin {nkEmpty..nkNilLit} and idx <% dest.len:
- dest.sons[idx] = regs[rc].node
- else:
- stackTrace(c, tos, pc, errIndexOutOfBounds)
- of opcNAdd:
- decodeBC(rkNode)
- var u = regs[rb].node
- if u.kind notin {nkEmpty..nkNilLit}:
- u.add(regs[rc].node)
- else:
- stackTrace(c, tos, pc, errGenerated, "cannot add to node kind: " & $u.kind)
- regs[ra].node = u
- of opcNAddMultiple:
- decodeBC(rkNode)
- let x = regs[rc].node
- var u = regs[rb].node
- if u.kind notin {nkEmpty..nkNilLit}:
- # XXX can be optimized:
- for i in 0.. <x.len: u.add(x.sons[i])
- else:
- stackTrace(c, tos, pc, errGenerated, "cannot add to node kind: " & $u.kind)
- regs[ra].node = u
- of opcNKind:
- decodeB(rkInt)
- regs[ra].intVal = ord(regs[rb].node.kind)
- c.comesFromHeuristic = regs[rb].node.info
- of opcNIntVal:
- decodeB(rkInt)
- let a = regs[rb].node
- case a.kind
- of nkCharLit..nkUInt64Lit: regs[ra].intVal = a.intVal
- else: stackTrace(c, tos, pc, errFieldXNotFound, "intVal")
- of opcNFloatVal:
- decodeB(rkFloat)
- let a = regs[rb].node
- case a.kind
- of nkFloatLit..nkFloat64Lit: regs[ra].floatVal = a.floatVal
- else: stackTrace(c, tos, pc, errFieldXNotFound, "floatVal")
- of opcNSymbol:
- decodeB(rkNode)
- let a = regs[rb].node
- if a.kind == nkSym:
- regs[ra].node = copyNode(a)
- else:
- stackTrace(c, tos, pc, errFieldXNotFound, "symbol")
- of opcNIdent:
- decodeB(rkNode)
- let a = regs[rb].node
- if a.kind == nkIdent:
- regs[ra].node = copyNode(a)
- else:
- stackTrace(c, tos, pc, errFieldXNotFound, "ident")
- of opcNGetType:
- let rb = instr.regB
- let rc = instr.regC
- case rc:
- of 0:
- # getType opcode:
- ensureKind(rkNode)
- if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
- regs[ra].node = opMapTypeToAst(regs[rb].node.typ, c.debug[pc])
- else:
- stackTrace(c, tos, pc, errGenerated, "node has no type")
- of 1:
- # typeKind opcode:
- ensureKind(rkInt)
- if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
- regs[ra].intVal = ord(regs[rb].node.typ.kind)
- #else:
- # stackTrace(c, tos, pc, errGenerated, "node has no type")
- of 2:
- # getTypeInst opcode:
- ensureKind(rkNode)
- if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
- regs[ra].node = opMapTypeInstToAst(regs[rb].node.typ, c.debug[pc])
- else:
- stackTrace(c, tos, pc, errGenerated, "node has no type")
- else:
- # getTypeImpl opcode:
- ensureKind(rkNode)
- if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
- regs[ra].node = opMapTypeImplToAst(regs[rb].node.typ, c.debug[pc])
- else:
- stackTrace(c, tos, pc, errGenerated, "node has no type")
- of opcNStrVal:
- decodeB(rkNode)
- createStr regs[ra]
- let a = regs[rb].node
- if a.kind in {nkStrLit..nkTripleStrLit}: regs[ra].node.strVal = a.strVal
- elif a.kind == nkCommentStmt: regs[ra].node.strVal = a.comment
- else: stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
- of opcSlurp:
- decodeB(rkNode)
- createStr regs[ra]
- regs[ra].node.strVal = opSlurp(regs[rb].node.strVal, c.debug[pc],
- c.module)
- of opcGorge:
- decodeBC(rkNode)
- inc pc
- let rd = c.code[pc].regA
- createStr regs[ra]
- regs[ra].node.strVal = opGorge(regs[rb].node.strVal,
- regs[rc].node.strVal, regs[rd].node.strVal,
- c.debug[pc])[0]
- of opcNError:
- decodeB(rkNode)
- let a = regs[ra].node
- let b = regs[rb].node
- stackTrace(c, tos, pc, errUser, a.strVal, if b.kind == nkNilLit: nil else: b)
- of opcNWarning:
- message(c.debug[pc], warnUser, regs[ra].node.strVal)
- of opcNHint:
- message(c.debug[pc], hintUser, regs[ra].node.strVal)
- of opcParseExprToAst:
- decodeB(rkNode)
- # c.debug[pc].line.int - countLines(regs[rb].strVal) ?
- var error: string
- let ast = parseString(regs[rb].node.strVal, c.cache, c.debug[pc].toFullPath,
- c.debug[pc].line.int,
- proc (info: TLineInfo; msg: TMsgKind; arg: string) =
- if error.isNil and msg <= msgs.errMax:
- error = formatMsg(info, msg, arg))
- if not error.isNil:
- c.errorFlag = error
- elif sonsLen(ast) != 1:
- c.errorFlag = formatMsg(c.debug[pc], errExprExpected, "multiple statements")
- else:
- regs[ra].node = ast.sons[0]
- of opcParseStmtToAst:
- decodeB(rkNode)
- var error: string
- let ast = parseString(regs[rb].node.strVal, c.cache, c.debug[pc].toFullPath,
- c.debug[pc].line.int,
- proc (info: TLineInfo; msg: TMsgKind; arg: string) =
- if error.isNil and msg <= msgs.errMax:
- error = formatMsg(info, msg, arg))
- if not error.isNil:
- c.errorFlag = error
- else:
- regs[ra].node = ast
- of opcQueryErrorFlag:
- createStr regs[ra]
- regs[ra].node.strVal = c.errorFlag
- c.errorFlag.setLen 0
- of opcCallSite:
- ensureKind(rkNode)
- if c.callsite != nil: regs[ra].node = c.callsite
- else: stackTrace(c, tos, pc, errFieldXNotFound, "callsite")
- of opcNGetFile:
- decodeB(rkNode)
- let n = regs[rb].node
- regs[ra].node = newStrNode(nkStrLit, n.info.toFilename)
- regs[ra].node.info = n.info
- regs[ra].node.typ = n.typ
- of opcNGetLine:
- decodeB(rkNode)
- let n = regs[rb].node
- regs[ra].node = newIntNode(nkIntLit, n.info.line)
- regs[ra].node.info = n.info
- regs[ra].node.typ = n.typ
- of opcNGetColumn:
- decodeB(rkNode)
- let n = regs[rb].node
- regs[ra].node = newIntNode(nkIntLit, n.info.col)
- regs[ra].node.info = n.info
- regs[ra].node.typ = n.typ
- of opcEqIdent:
- decodeBC(rkInt)
- if regs[rb].node.kind == nkIdent and regs[rc].node.kind == nkIdent:
- regs[ra].intVal = ord(regs[rb].node.ident.id == regs[rc].node.ident.id)
- else:
- regs[ra].intVal = 0
- of opcStrToIdent:
- decodeB(rkNode)
- if regs[rb].node.kind notin {nkStrLit..nkTripleStrLit}:
- stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
- else:
- regs[ra].node = newNodeI(nkIdent, c.debug[pc])
- regs[ra].node.ident = getIdent(regs[rb].node.strVal)
- of opcIdentToStr:
- decodeB(rkNode)
- let a = regs[rb].node
- createStr regs[ra]
- regs[ra].node.info = c.debug[pc]
- if a.kind == nkSym:
- regs[ra].node.strVal = a.sym.name.s
- elif a.kind == nkIdent:
- regs[ra].node.strVal = a.ident.s
- else:
- stackTrace(c, tos, pc, errFieldXNotFound, "ident")
- of opcSetType:
- if regs[ra].kind != rkNode:
- internalError(c.debug[pc], "cannot set type")
- regs[ra].node.typ = c.types[instr.regBx - wordExcess]
- of opcConv:
- let rb = instr.regB
- inc pc
- let desttyp = c.types[c.code[pc].regBx - wordExcess]
- inc pc
- let srctyp = c.types[c.code[pc].regBx - wordExcess]
- if opConv(regs[ra], regs[rb], desttyp, srctyp):
- stackTrace(c, tos, pc, errGenerated,
- msgKindToString(errIllegalConvFromXtoY) % [
- typeToString(srctyp), typeToString(desttyp)])
- of opcCast:
- let rb = instr.regB
- inc pc
- let desttyp = c.types[c.code[pc].regBx - wordExcess]
- inc pc
- let srctyp = c.types[c.code[pc].regBx - wordExcess]
- when hasFFI:
- let dest = fficast(regs[rb], desttyp)
- asgnRef(regs[ra], dest)
- else:
- globalError(c.debug[pc], "cannot evaluate cast")
- of opcNSetIntVal:
- decodeB(rkNode)
- var dest = regs[ra].node
- if dest.kind in {nkCharLit..nkUInt64Lit} and
- regs[rb].kind in {rkInt}:
- dest.intVal = regs[rb].intVal
- else:
- stackTrace(c, tos, pc, errFieldXNotFound, "intVal")
- of opcNSetFloatVal:
- decodeB(rkNode)
- var dest = regs[ra].node
- if dest.kind in {nkFloatLit..nkFloat64Lit} and
- regs[rb].kind in {rkFloat}:
- dest.floatVal = regs[rb].floatVal
- else:
- stackTrace(c, tos, pc, errFieldXNotFound, "floatVal")
- of opcNSetSymbol:
- decodeB(rkNode)
- var dest = regs[ra].node
- if dest.kind == nkSym and regs[rb].node.kind == nkSym:
- dest.sym = regs[rb].node.sym
- else:
- stackTrace(c, tos, pc, errFieldXNotFound, "symbol")
- of opcNSetIdent:
- decodeB(rkNode)
- var dest = regs[ra].node
- if dest.kind == nkIdent and regs[rb].node.kind == nkIdent:
- dest.ident = regs[rb].node.ident
- else:
- stackTrace(c, tos, pc, errFieldXNotFound, "ident")
- of opcNSetType:
- decodeB(rkNode)
- let b = regs[rb].node
- internalAssert b.kind == nkSym and b.sym.kind == skType
- internalAssert regs[ra].node != nil
- regs[ra].node.typ = b.sym.typ
- of opcNSetStrVal:
- decodeB(rkNode)
- var dest = regs[ra].node
- if dest.kind in {nkStrLit..nkTripleStrLit} and
- regs[rb].kind in {rkNode}:
- dest.strVal = regs[rb].node.strVal
- elif dest.kind == nkCommentStmt and regs[rb].kind in {rkNode}:
- dest.comment = regs[rb].node.strVal
- else:
- stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
- of opcNNewNimNode:
- decodeBC(rkNode)
- var k = regs[rb].intVal
- if k < 0 or k > ord(high(TNodeKind)):
- internalError(c.debug[pc],
- "request to create a NimNode of invalid kind")
- let cc = regs[rc].node
- regs[ra].node = newNodeI(TNodeKind(int(k)),
- if cc.kind != nkNilLit:
- cc.info
- elif c.comesFromHeuristic.line > -1:
- c.comesFromHeuristic
- elif c.callsite != nil and c.callsite.safeLen > 1:
- c.callsite[1].info
- else:
- c.debug[pc])
- regs[ra].node.flags.incl nfIsRef
- of opcNCopyNimNode:
- decodeB(rkNode)
- regs[ra].node = copyNode(regs[rb].node)
- of opcNCopyNimTree:
- decodeB(rkNode)
- regs[ra].node = copyTree(regs[rb].node)
- of opcNDel:
- decodeBC(rkNode)
- let bb = regs[rb].intVal.int
- for i in countup(0, regs[rc].intVal.int-1):
- delSon(regs[ra].node, bb)
- of opcGenSym:
- decodeBC(rkNode)
- let k = regs[rb].intVal
- let name = if regs[rc].node.strVal.len == 0: ":tmp"
- else: regs[rc].node.strVal
- if k < 0 or k > ord(high(TSymKind)):
- internalError(c.debug[pc], "request to create symbol of invalid kind")
- var sym = newSym(k.TSymKind, name.getIdent, c.module.owner, c.debug[pc])
- incl(sym.flags, sfGenSym)
- regs[ra].node = newSymNode(sym)
- of opcTypeTrait:
- # XXX only supports 'name' for now; we can use regC to encode the
- # type trait operation
- decodeB(rkNode)
- var typ = regs[rb].node.typ
- internalAssert typ != nil
- while typ.kind == tyTypeDesc and typ.len > 0: typ = typ.sons[0]
- createStr regs[ra]
- regs[ra].node.strVal = typ.typeToString(preferExported)
- of opcMarshalLoad:
- let ra = instr.regA
- let rb = instr.regB
- inc pc
- let typ = c.types[c.code[pc].regBx - wordExcess]
- putIntoReg(regs[ra], loadAny(regs[rb].node.strVal, typ))
- of opcMarshalStore:
- decodeB(rkNode)
- inc pc
- let typ = c.types[c.code[pc].regBx - wordExcess]
- createStrKeepNode(regs[ra])
- if regs[ra].node.strVal.isNil: regs[ra].node.strVal = newStringOfCap(1000)
- storeAny(regs[ra].node.strVal, typ, regs[rb].regToNode)
- of opcToNarrowInt:
- decodeBC(rkInt)
- let mask = (1'i64 shl rc) - 1 # 0xFF
- let signbit = 1'i64 shl (rc - 1) # 0x80
- let toggle = mask - signbit # 0x7F
- # algorithm: -((i8 and 0xFF) xor 0x7F) + 0x7F
- # mask off higher bits.
- # uses two's complement to sign-extend integer.
- # reajust integer into desired range.
- regs[ra].intVal = -((regs[rb].intVal and mask) xor toggle) + toggle
- inc pc
- proc execute(c: PCtx, start: int): PNode =
- var tos = PStackFrame(prc: nil, comesFrom: 0, next: nil)
- newSeq(tos.slots, c.prc.maxSlots)
- result = rawExecute(c, start, tos).regToNode
- proc execProc*(c: PCtx; sym: PSym; args: openArray[PNode]): PNode =
- if sym.kind in routineKinds:
- if sym.typ.len-1 != args.len:
- localError(sym.info,
- "NimScript: expected $# arguments, but got $#" % [
- $(sym.typ.len-1), $args.len])
- else:
- let start = genProc(c, sym)
- var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
- let maxSlots = sym.offset
- newSeq(tos.slots, maxSlots)
- # setup parameters:
- if not isEmptyType(sym.typ.sons[0]) or sym.kind == skMacro:
- putIntoReg(tos.slots[0], getNullValue(sym.typ.sons[0], sym.info))
- # XXX We could perform some type checking here.
- for i in 1.. <sym.typ.len:
- putIntoReg(tos.slots[i], args[i-1])
- result = rawExecute(c, start, tos).regToNode
- else:
- localError(sym.info,
- "NimScript: attempt to call non-routine: " & sym.name.s)
- proc evalStmt*(c: PCtx, n: PNode) =
- let n = transformExpr(c.module, n)
- let start = genStmt(c, n)
- # execute new instructions; this redundant opcEof check saves us lots
- # of allocations in 'execute':
- if c.code[start].opcode != opcEof:
- discard execute(c, start)
- proc evalExpr*(c: PCtx, n: PNode): PNode =
- let n = transformExpr(c.module, n)
- let start = genExpr(c, n)
- assert c.code[start].opcode != opcEof
- result = execute(c, start)
- proc getGlobalValue*(c: PCtx; s: PSym): PNode =
- internalAssert s.kind in {skLet, skVar} and sfGlobal in s.flags
- result = c.globals.sons[s.position-1]
- include vmops
- # for now we share the 'globals' environment. XXX Coming soon: An API for
- # storing&loading the 'globals' environment to get what a component system
- # requires.
- var
- globalCtx*: PCtx
- proc setupGlobalCtx(module: PSym; cache: IdentCache) =
- if globalCtx.isNil:
- globalCtx = newCtx(module, cache)
- registerAdditionalOps(globalCtx)
- else:
- refresh(globalCtx, module)
- proc myOpen(graph: ModuleGraph; module: PSym; cache: IdentCache): PPassContext =
- #var c = newEvalContext(module, emRepl)
- #c.features = {allowCast, allowFFI, allowInfiniteLoops}
- #pushStackFrame(c, newStackFrame())
- # XXX produce a new 'globals' environment here:
- setupGlobalCtx(module, cache)
- result = globalCtx
- when hasFFI:
- globalCtx.features = {allowFFI, allowCast}
- var oldErrorCount: int
- proc myProcess(c: PPassContext, n: PNode): PNode =
- # don't eval errornous code:
- if oldErrorCount == msgs.gErrorCounter:
- evalStmt(PCtx(c), n)
- result = emptyNode
- else:
- result = n
- oldErrorCount = msgs.gErrorCounter
- proc myClose(graph: ModuleGraph; c: PPassContext, n: PNode): PNode =
- myProcess(c, n)
- const evalPass* = makePass(myOpen, nil, myProcess, myClose)
- proc evalConstExprAux(module: PSym; cache: IdentCache; prc: PSym, n: PNode,
- mode: TEvalMode): PNode =
- let n = transformExpr(module, n)
- setupGlobalCtx(module, cache)
- var c = globalCtx
- let oldMode = c.mode
- defer: c.mode = oldMode
- c.mode = mode
- let start = genExpr(c, n, requiresValue = mode!=emStaticStmt)
- if c.code[start].opcode == opcEof: return emptyNode
- assert c.code[start].opcode != opcEof
- when debugEchoCode: c.echoCode start
- var tos = PStackFrame(prc: prc, comesFrom: 0, next: nil)
- newSeq(tos.slots, c.prc.maxSlots)
- #for i in 0 .. <c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty)
- result = rawExecute(c, start, tos).regToNode
- if result.info.line < 0: result.info = n.info
- proc evalConstExpr*(module: PSym; cache: IdentCache, e: PNode): PNode =
- result = evalConstExprAux(module, cache, nil, e, emConst)
- proc evalStaticExpr*(module: PSym; cache: IdentCache, e: PNode, prc: PSym): PNode =
- result = evalConstExprAux(module, cache, prc, e, emStaticExpr)
- proc evalStaticStmt*(module: PSym; cache: IdentCache, e: PNode, prc: PSym) =
- discard evalConstExprAux(module, cache, prc, e, emStaticStmt)
- proc setupCompileTimeVar*(module: PSym; cache: IdentCache, n: PNode) =
- discard evalConstExprAux(module, cache, nil, n, emStaticStmt)
- proc setupMacroParam(x: PNode, typ: PType): TFullReg =
- case typ.kind
- of tyStatic:
- putIntoReg(result, x)
- of tyTypeDesc:
- putIntoReg(result, x)
- else:
- result.kind = rkNode
- var n = x
- if n.kind in {nkHiddenSubConv, nkHiddenStdConv}: n = n.sons[1]
- n = n.canonValue
- n.flags.incl nfIsRef
- n.typ = x.typ
- result.node = n
- iterator genericParamsInMacroCall*(macroSym: PSym, call: PNode): (PSym, PNode) =
- let gp = macroSym.ast[genericParamsPos]
- for i in 0 .. <gp.len:
- let genericParam = gp[i].sym
- let posInCall = macroSym.typ.len + i
- yield (genericParam, call[posInCall])
- var evalMacroCounter: int
- proc evalMacroCall*(module: PSym; cache: IdentCache, n, nOrig: PNode,
- sym: PSym): PNode =
- # XXX globalError() is ugly here, but I don't know a better solution for now
- inc(evalMacroCounter)
- if evalMacroCounter > 100:
- globalError(n.info, errTemplateInstantiationTooNested)
- # immediate macros can bypass any type and arity checking so we check the
- # arity here too:
- if sym.typ.len > n.safeLen and sym.typ.len > 1:
- globalError(n.info, "in call '$#' got $#, but expected $# argument(s)" % [
- n.renderTree,
- $ <n.safeLen, $ <sym.typ.len])
- setupGlobalCtx(module, cache)
- var c = globalCtx
- c.comesFromHeuristic.line = -1
- c.callsite = nOrig
- let start = genProc(c, sym)
- var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
- let maxSlots = sym.offset
- newSeq(tos.slots, maxSlots)
- # setup arguments:
- var L = n.safeLen
- if L == 0: L = 1
- # This is wrong for tests/reject/tind1.nim where the passed 'else' part
- # doesn't end up in the parameter:
- #InternalAssert tos.slots.len >= L
- # return value:
- tos.slots[0].kind = rkNode
- tos.slots[0].node = newNodeI(nkEmpty, n.info)
- # setup parameters:
- for i in 1.. <sym.typ.len:
- tos.slots[i] = setupMacroParam(n.sons[i], sym.typ.sons[i])
- let gp = sym.ast[genericParamsPos]
- for i in 0 .. <gp.len:
- if sfImmediate notin sym.flags:
- let idx = sym.typ.len + i
- if idx < n.len:
- tos.slots[idx] = setupMacroParam(n.sons[idx], gp[i].sym.typ)
- else:
- dec(evalMacroCounter)
- c.callsite = nil
- localError(n.info, "expected " & $gp.len &
- " generic parameter(s)")
- elif gp[i].sym.typ.kind in {tyStatic, tyTypeDesc}:
- dec(evalMacroCounter)
- c.callsite = nil
- globalError(n.info, "static[T] or typedesc nor supported for .immediate macros")
- # temporary storage:
- #for i in L .. <maxSlots: tos.slots[i] = newNode(nkEmpty)
- result = rawExecute(c, start, tos).regToNode
- if result.info.line < 0: result.info = n.info
- if cyclicTree(result): globalError(n.info, errCyclicTree)
- dec(evalMacroCounter)
- c.callsite = nil
|