123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513 |
- #
- #
- # The Nim Compiler
- # (c) Copyright 2013 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## This module implements semantic checking for calls.
- # included from sem.nim
- proc sameMethodDispatcher(a, b: PSym): bool =
- result = false
- if a.kind == skMethod and b.kind == skMethod:
- var aa = lastSon(a.ast)
- var bb = lastSon(b.ast)
- if aa.kind == nkSym and bb.kind == nkSym:
- if aa.sym == bb.sym:
- result = true
- else:
- discard
- # generics have no dispatcher yet, so we need to compare the method
- # names; however, the names are equal anyway because otherwise we
- # wouldn't even consider them to be overloaded. But even this does
- # not work reliably! See tmultim6 for an example:
- # method collide[T](a: TThing, b: TUnit[T]) is instantiated and not
- # method collide[T](a: TUnit[T], b: TThing)! This means we need to
- # *instantiate* every candidate! However, we don't keep more than 2-3
- # candidated around so we cannot implement that for now. So in order
- # to avoid subtle problems, the call remains ambiguous and needs to
- # be disambiguated by the programmer; this way the right generic is
- # instantiated.
- proc determineType(c: PContext, s: PSym)
- proc initCandidateSymbols(c: PContext, headSymbol: PNode,
- initialBinding: PNode,
- filter: TSymKinds,
- best, alt: var TCandidate,
- o: var TOverloadIter,
- diagnostics: bool): seq[tuple[s: PSym, scope: int]] =
- result = @[]
- var symx = initOverloadIter(o, c, headSymbol)
- while symx != nil:
- if symx.kind in filter:
- result.add((symx, o.lastOverloadScope))
- symx = nextOverloadIter(o, c, headSymbol)
- if result.len > 0:
- initCandidate(c, best, result[0].s, initialBinding,
- result[0].scope, diagnostics)
- initCandidate(c, alt, result[0].s, initialBinding,
- result[0].scope, diagnostics)
- best.state = csNoMatch
- proc pickBestCandidate(c: PContext, headSymbol: PNode,
- n, orig: PNode,
- initialBinding: PNode,
- filter: TSymKinds,
- best, alt: var TCandidate,
- errors: var CandidateErrors,
- diagnosticsFlag = false) =
- var o: TOverloadIter
- var sym = initOverloadIter(o, c, headSymbol)
- var scope = o.lastOverloadScope
- # Thanks to the lazy semchecking for operands, we need to check whether
- # 'initCandidate' modifies the symbol table (via semExpr).
- # This can occur in cases like 'init(a, 1, (var b = new(Type2); b))'
- let counterInitial = c.currentScope.symbols.counter
- var syms: seq[tuple[s: PSym, scope: int]]
- var nextSymIndex = 0
- while sym != nil:
- if sym.kind in filter:
- # Initialise 'best' and 'alt' with the first available symbol
- initCandidate(c, best, sym, initialBinding, scope, diagnosticsFlag)
- initCandidate(c, alt, sym, initialBinding, scope, diagnosticsFlag)
- best.state = csNoMatch
- break
- else:
- sym = nextOverloadIter(o, c, headSymbol)
- scope = o.lastOverloadScope
- var z: TCandidate
- while sym != nil:
- if sym.kind notin filter:
- sym = nextOverloadIter(o, c, headSymbol)
- scope = o.lastOverloadScope
- continue
- determineType(c, sym)
- initCandidate(c, z, sym, initialBinding, scope, diagnosticsFlag)
- if c.currentScope.symbols.counter == counterInitial or syms != nil:
- matches(c, n, orig, z)
- if z.state == csMatch:
- # little hack so that iterators are preferred over everything else:
- if sym.kind == skIterator: inc(z.exactMatches, 200)
- case best.state
- of csEmpty, csNoMatch: best = z
- of csMatch:
- var cmp = cmpCandidates(best, z)
- if cmp < 0: best = z # x is better than the best so far
- elif cmp == 0: alt = z # x is as good as the best so far
- elif errors != nil or z.diagnostics != nil:
- errors.safeAdd(CandidateError(
- sym: sym,
- unmatchedVarParam: int z.mutabilityProblem,
- diagnostics: z.diagnostics))
- else:
- # Symbol table has been modified. Restart and pre-calculate all syms
- # before any further candidate init and compare. SLOW, but rare case.
- syms = initCandidateSymbols(c, headSymbol, initialBinding, filter,
- best, alt, o, diagnosticsFlag)
- if syms == nil:
- sym = nextOverloadIter(o, c, headSymbol)
- scope = o.lastOverloadScope
- elif nextSymIndex < syms.len:
- # rare case: retrieve the next pre-calculated symbol
- sym = syms[nextSymIndex].s
- scope = syms[nextSymIndex].scope
- nextSymIndex += 1
- else:
- break
- proc presentFailedCandidates(c: PContext, n: PNode, errors: CandidateErrors):
- (TPreferedDesc, string) =
- var prefer = preferName
- # to avoid confusing errors like:
- # got (SslPtr, SocketHandle)
- # but expected one of:
- # openssl.SSL_set_fd(ssl: SslPtr, fd: SocketHandle): cint
- # we do a pre-analysis. If all types produce the same string, we will add
- # module information.
- let proto = describeArgs(c, n, 1, preferName)
- for err in errors:
- var errProto = ""
- let n = err.sym.typ.n
- for i in countup(1, n.len - 1):
- var p = n.sons[i]
- if p.kind == nkSym:
- add(errProto, typeToString(p.sym.typ, preferName))
- if i != n.len-1: add(errProto, ", ")
- # else: ignore internal error as we're already in error handling mode
- if errProto == proto:
- prefer = preferModuleInfo
- break
- var candidates = ""
- for err in errors:
- if err.sym.kind in routineKinds and err.sym.ast != nil:
- add(candidates, renderTree(err.sym.ast,
- {renderNoBody, renderNoComments, renderNoPragmas}))
- else:
- add(candidates, err.sym.getProcHeader(prefer))
- add(candidates, "\n")
- if err.unmatchedVarParam != 0 and err.unmatchedVarParam < n.len:
- add(candidates, "for a 'var' type a variable needs to be passed, but '" &
- renderTree(n[err.unmatchedVarParam]) & "' is immutable\n")
- for diag in err.diagnostics:
- add(candidates, diag & "\n")
- result = (prefer, candidates)
- proc notFoundError*(c: PContext, n: PNode, errors: CandidateErrors) =
- # Gives a detailed error message; this is separated from semOverloadedCall,
- # as semOverlodedCall is already pretty slow (and we need this information
- # only in case of an error).
- if errorOutputs == {}:
- # fail fast:
- globalError(n.info, errTypeMismatch, "")
- if errors.isNil or errors.len == 0:
- localError(n.info, errExprXCannotBeCalled, n[0].renderTree)
- return
- let (prefer, candidates) = presentFailedCandidates(c, n, errors)
- var result = msgKindToString(errTypeMismatch)
- add(result, describeArgs(c, n, 1, prefer))
- add(result, ')')
- if candidates != "":
- add(result, "\n" & msgKindToString(errButExpected) & "\n" & candidates)
- localError(n.info, errGenerated, result)
- proc bracketNotFoundError(c: PContext; n: PNode) =
- var errors: CandidateErrors = @[]
- var o: TOverloadIter
- let headSymbol = n[0]
- var symx = initOverloadIter(o, c, headSymbol)
- while symx != nil:
- if symx.kind in routineKinds:
- errors.add(CandidateError(sym: symx,
- unmatchedVarParam: 0,
- diagnostics: nil))
- symx = nextOverloadIter(o, c, headSymbol)
- if errors.len == 0:
- localError(n.info, "could not resolve: " & $n)
- else:
- notFoundError(c, n, errors)
- proc resolveOverloads(c: PContext, n, orig: PNode,
- filter: TSymKinds, flags: TExprFlags,
- errors: var CandidateErrors): TCandidate =
- var initialBinding: PNode
- var alt: TCandidate
- var f = n.sons[0]
- if f.kind == nkBracketExpr:
- # fill in the bindings:
- initialBinding = f
- f = f.sons[0]
- else:
- initialBinding = nil
- template pickBest(headSymbol) =
- pickBestCandidate(c, headSymbol, n, orig, initialBinding,
- filter, result, alt, errors, efExplain in flags)
- pickBest(f)
- let overloadsState = result.state
- if overloadsState != csMatch:
- if c.p != nil and c.p.selfSym != nil:
- # we need to enforce semchecking of selfSym again because it
- # might need auto-deref:
- var hiddenArg = newSymNode(c.p.selfSym)
- hiddenArg.typ = nil
- n.sons.insert(hiddenArg, 1)
- orig.sons.insert(hiddenArg, 1)
- pickBest(f)
- if result.state != csMatch:
- n.sons.delete(1)
- orig.sons.delete(1)
- excl n.flags, nfExprCall
- else: return
- if nfDotField in n.flags:
- internalAssert f.kind == nkIdent and n.sonsLen >= 2
- let calleeName = newStrNode(nkStrLit, f.ident.s).withInfo(n.info)
- # leave the op head symbol empty,
- # we are going to try multiple variants
- n.sons[0..1] = [nil, n[1], calleeName]
- orig.sons[0..1] = [nil, orig[1], calleeName]
- template tryOp(x) =
- let op = newIdentNode(getIdent(x), n.info)
- n.sons[0] = op
- orig.sons[0] = op
- pickBest(op)
- if nfExplicitCall in n.flags:
- tryOp ".()"
- if result.state in {csEmpty, csNoMatch}:
- tryOp "."
- elif nfDotSetter in n.flags and f.kind == nkIdent and n.len == 3:
- let calleeName = newStrNode(nkStrLit,
- f.ident.s[0..f.ident.s.len-2]).withInfo(n.info)
- let callOp = newIdentNode(getIdent".=", n.info)
- n.sons[0..1] = [callOp, n[1], calleeName]
- orig.sons[0..1] = [callOp, orig[1], calleeName]
- pickBest(callOp)
- if overloadsState == csEmpty and result.state == csEmpty:
- if nfDotField in n.flags and nfExplicitCall notin n.flags:
- localError(n.info, errUndeclaredField, considerQuotedIdent(f).s)
- else:
- localError(n.info, errUndeclaredRoutine, considerQuotedIdent(f).s)
- return
- elif result.state != csMatch:
- if nfExprCall in n.flags:
- localError(n.info, errExprXCannotBeCalled,
- renderTree(n, {renderNoComments}))
- else:
- if {nfDotField, nfDotSetter} * n.flags != {}:
- # clean up the inserted ops
- n.sons.delete(2)
- n.sons[0] = f
- return
- if alt.state == csMatch and cmpCandidates(result, alt) == 0 and
- not sameMethodDispatcher(result.calleeSym, alt.calleeSym):
- internalAssert result.state == csMatch
- #writeMatches(result)
- #writeMatches(alt)
- if errorOutputs == {}:
- # quick error message for performance of 'compiles' built-in:
- globalError(n.info, errGenerated, "ambiguous call")
- elif gErrorCounter == 0:
- # don't cascade errors
- var args = "("
- for i in countup(1, sonsLen(n) - 1):
- if i > 1: add(args, ", ")
- add(args, typeToString(n.sons[i].typ))
- add(args, ")")
- localError(n.info, errGenerated, msgKindToString(errAmbiguousCallXYZ) % [
- getProcHeader(result.calleeSym), getProcHeader(alt.calleeSym),
- args])
- proc instGenericConvertersArg*(c: PContext, a: PNode, x: TCandidate) =
- if a.kind == nkHiddenCallConv and a.sons[0].kind == nkSym:
- let s = a.sons[0].sym
- if s.ast != nil and s.ast[genericParamsPos].kind != nkEmpty:
- let finalCallee = generateInstance(c, s, x.bindings, a.info)
- a.sons[0].sym = finalCallee
- a.sons[0].typ = finalCallee.typ
- #a.typ = finalCallee.typ.sons[0]
- proc instGenericConvertersSons*(c: PContext, n: PNode, x: TCandidate) =
- assert n.kind in nkCallKinds
- if x.genericConverter:
- for i in 1 .. <n.len:
- instGenericConvertersArg(c, n.sons[i], x)
- proc indexTypesMatch(c: PContext, f, a: PType, arg: PNode): PNode =
- var m: TCandidate
- initCandidate(c, m, f)
- result = paramTypesMatch(m, f, a, arg, nil)
- if m.genericConverter and result != nil:
- instGenericConvertersArg(c, result, m)
- proc inferWithMetatype(c: PContext, formal: PType,
- arg: PNode, coerceDistincts = false): PNode =
- var m: TCandidate
- initCandidate(c, m, formal)
- m.coerceDistincts = coerceDistincts
- result = paramTypesMatch(m, formal, arg.typ, arg, nil)
- if m.genericConverter and result != nil:
- instGenericConvertersArg(c, result, m)
- if result != nil:
- # This almost exactly replicates the steps taken by the compiler during
- # param matching. It performs an embarrassing amount of back-and-forth
- # type jugling, but it's the price to pay for consistency and correctness
- result.typ = generateTypeInstance(c, m.bindings, arg.info,
- formal.skipTypes({tyCompositeTypeClass}))
- else:
- typeMismatch(arg.info, formal, arg.typ)
- # error correction:
- result = copyTree(arg)
- result.typ = formal
- proc semResolvedCall(c: PContext, n: PNode, x: TCandidate): PNode =
- assert x.state == csMatch
- var finalCallee = x.calleeSym
- markUsed(n.sons[0].info, finalCallee, c.graph.usageSym)
- styleCheckUse(n.sons[0].info, finalCallee)
- assert finalCallee.ast != nil
- if x.hasFauxMatch:
- result = x.call
- result.sons[0] = newSymNode(finalCallee, result.sons[0].info)
- if containsGenericType(result.typ) or x.fauxMatch == tyUnknown:
- result.typ = newTypeS(x.fauxMatch, c)
- return
- let gp = finalCallee.ast.sons[genericParamsPos]
- if gp.kind != nkEmpty:
- if x.calleeSym.kind notin {skMacro, skTemplate}:
- if x.calleeSym.magic in {mArrGet, mArrPut}:
- finalCallee = x.calleeSym
- else:
- finalCallee = generateInstance(c, x.calleeSym, x.bindings, n.info)
- else:
- # For macros and templates, the resolved generic params
- # are added as normal params.
- for s in instantiateGenericParamList(c, gp, x.bindings):
- case s.kind
- of skConst:
- x.call.add s.ast
- of skType:
- x.call.add newSymNode(s, n.info)
- else:
- internalAssert false
- result = x.call
- instGenericConvertersSons(c, result, x)
- result.sons[0] = newSymNode(finalCallee, result.sons[0].info)
- result.typ = finalCallee.typ.sons[0]
- proc canDeref(n: PNode): bool {.inline.} =
- result = n.len >= 2 and (let t = n[1].typ;
- t != nil and t.skipTypes({tyGenericInst, tyAlias}).kind in {tyPtr, tyRef})
- proc tryDeref(n: PNode): PNode =
- result = newNodeI(nkHiddenDeref, n.info)
- result.typ = n.typ.skipTypes(abstractInst).sons[0]
- result.addSon(n)
- proc semOverloadedCall(c: PContext, n, nOrig: PNode,
- filter: TSymKinds, flags: TExprFlags): PNode =
- var errors: CandidateErrors = if efExplain in flags: @[]
- else: nil
- var r = resolveOverloads(c, n, nOrig, filter, flags, errors)
- if r.state == csMatch:
- # this may be triggered, when the explain pragma is used
- if errors.len > 0:
- let (_, candidates) = presentFailedCandidates(c, n, errors)
- message(n.info, hintUserRaw,
- "Non-matching candidates for " & renderTree(n) & "\n" &
- candidates)
- result = semResolvedCall(c, n, r)
- elif experimentalMode(c) and canDeref(n):
- # try to deref the first argument and then try overloading resolution again:
- #
- # XXX: why is this here?
- # it could be added to the long list of alternatives tried
- # inside `resolveOverloads` or it could be moved all the way
- # into sigmatch with hidden conversion produced there
- #
- n.sons[1] = n.sons[1].tryDeref
- var r = resolveOverloads(c, n, nOrig, filter, flags, errors)
- if r.state == csMatch: result = semResolvedCall(c, n, r)
- else:
- # get rid of the deref again for a better error message:
- n.sons[1] = n.sons[1].sons[0]
- #notFoundError(c, n, errors)
- if efExplain notin flags:
- # repeat the overload resolution,
- # this time enabling all the diagnostic output (this should fail again)
- discard semOverloadedCall(c, n, nOrig, filter, flags + {efExplain})
- else:
- notFoundError(c, n, errors)
- else:
- if efExplain notin flags:
- # repeat the overload resolution,
- # this time enabling all the diagnostic output (this should fail again)
- discard semOverloadedCall(c, n, nOrig, filter, flags + {efExplain})
- else:
- notFoundError(c, n, errors)
- proc explicitGenericInstError(n: PNode): PNode =
- localError(n.info, errCannotInstantiateX, renderTree(n))
- result = n
- proc explicitGenericSym(c: PContext, n: PNode, s: PSym): PNode =
- var m: TCandidate
- # binding has to stay 'nil' for this to work!
- initCandidate(c, m, s, nil)
- for i in 1..sonsLen(n)-1:
- let formal = s.ast.sons[genericParamsPos].sons[i-1].typ
- let arg = n[i].typ
- let tm = typeRel(m, formal, arg)
- if tm in {isNone, isConvertible}: return nil
- var newInst = generateInstance(c, s, m.bindings, n.info)
- newInst.typ.flags.excl tfUnresolved
- markUsed(n.info, s, c.graph.usageSym)
- styleCheckUse(n.info, s)
- result = newSymNode(newInst, n.info)
- proc explicitGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
- assert n.kind == nkBracketExpr
- for i in 1..sonsLen(n)-1:
- let e = semExpr(c, n.sons[i])
- n.sons[i].typ = e.typ.skipTypes({tyTypeDesc})
- var s = s
- var a = n.sons[0]
- if a.kind == nkSym:
- # common case; check the only candidate has the right
- # number of generic type parameters:
- if safeLen(s.ast.sons[genericParamsPos]) != n.len-1:
- let expected = safeLen(s.ast.sons[genericParamsPos])
- localError(n.info, errGenerated, "cannot instantiate: " & renderTree(n) &
- "; got " & $(n.len-1) & " type(s) but expected " & $expected)
- return n
- result = explicitGenericSym(c, n, s)
- if result == nil: result = explicitGenericInstError(n)
- elif a.kind in {nkClosedSymChoice, nkOpenSymChoice}:
- # choose the generic proc with the proper number of type parameters.
- # XXX I think this could be improved by reusing sigmatch.paramTypesMatch.
- # It's good enough for now.
- result = newNodeI(a.kind, n.info)
- for i in countup(0, len(a)-1):
- var candidate = a.sons[i].sym
- if candidate.kind in {skProc, skMethod, skConverter,
- skIterator}:
- # it suffices that the candidate has the proper number of generic
- # type parameters:
- if safeLen(candidate.ast.sons[genericParamsPos]) == n.len-1:
- let x = explicitGenericSym(c, n, candidate)
- if x != nil: result.add(x)
- # get rid of nkClosedSymChoice if not ambiguous:
- if result.len == 1 and a.kind == nkClosedSymChoice:
- result = result[0]
- elif result.len == 0: result = explicitGenericInstError(n)
- # candidateCount != 1: return explicitGenericInstError(n)
- else:
- result = explicitGenericInstError(n)
- proc searchForBorrowProc(c: PContext, startScope: PScope, fn: PSym): PSym =
- # Searchs for the fn in the symbol table. If the parameter lists are suitable
- # for borrowing the sym in the symbol table is returned, else nil.
- # New approach: generate fn(x, y, z) where x, y, z have the proper types
- # and use the overloading resolution mechanism:
- var call = newNodeI(nkCall, fn.info)
- var hasDistinct = false
- call.add(newIdentNode(fn.name, fn.info))
- for i in 1.. <fn.typ.n.len:
- let param = fn.typ.n.sons[i]
- let t = skipTypes(param.typ, abstractVar-{tyTypeDesc, tyDistinct})
- if t.kind == tyDistinct or param.typ.kind == tyDistinct: hasDistinct = true
- var x: PType
- if param.typ.kind == tyVar:
- x = newTypeS(tyVar, c)
- x.addSonSkipIntLit t.baseOfDistinct
- else:
- x = t.baseOfDistinct
- call.add(newNodeIT(nkEmpty, fn.info, x))
- if hasDistinct:
- var resolved = semOverloadedCall(c, call, call, {fn.kind}, {})
- if resolved != nil:
- result = resolved.sons[0].sym
- if not compareTypes(result.typ.sons[0], fn.typ.sons[0], dcEqIgnoreDistinct):
- result = nil
- elif result.magic in {mArrPut, mArrGet}:
- # cannot borrow these magics for now
- result = nil
|