12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496 |
- #
- #
- # The Nim Compiler
- # (c) Copyright 2013 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- # this module contains routines for accessing and iterating over types
- import
- intsets, ast, astalgo, trees, msgs, strutils, platform, renderer, options,
- lineinfos
- type
- TPreferedDesc* = enum
- preferName, preferDesc, preferExported, preferModuleInfo, preferGenericArg,
- preferTypeName
- proc typeToString*(typ: PType; prefer: TPreferedDesc = preferName): string
- template `$`*(typ: PType): string = typeToString(typ)
- proc base*(t: PType): PType =
- result = t.sons[0]
- # ------------------- type iterator: ----------------------------------------
- type
- TTypeIter* = proc (t: PType, closure: RootRef): bool {.nimcall.} # true if iteration should stop
- TTypeMutator* = proc (t: PType, closure: RootRef): PType {.nimcall.} # copy t and mutate it
- TTypePredicate* = proc (t: PType): bool {.nimcall.}
- proc iterOverType*(t: PType, iter: TTypeIter, closure: RootRef): bool
- # Returns result of `iter`.
- proc mutateType*(t: PType, iter: TTypeMutator, closure: RootRef): PType
- # Returns result of `iter`.
- type
- TParamsEquality* = enum # they are equal, but their
- # identifiers or their return
- # type differ (i.e. they cannot be
- # overloaded)
- # this used to provide better error messages
- paramsNotEqual, # parameters are not equal
- paramsEqual, # parameters are equal
- paramsIncompatible
- proc equalParams*(a, b: PNode): TParamsEquality
- # returns whether the parameter lists of the procs a, b are exactly the same
- const
- # TODO: Remove tyTypeDesc from each abstractX and (where necessary)
- # replace with typedescX
- abstractPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyDistinct, tyOrdinal,
- tyTypeDesc, tyAlias, tyInferred, tySink, tyLent}
- abstractVar* = {tyVar, tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc,
- tyAlias, tyInferred, tySink, tyLent}
- abstractRange* = {tyGenericInst, tyRange, tyDistinct, tyOrdinal, tyTypeDesc,
- tyAlias, tyInferred, tySink}
- abstractVarRange* = {tyGenericInst, tyRange, tyVar, tyDistinct, tyOrdinal,
- tyTypeDesc, tyAlias, tyInferred, tySink}
- abstractInst* = {tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc, tyAlias,
- tyInferred, tySink}
- skipPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyTypeDesc, tyAlias,
- tyInferred, tySink, tyLent}
- # typedescX is used if we're sure tyTypeDesc should be included (or skipped)
- typedescPtrs* = abstractPtrs + {tyTypeDesc}
- typedescInst* = abstractInst + {tyTypeDesc}
- type
- TTypeFieldResult* = enum
- frNone, # type has no object type field
- frHeader, # type has an object type field only in the header
- frEmbedded # type has an object type field somewhere embedded
- proc analyseObjectWithTypeField*(t: PType): TTypeFieldResult
- # this does a complex analysis whether a call to ``objectInit`` needs to be
- # made or intializing of the type field suffices or if there is no type field
- # at all in this type.
- proc invalidGenericInst*(f: PType): bool =
- result = f.kind == tyGenericInst and lastSon(f) == nil
- proc isPureObject*(typ: PType): bool =
- var t = typ
- while t.kind == tyObject and t.sons[0] != nil:
- t = t.sons[0].skipTypes(skipPtrs)
- result = t.sym != nil and sfPure in t.sym.flags
- proc getOrdValue*(n: PNode): BiggestInt =
- case n.kind
- of nkCharLit..nkUInt64Lit: n.intVal
- of nkNilLit: 0
- of nkHiddenStdConv: getOrdValue(n.sons[1])
- else: high(BiggestInt)
- proc getFloatValue*(n: PNode): BiggestFloat =
- case n.kind
- of nkFloatLiterals: n.floatVal
- of nkHiddenStdConv: getFloatValue(n.sons[1])
- else: NaN
- proc isIntLit*(t: PType): bool {.inline.} =
- result = t.kind == tyInt and t.n != nil and t.n.kind == nkIntLit
- proc isFloatLit*(t: PType): bool {.inline.} =
- result = t.kind == tyFloat and t.n != nil and t.n.kind == nkFloatLit
- proc getProcHeader*(conf: ConfigRef; sym: PSym; prefer: TPreferedDesc = preferName): string =
- result = sym.owner.name.s & '.' & sym.name.s & '('
- var n = sym.typ.n
- for i in countup(1, sonsLen(n) - 1):
- let p = n.sons[i]
- if p.kind == nkSym:
- add(result, p.sym.name.s)
- add(result, ": ")
- add(result, typeToString(p.sym.typ, prefer))
- if i != sonsLen(n)-1: add(result, ", ")
- else:
- result.add renderTree(p)
- add(result, ')')
- if n.sons[0].typ != nil:
- result.add(": " & typeToString(n.sons[0].typ, prefer))
- result.add "[declared in "
- result.add(conf$sym.info)
- result.add "]"
- proc elemType*(t: PType): PType =
- assert(t != nil)
- case t.kind
- of tyGenericInst, tyDistinct, tyAlias, tySink: result = elemType(lastSon(t))
- of tyArray: result = t.sons[1]
- else: result = t.lastSon
- assert(result != nil)
- proc enumHasHoles*(t: PType): bool =
- var b = t.skipTypes({tyRange, tyGenericInst, tyAlias, tySink})
- result = b.kind == tyEnum and tfEnumHasHoles in b.flags
- proc isOrdinalType*(t: PType, allowEnumWithHoles = false): bool =
- assert(t != nil)
- const
- # caution: uint, uint64 are no ordinal types!
- baseKinds = {tyChar,tyInt..tyInt64,tyUInt8..tyUInt32,tyBool,tyEnum}
- parentKinds = {tyRange, tyOrdinal, tyGenericInst, tyAlias, tySink, tyDistinct}
- (t.kind in baseKinds and not (t.enumHasHoles and not allowEnumWithHoles)) or
- (t.kind in parentKinds and isOrdinalType(t.lastSon))
- proc iterOverTypeAux(marker: var IntSet, t: PType, iter: TTypeIter,
- closure: RootRef): bool
- proc iterOverNode(marker: var IntSet, n: PNode, iter: TTypeIter,
- closure: RootRef): bool =
- if n != nil:
- case n.kind
- of nkNone..nkNilLit:
- # a leaf
- result = iterOverTypeAux(marker, n.typ, iter, closure)
- else:
- for i in countup(0, sonsLen(n) - 1):
- result = iterOverNode(marker, n.sons[i], iter, closure)
- if result: return
- proc iterOverTypeAux(marker: var IntSet, t: PType, iter: TTypeIter,
- closure: RootRef): bool =
- result = false
- if t == nil: return
- result = iter(t, closure)
- if result: return
- if not containsOrIncl(marker, t.id):
- case t.kind
- of tyGenericInst, tyGenericBody, tyAlias, tySink, tyInferred:
- result = iterOverTypeAux(marker, lastSon(t), iter, closure)
- else:
- for i in countup(0, sonsLen(t) - 1):
- result = iterOverTypeAux(marker, t.sons[i], iter, closure)
- if result: return
- if t.n != nil: result = iterOverNode(marker, t.n, iter, closure)
- proc iterOverType(t: PType, iter: TTypeIter, closure: RootRef): bool =
- var marker = initIntSet()
- result = iterOverTypeAux(marker, t, iter, closure)
- proc searchTypeForAux(t: PType, predicate: TTypePredicate,
- marker: var IntSet): bool
- proc searchTypeNodeForAux(n: PNode, p: TTypePredicate,
- marker: var IntSet): bool =
- result = false
- case n.kind
- of nkRecList:
- for i in countup(0, sonsLen(n) - 1):
- result = searchTypeNodeForAux(n.sons[i], p, marker)
- if result: return
- of nkRecCase:
- assert(n.sons[0].kind == nkSym)
- result = searchTypeNodeForAux(n.sons[0], p, marker)
- if result: return
- for i in countup(1, sonsLen(n) - 1):
- case n.sons[i].kind
- of nkOfBranch, nkElse:
- result = searchTypeNodeForAux(lastSon(n.sons[i]), p, marker)
- if result: return
- else: discard
- of nkSym:
- result = searchTypeForAux(n.sym.typ, p, marker)
- else: discard
- proc searchTypeForAux(t: PType, predicate: TTypePredicate,
- marker: var IntSet): bool =
- # iterates over VALUE types!
- result = false
- if t == nil: return
- if containsOrIncl(marker, t.id): return
- result = predicate(t)
- if result: return
- case t.kind
- of tyObject:
- if t.sons[0] != nil:
- result = searchTypeForAux(t.sons[0].skipTypes(skipPtrs), predicate, marker)
- if not result: result = searchTypeNodeForAux(t.n, predicate, marker)
- of tyGenericInst, tyDistinct, tyAlias, tySink:
- result = searchTypeForAux(lastSon(t), predicate, marker)
- of tyArray, tySet, tyTuple:
- for i in countup(0, sonsLen(t) - 1):
- result = searchTypeForAux(t.sons[i], predicate, marker)
- if result: return
- else:
- discard
- proc searchTypeFor(t: PType, predicate: TTypePredicate): bool =
- var marker = initIntSet()
- result = searchTypeForAux(t, predicate, marker)
- proc isObjectPredicate(t: PType): bool =
- result = t.kind == tyObject
- proc containsObject*(t: PType): bool =
- result = searchTypeFor(t, isObjectPredicate)
- proc isObjectWithTypeFieldPredicate(t: PType): bool =
- result = t.kind == tyObject and t.sons[0] == nil and
- not (t.sym != nil and {sfPure, sfInfixCall} * t.sym.flags != {}) and
- tfFinal notin t.flags
- proc analyseObjectWithTypeFieldAux(t: PType,
- marker: var IntSet): TTypeFieldResult =
- var res: TTypeFieldResult
- result = frNone
- if t == nil: return
- case t.kind
- of tyObject:
- if t.n != nil:
- if searchTypeNodeForAux(t.n, isObjectWithTypeFieldPredicate, marker):
- return frEmbedded
- for i in countup(0, sonsLen(t) - 1):
- var x = t.sons[i]
- if x != nil: x = x.skipTypes(skipPtrs)
- res = analyseObjectWithTypeFieldAux(x, marker)
- if res == frEmbedded:
- return frEmbedded
- if res == frHeader: result = frHeader
- if result == frNone:
- if isObjectWithTypeFieldPredicate(t): result = frHeader
- of tyGenericInst, tyDistinct, tyAlias, tySink:
- result = analyseObjectWithTypeFieldAux(lastSon(t), marker)
- of tyArray, tyTuple:
- for i in countup(0, sonsLen(t) - 1):
- res = analyseObjectWithTypeFieldAux(t.sons[i], marker)
- if res != frNone:
- return frEmbedded
- else:
- discard
- proc analyseObjectWithTypeField(t: PType): TTypeFieldResult =
- var marker = initIntSet()
- result = analyseObjectWithTypeFieldAux(t, marker)
- proc isGCRef(t: PType): bool =
- result = t.kind in GcTypeKinds or
- (t.kind == tyProc and t.callConv == ccClosure)
- if result and t.kind in {tyString, tySequence} and tfHasAsgn in t.flags:
- result = false
- proc containsGarbageCollectedRef*(typ: PType): bool =
- # returns true if typ contains a reference, sequence or string (all the
- # things that are garbage-collected)
- result = searchTypeFor(typ, isGCRef)
- proc isTyRef(t: PType): bool =
- result = t.kind == tyRef or (t.kind == tyProc and t.callConv == ccClosure)
- proc containsTyRef*(typ: PType): bool =
- # returns true if typ contains a 'ref'
- result = searchTypeFor(typ, isTyRef)
- proc isHiddenPointer(t: PType): bool =
- result = t.kind in {tyString, tySequence}
- proc containsHiddenPointer*(typ: PType): bool =
- # returns true if typ contains a string, table or sequence (all the things
- # that need to be copied deeply)
- result = searchTypeFor(typ, isHiddenPointer)
- proc canFormAcycleAux(marker: var IntSet, typ: PType, startId: int): bool
- proc canFormAcycleNode(marker: var IntSet, n: PNode, startId: int): bool =
- result = false
- if n != nil:
- result = canFormAcycleAux(marker, n.typ, startId)
- if not result:
- case n.kind
- of nkNone..nkNilLit:
- discard
- else:
- for i in countup(0, sonsLen(n) - 1):
- result = canFormAcycleNode(marker, n.sons[i], startId)
- if result: return
- proc canFormAcycleAux(marker: var IntSet, typ: PType, startId: int): bool =
- result = false
- if typ == nil: return
- if tfAcyclic in typ.flags: return
- var t = skipTypes(typ, abstractInst-{tyTypeDesc})
- if tfAcyclic in t.flags: return
- case t.kind
- of tyTuple, tyObject, tyRef, tySequence, tyArray, tyOpenArray, tyVarargs:
- if not containsOrIncl(marker, t.id):
- for i in countup(0, sonsLen(t) - 1):
- result = canFormAcycleAux(marker, t.sons[i], startId)
- if result: return
- if t.n != nil: result = canFormAcycleNode(marker, t.n, startId)
- else:
- result = t.id == startId
- # Inheritance can introduce cyclic types, however this is not relevant
- # as the type that is passed to 'new' is statically known!
- # er but we use it also for the write barrier ...
- if t.kind == tyObject and tfFinal notin t.flags:
- # damn inheritance may introduce cycles:
- result = true
- of tyProc: result = typ.callConv == ccClosure
- else: discard
- proc canFormAcycle*(typ: PType): bool =
- var marker = initIntSet()
- result = canFormAcycleAux(marker, typ, typ.id)
- proc mutateTypeAux(marker: var IntSet, t: PType, iter: TTypeMutator,
- closure: RootRef): PType
- proc mutateNode(marker: var IntSet, n: PNode, iter: TTypeMutator,
- closure: RootRef): PNode =
- result = nil
- if n != nil:
- result = copyNode(n)
- result.typ = mutateTypeAux(marker, n.typ, iter, closure)
- case n.kind
- of nkNone..nkNilLit:
- # a leaf
- discard
- else:
- for i in countup(0, sonsLen(n) - 1):
- addSon(result, mutateNode(marker, n.sons[i], iter, closure))
- proc mutateTypeAux(marker: var IntSet, t: PType, iter: TTypeMutator,
- closure: RootRef): PType =
- result = nil
- if t == nil: return
- result = iter(t, closure)
- if not containsOrIncl(marker, t.id):
- for i in countup(0, sonsLen(t) - 1):
- result.sons[i] = mutateTypeAux(marker, result.sons[i], iter, closure)
- if t.n != nil: result.n = mutateNode(marker, t.n, iter, closure)
- assert(result != nil)
- proc mutateType(t: PType, iter: TTypeMutator, closure: RootRef): PType =
- var marker = initIntSet()
- result = mutateTypeAux(marker, t, iter, closure)
- proc valueToString(a: PNode): string =
- case a.kind
- of nkCharLit..nkUInt64Lit: result = $a.intVal
- of nkFloatLit..nkFloat128Lit: result = $a.floatVal
- of nkStrLit..nkTripleStrLit: result = a.strVal
- else: result = "<invalid value>"
- proc rangeToStr(n: PNode): string =
- assert(n.kind == nkRange)
- result = valueToString(n.sons[0]) & ".." & valueToString(n.sons[1])
- const
- typeToStr: array[TTypeKind, string] = ["None", "bool", "Char", "empty",
- "Alias", "nil", "untyped", "typed", "typeDesc",
- "GenericInvocation", "GenericBody", "GenericInst", "GenericParam",
- "distinct $1", "enum", "ordinal[$1]", "array[$1, $2]", "object", "tuple",
- "set[$1]", "range[$1]", "ptr ", "ref ", "var ", "seq[$1]", "proc",
- "pointer", "OpenArray[$1]", "string", "CString", "Forward",
- "int", "int8", "int16", "int32", "int64",
- "float", "float32", "float64", "float128",
- "uint", "uint8", "uint16", "uint32", "uint64",
- "opt", "sink",
- "lent ", "varargs[$1]", "UncheckedArray[$1]", "Error Type",
- "BuiltInTypeClass", "UserTypeClass",
- "UserTypeClassInst", "CompositeTypeClass", "inferred",
- "and", "or", "not", "any", "static", "TypeFromExpr", "FieldAccessor",
- "void"]
- const preferToResolveSymbols = {preferName, preferTypeName, preferModuleInfo, preferGenericArg}
- template bindConcreteTypeToUserTypeClass*(tc, concrete: PType) =
- tc.sons.add concrete
- tc.flags.incl tfResolved
- # TODO: It would be a good idea to kill the special state of a resolved
- # concept by switching to tyAlias within the instantiated procs.
- # Currently, tyAlias is always skipped with lastSon, which means that
- # we can store information about the matched concept in another position.
- # Then builtInFieldAccess can be modified to properly read the derived
- # consts and types stored within the concept.
- template isResolvedUserTypeClass*(t: PType): bool =
- tfResolved in t.flags
- proc addTypeFlags(name: var string, typ: PType) {.inline.} =
- if tfNotNil in typ.flags: name.add(" not nil")
- proc typeToString(typ: PType, prefer: TPreferedDesc = preferName): string =
- var t = typ
- result = ""
- if t == nil: return
- if prefer in preferToResolveSymbols and t.sym != nil and
- sfAnon notin t.sym.flags:
- if t.kind == tyInt and isIntLit(t):
- result = t.sym.name.s & " literal(" & $t.n.intVal & ")"
- elif t.kind == tyAlias:
- result = typeToString(t.sons[0])
- elif prefer in {preferName, preferTypeName} or t.sym.owner.isNil:
- result = t.sym.name.s
- if t.kind == tyGenericParam and t.sonsLen > 0:
- result.add ": "
- var first = true
- for son in t.sons:
- if not first: result.add " or "
- result.add son.typeToString
- first = false
- else:
- result = t.sym.owner.name.s & '.' & t.sym.name.s
- result.addTypeFlags(t)
- return
- case t.kind
- of tyInt:
- if not isIntLit(t) or prefer == preferExported:
- result = typeToStr[t.kind]
- else:
- if prefer == preferGenericArg:
- result = $t.n.intVal
- else:
- result = "int literal(" & $t.n.intVal & ")"
- of tyGenericBody, tyGenericInst, tyGenericInvocation:
- result = typeToString(t.sons[0]) & '['
- for i in countup(1, sonsLen(t)-1-ord(t.kind != tyGenericInvocation)):
- if i > 1: add(result, ", ")
- add(result, typeToString(t.sons[i], preferGenericArg))
- add(result, ']')
- of tyTypeDesc:
- if t.sons[0].kind == tyNone: result = "typedesc"
- else: result = "type " & typeToString(t.sons[0])
- of tyStatic:
- if prefer == preferGenericArg and t.n != nil:
- result = t.n.renderTree
- else:
- result = "static[" & (if t.len > 0: typeToString(t.sons[0]) else: "") & "]"
- if t.n != nil: result.add "(" & renderTree(t.n) & ")"
- of tyUserTypeClass:
- if t.sym != nil and t.sym.owner != nil:
- if t.isResolvedUserTypeClass: return typeToString(t.lastSon)
- return t.sym.owner.name.s
- else:
- result = "<invalid tyUserTypeClass>"
- of tyBuiltInTypeClass:
- result = case t.base.kind:
- of tyVar: "var"
- of tyRef: "ref"
- of tyPtr: "ptr"
- of tySequence: "seq"
- of tyArray: "array"
- of tySet: "set"
- of tyRange: "range"
- of tyDistinct: "distinct"
- of tyProc: "proc"
- of tyObject: "object"
- of tyTuple: "tuple"
- of tyOpenArray: "openarray"
- else: typeToStr[t.base.kind]
- of tyInferred:
- let concrete = t.previouslyInferred
- if concrete != nil: result = typeToString(concrete)
- else: result = "inferred[" & typeToString(t.base) & "]"
- of tyUserTypeClassInst:
- let body = t.base
- result = body.sym.name.s & "["
- for i in countup(1, sonsLen(t) - 2):
- if i > 1: add(result, ", ")
- add(result, typeToString(t.sons[i]))
- result.add "]"
- of tyAnd:
- for i, son in t.sons:
- result.add(typeToString(son))
- if i < t.sons.high:
- result.add(" and ")
- of tyOr:
- for i, son in t.sons:
- result.add(typeToString(son))
- if i < t.sons.high:
- result.add(" or ")
- of tyNot:
- result = "not " & typeToString(t.sons[0])
- of tyExpr:
- #internalAssert t.len == 0
- result = "untyped"
- of tyFromExpr:
- if t.n == nil:
- result = "unknown"
- else:
- result = "type(" & renderTree(t.n) & ")"
- of tyArray:
- if t.sons[0].kind == tyRange:
- result = "array[" & rangeToStr(t.sons[0].n) & ", " &
- typeToString(t.sons[1]) & ']'
- else:
- result = "array[" & typeToString(t.sons[0]) & ", " &
- typeToString(t.sons[1]) & ']'
- of tyUncheckedArray:
- result = "UncheckedArray[" & typeToString(t.sons[0]) & ']'
- of tySequence:
- result = "seq[" & typeToString(t.sons[0]) & ']'
- of tyOpt:
- result = "opt[" & typeToString(t.sons[0]) & ']'
- of tyOrdinal:
- result = "ordinal[" & typeToString(t.sons[0]) & ']'
- of tySet:
- result = "set[" & typeToString(t.sons[0]) & ']'
- of tyOpenArray:
- result = "openarray[" & typeToString(t.sons[0]) & ']'
- of tyDistinct:
- result = "distinct " & typeToString(t.sons[0],
- if prefer == preferModuleInfo: preferModuleInfo else: preferTypeName)
- of tyTuple:
- # we iterate over t.sons here, because t.n may be nil
- if t.n != nil:
- result = "tuple["
- assert(sonsLen(t.n) == sonsLen(t))
- for i in countup(0, sonsLen(t.n) - 1):
- assert(t.n.sons[i].kind == nkSym)
- add(result, t.n.sons[i].sym.name.s & ": " & typeToString(t.sons[i]))
- if i < sonsLen(t.n) - 1: add(result, ", ")
- add(result, ']')
- elif sonsLen(t) == 0:
- result = "tuple[]"
- else:
- if prefer == preferTypeName: result = "("
- else: result = "tuple of ("
- for i in countup(0, sonsLen(t) - 1):
- add(result, typeToString(t.sons[i]))
- if i < sonsLen(t) - 1: add(result, ", ")
- add(result, ')')
- of tyPtr, tyRef, tyVar, tyLent:
- result = typeToStr[t.kind]
- if t.len >= 2:
- setLen(result, result.len-1)
- result.add '['
- for i in countup(0, sonsLen(t) - 1):
- add(result, typeToString(t.sons[i]))
- if i < sonsLen(t) - 1: add(result, ", ")
- result.add ']'
- else:
- result.add typeToString(t.sons[0])
- of tyRange:
- result = "range "
- if t.n != nil and t.n.kind == nkRange:
- result.add rangeToStr(t.n)
- if prefer != preferExported:
- result.add("(" & typeToString(t.sons[0]) & ")")
- of tyProc:
- result = if tfIterator in t.flags: "iterator " else: "proc "
- if tfUnresolved in t.flags: result.add "[*missing parameters*]"
- result.add "("
- for i in countup(1, sonsLen(t) - 1):
- if t.n != nil and i < t.n.len and t.n[i].kind == nkSym:
- add(result, t.n[i].sym.name.s)
- add(result, ": ")
- add(result, typeToString(t.sons[i]))
- if i < sonsLen(t) - 1: add(result, ", ")
- add(result, ')')
- if t.len > 0 and t.sons[0] != nil: add(result, ": " & typeToString(t.sons[0]))
- var prag = if t.callConv == ccDefault: "" else: CallingConvToStr[t.callConv]
- if tfNoSideEffect in t.flags:
- addSep(prag)
- add(prag, "noSideEffect")
- if tfThread in t.flags:
- addSep(prag)
- add(prag, "gcsafe")
- if t.lockLevel.ord != UnspecifiedLockLevel.ord:
- addSep(prag)
- add(prag, "locks: " & $t.lockLevel)
- if len(prag) != 0: add(result, "{." & prag & ".}")
- of tyVarargs:
- result = typeToStr[t.kind] % typeToString(t.sons[0])
- of tySink:
- result = "sink " & typeToString(t.sons[0])
- else:
- result = typeToStr[t.kind]
- result.addTypeFlags(t)
- proc firstOrd*(conf: ConfigRef; t: PType): BiggestInt =
- case t.kind
- of tyBool, tyChar, tySequence, tyOpenArray, tyString, tyVarargs, tyProxy:
- result = 0
- of tySet, tyVar: result = firstOrd(conf, t.sons[0])
- of tyArray: result = firstOrd(conf, t.sons[0])
- of tyRange:
- assert(t.n != nil) # range directly given:
- assert(t.n.kind == nkRange)
- result = getOrdValue(t.n.sons[0])
- of tyInt:
- if conf != nil and conf.target.intSize == 4: result = - (2147483646) - 2
- else: result = 0x8000000000000000'i64
- of tyInt8: result = - 128
- of tyInt16: result = - 32768
- of tyInt32: result = - 2147483646 - 2
- of tyInt64: result = 0x8000000000000000'i64
- of tyUInt..tyUInt64: result = 0
- of tyEnum:
- # if basetype <> nil then return firstOrd of basetype
- if sonsLen(t) > 0 and t.sons[0] != nil:
- result = firstOrd(conf, t.sons[0])
- else:
- assert(t.n.sons[0].kind == nkSym)
- result = t.n.sons[0].sym.position
- of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
- tyStatic, tyInferred, tyUserTypeClasses:
- result = firstOrd(conf, lastSon(t))
- of tyOrdinal:
- if t.len > 0: result = firstOrd(conf, lastSon(t))
- else: internalError(conf, "invalid kind for firstOrd(" & $t.kind & ')')
- of tyUncheckedArray:
- result = 0
- else:
- internalError(conf, "invalid kind for firstOrd(" & $t.kind & ')')
- result = 0
- proc firstFloat*(t: PType): BiggestFloat =
- case t.kind
- of tyFloat..tyFloat128: -Inf
- of tyRange:
- assert(t.n != nil) # range directly given:
- assert(t.n.kind == nkRange)
- getFloatValue(t.n.sons[0])
- of tyVar: firstFloat(t.sons[0])
- of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
- tyStatic, tyInferred, tyUserTypeClasses:
- firstFloat(lastSon(t))
- else:
- internalError(newPartialConfigRef(), "invalid kind for firstFloat(" & $t.kind & ')')
- NaN
- proc lastOrd*(conf: ConfigRef; t: PType; fixedUnsigned = false): BiggestInt =
- case t.kind
- of tyBool: result = 1
- of tyChar: result = 255
- of tySet, tyVar: result = lastOrd(conf, t.sons[0])
- of tyArray: result = lastOrd(conf, t.sons[0])
- of tyRange:
- assert(t.n != nil) # range directly given:
- assert(t.n.kind == nkRange)
- result = getOrdValue(t.n.sons[1])
- of tyInt:
- if conf != nil and conf.target.intSize == 4: result = 0x7FFFFFFF
- else: result = 0x7FFFFFFFFFFFFFFF'i64
- of tyInt8: result = 0x0000007F
- of tyInt16: result = 0x00007FFF
- of tyInt32: result = 0x7FFFFFFF
- of tyInt64: result = 0x7FFFFFFFFFFFFFFF'i64
- of tyUInt:
- if conf != nil and conf.target.intSize == 4: result = 0xFFFFFFFF
- elif fixedUnsigned: result = 0xFFFFFFFFFFFFFFFF'i64
- else: result = 0x7FFFFFFFFFFFFFFF'i64
- of tyUInt8: result = 0xFF
- of tyUInt16: result = 0xFFFF
- of tyUInt32: result = 0xFFFFFFFF
- of tyUInt64:
- if fixedUnsigned: result = 0xFFFFFFFFFFFFFFFF'i64
- else: result = 0x7FFFFFFFFFFFFFFF'i64
- of tyEnum:
- assert(t.n.sons[sonsLen(t.n) - 1].kind == nkSym)
- result = t.n.sons[sonsLen(t.n) - 1].sym.position
- of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
- tyStatic, tyInferred, tyUserTypeClasses:
- result = lastOrd(conf, lastSon(t))
- of tyProxy: result = 0
- of tyOrdinal:
- if t.len > 0: result = lastOrd(conf, lastSon(t))
- else: internalError(conf, "invalid kind for lastOrd(" & $t.kind & ')')
- of tyUncheckedArray:
- result = high(BiggestInt)
- else:
- internalError(conf, "invalid kind for lastOrd(" & $t.kind & ')')
- result = 0
- proc lastFloat*(t: PType): BiggestFloat =
- case t.kind
- of tyFloat..tyFloat128: Inf
- of tyVar: lastFloat(t.sons[0])
- of tyRange:
- assert(t.n != nil) # range directly given:
- assert(t.n.kind == nkRange)
- getFloatValue(t.n.sons[1])
- of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
- tyStatic, tyInferred, tyUserTypeClasses:
- lastFloat(lastSon(t))
- else:
- internalError(newPartialConfigRef(), "invalid kind for lastFloat(" & $t.kind & ')')
- NaN
- proc lengthOrd*(conf: ConfigRef; t: PType): BiggestInt =
- case t.skipTypes(tyUserTypeClasses).kind
- of tyInt64, tyInt32, tyInt: result = lastOrd(conf, t)
- of tyDistinct: result = lengthOrd(conf, t.sons[0])
- else:
- let last = lastOrd(conf, t)
- let first = firstOrd(conf, t)
- # XXX use a better overflow check here:
- if last == high(BiggestInt) and first <= 0:
- result = last
- else:
- result = last - first + 1
- # -------------- type equality -----------------------------------------------
- type
- TDistinctCompare* = enum ## how distinct types are to be compared
- dcEq, ## a and b should be the same type
- dcEqIgnoreDistinct, ## compare symmetrically: (distinct a) == b, a == b
- ## or a == (distinct b)
- dcEqOrDistinctOf ## a equals b or a is distinct of b
- TTypeCmpFlag* = enum
- IgnoreTupleFields ## NOTE: Only set this flag for backends!
- IgnoreCC
- ExactTypeDescValues
- ExactGenericParams
- ExactConstraints
- ExactGcSafety
- AllowCommonBase
- TTypeCmpFlags* = set[TTypeCmpFlag]
- TSameTypeClosure = object {.pure.}
- cmp: TDistinctCompare
- recCheck: int
- flags: TTypeCmpFlags
- s: seq[tuple[a,b: int]] # seq for a set as it's hopefully faster
- # (few elements expected)
- proc initSameTypeClosure: TSameTypeClosure =
- # we do the initialization lazily for performance (avoids memory allocations)
- discard
- proc containsOrIncl(c: var TSameTypeClosure, a, b: PType): bool =
- result = c.s.len > 0 and c.s.contains((a.id, b.id))
- if not result:
- when not defined(nimNoNilSeqs):
- if isNil(c.s): c.s = @[]
- c.s.add((a.id, b.id))
- proc sameTypeAux(x, y: PType, c: var TSameTypeClosure): bool
- proc sameTypeOrNilAux(a, b: PType, c: var TSameTypeClosure): bool =
- if a == b:
- result = true
- else:
- if a == nil or b == nil: result = false
- else: result = sameTypeAux(a, b, c)
- proc sameType*(a, b: PType, flags: TTypeCmpFlags = {}): bool =
- var c = initSameTypeClosure()
- c.flags = flags
- result = sameTypeAux(a, b, c)
- proc sameTypeOrNil*(a, b: PType, flags: TTypeCmpFlags = {}): bool =
- if a == b:
- result = true
- else:
- if a == nil or b == nil: result = false
- else: result = sameType(a, b, flags)
- proc equalParam(a, b: PSym): TParamsEquality =
- if sameTypeOrNil(a.typ, b.typ, {ExactTypeDescValues}) and
- exprStructuralEquivalent(a.constraint, b.constraint):
- if a.ast == b.ast:
- result = paramsEqual
- elif a.ast != nil and b.ast != nil:
- if exprStructuralEquivalent(a.ast, b.ast): result = paramsEqual
- else: result = paramsIncompatible
- elif a.ast != nil:
- result = paramsEqual
- elif b.ast != nil:
- result = paramsIncompatible
- else:
- result = paramsNotEqual
- proc sameConstraints(a, b: PNode): bool =
- if isNil(a) and isNil(b): return true
- if a.len != b.len: return false
- for i in 1 ..< a.len:
- if not exprStructuralEquivalent(a[i].sym.constraint,
- b[i].sym.constraint):
- return false
- return true
- proc equalParams(a, b: PNode): TParamsEquality =
- result = paramsEqual
- var length = sonsLen(a)
- if length != sonsLen(b):
- result = paramsNotEqual
- else:
- for i in countup(1, length - 1):
- var m = a.sons[i].sym
- var n = b.sons[i].sym
- assert((m.kind == skParam) and (n.kind == skParam))
- case equalParam(m, n)
- of paramsNotEqual:
- return paramsNotEqual
- of paramsEqual:
- discard
- of paramsIncompatible:
- result = paramsIncompatible
- if (m.name.id != n.name.id):
- # BUGFIX
- return paramsNotEqual # paramsIncompatible;
- # continue traversal! If not equal, we can return immediately; else
- # it stays incompatible
- if not sameTypeOrNil(a.typ, b.typ, {ExactTypeDescValues}):
- if (a.typ == nil) or (b.typ == nil):
- result = paramsNotEqual # one proc has a result, the other not is OK
- else:
- result = paramsIncompatible # overloading by different
- # result types does not work
- proc sameTuple(a, b: PType, c: var TSameTypeClosure): bool =
- # two tuples are equivalent iff the names, types and positions are the same;
- # however, both types may not have any field names (t.n may be nil) which
- # complicates the matter a bit.
- if sonsLen(a) == sonsLen(b):
- result = true
- for i in countup(0, sonsLen(a) - 1):
- var x = a.sons[i]
- var y = b.sons[i]
- if IgnoreTupleFields in c.flags:
- x = skipTypes(x, {tyRange, tyGenericInst, tyAlias})
- y = skipTypes(y, {tyRange, tyGenericInst, tyAlias})
- result = sameTypeAux(x, y, c)
- if not result: return
- if a.n != nil and b.n != nil and IgnoreTupleFields notin c.flags:
- for i in countup(0, sonsLen(a.n) - 1):
- # check field names:
- if a.n.sons[i].kind == nkSym and b.n.sons[i].kind == nkSym:
- var x = a.n.sons[i].sym
- var y = b.n.sons[i].sym
- result = x.name.id == y.name.id
- if not result: break
- else:
- return false
- elif a.n != b.n and (a.n == nil or b.n == nil) and IgnoreTupleFields notin c.flags:
- result = false
- template ifFastObjectTypeCheckFailed(a, b: PType, body: untyped) =
- if tfFromGeneric notin a.flags + b.flags:
- # fast case: id comparison suffices:
- result = a.id == b.id
- else:
- # expensive structural equality test; however due to the way generic and
- # objects work, if one of the types does **not** contain tfFromGeneric,
- # they cannot be equal. The check ``a.sym.id == b.sym.id`` checks
- # for the same origin and is essential because we don't want "pure"
- # structural type equivalence:
- #
- # type
- # TA[T] = object
- # TB[T] = object
- # --> TA[int] != TB[int]
- if tfFromGeneric in a.flags * b.flags and a.sym.id == b.sym.id:
- # ok, we need the expensive structural check
- body
- proc sameObjectTypes*(a, b: PType): bool =
- # specialized for efficiency (sigmatch uses it)
- ifFastObjectTypeCheckFailed(a, b):
- var c = initSameTypeClosure()
- result = sameTypeAux(a, b, c)
- proc sameDistinctTypes*(a, b: PType): bool {.inline.} =
- result = sameObjectTypes(a, b)
- proc sameEnumTypes*(a, b: PType): bool {.inline.} =
- result = a.id == b.id
- proc sameObjectTree(a, b: PNode, c: var TSameTypeClosure): bool =
- if a == b:
- result = true
- elif a != nil and b != nil and a.kind == b.kind:
- var x = a.typ
- var y = b.typ
- if IgnoreTupleFields in c.flags:
- if x != nil: x = skipTypes(x, {tyRange, tyGenericInst, tyAlias})
- if y != nil: y = skipTypes(y, {tyRange, tyGenericInst, tyAlias})
- if sameTypeOrNilAux(x, y, c):
- case a.kind
- of nkSym:
- # same symbol as string is enough:
- result = a.sym.name.id == b.sym.name.id
- of nkIdent: result = a.ident.id == b.ident.id
- of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
- of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
- of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
- of nkEmpty, nkNilLit, nkType: result = true
- else:
- if sonsLen(a) == sonsLen(b):
- for i in countup(0, sonsLen(a) - 1):
- if not sameObjectTree(a.sons[i], b.sons[i], c): return
- result = true
- proc sameObjectStructures(a, b: PType, c: var TSameTypeClosure): bool =
- # check base types:
- if sonsLen(a) != sonsLen(b): return
- for i in countup(0, sonsLen(a) - 1):
- if not sameTypeOrNilAux(a.sons[i], b.sons[i], c): return
- if not sameObjectTree(a.n, b.n, c): return
- result = true
- proc sameChildrenAux(a, b: PType, c: var TSameTypeClosure): bool =
- if sonsLen(a) != sonsLen(b): return false
- result = true
- for i in countup(0, sonsLen(a) - 1):
- result = sameTypeOrNilAux(a.sons[i], b.sons[i], c)
- if not result: return
- proc isGenericAlias*(t: PType): bool =
- return t.kind == tyGenericInst and t.lastSon.kind == tyGenericInst
- proc skipGenericAlias*(t: PType): PType =
- return if t.isGenericAlias: t.lastSon else: t
- proc sameFlags*(a, b: PType): bool {.inline.} =
- result = eqTypeFlags*a.flags == eqTypeFlags*b.flags
- proc sameTypeAux(x, y: PType, c: var TSameTypeClosure): bool =
- template cycleCheck() =
- # believe it or not, the direct check for ``containsOrIncl(c, a, b)``
- # increases bootstrapping time from 2.4s to 3.3s on my laptop! So we cheat
- # again: Since the recursion check is only to not get caught in an endless
- # recursion, we use a counter and only if it's value is over some
- # threshold we perform the expensive exact cycle check:
- if c.recCheck < 3:
- inc c.recCheck
- else:
- if containsOrIncl(c, a, b): return true
- if x == y: return true
- var a = skipTypes(x, {tyGenericInst, tyAlias})
- var b = skipTypes(y, {tyGenericInst, tyAlias})
- assert(a != nil)
- assert(b != nil)
- if a.kind != b.kind:
- case c.cmp
- of dcEq: return false
- of dcEqIgnoreDistinct:
- while a.kind == tyDistinct: a = a.sons[0]
- while b.kind == tyDistinct: b = b.sons[0]
- if a.kind != b.kind: return false
- of dcEqOrDistinctOf:
- while a.kind == tyDistinct: a = a.sons[0]
- if a.kind != b.kind: return false
- # this is required by tunique_type but makes no sense really:
- if x.kind == tyGenericInst and IgnoreTupleFields notin c.flags:
- let
- lhs = x.skipGenericAlias
- rhs = y.skipGenericAlias
- if rhs.kind != tyGenericInst or lhs.base != rhs.base:
- return false
- for i in 1 .. lhs.len - 2:
- let ff = rhs.sons[i]
- let aa = lhs.sons[i]
- if not sameTypeAux(ff, aa, c): return false
- return true
- case a.kind
- of tyEmpty, tyChar, tyBool, tyNil, tyPointer, tyString, tyCString,
- tyInt..tyUInt64, tyStmt, tyExpr, tyVoid:
- result = sameFlags(a, b)
- of tyStatic, tyFromExpr:
- result = exprStructuralEquivalent(a.n, b.n) and sameFlags(a, b)
- if result and a.len == b.len and a.len == 1:
- cycleCheck()
- result = sameTypeAux(a.sons[0], b.sons[0], c)
- of tyObject:
- ifFastObjectTypeCheckFailed(a, b):
- cycleCheck()
- result = sameObjectStructures(a, b, c) and sameFlags(a, b)
- of tyDistinct:
- cycleCheck()
- if c.cmp == dcEq:
- if sameFlags(a, b):
- ifFastObjectTypeCheckFailed(a, b):
- result = sameTypeAux(a.sons[0], b.sons[0], c)
- else:
- result = sameTypeAux(a.sons[0], b.sons[0], c) and sameFlags(a, b)
- of tyEnum, tyForward:
- # XXX generic enums do not make much sense, but require structural checking
- result = a.id == b.id and sameFlags(a, b)
- of tyError:
- result = b.kind == tyError
- of tyTuple:
- cycleCheck()
- result = sameTuple(a, b, c) and sameFlags(a, b)
- of tyTypeDesc:
- if c.cmp == dcEqIgnoreDistinct: result = false
- elif ExactTypeDescValues in c.flags:
- cycleCheck()
- result = sameChildrenAux(x, y, c) and sameFlags(a, b)
- else:
- result = sameFlags(a, b)
- of tyGenericParam:
- result = sameChildrenAux(a, b, c) and sameFlags(a, b)
- if result and {ExactGenericParams, ExactTypeDescValues} * c.flags != {}:
- result = a.sym.position == b.sym.position
- of tyGenericInvocation, tyGenericBody, tySequence,
- tyOpenArray, tySet, tyRef, tyPtr, tyVar, tyLent, tySink, tyUncheckedArray,
- tyArray, tyProc, tyVarargs, tyOrdinal, tyTypeClasses, tyOpt:
- cycleCheck()
- if a.kind == tyUserTypeClass and a.n != nil: return a.n == b.n
- result = sameChildrenAux(a, b, c)
- if result:
- if IgnoreTupleFields in c.flags:
- result = a.flags * {tfVarIsPtr} == b.flags * {tfVarIsPtr}
- else:
- result = sameFlags(a, b)
- if result and ExactGcSafety in c.flags:
- result = a.flags * {tfThread} == b.flags * {tfThread}
- if result and a.kind == tyProc:
- result = ((IgnoreCC in c.flags) or a.callConv == b.callConv) and
- ((ExactConstraints notin c.flags) or sameConstraints(a.n, b.n))
- of tyRange:
- cycleCheck()
- result = sameTypeOrNilAux(a.sons[0], b.sons[0], c) and
- sameValue(a.n.sons[0], b.n.sons[0]) and
- sameValue(a.n.sons[1], b.n.sons[1])
- of tyGenericInst, tyAlias, tyInferred:
- cycleCheck()
- result = sameTypeAux(a.lastSon, b.lastSon, c)
- of tyNone: result = false
- of tyOptAsRef: result = false
- proc sameBackendType*(x, y: PType): bool =
- var c = initSameTypeClosure()
- c.flags.incl IgnoreTupleFields
- c.cmp = dcEqIgnoreDistinct
- result = sameTypeAux(x, y, c)
- proc compareTypes*(x, y: PType,
- cmp: TDistinctCompare = dcEq,
- flags: TTypeCmpFlags = {}): bool =
- ## compares two type for equality (modulo type distinction)
- var c = initSameTypeClosure()
- c.cmp = cmp
- c.flags = flags
- if x == y: result = true
- elif x.isNil or y.isNil: result = false
- else: result = sameTypeAux(x, y, c)
- proc inheritanceDiff*(a, b: PType): int =
- # | returns: 0 iff `a` == `b`
- # | returns: -x iff `a` is the x'th direct superclass of `b`
- # | returns: +x iff `a` is the x'th direct subclass of `b`
- # | returns: `maxint` iff `a` and `b` are not compatible at all
- if a == b or a.kind == tyError or b.kind == tyError: return 0
- assert a.kind == tyObject
- assert b.kind == tyObject
- var x = a
- result = 0
- while x != nil:
- x = skipTypes(x, skipPtrs)
- if sameObjectTypes(x, b): return
- x = x.sons[0]
- dec(result)
- var y = b
- result = 0
- while y != nil:
- y = skipTypes(y, skipPtrs)
- if sameObjectTypes(y, a): return
- y = y.sons[0]
- inc(result)
- result = high(int)
- proc commonSuperclass*(a, b: PType): PType =
- # quick check: are they the same?
- if sameObjectTypes(a, b): return a
- # simple algorithm: we store all ancestors of 'a' in a ID-set and walk 'b'
- # up until the ID is found:
- assert a.kind == tyObject
- assert b.kind == tyObject
- var x = a
- var ancestors = initIntSet()
- while x != nil:
- x = skipTypes(x, skipPtrs)
- ancestors.incl(x.id)
- x = x.sons[0]
- var y = b
- while y != nil:
- var t = y # bug #7818, save type before skip
- y = skipTypes(y, skipPtrs)
- if ancestors.contains(y.id):
- # bug #7818, defer the previous skipTypes
- if t.kind != tyGenericInst: t = y
- return t
- y = y.sons[0]
- type
- TTypeAllowedFlag* = enum
- taField,
- taHeap,
- taConcept
- TTypeAllowedFlags* = set[TTypeAllowedFlag]
- proc typeAllowedAux(marker: var IntSet, typ: PType, kind: TSymKind,
- flags: TTypeAllowedFlags = {}): PType
- proc typeAllowedNode(marker: var IntSet, n: PNode, kind: TSymKind,
- flags: TTypeAllowedFlags = {}): PType =
- if n != nil:
- result = typeAllowedAux(marker, n.typ, kind, flags)
- if result == nil:
- case n.kind
- of nkNone..nkNilLit:
- discard
- else:
- if n.kind == nkRecCase and kind in {skProc, skFunc, skConst}:
- return n[0].typ
- for i in countup(0, sonsLen(n) - 1):
- let it = n.sons[i]
- result = typeAllowedNode(marker, it, kind, flags)
- if result != nil: break
- proc matchType*(a: PType, pattern: openArray[tuple[k:TTypeKind, i:int]],
- last: TTypeKind): bool =
- var a = a
- for k, i in pattern.items:
- if a.kind != k: return false
- if i >= a.sonsLen or a.sons[i] == nil: return false
- a = a.sons[i]
- result = a.kind == last
- proc typeAllowedAux(marker: var IntSet, typ: PType, kind: TSymKind,
- flags: TTypeAllowedFlags = {}): PType =
- assert(kind in {skVar, skLet, skConst, skProc, skFunc, skParam, skResult})
- # if we have already checked the type, return true, because we stop the
- # evaluation if something is wrong:
- result = nil
- if typ == nil: return
- if containsOrIncl(marker, typ.id): return
- var t = skipTypes(typ, abstractInst-{tyTypeDesc})
- case t.kind
- of tyVar, tyLent:
- if kind in {skProc, skFunc, skConst}: return t
- elif t.kind == tyLent and kind != skResult: return t
- var t2 = skipTypes(t.sons[0], abstractInst-{tyTypeDesc})
- case t2.kind
- of tyVar, tyLent:
- if taHeap notin flags: result = t2 # ``var var`` is illegal on the heap
- of tyOpenArray:
- if kind != skParam: result = t
- else: result = typeAllowedAux(marker, t2, kind, flags)
- else:
- if kind notin {skParam, skResult}: result = t
- else: result = typeAllowedAux(marker, t2, kind, flags)
- of tyProc:
- if kind == skConst and t.callConv == ccClosure: return t
- for i in countup(1, sonsLen(t) - 1):
- result = typeAllowedAux(marker, t.sons[i], skParam, flags)
- if result != nil: break
- if result.isNil and t.sons[0] != nil:
- result = typeAllowedAux(marker, t.sons[0], skResult, flags)
- of tyTypeDesc:
- # XXX: This is still a horrible idea...
- result = nil
- of tyExpr, tyStmt, tyStatic:
- if kind notin {skParam, skResult}: result = t
- of tyVoid:
- if taField notin flags: result = t
- of tyTypeClasses:
- if tfGenericTypeParam in t.flags or taConcept in flags: #or taField notin flags:
- discard
- elif t.isResolvedUserTypeClass:
- result = typeAllowedAux(marker, t.lastSon, kind, flags)
- elif kind notin {skParam, skResult}:
- result = t
- of tyGenericBody, tyGenericParam, tyGenericInvocation,
- tyNone, tyForward, tyFromExpr:
- result = t
- of tyNil:
- if kind != skConst and kind != skParam: result = t
- of tyString, tyBool, tyChar, tyEnum, tyInt..tyUInt64, tyCString, tyPointer:
- result = nil
- of tyOrdinal:
- if kind != skParam: result = t
- of tyGenericInst, tyDistinct, tyAlias, tyInferred, tyUncheckedArray:
- result = typeAllowedAux(marker, lastSon(t), kind, flags)
- of tyRange:
- if skipTypes(t.sons[0], abstractInst-{tyTypeDesc}).kind notin
- {tyChar, tyEnum, tyInt..tyFloat128, tyUInt8..tyUInt32}: result = t
- of tyOpenArray, tyVarargs, tySink:
- if kind != skParam: result = t
- else: result = typeAllowedAux(marker, t.sons[0], skVar, flags)
- of tySequence, tyOpt:
- if t.sons[0].kind != tyEmpty:
- result = typeAllowedAux(marker, t.sons[0], skVar, flags+{taHeap})
- elif kind in {skVar, skLet}:
- result = t.sons[0]
- of tyArray:
- if t.sons[1].kind != tyEmpty:
- result = typeAllowedAux(marker, t.sons[1], skVar, flags)
- elif kind in {skVar, skLet}:
- result = t.sons[1]
- of tyRef:
- if kind == skConst: result = t
- else: result = typeAllowedAux(marker, t.lastSon, skVar, flags+{taHeap})
- of tyPtr:
- result = typeAllowedAux(marker, t.lastSon, skVar, flags+{taHeap})
- of tySet:
- for i in countup(0, sonsLen(t) - 1):
- result = typeAllowedAux(marker, t.sons[i], kind, flags)
- if result != nil: break
- of tyObject, tyTuple:
- if kind in {skProc, skFunc, skConst} and
- t.kind == tyObject and t.sons[0] != nil: return t
- let flags = flags+{taField}
- for i in countup(0, sonsLen(t) - 1):
- result = typeAllowedAux(marker, t.sons[i], kind, flags)
- if result != nil: break
- if result.isNil and t.n != nil:
- result = typeAllowedNode(marker, t.n, kind, flags)
- of tyEmpty:
- if kind in {skVar, skLet}: result = t
- of tyProxy:
- # for now same as error node; we say it's a valid type as it should
- # prevent cascading errors:
- result = nil
- of tyOptAsRef: result = t
- proc typeAllowed*(t: PType, kind: TSymKind; flags: TTypeAllowedFlags = {}): PType =
- # returns 'nil' on success and otherwise the part of the type that is
- # wrong!
- var marker = initIntSet()
- result = typeAllowedAux(marker, t, kind, flags)
- include sizealignoffsetimpl
- proc computeSize*(conf: ConfigRef; typ: PType): BiggestInt =
- computeSizeAlign(conf, typ)
- result = typ.size
- proc getReturnType*(s: PSym): PType =
- # Obtains the return type of a iterator/proc/macro/template
- assert s.kind in skProcKinds
- result = s.typ.sons[0]
- proc getAlign*(conf: ConfigRef; typ: PType): BiggestInt =
- computeSizeAlign(conf, typ)
- result = typ.align
- proc getSize*(conf: ConfigRef; typ: PType): BiggestInt =
- computeSizeAlign(conf, typ)
- result = typ.size
- proc containsGenericTypeIter(t: PType, closure: RootRef): bool =
- case t.kind
- of tyStatic:
- return t.n == nil
- of tyTypeDesc:
- if t.base.kind == tyNone: return true
- if containsGenericTypeIter(t.base, closure): return true
- return false
- of GenericTypes + tyTypeClasses + {tyFromExpr}:
- return true
- else:
- return false
- proc containsGenericType*(t: PType): bool =
- result = iterOverType(t, containsGenericTypeIter, nil)
- proc baseOfDistinct*(t: PType): PType =
- if t.kind == tyDistinct:
- result = t.sons[0]
- else:
- result = copyType(t, t.owner, false)
- var parent: PType = nil
- var it = result
- while it.kind in {tyPtr, tyRef}:
- parent = it
- it = it.lastSon
- if it.kind == tyDistinct and parent != nil:
- parent.sons[0] = it.sons[0]
- proc safeInheritanceDiff*(a, b: PType): int =
- # same as inheritanceDiff but checks for tyError:
- if a.kind == tyError or b.kind == tyError:
- result = -1
- else:
- result = inheritanceDiff(a.skipTypes(skipPtrs), b.skipTypes(skipPtrs))
- proc compatibleEffectsAux(se, re: PNode): bool =
- if re.isNil: return false
- for r in items(re):
- block search:
- for s in items(se):
- if safeInheritanceDiff(r.typ, s.typ) <= 0:
- break search
- return false
- result = true
- type
- EffectsCompat* = enum
- efCompat
- efRaisesDiffer
- efRaisesUnknown
- efTagsDiffer
- efTagsUnknown
- efLockLevelsDiffer
- proc compatibleEffects*(formal, actual: PType): EffectsCompat =
- # for proc type compatibility checking:
- assert formal.kind == tyProc and actual.kind == tyProc
- if formal.n.sons[0].kind != nkEffectList or
- actual.n.sons[0].kind != nkEffectList:
- return efTagsUnknown
- var spec = formal.n.sons[0]
- if spec.len != 0:
- var real = actual.n.sons[0]
- let se = spec.sons[exceptionEffects]
- # if 'se.kind == nkArgList' it is no formal type really, but a
- # computed effect and as such no spec:
- # 'r.msgHandler = if isNil(msgHandler): defaultMsgHandler else: msgHandler'
- if not isNil(se) and se.kind != nkArgList:
- # spec requires some exception or tag, but we don't know anything:
- if real.len == 0: return efRaisesUnknown
- let res = compatibleEffectsAux(se, real.sons[exceptionEffects])
- if not res: return efRaisesDiffer
- let st = spec.sons[tagEffects]
- if not isNil(st) and st.kind != nkArgList:
- # spec requires some exception or tag, but we don't know anything:
- if real.len == 0: return efTagsUnknown
- let res = compatibleEffectsAux(st, real.sons[tagEffects])
- if not res: return efTagsDiffer
- if formal.lockLevel.ord < 0 or
- actual.lockLevel.ord <= formal.lockLevel.ord:
- result = efCompat
- else:
- result = efLockLevelsDiffer
- proc isCompileTimeOnly*(t: PType): bool {.inline.} =
- result = t.kind in {tyTypeDesc, tyStatic}
- proc containsCompileTimeOnly*(t: PType): bool =
- if isCompileTimeOnly(t): return true
- for i in 0 ..< t.sonsLen:
- if t.sons[i] != nil and isCompileTimeOnly(t.sons[i]):
- return true
- return false
- type
- OrdinalType* = enum
- NoneLike, IntLike, FloatLike
- proc classify*(t: PType): OrdinalType =
- ## for convenient type checking:
- if t == nil:
- result = NoneLike
- else:
- case skipTypes(t, abstractVarRange).kind
- of tyFloat..tyFloat128: result = FloatLike
- of tyInt..tyInt64, tyUInt..tyUInt64, tyBool, tyChar, tyEnum:
- result = IntLike
- else: result = NoneLike
- proc skipConv*(n: PNode): PNode =
- result = n
- case n.kind
- of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
- # only skip the conversion if it doesn't lose too important information
- # (see bug #1334)
- if n.sons[0].typ.classify == n.typ.classify:
- result = n.sons[0]
- of nkHiddenStdConv, nkHiddenSubConv, nkConv:
- if n.sons[1].typ.classify == n.typ.classify:
- result = n.sons[1]
- else: discard
- proc skipHidden*(n: PNode): PNode =
- result = n
- while true:
- case result.kind
- of nkHiddenStdConv, nkHiddenSubConv:
- if result.sons[1].typ.classify == result.typ.classify:
- result = result.sons[1]
- else: break
- of nkHiddenDeref, nkHiddenAddr:
- result = result.sons[0]
- else: break
- proc skipConvTakeType*(n: PNode): PNode =
- result = n.skipConv
- result.typ = n.typ
- proc isEmptyContainer*(t: PType): bool =
- case t.kind
- of tyExpr, tyNil: result = true
- of tyArray: result = t.sons[1].kind == tyEmpty
- of tySet, tySequence, tyOpenArray, tyVarargs:
- result = t.sons[0].kind == tyEmpty
- of tyGenericInst, tyAlias, tySink: result = isEmptyContainer(t.lastSon)
- else: result = false
- proc takeType*(formal, arg: PType): PType =
- # param: openArray[string] = []
- # [] is an array constructor of length 0 of type string!
- if arg.kind == tyNil:
- # and not (formal.kind == tyProc and formal.callConv == ccClosure):
- result = formal
- elif formal.kind in {tyOpenArray, tyVarargs, tySequence} and
- arg.isEmptyContainer:
- let a = copyType(arg.skipTypes({tyGenericInst, tyAlias}), arg.owner, keepId=false)
- a.sons[ord(arg.kind == tyArray)] = formal.sons[0]
- result = a
- elif formal.kind in {tyTuple, tySet} and arg.kind == formal.kind:
- result = formal
- else:
- result = arg
- proc skipHiddenSubConv*(n: PNode): PNode =
- if n.kind == nkHiddenSubConv:
- # param: openArray[string] = []
- # [] is an array constructor of length 0 of type string!
- let formal = n.typ
- result = n.sons[1]
- let arg = result.typ
- let dest = takeType(formal, arg)
- if dest == arg and formal.kind != tyExpr:
- #echo n.info, " came here for ", formal.typeToString
- result = n
- else:
- result = copyTree(result)
- result.typ = dest
- else:
- result = n
- proc typeMismatch*(conf: ConfigRef; info: TLineInfo, formal, actual: PType) =
- if formal.kind != tyError and actual.kind != tyError:
- let named = typeToString(formal)
- let desc = typeToString(formal, preferDesc)
- let x = if named == desc: named else: named & " = " & desc
- var msg = "type mismatch: got <" &
- typeToString(actual) & "> " &
- "but expected '" & x & "'"
- if formal.kind == tyProc and actual.kind == tyProc:
- case compatibleEffects(formal, actual)
- of efCompat: discard
- of efRaisesDiffer:
- msg.add "\n.raise effects differ"
- of efRaisesUnknown:
- msg.add "\n.raise effect is 'can raise any'"
- of efTagsDiffer:
- msg.add "\n.tag effects differ"
- of efTagsUnknown:
- msg.add "\n.tag effect is 'any tag allowed'"
- of efLockLevelsDiffer:
- msg.add "\nlock levels differ"
- localError(conf, info, msg)
|