123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326 |
- #
- #
- # The Nim Compiler
- # (c) Copyright 2018 Nim Contributors
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- # This file implements closure iterator transformations.
- # The main idea is to split the closure iterator body to top level statements.
- # The body is split by yield statement.
- #
- # Example:
- # while a > 0:
- # echo "hi"
- # yield a
- # dec a
- #
- # Should be transformed to:
- # STATE0:
- # if a > 0:
- # echo "hi"
- # :state = 1 # Next state
- # return a # yield
- # else:
- # :state = 2 # Next state
- # break :stateLoop # Proceed to the next state
- # STATE1:
- # dec a
- # :state = 0 # Next state
- # break :stateLoop # Proceed to the next state
- # STATE2:
- # :state = -1 # End of execution
- # The transformation should play well with lambdalifting, however depending
- # on situation, it can be called either before or after lambdalifting
- # transformation. As such we behave slightly differently, when accessing
- # iterator state, or using temp variables. If lambdalifting did not happen,
- # we just create local variables, so that they will be lifted further on.
- # Otherwise, we utilize existing env, created by lambdalifting.
- # Lambdalifting treats :state variable specially, it should always end up
- # as the first field in env. Currently C codegen depends on this behavior.
- # One special subtransformation is nkStmtListExpr lowering.
- # Example:
- # template foo(): int =
- # yield 1
- # 2
- #
- # iterator it(): int {.closure.} =
- # if foo() == 2:
- # yield 3
- #
- # If a nkStmtListExpr has yield inside, it has first to be lowered to:
- # yield 1
- # :tmpSlLower = 2
- # if :tmpSlLower == 2:
- # yield 3
- # nkTryStmt Transformations:
- # If the iter has an nkTryStmt with a yield inside
- # - the closure iter is promoted to have exceptions (ctx.hasExceptions = true)
- # - exception table is created. This is a const array, where
- # `abs(exceptionTable[i])` is a state idx to which we should jump from state
- # `i` should exception be raised in state `i`. For all states in `try` block
- # the target state is `except` block. For all states in `except` block
- # the target state is `finally` block. For all other states there is no
- # target state (0, as the first block can never be neither except nor finally).
- # `exceptionTable[i]` is < 0 if `abs(exceptionTable[i])` is except block,
- # and > 0, for finally block.
- # - local variable :curExc is created
- # - the iter body is wrapped into a
- # try:
- # closureIterSetupExc(:curExc)
- # ...body...
- # catch:
- # :state = exceptionTable[:state]
- # if :state == 0: raise # No state that could handle exception
- # :unrollFinally = :state > 0 # Target state is finally
- # if :state < 0:
- # :state = -:state
- # :curExc = getCurrentException()
- #
- # nkReturnStmt within a try/except/finally now has to behave differently as we
- # want the nearest finally block to be executed before the return, thus it is
- # transformed to:
- # :tmpResult = returnValue (if return doesn't have a value, this is skipped)
- # :unrollFinally = true
- # goto nearestFinally (or -1 if not exists)
- #
- # Every finally block calls closureIterEndFinally() upon its successful
- # completion.
- #
- # Example:
- #
- # try:
- # yield 0
- # raise ...
- # except:
- # yield 1
- # return 3
- # finally:
- # yield 2
- #
- # Is transformed to (yields are left in place for example simplicity,
- # in reality the code is subdivided even more, as described above):
- #
- # STATE0: # Try
- # yield 0
- # raise ...
- # :state = 2 # What would happen should we not raise
- # break :stateLoop
- # STATE1: # Except
- # yield 1
- # :tmpResult = 3 # Return
- # :unrollFinally = true # Return
- # :state = 2 # Goto Finally
- # break :stateLoop
- # :state = 2 # What would happen should we not return
- # break :stateLoop
- # STATE2: # Finally
- # yield 2
- # if :unrollFinally: # This node is created by `newEndFinallyNode`
- # if :curExc.isNil:
- # return :tmpResult
- # else:
- # raise
- # state = -1 # Goto next state. In this case we just exit
- # break :stateLoop
- import
- intsets, strutils, options, ast, astalgo, trees, treetab, msgs, idents,
- renderer, types, magicsys, lowerings, lambdalifting, modulegraphs, lineinfos
- type
- Ctx = object
- g: ModuleGraph
- fn: PSym
- stateVarSym: PSym # :state variable. nil if env already introduced by lambdalifting
- tmpResultSym: PSym # Used when we return, but finally has to interfere
- unrollFinallySym: PSym # Indicates that we're unrolling finally states (either exception happened or premature return)
- curExcSym: PSym # Current exception
- states: seq[PNode] # The resulting states. Every state is an nkState node.
- blockLevel: int # Temp used to transform break and continue stmts
- stateLoopLabel: PSym # Label to break on, when jumping between states.
- exitStateIdx: int # index of the last state
- tempVarId: int # unique name counter
- tempVars: PNode # Temp var decls, nkVarSection
- exceptionTable: seq[int] # For state `i` jump to state `exceptionTable[i]` if exception is raised
- hasExceptions: bool # Does closure have yield in try?
- curExcHandlingState: int # Negative for except, positive for finally
- nearestFinally: int # Index of the nearest finally block. For try/except it
- # is their finally. For finally it is parent finally. Otherwise -1
- const
- nkSkip = { nkEmpty..nkNilLit, nkTemplateDef, nkTypeSection, nkStaticStmt,
- nkCommentStmt } + procDefs
- proc newStateAccess(ctx: var Ctx): PNode =
- if ctx.stateVarSym.isNil:
- result = rawIndirectAccess(newSymNode(getEnvParam(ctx.fn)),
- getStateField(ctx.g, ctx.fn), ctx.fn.info)
- else:
- result = newSymNode(ctx.stateVarSym)
- proc newStateAssgn(ctx: var Ctx, toValue: PNode): PNode =
- # Creates state assignment:
- # :state = toValue
- newTree(nkAsgn, ctx.newStateAccess(), toValue)
- proc newStateAssgn(ctx: var Ctx, stateNo: int = -2): PNode =
- # Creates state assignment:
- # :state = stateNo
- ctx.newStateAssgn(newIntTypeNode(nkIntLit, stateNo, ctx.g.getSysType(TLineInfo(), tyInt)))
- proc newEnvVar(ctx: var Ctx, name: string, typ: PType): PSym =
- result = newSym(skVar, getIdent(ctx.g.cache, name), ctx.fn, ctx.fn.info)
- result.typ = typ
- assert(not typ.isNil)
- if not ctx.stateVarSym.isNil:
- # We haven't gone through labmda lifting yet, so just create a local var,
- # it will be lifted later
- if ctx.tempVars.isNil:
- ctx.tempVars = newNodeI(nkVarSection, ctx.fn.info)
- addVar(ctx.tempVars, newSymNode(result))
- else:
- let envParam = getEnvParam(ctx.fn)
- # let obj = envParam.typ.lastSon
- result = addUniqueField(envParam.typ.lastSon, result, ctx.g.cache)
- proc newEnvVarAccess(ctx: Ctx, s: PSym): PNode =
- if ctx.stateVarSym.isNil:
- result = rawIndirectAccess(newSymNode(getEnvParam(ctx.fn)), s, ctx.fn.info)
- else:
- result = newSymNode(s)
- proc newTmpResultAccess(ctx: var Ctx): PNode =
- if ctx.tmpResultSym.isNil:
- ctx.tmpResultSym = ctx.newEnvVar(":tmpResult", ctx.fn.typ[0])
- ctx.newEnvVarAccess(ctx.tmpResultSym)
- proc newUnrollFinallyAccess(ctx: var Ctx, info: TLineInfo): PNode =
- if ctx.unrollFinallySym.isNil:
- ctx.unrollFinallySym = ctx.newEnvVar(":unrollFinally", ctx.g.getSysType(info, tyBool))
- ctx.newEnvVarAccess(ctx.unrollFinallySym)
- proc newCurExcAccess(ctx: var Ctx): PNode =
- if ctx.curExcSym.isNil:
- ctx.curExcSym = ctx.newEnvVar(":curExc", ctx.g.callCodegenProc("getCurrentException").typ)
- ctx.newEnvVarAccess(ctx.curExcSym)
- proc newState(ctx: var Ctx, n, gotoOut: PNode): int =
- # Creates a new state, adds it to the context fills out `gotoOut` so that it
- # will goto this state.
- # Returns index of the newly created state
- result = ctx.states.len
- let resLit = ctx.g.newIntLit(n.info, result)
- let s = newNodeI(nkState, n.info)
- s.add(resLit)
- s.add(n)
- ctx.states.add(s)
- ctx.exceptionTable.add(ctx.curExcHandlingState)
- if not gotoOut.isNil:
- assert(gotoOut.len == 0)
- gotoOut.add(ctx.g.newIntLit(gotoOut.info, result))
- proc toStmtList(n: PNode): PNode =
- result = n
- if result.kind notin {nkStmtList, nkStmtListExpr}:
- result = newNodeI(nkStmtList, n.info)
- result.add(n)
- proc addGotoOut(n: PNode, gotoOut: PNode): PNode =
- # Make sure `n` is a stmtlist, and ends with `gotoOut`
- result = toStmtList(n)
- if result.len == 0 or result.sons[^1].kind != nkGotoState:
- result.add(gotoOut)
- proc newTempVar(ctx: var Ctx, typ: PType): PSym =
- result = ctx.newEnvVar(":tmpSlLower" & $ctx.tempVarId, typ)
- inc ctx.tempVarId
- proc hasYields(n: PNode): bool =
- # TODO: This is very inefficient. It traverses the node, looking for nkYieldStmt.
- case n.kind
- of nkYieldStmt:
- result = true
- of nkSkip:
- discard
- else:
- for c in n:
- if c.hasYields:
- result = true
- break
- proc transformBreaksAndContinuesInWhile(ctx: var Ctx, n: PNode, before, after: PNode): PNode =
- result = n
- case n.kind
- of nkSkip:
- discard
- of nkWhileStmt: discard # Do not recurse into nested whiles
- of nkContinueStmt:
- result = before
- of nkBlockStmt:
- inc ctx.blockLevel
- result[1] = ctx.transformBreaksAndContinuesInWhile(result[1], before, after)
- dec ctx.blockLevel
- of nkBreakStmt:
- if ctx.blockLevel == 0:
- result = after
- else:
- for i in 0 ..< n.len:
- n[i] = ctx.transformBreaksAndContinuesInWhile(n[i], before, after)
- proc transformBreaksInBlock(ctx: var Ctx, n: PNode, label, after: PNode): PNode =
- result = n
- case n.kind
- of nkSkip:
- discard
- of nkBlockStmt, nkWhileStmt:
- inc ctx.blockLevel
- result[1] = ctx.transformBreaksInBlock(result[1], label, after)
- dec ctx.blockLevel
- of nkBreakStmt:
- if n[0].kind == nkEmpty:
- if ctx.blockLevel == 0:
- result = after
- else:
- if label.kind == nkSym and n[0].sym == label.sym:
- result = after
- else:
- for i in 0 ..< n.len:
- n[i] = ctx.transformBreaksInBlock(n[i], label, after)
- proc newNullifyCurExc(ctx: var Ctx, info: TLineInfo): PNode =
- # :curEcx = nil
- let curExc = ctx.newCurExcAccess()
- curExc.info = info
- let nilnode = newNode(nkNilLit)
- nilnode.typ = curExc.typ
- result = newTree(nkAsgn, curExc, nilnode)
- proc newOr(g: ModuleGraph, a, b: PNode): PNode {.inline.} =
- result = newTree(nkCall, newSymNode(g.getSysMagic(a.info, "or", mOr)), a, b)
- result.typ = g.getSysType(a.info, tyBool)
- result.info = a.info
- proc collectExceptState(ctx: var Ctx, n: PNode): PNode {.inline.} =
- var ifStmt = newNodeI(nkIfStmt, n.info)
- let g = ctx.g
- for c in n:
- if c.kind == nkExceptBranch:
- var ifBranch: PNode
- if c.len > 1:
- var cond: PNode
- for i in 0 .. c.len - 2:
- assert(c[i].kind == nkType)
- let nextCond = newTree(nkCall,
- newSymNode(g.getSysMagic(c.info, "of", mOf)),
- g.callCodegenProc("getCurrentException"),
- c[i])
- nextCond.typ = ctx.g.getSysType(c.info, tyBool)
- nextCond.info = c.info
- if cond.isNil:
- cond = nextCond
- else:
- cond = g.newOr(cond, nextCond)
- ifBranch = newNodeI(nkElifBranch, c.info)
- ifBranch.add(cond)
- else:
- if ifStmt.len == 0:
- ifStmt = newNodeI(nkStmtList, c.info)
- ifBranch = newNodeI(nkStmtList, c.info)
- else:
- ifBranch = newNodeI(nkElse, c.info)
- ifBranch.add(c[^1])
- ifStmt.add(ifBranch)
- if ifStmt.len != 0:
- result = newTree(nkStmtList, ctx.newNullifyCurExc(n.info), ifStmt)
- else:
- result = ctx.g.emptyNode
- proc addElseToExcept(ctx: var Ctx, n: PNode) =
- if n.kind == nkStmtList and n[1].kind == nkIfStmt and n[1][^1].kind != nkElse:
- # Not all cases are covered
- let branchBody = newNodeI(nkStmtList, n.info)
- block: # :unrollFinally = true
- branchBody.add(newTree(nkAsgn,
- ctx.newUnrollFinallyAccess(n.info),
- newIntTypeNode(nkIntLit, 1, ctx.g.getSysType(n.info, tyBool))))
- block: # :curExc = getCurrentException()
- branchBody.add(newTree(nkAsgn,
- ctx.newCurExcAccess(),
- ctx.g.callCodegenProc("getCurrentException")))
- block: # goto nearestFinally
- branchBody.add(newTree(nkGotoState, ctx.g.newIntLit(n.info, ctx.nearestFinally)))
- let elseBranch = newTree(nkElse, branchBody)
- n[1].add(elseBranch)
- proc getFinallyNode(ctx: var Ctx, n: PNode): PNode =
- result = n[^1]
- if result.kind == nkFinally:
- result = result[0]
- else:
- result = ctx.g.emptyNode
- proc hasYieldsInExpressions(n: PNode): bool =
- case n.kind
- of nkSkip:
- discard
- of nkStmtListExpr:
- if isEmptyType(n.typ):
- for c in n:
- if c.hasYieldsInExpressions:
- return true
- else:
- result = n.hasYields
- else:
- for c in n:
- if c.hasYieldsInExpressions:
- return true
- proc exprToStmtList(n: PNode): tuple[s, res: PNode] =
- assert(n.kind == nkStmtListExpr)
- result.s = newNodeI(nkStmtList, n.info)
- result.s.sons = @[]
- var n = n
- while n.kind == nkStmtListExpr:
- result.s.sons.add(n.sons)
- result.s.sons.setLen(result.s.sons.len - 1) # delete last son
- n = n[^1]
- result.res = n
- proc newEnvVarAsgn(ctx: Ctx, s: PSym, v: PNode): PNode =
- result = newTree(nkFastAsgn, ctx.newEnvVarAccess(s), v)
- result.info = v.info
- proc addExprAssgn(ctx: Ctx, output, input: PNode, sym: PSym) =
- if input.kind == nkStmtListExpr:
- let (st, res) = exprToStmtList(input)
- output.add(st)
- output.add(ctx.newEnvVarAsgn(sym, res))
- else:
- output.add(ctx.newEnvVarAsgn(sym, input))
- proc convertExprBodyToAsgn(ctx: Ctx, exprBody: PNode, res: PSym): PNode =
- result = newNodeI(nkStmtList, exprBody.info)
- ctx.addExprAssgn(result, exprBody, res)
- proc newNotCall(g: ModuleGraph; e: PNode): PNode =
- result = newTree(nkCall, newSymNode(g.getSysMagic(e.info, "not", mNot), e.info), e)
- result.typ = g.getSysType(e.info, tyBool)
- proc lowerStmtListExprs(ctx: var Ctx, n: PNode, needsSplit: var bool): PNode =
- result = n
- case n.kind
- of nkSkip:
- discard
- of nkYieldStmt:
- var ns = false
- for i in 0 ..< n.len:
- n[i] = ctx.lowerStmtListExprs(n[i], ns)
- if ns:
- result = newNodeI(nkStmtList, n.info)
- let (st, ex) = exprToStmtList(n[0])
- result.add(st)
- n[0] = ex
- result.add(n)
- needsSplit = true
- of nkPar, nkObjConstr, nkTupleConstr, nkBracket:
- var ns = false
- for i in 0 ..< n.len:
- n[i] = ctx.lowerStmtListExprs(n[i], ns)
- if ns:
- needsSplit = true
- result = newNodeI(nkStmtListExpr, n.info)
- if n.typ.isNil: internalError(ctx.g.config, "lowerStmtListExprs: constr typ.isNil")
- result.typ = n.typ
- for i in 0 ..< n.len:
- if n[i].kind == nkStmtListExpr:
- let (st, ex) = exprToStmtList(n[i])
- result.add(st)
- n[i] = ex
- result.add(n)
- of nkIfStmt, nkIfExpr:
- var ns = false
- for i in 0 ..< n.len:
- n[i] = ctx.lowerStmtListExprs(n[i], ns)
- if ns:
- needsSplit = true
- var tmp: PSym
- var s: PNode
- let isExpr = not isEmptyType(n.typ)
- if isExpr:
- tmp = ctx.newTempVar(n.typ)
- result = newNodeI(nkStmtListExpr, n.info)
- result.typ = n.typ
- else:
- result = newNodeI(nkStmtList, n.info)
- var curS = result
- for branch in n:
- case branch.kind
- of nkElseExpr, nkElse:
- if isExpr:
- let branchBody = newNodeI(nkStmtList, branch.info)
- ctx.addExprAssgn(branchBody, branch[0], tmp)
- let newBranch = newTree(nkElse, branchBody)
- curS.add(newBranch)
- else:
- curS.add(branch)
- of nkElifExpr, nkElifBranch:
- var newBranch: PNode
- if branch[0].kind == nkStmtListExpr:
- let (st, res) = exprToStmtList(branch[0])
- let elseBody = newTree(nkStmtList, st)
- newBranch = newTree(nkElifBranch, res, branch[1])
- let newIf = newTree(nkIfStmt, newBranch)
- elseBody.add(newIf)
- if curS.kind == nkIfStmt:
- let newElse = newNodeI(nkElse, branch.info)
- newElse.add(elseBody)
- curS.add(newElse)
- else:
- curS.add(elseBody)
- curS = newIf
- else:
- newBranch = branch
- if curS.kind == nkIfStmt:
- curS.add(newBranch)
- else:
- let newIf = newTree(nkIfStmt, newBranch)
- curS.add(newIf)
- curS = newIf
- if isExpr:
- let branchBody = newNodeI(nkStmtList, branch[1].info)
- ctx.addExprAssgn(branchBody, branch[1], tmp)
- newBranch[1] = branchBody
- else:
- internalError(ctx.g.config, "lowerStmtListExpr(nkIf): " & $branch.kind)
- if isExpr: result.add(ctx.newEnvVarAccess(tmp))
- of nkTryStmt:
- var ns = false
- for i in 0 ..< n.len:
- n[i] = ctx.lowerStmtListExprs(n[i], ns)
- if ns:
- needsSplit = true
- let isExpr = not isEmptyType(n.typ)
- if isExpr:
- result = newNodeI(nkStmtListExpr, n.info)
- result.typ = n.typ
- let tmp = ctx.newTempVar(n.typ)
- n[0] = ctx.convertExprBodyToAsgn(n[0], tmp)
- for i in 1 ..< n.len:
- let branch = n[i]
- case branch.kind
- of nkExceptBranch:
- if branch[0].kind == nkType:
- branch[1] = ctx.convertExprBodyToAsgn(branch[1], tmp)
- else:
- branch[0] = ctx.convertExprBodyToAsgn(branch[0], tmp)
- of nkFinally:
- discard
- else:
- internalError(ctx.g.config, "lowerStmtListExpr(nkTryStmt): " & $branch.kind)
- result.add(n)
- result.add(ctx.newEnvVarAccess(tmp))
- of nkCaseStmt:
- var ns = false
- for i in 0 ..< n.len:
- n[i] = ctx.lowerStmtListExprs(n[i], ns)
- if ns:
- needsSplit = true
- let isExpr = not isEmptyType(n.typ)
- if isExpr:
- let tmp = ctx.newTempVar(n.typ)
- result = newNodeI(nkStmtListExpr, n.info)
- result.typ = n.typ
- if n[0].kind == nkStmtListExpr:
- let (st, ex) = exprToStmtList(n[0])
- result.add(st)
- n[0] = ex
- for i in 1 ..< n.len:
- let branch = n[i]
- case branch.kind
- of nkOfBranch:
- branch[^1] = ctx.convertExprBodyToAsgn(branch[^1], tmp)
- of nkElse:
- branch[0] = ctx.convertExprBodyToAsgn(branch[0], tmp)
- else:
- internalError(ctx.g.config, "lowerStmtListExpr(nkCaseStmt): " & $branch.kind)
- result.add(n)
- result.add(ctx.newEnvVarAccess(tmp))
- of nkCallKinds:
- var ns = false
- for i in 0 ..< n.len:
- n[i] = ctx.lowerStmtListExprs(n[i], ns)
- if ns:
- needsSplit = true
- let isExpr = not isEmptyType(n.typ)
- if isExpr:
- result = newNodeI(nkStmtListExpr, n.info)
- result.typ = n.typ
- else:
- result = newNodeI(nkStmtList, n.info)
- if n[0].kind == nkSym and n[0].sym.magic in {mAnd, mOr}: # `and`/`or` short cirquiting
- var cond = n[1]
- if cond.kind == nkStmtListExpr:
- let (st, ex) = exprToStmtList(cond)
- result.add(st)
- cond = ex
- let tmp = ctx.newTempVar(cond.typ)
- result.add(ctx.newEnvVarAsgn(tmp, cond))
- var check = ctx.newEnvVarAccess(tmp)
- if n[0].sym.magic == mOr:
- check = ctx.g.newNotCall(check)
- cond = n[2]
- let ifBody = newNodeI(nkStmtList, cond.info)
- if cond.kind == nkStmtListExpr:
- let (st, ex) = exprToStmtList(cond)
- ifBody.add(st)
- cond = ex
- ifBody.add(ctx.newEnvVarAsgn(tmp, cond))
- let ifBranch = newTree(nkElifBranch, check, ifBody)
- let ifNode = newTree(nkIfStmt, ifBranch)
- result.add(ifNode)
- result.add(ctx.newEnvVarAccess(tmp))
- else:
- for i in 0 ..< n.len:
- if n[i].kind == nkStmtListExpr:
- let (st, ex) = exprToStmtList(n[i])
- result.add(st)
- n[i] = ex
- if n[i].kind in nkCallKinds: # XXX: This should better be some sort of side effect tracking
- let tmp = ctx.newTempVar(n[i].typ)
- result.add(ctx.newEnvVarAsgn(tmp, n[i]))
- n[i] = ctx.newEnvVarAccess(tmp)
- result.add(n)
- of nkVarSection, nkLetSection:
- result = newNodeI(nkStmtList, n.info)
- for c in n:
- let varSect = newNodeI(n.kind, n.info)
- varSect.add(c)
- var ns = false
- c[^1] = ctx.lowerStmtListExprs(c[^1], ns)
- if ns:
- needsSplit = true
- let (st, ex) = exprToStmtList(c[^1])
- result.add(st)
- c[^1] = ex
- result.add(varSect)
- of nkDiscardStmt, nkReturnStmt, nkRaiseStmt:
- var ns = false
- for i in 0 ..< n.len:
- n[i] = ctx.lowerStmtListExprs(n[i], ns)
- if ns:
- needsSplit = true
- result = newNodeI(nkStmtList, n.info)
- let (st, ex) = exprToStmtList(n[0])
- result.add(st)
- n[0] = ex
- result.add(n)
- of nkCast, nkHiddenStdConv, nkHiddenSubConv, nkConv, nkObjDownConv:
- var ns = false
- for i in 0 ..< n.len:
- n[i] = ctx.lowerStmtListExprs(n[i], ns)
- if ns:
- needsSplit = true
- result = newNodeI(nkStmtListExpr, n.info)
- result.typ = n.typ
- let (st, ex) = exprToStmtList(n[^1])
- result.add(st)
- n[^1] = ex
- result.add(n)
- of nkAsgn, nkFastAsgn:
- var ns = false
- for i in 0 ..< n.len:
- n[i] = ctx.lowerStmtListExprs(n[i], ns)
- if ns:
- needsSplit = true
- result = newNodeI(nkStmtList, n.info)
- if n[0].kind == nkStmtListExpr:
- let (st, ex) = exprToStmtList(n[0])
- result.add(st)
- n[0] = ex
- if n[1].kind == nkStmtListExpr:
- let (st, ex) = exprToStmtList(n[1])
- result.add(st)
- n[1] = ex
- result.add(n)
- of nkBracketExpr:
- var lhsNeedsSplit = false
- var rhsNeedsSplit = false
- n[0] = ctx.lowerStmtListExprs(n[0], lhsNeedsSplit)
- n[1] = ctx.lowerStmtListExprs(n[1], rhsNeedsSplit)
- if lhsNeedsSplit or rhsNeedsSplit:
- needsSplit = true
- result = newNodeI(nkStmtListExpr, n.info)
- if lhsNeedsSplit:
- let (st, ex) = exprToStmtList(n[0])
- result.add(st)
- n[0] = ex
- if rhsNeedsSplit:
- let (st, ex) = exprToStmtList(n[1])
- result.add(st)
- n[1] = ex
- result.add(n)
- of nkWhileStmt:
- var ns = false
- var condNeedsSplit = false
- n[0] = ctx.lowerStmtListExprs(n[0], condNeedsSplit)
- var bodyNeedsSplit = false
- n[1] = ctx.lowerStmtListExprs(n[1], bodyNeedsSplit)
- if condNeedsSplit or bodyNeedsSplit:
- needsSplit = true
- if condNeedsSplit:
- let (st, ex) = exprToStmtList(n[0])
- let brk = newTree(nkBreakStmt, ctx.g.emptyNode)
- let branch = newTree(nkElifBranch, ctx.g.newNotCall(ex), brk)
- let check = newTree(nkIfStmt, branch)
- let newBody = newTree(nkStmtList, st, check, n[1])
- n[0] = newSymNode(ctx.g.getSysSym(n[0].info, "true"))
- n[1] = newBody
- of nkDotExpr:
- var ns = false
- n[0] = ctx.lowerStmtListExprs(n[0], ns)
- if ns:
- needsSplit = true
- result = newNodeI(nkStmtListExpr, n.info)
- result.typ = n.typ
- let (st, ex) = exprToStmtList(n[0])
- result.add(st)
- n[0] = ex
- result.add(n)
- of nkBlockExpr:
- var ns = false
- n[1] = ctx.lowerStmtListExprs(n[1], ns)
- if ns:
- needsSplit = true
- result = newNodeI(nkStmtListExpr, n.info)
- result.typ = n.typ
- let (st, ex) = exprToStmtList(n[1])
- n.kind = nkBlockStmt
- n.typ = nil
- n[1] = st
- result.add(n)
- result.add(ex)
- else:
- for i in 0 ..< n.len:
- n[i] = ctx.lowerStmtListExprs(n[i], needsSplit)
- proc newEndFinallyNode(ctx: var Ctx, info: TLineInfo): PNode =
- # Generate the following code:
- # if :unrollFinally:
- # if :curExc.isNil:
- # return :tmpResult
- # else:
- # raise
- let curExc = ctx.newCurExcAccess()
- let nilnode = newNode(nkNilLit)
- nilnode.typ = curExc.typ
- let cmp = newTree(nkCall, newSymNode(ctx.g.getSysMagic(info, "==", mEqRef), info), curExc, nilnode)
- cmp.typ = ctx.g.getSysType(info, tyBool)
- let asgn = newTree(nkFastAsgn,
- newSymNode(getClosureIterResult(ctx.g, ctx.fn), info),
- ctx.newTmpResultAccess())
- let retStmt = newTree(nkReturnStmt, asgn)
- let branch = newTree(nkElifBranch, cmp, retStmt)
- # The C++ backend requires `getCurrentException` here.
- let raiseStmt = newTree(nkRaiseStmt, ctx.g.callCodegenProc("getCurrentException"))
- raiseStmt.info = info
- let elseBranch = newTree(nkElse, raiseStmt)
- let ifBody = newTree(nkIfStmt, branch, elseBranch)
- let elifBranch = newTree(nkElifBranch, ctx.newUnrollFinallyAccess(info), ifBody)
- elifBranch.info = info
- result = newTree(nkIfStmt, elifBranch)
- proc transformReturnsInTry(ctx: var Ctx, n: PNode): PNode =
- result = n
- # TODO: This is very inefficient. It traverses the node, looking for nkYieldStmt.
- case n.kind
- of nkReturnStmt:
- # We're somewhere in try, transform to finally unrolling
- assert(ctx.nearestFinally != 0)
- result = newNodeI(nkStmtList, n.info)
- block: # :unrollFinally = true
- let asgn = newNodeI(nkAsgn, n.info)
- asgn.add(ctx.newUnrollFinallyAccess(n.info))
- asgn.add(newIntTypeNode(nkIntLit, 1, ctx.g.getSysType(n.info, tyBool)))
- result.add(asgn)
- if n[0].kind != nkEmpty:
- let asgnTmpResult = newNodeI(nkAsgn, n.info)
- asgnTmpResult.add(ctx.newTmpResultAccess())
- asgnTmpResult.add(n[0])
- result.add(asgnTmpResult)
- result.add(ctx.newNullifyCurExc(n.info))
- let goto = newTree(nkGotoState, ctx.g.newIntLit(n.info, ctx.nearestFinally))
- result.add(goto)
- of nkSkip:
- discard
- else:
- for i in 0 ..< n.len:
- n[i] = ctx.transformReturnsInTry(n[i])
- proc transformClosureIteratorBody(ctx: var Ctx, n: PNode, gotoOut: PNode): PNode =
- result = n
- case n.kind:
- of nkSkip:
- discard
- of nkStmtList, nkStmtListExpr:
- assert(isEmptyType(n.typ), "nkStmtListExpr not lowered")
- result = addGotoOut(result, gotoOut)
- for i in 0 ..< n.len:
- if n[i].hasYieldsInExpressions:
- # Lower nkStmtListExpr nodes inside `n[i]` first
- var ns = false
- n[i] = ctx.lowerStmtListExprs(n[i], ns)
- if n[i].hasYields:
- # Create a new split
- let go = newNodeI(nkGotoState, n[i].info)
- n[i] = ctx.transformClosureIteratorBody(n[i], go)
- let s = newNodeI(nkStmtList, n[i + 1].info)
- for j in i + 1 ..< n.len:
- s.add(n[j])
- n.sons.setLen(i + 1)
- discard ctx.newState(s, go)
- if ctx.transformClosureIteratorBody(s, gotoOut) != s:
- internalError(ctx.g.config, "transformClosureIteratorBody != s")
- break
- of nkYieldStmt:
- result = newNodeI(nkStmtList, n.info)
- result.add(n)
- result.add(gotoOut)
- of nkElse, nkElseExpr:
- result[0] = addGotoOut(result[0], gotoOut)
- result[0] = ctx.transformClosureIteratorBody(result[0], gotoOut)
- of nkElifBranch, nkElifExpr, nkOfBranch:
- result[^1] = addGotoOut(result[^1], gotoOut)
- result[^1] = ctx.transformClosureIteratorBody(result[^1], gotoOut)
- of nkIfStmt, nkCaseStmt:
- for i in 0 ..< n.len:
- n[i] = ctx.transformClosureIteratorBody(n[i], gotoOut)
- if n[^1].kind != nkElse:
- # We don't have an else branch, but every possible branch has to end with
- # gotoOut, so add else here.
- let elseBranch = newTree(nkElse, gotoOut)
- n.add(elseBranch)
- of nkWhileStmt:
- # while e:
- # s
- # ->
- # BEGIN_STATE:
- # if e:
- # s
- # goto BEGIN_STATE
- # else:
- # goto OUT
- result = newNodeI(nkGotoState, n.info)
- let s = newNodeI(nkStmtList, n.info)
- discard ctx.newState(s, result)
- let ifNode = newNodeI(nkIfStmt, n.info)
- let elifBranch = newNodeI(nkElifBranch, n.info)
- elifBranch.add(n[0])
- var body = addGotoOut(n[1], result)
- body = ctx.transformBreaksAndContinuesInWhile(body, result, gotoOut)
- body = ctx.transformClosureIteratorBody(body, result)
- elifBranch.add(body)
- ifNode.add(elifBranch)
- let elseBranch = newTree(nkElse, gotoOut)
- ifNode.add(elseBranch)
- s.add(ifNode)
- of nkBlockStmt:
- result[1] = addGotoOut(result[1], gotoOut)
- result[1] = ctx.transformBreaksInBlock(result[1], result[0], gotoOut)
- result[1] = ctx.transformClosureIteratorBody(result[1], gotoOut)
- of nkTryStmt:
- # See explanation above about how this works
- ctx.hasExceptions = true
- result = newNodeI(nkGotoState, n.info)
- var tryBody = toStmtList(n[0])
- var exceptBody = ctx.collectExceptState(n)
- var finallyBody = newTree(nkStmtList, getFinallyNode(ctx, n))
- finallyBody = ctx.transformReturnsInTry(finallyBody)
- finallyBody.add(ctx.newEndFinallyNode(finallyBody.info))
- # The following index calculation is based on the knowledge how state
- # indexes are assigned
- let tryIdx = ctx.states.len
- var exceptIdx, finallyIdx: int
- if exceptBody.kind != nkEmpty:
- exceptIdx = -(tryIdx + 1)
- finallyIdx = tryIdx + 2
- else:
- exceptIdx = tryIdx + 1
- finallyIdx = tryIdx + 1
- let outToFinally = newNodeI(nkGotoState, finallyBody.info)
- block: # Create initial states.
- let oldExcHandlingState = ctx.curExcHandlingState
- ctx.curExcHandlingState = exceptIdx
- let realTryIdx = ctx.newState(tryBody, result)
- assert(realTryIdx == tryIdx)
- if exceptBody.kind != nkEmpty:
- ctx.curExcHandlingState = finallyIdx
- let realExceptIdx = ctx.newState(exceptBody, nil)
- assert(realExceptIdx == -exceptIdx)
- ctx.curExcHandlingState = oldExcHandlingState
- let realFinallyIdx = ctx.newState(finallyBody, outToFinally)
- assert(realFinallyIdx == finallyIdx)
- block: # Subdivide the states
- let oldNearestFinally = ctx.nearestFinally
- ctx.nearestFinally = finallyIdx
- let oldExcHandlingState = ctx.curExcHandlingState
- ctx.curExcHandlingState = exceptIdx
- if ctx.transformReturnsInTry(tryBody) != tryBody:
- internalError(ctx.g.config, "transformReturnsInTry != tryBody")
- if ctx.transformClosureIteratorBody(tryBody, outToFinally) != tryBody:
- internalError(ctx.g.config, "transformClosureIteratorBody != tryBody")
- ctx.curExcHandlingState = finallyIdx
- ctx.addElseToExcept(exceptBody)
- if ctx.transformReturnsInTry(exceptBody) != exceptBody:
- internalError(ctx.g.config, "transformReturnsInTry != exceptBody")
- if ctx.transformClosureIteratorBody(exceptBody, outToFinally) != exceptBody:
- internalError(ctx.g.config, "transformClosureIteratorBody != exceptBody")
- ctx.curExcHandlingState = oldExcHandlingState
- ctx.nearestFinally = oldNearestFinally
- if ctx.transformClosureIteratorBody(finallyBody, gotoOut) != finallyBody:
- internalError(ctx.g.config, "transformClosureIteratorBody != finallyBody")
- of nkGotoState, nkForStmt:
- internalError(ctx.g.config, "closure iter " & $n.kind)
- else:
- for i in 0 ..< n.len:
- n[i] = ctx.transformClosureIteratorBody(n[i], gotoOut)
- proc stateFromGotoState(n: PNode): int =
- assert(n.kind == nkGotoState)
- result = n[0].intVal.int
- proc tranformStateAssignments(ctx: var Ctx, n: PNode): PNode =
- # This transforms 3 patterns:
- ########################## 1
- # yield e
- # goto STATE
- # ->
- # :state = STATE
- # return e
- ########################## 2
- # goto STATE
- # ->
- # :state = STATE
- # break :stateLoop
- ########################## 3
- # return e
- # ->
- # :state = -1
- # return e
- #
- result = n
- case n.kind
- of nkStmtList, nkStmtListExpr:
- if n.len != 0 and n[0].kind == nkYieldStmt:
- assert(n.len == 2)
- assert(n[1].kind == nkGotoState)
- result = newNodeI(nkStmtList, n.info)
- result.add(ctx.newStateAssgn(stateFromGotoState(n[1])))
- var retStmt = newNodeI(nkReturnStmt, n.info)
- if n[0].sons[0].kind != nkEmpty:
- var a = newNodeI(nkAsgn, n[0].sons[0].info)
- var retVal = n[0].sons[0] #liftCapturedVars(n.sons[0], owner, d, c)
- addSon(a, newSymNode(getClosureIterResult(ctx.g, ctx.fn)))
- addSon(a, retVal)
- retStmt.add(a)
- else:
- retStmt.add(ctx.g.emptyNode)
- result.add(retStmt)
- else:
- for i in 0 ..< n.len:
- n[i] = ctx.tranformStateAssignments(n[i])
- of nkSkip:
- discard
- of nkReturnStmt:
- result = newNodeI(nkStmtList, n.info)
- result.add(ctx.newStateAssgn(-1))
- result.add(n)
- of nkGotoState:
- result = newNodeI(nkStmtList, n.info)
- result.add(ctx.newStateAssgn(stateFromGotoState(n)))
- let breakState = newNodeI(nkBreakStmt, n.info)
- breakState.add(newSymNode(ctx.stateLoopLabel))
- result.add(breakState)
- else:
- for i in 0 ..< n.len:
- n[i] = ctx.tranformStateAssignments(n[i])
- proc skipStmtList(ctx: Ctx; n: PNode): PNode =
- result = n
- while result.kind in {nkStmtList}:
- if result.len == 0: return ctx.g.emptyNode
- result = result[0]
- proc skipEmptyStates(ctx: Ctx, stateIdx: int): int =
- # Returns first non-empty state idx for `stateIdx`. Returns `stateIdx` if
- # it is not empty
- var maxJumps = ctx.states.len # maxJumps used only for debugging purposes.
- var stateIdx = stateIdx
- while true:
- let label = stateIdx
- if label == ctx.exitStateIdx: break
- var newLabel = label
- if label == -1:
- newLabel = ctx.exitStateIdx
- else:
- let fs = skipStmtList(ctx, ctx.states[label][1])
- if fs.kind == nkGotoState:
- newLabel = fs[0].intVal.int
- if label == newLabel: break
- stateIdx = newLabel
- dec maxJumps
- if maxJumps == 0:
- assert(false, "Internal error")
- result = ctx.states[stateIdx][0].intVal.int
- proc skipThroughEmptyStates(ctx: var Ctx, n: PNode): PNode =
- result = n
- case n.kind
- of nkSkip:
- discard
- of nkGotoState:
- result = copyTree(n)
- result[0].intVal = ctx.skipEmptyStates(result[0].intVal.int)
- else:
- for i in 0 ..< n.len:
- n[i] = ctx.skipThroughEmptyStates(n[i])
- proc newArrayType(g: ModuleGraph; n: int, t: PType, owner: PSym): PType =
- result = newType(tyArray, owner)
- let rng = newType(tyRange, owner)
- rng.n = newTree(nkRange, g.newIntLit(owner.info, 0), g.newIntLit(owner.info, n))
- rng.rawAddSon(t)
- result.rawAddSon(rng)
- result.rawAddSon(t)
- proc createExceptionTable(ctx: var Ctx): PNode {.inline.} =
- result = newNodeI(nkBracket, ctx.fn.info)
- result.typ = ctx.g.newArrayType(ctx.exceptionTable.len, ctx.g.getSysType(ctx.fn.info, tyInt16), ctx.fn)
- for i in ctx.exceptionTable:
- let elem = newIntNode(nkIntLit, i)
- elem.typ = ctx.g.getSysType(ctx.fn.info, tyInt16)
- result.add(elem)
- proc newCatchBody(ctx: var Ctx, info: TLineInfo): PNode {.inline.} =
- # Generates the code:
- # :state = exceptionTable[:state]
- # if :state == 0: raise
- # :unrollFinally = :state > 0
- # if :state < 0:
- # :state = -:state
- # :curExc = getCurrentException()
- result = newNodeI(nkStmtList, info)
- let intTyp = ctx.g.getSysType(info, tyInt)
- let boolTyp = ctx.g.getSysType(info, tyBool)
- # :state = exceptionTable[:state]
- block:
- # exceptionTable[:state]
- let getNextState = newTree(nkBracketExpr,
- ctx.createExceptionTable(),
- ctx.newStateAccess())
- getNextState.typ = intTyp
- # :state = exceptionTable[:state]
- result.add(ctx.newStateAssgn(getNextState))
- # if :state == 0: raise
- block:
- let cond = newTree(nkCall,
- ctx.g.getSysMagic(info, "==", mEqI).newSymNode(),
- ctx.newStateAccess(),
- newIntTypeNode(nkIntLit, 0, intTyp))
- cond.typ = boolTyp
- let raiseStmt = newTree(nkRaiseStmt, ctx.g.emptyNode)
- let ifBranch = newTree(nkElifBranch, cond, raiseStmt)
- let ifStmt = newTree(nkIfStmt, ifBranch)
- result.add(ifStmt)
- # :unrollFinally = :state > 0
- block:
- let cond = newTree(nkCall,
- ctx.g.getSysMagic(info, "<", mLtI).newSymNode,
- newIntTypeNode(nkIntLit, 0, intTyp),
- ctx.newStateAccess())
- cond.typ = boolTyp
- let asgn = newTree(nkAsgn, ctx.newUnrollFinallyAccess(info), cond)
- result.add(asgn)
- # if :state < 0: :state = -:state
- block:
- let cond = newTree(nkCall,
- ctx.g.getSysMagic(info, "<", mLtI).newSymNode,
- ctx.newStateAccess(),
- newIntTypeNode(nkIntLit, 0, intTyp))
- cond.typ = boolTyp
- let negateState = newTree(nkCall,
- ctx.g.getSysMagic(info, "-", mUnaryMinusI).newSymNode,
- ctx.newStateAccess())
- negateState.typ = intTyp
- let ifBranch = newTree(nkElifBranch, cond, ctx.newStateAssgn(negateState))
- let ifStmt = newTree(nkIfStmt, ifBranch)
- result.add(ifStmt)
- # :curExc = getCurrentException()
- block:
- result.add(newTree(nkAsgn,
- ctx.newCurExcAccess(),
- ctx.g.callCodegenProc("getCurrentException")))
- proc wrapIntoTryExcept(ctx: var Ctx, n: PNode): PNode {.inline.} =
- let setupExc = newTree(nkCall,
- newSymNode(ctx.g.getCompilerProc("closureIterSetupExc")),
- ctx.newCurExcAccess())
- let tryBody = newTree(nkStmtList, setupExc, n)
- let exceptBranch = newTree(nkExceptBranch, ctx.newCatchBody(ctx.fn.info))
- result = newTree(nkTryStmt, tryBody, exceptBranch)
- proc wrapIntoStateLoop(ctx: var Ctx, n: PNode): PNode =
- # while true:
- # block :stateLoop:
- # gotoState :state
- # body # Might get wrapped in try-except
- let loopBody = newNodeI(nkStmtList, n.info)
- result = newTree(nkWhileStmt, newSymNode(ctx.g.getSysSym(n.info, "true")), loopBody)
- result.info = n.info
- if not ctx.stateVarSym.isNil:
- let varSect = newNodeI(nkVarSection, n.info)
- addVar(varSect, newSymNode(ctx.stateVarSym))
- loopBody.add(varSect)
- if not ctx.tempVars.isNil:
- loopBody.add(ctx.tempVars)
- let blockStmt = newNodeI(nkBlockStmt, n.info)
- blockStmt.add(newSymNode(ctx.stateLoopLabel))
- let gs = newNodeI(nkGotoState, n.info)
- gs.add(ctx.newStateAccess())
- gs.add(ctx.g.newIntLit(n.info, ctx.states.len - 1))
- var blockBody = newTree(nkStmtList, gs, n)
- if ctx.hasExceptions:
- blockBody = ctx.wrapIntoTryExcept(blockBody)
- blockStmt.add(blockBody)
- loopBody.add(blockStmt)
- proc deleteEmptyStates(ctx: var Ctx) =
- let goOut = newTree(nkGotoState, ctx.g.newIntLit(TLineInfo(), -1))
- ctx.exitStateIdx = ctx.newState(goOut, nil)
- # Apply new state indexes and mark unused states with -1
- var iValid = 0
- for i, s in ctx.states:
- let body = skipStmtList(ctx, s[1])
- if body.kind == nkGotoState and i != ctx.states.len - 1 and i != 0:
- # This is an empty state. Mark with -1.
- s[0].intVal = -1
- else:
- s[0].intVal = iValid
- inc iValid
- for i, s in ctx.states:
- let body = skipStmtList(ctx, s[1])
- if body.kind != nkGotoState or i == 0:
- discard ctx.skipThroughEmptyStates(s)
- let excHandlState = ctx.exceptionTable[i]
- if excHandlState < 0:
- ctx.exceptionTable[i] = -ctx.skipEmptyStates(-excHandlState)
- elif excHandlState != 0:
- ctx.exceptionTable[i] = ctx.skipEmptyStates(excHandlState)
- var i = 0
- while i < ctx.states.len - 1:
- let fs = skipStmtList(ctx, ctx.states[i][1])
- if fs.kind == nkGotoState and i != 0:
- ctx.states.delete(i)
- ctx.exceptionTable.delete(i)
- else:
- inc i
- proc transformClosureIterator*(g: ModuleGraph; fn: PSym, n: PNode): PNode =
- var ctx: Ctx
- ctx.g = g
- ctx.fn = fn
- if getEnvParam(fn).isNil:
- # Lambda lifting was not done yet. Use temporary :state sym, which
- # be handled specially by lambda lifting. Local temp vars (if needed)
- # should folllow the same logic.
- ctx.stateVarSym = newSym(skVar, getIdent(ctx.g.cache, ":state"), fn, fn.info)
- ctx.stateVarSym.typ = g.createClosureIterStateType(fn)
- ctx.stateLoopLabel = newSym(skLabel, getIdent(ctx.g.cache, ":stateLoop"), fn, fn.info)
- let n = n.toStmtList
- discard ctx.newState(n, nil)
- let gotoOut = newTree(nkGotoState, g.newIntLit(n.info, -1))
- # Splitting transformation
- discard ctx.transformClosureIteratorBody(n, gotoOut)
- # Optimize empty states away
- ctx.deleteEmptyStates()
- # Make new body by concating the list of states
- result = newNodeI(nkStmtList, n.info)
- for s in ctx.states:
- assert(s.len == 2)
- let body = s[1]
- s.sons.del(1)
- result.add(s)
- result.add(body)
- result = ctx.tranformStateAssignments(result)
- result = ctx.wrapIntoStateLoop(result)
- # echo "TRANSFORM TO STATES: "
- # echo renderTree(result)
- # echo "exception table:"
- # for i, e in ctx.exceptionTable:
- # echo i, " -> ", e
|