1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284 |
- #
- #
- # The Nim Compiler
- # (c) Copyright 2015 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## This module implements the code generator for the VM.
- # Important things to remember:
- # - The VM does not distinguish between definitions ('var x = y') and
- # assignments ('x = y'). For simple data types that fit into a register
- # this doesn't matter. However it matters for strings and other complex
- # types that use the 'node' field; the reason is that slots are
- # re-used in a register based VM. Example:
- #
- #..code-block:: nim
- # let s = a & b # no matter what, create fresh node
- # s = a & b # no matter what, keep the node
- #
- # Also *stores* into non-temporary memory need to perform deep copies:
- # a.b = x.y
- # We used to generate opcAsgn for the *load* of 'x.y' but this is clearly
- # wrong! We need to produce opcAsgn (the copy) for the *store*. This also
- # solves the opcLdConst vs opcAsgnConst issue. Of course whether we need
- # this copy depends on the involved types.
- import
- strutils, ast, types, msgs, renderer, vmdef,
- intsets, magicsys, options, lowerings, lineinfos, transf
- const
- debugEchoCode* = defined(nimVMDebug)
- when debugEchoCode:
- import asciitables
- when hasFFI:
- import evalffi
- type
- TGenFlag = enum
- gfNode # Affects how variables are loaded - always loads as rkNode
- gfNodeAddr # Affects how variables are loaded - always loads as rkNodeAddr
- gfIsParam # do not deepcopy parameters, they are immutable
- TGenFlags = set[TGenFlag]
- proc debugInfo(c: PCtx; info: TLineInfo): string =
- result = toFileLineCol(c.config, info)
- proc codeListing(c: PCtx, result: var string, start=0; last = -1) =
- ## for debugging purposes
- # first iteration: compute all necessary labels:
- var jumpTargets = initIntSet()
- let last = if last < 0: c.code.len-1 else: min(last, c.code.len-1)
- for i in start..last:
- let x = c.code[i]
- if x.opcode in relativeJumps:
- jumpTargets.incl(i+x.regBx-wordExcess)
- template toStr(opc: TOpcode): string = ($opc).substr(3)
- result.add "code listing:\n"
- var i = start
- while i <= last:
- if i in jumpTargets: result.addf("L$1:\n", i)
- let x = c.code[i]
- result.add($i)
- let opc = opcode(x)
- if opc in {opcIndCall, opcIndCallAsgn}:
- result.addf("\t$#\tr$#, r$#, nargs:$#", opc.toStr, x.regA,
- x.regB, x.regC)
- elif opc in {opcConv, opcCast}:
- let y = c.code[i+1]
- let z = c.code[i+2]
- result.addf("\t$#\tr$#, r$#, $#, $#", opc.toStr, x.regA, x.regB,
- c.types[y.regBx-wordExcess].typeToString,
- c.types[z.regBx-wordExcess].typeToString)
- inc i, 2
- elif opc < firstABxInstr:
- result.addf("\t$#\tr$#, r$#, r$#", opc.toStr, x.regA,
- x.regB, x.regC)
- elif opc in relativeJumps + {opcTry}:
- result.addf("\t$#\tr$#, L$#", opc.toStr, x.regA,
- i+x.regBx-wordExcess)
- elif opc in {opcExcept}:
- let idx = x.regBx-wordExcess
- result.addf("\t$#\t$#, $#", opc.toStr, x.regA, $idx)
- elif opc in {opcLdConst, opcAsgnConst}:
- let idx = x.regBx-wordExcess
- result.addf("\t$#\tr$#, $# ($#)", opc.toStr, x.regA,
- c.constants[idx].renderTree, $idx)
- elif opc in {opcMarshalLoad, opcMarshalStore}:
- let y = c.code[i+1]
- result.addf("\t$#\tr$#, r$#, $#", opc.toStr, x.regA, x.regB,
- c.types[y.regBx-wordExcess].typeToString)
- inc i
- else:
- result.addf("\t$#\tr$#, $#", opc.toStr, x.regA, x.regBx-wordExcess)
- result.add("\t#")
- result.add(debugInfo(c, c.debug[i]))
- result.add("\n")
- inc i
- when debugEchoCode:
- result = result.alignTable
- proc echoCode*(c: PCtx; start=0; last = -1) {.deprecated.} =
- var buf = ""
- codeListing(c, buf, start, last)
- echo buf
- proc gABC(ctx: PCtx; n: PNode; opc: TOpcode; a, b, c: TRegister = 0) =
- ## Takes the registers `b` and `c`, applies the operation `opc` to them, and
- ## stores the result into register `a`
- ## The node is needed for debug information
- assert opc.ord < 255
- let ins = (opc.TInstrType or (a.TInstrType shl regAShift) or
- (b.TInstrType shl regBShift) or
- (c.TInstrType shl regCShift)).TInstr
- when false:
- if ctx.code.len == 43:
- writeStackTrace()
- echo "generating ", opc
- ctx.code.add(ins)
- ctx.debug.add(n.info)
- proc gABI(c: PCtx; n: PNode; opc: TOpcode; a, b: TRegister; imm: BiggestInt) =
- # Takes the `b` register and the immediate `imm`, applies the operation `opc`,
- # and stores the output value into `a`.
- # `imm` is signed and must be within [-128, 127]
- if imm >= -128 and imm <= 127:
- let ins = (opc.TInstrType or (a.TInstrType shl regAShift) or
- (b.TInstrType shl regBShift) or
- (imm+byteExcess).TInstrType shl regCShift).TInstr
- c.code.add(ins)
- c.debug.add(n.info)
- else:
- localError(c.config, n.info,
- "VM: immediate value does not fit into an int8")
- proc gABx(c: PCtx; n: PNode; opc: TOpcode; a: TRegister = 0; bx: int) =
- # Applies `opc` to `bx` and stores it into register `a`
- # `bx` must be signed and in the range [regBxMin, regBxMax]
- when false:
- if c.code.len == 43:
- writeStackTrace()
- echo "generating ", opc
- if bx >= regBxMin-1 and bx <= regBxMax:
- let ins = (opc.TInstrType or a.TInstrType shl regAShift or
- (bx+wordExcess).TInstrType shl regBxShift).TInstr
- c.code.add(ins)
- c.debug.add(n.info)
- else:
- localError(c.config, n.info,
- "VM: immediate value does not fit into regBx")
- proc xjmp(c: PCtx; n: PNode; opc: TOpcode; a: TRegister = 0): TPosition =
- #assert opc in {opcJmp, opcFJmp, opcTJmp}
- result = TPosition(c.code.len)
- gABx(c, n, opc, a, 0)
- proc genLabel(c: PCtx): TPosition =
- result = TPosition(c.code.len)
- #c.jumpTargets.incl(c.code.len)
- proc jmpBack(c: PCtx, n: PNode, p = TPosition(0)) =
- let dist = p.int - c.code.len
- internalAssert(c.config, regBxMin < dist and dist < regBxMax)
- gABx(c, n, opcJmpBack, 0, dist)
- proc patch(c: PCtx, p: TPosition) =
- # patch with current index
- let p = p.int
- let diff = c.code.len - p
- #c.jumpTargets.incl(c.code.len)
- internalAssert(c.config, regBxMin < diff and diff < regBxMax)
- let oldInstr = c.code[p]
- # opcode and regA stay the same:
- c.code[p] = ((oldInstr.TInstrType and regBxMask).TInstrType or
- TInstrType(diff+wordExcess) shl regBxShift).TInstr
- proc getSlotKind(t: PType): TSlotKind =
- case t.skipTypes(abstractRange-{tyTypeDesc}).kind
- of tyBool, tyChar, tyEnum, tyOrdinal, tyInt..tyInt64, tyUInt..tyUInt64:
- slotTempInt
- of tyString, tyCString:
- slotTempStr
- of tyFloat..tyFloat128:
- slotTempFloat
- else:
- slotTempComplex
- const
- HighRegisterPressure = 40
- proc bestEffort(c: PCtx): TLineInfo =
- if c.prc != nil and c.prc.sym != nil:
- c.prc.sym.info
- else:
- c.module.info
- proc getFreeRegister(cc: PCtx; k: TSlotKind; start: int): TRegister =
- let c = cc.prc
- # we prefer the same slot kind here for efficiency. Unfortunately for
- # discardable return types we may not know the desired type. This can happen
- # for e.g. mNAdd[Multiple]:
- for i in start..c.maxSlots-1:
- if c.slots[i].kind == k and not c.slots[i].inUse:
- c.slots[i].inUse = true
- return TRegister(i)
- # if register pressure is high, we re-use more aggressively:
- if c.maxSlots >= high(TRegister):
- for i in start..c.maxSlots-1:
- if not c.slots[i].inUse:
- c.slots[i] = (inUse: true, kind: k)
- return TRegister(i)
- if c.maxSlots >= high(TRegister):
- globalError(cc.config, cc.bestEffort, "VM problem: too many registers required")
- result = TRegister(max(c.maxSlots, start))
- c.slots[result] = (inUse: true, kind: k)
- c.maxSlots = result + 1
- proc getTemp(cc: PCtx; tt: PType): TRegister =
- let typ = tt.skipTypesOrNil({tyStatic})
- # we prefer the same slot kind here for efficiency. Unfortunately for
- # discardable return types we may not know the desired type. This can happen
- # for e.g. mNAdd[Multiple]:
- let k = if typ.isNil: slotTempComplex else: typ.getSlotKind
- result = getFreeRegister(cc, k, start = 0)
- when false:
- # enable this to find "register" leaks:
- if result == 4:
- echo "begin ---------------"
- writeStackTrace()
- echo "end ----------------"
- proc freeTemp(c: PCtx; r: TRegister) =
- let c = c.prc
- if c.slots[r].kind in {slotSomeTemp..slotTempComplex}:
- # this seems to cause https://github.com/nim-lang/Nim/issues/10647
- c.slots[r].inUse = false
- proc getTempRange(cc: PCtx; n: int; kind: TSlotKind): TRegister =
- # if register pressure is high, we re-use more aggressively:
- let c = cc.prc
- if c.maxSlots >= HighRegisterPressure or c.maxSlots+n >= high(TRegister):
- for i in 0..c.maxSlots-n:
- if not c.slots[i].inUse:
- block search:
- for j in i+1..i+n-1:
- if c.slots[j].inUse: break search
- result = TRegister(i)
- for k in result..result+n-1: c.slots[k] = (inUse: true, kind: kind)
- return
- if c.maxSlots+n >= high(TRegister):
- globalError(cc.config, cc.bestEffort, "VM problem: too many registers required")
- result = TRegister(c.maxSlots)
- inc c.maxSlots, n
- for k in result..result+n-1: c.slots[k] = (inUse: true, kind: kind)
- proc freeTempRange(c: PCtx; start: TRegister, n: int) =
- for i in start..start+n-1: c.freeTemp(TRegister(i))
- template withTemp(tmp, typ, body: untyped) {.dirty.} =
- var tmp = getTemp(c, typ)
- body
- c.freeTemp(tmp)
- proc popBlock(c: PCtx; oldLen: int) =
- for f in c.prc.blocks[oldLen].fixups:
- c.patch(f)
- c.prc.blocks.setLen(oldLen)
- template withBlock(labl: PSym; body: untyped) {.dirty.} =
- var oldLen {.gensym.} = c.prc.blocks.len
- c.prc.blocks.add TBlock(label: labl, fixups: @[])
- body
- popBlock(c, oldLen)
- proc gen(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags = {})
- proc gen(c: PCtx; n: PNode; dest: TRegister; flags: TGenFlags = {}) =
- var d: TDest = dest
- gen(c, n, d, flags)
- #internalAssert c.config, d == dest # issue #7407
- proc gen(c: PCtx; n: PNode; flags: TGenFlags = {}) =
- var tmp: TDest = -1
- gen(c, n, tmp, flags)
- if tmp >= 0:
- freeTemp(c, tmp)
- #if n.typ.isEmptyType: internalAssert tmp < 0
- proc genx(c: PCtx; n: PNode; flags: TGenFlags = {}): TRegister =
- var tmp: TDest = -1
- gen(c, n, tmp, flags)
- #internalAssert c.config, tmp >= 0 # 'nim check' does not like this internalAssert.
- if tmp >= 0:
- result = TRegister(tmp)
- proc clearDest(c: PCtx; n: PNode; dest: var TDest) {.inline.} =
- # stmt is different from 'void' in meta programming contexts.
- # So we only set dest to -1 if 'void':
- if dest >= 0 and (n.typ.isNil or n.typ.kind == tyVoid):
- c.freeTemp(dest)
- dest = -1
- proc isNotOpr(n: PNode): bool =
- n.kind in nkCallKinds and n[0].kind == nkSym and
- n[0].sym.magic == mNot
- proc isTrue(n: PNode): bool =
- n.kind == nkSym and n.sym.kind == skEnumField and n.sym.position != 0 or
- n.kind == nkIntLit and n.intVal != 0
- proc genWhile(c: PCtx; n: PNode) =
- # lab1:
- # cond, tmp
- # fjmp tmp, lab2
- # body
- # jmp lab1
- # lab2:
- let lab1 = c.genLabel
- withBlock(nil):
- if isTrue(n[0]):
- c.gen(n[1])
- c.jmpBack(n, lab1)
- elif isNotOpr(n[0]):
- var tmp = c.genx(n[0][1])
- let lab2 = c.xjmp(n, opcTJmp, tmp)
- c.freeTemp(tmp)
- c.gen(n[1])
- c.jmpBack(n, lab1)
- c.patch(lab2)
- else:
- var tmp = c.genx(n[0])
- let lab2 = c.xjmp(n, opcFJmp, tmp)
- c.freeTemp(tmp)
- c.gen(n[1])
- c.jmpBack(n, lab1)
- c.patch(lab2)
- proc genBlock(c: PCtx; n: PNode; dest: var TDest) =
- let oldRegisterCount = c.prc.maxSlots
- withBlock(n[0].sym):
- c.gen(n[1], dest)
- for i in oldRegisterCount..<c.prc.maxSlots:
- #if c.prc.slots[i].kind in {slotFixedVar, slotFixedLet}:
- if i != dest:
- when not defined(release):
- if c.prc.slots[i].inUse and c.prc.slots[i].kind in {slotTempUnknown,
- slotTempInt,
- slotTempFloat,
- slotTempStr,
- slotTempComplex}:
- doAssert false, "leaking temporary " & $i & " " & $c.prc.slots[i].kind
- c.prc.slots[i] = (inUse: false, kind: slotEmpty)
- c.clearDest(n, dest)
- proc genBreak(c: PCtx; n: PNode) =
- let lab1 = c.xjmp(n, opcJmp)
- if n[0].kind == nkSym:
- #echo cast[int](n[0].sym)
- for i in countdown(c.prc.blocks.len-1, 0):
- if c.prc.blocks[i].label == n[0].sym:
- c.prc.blocks[i].fixups.add lab1
- return
- globalError(c.config, n.info, "VM problem: cannot find 'break' target")
- else:
- c.prc.blocks[c.prc.blocks.high].fixups.add lab1
- proc genIf(c: PCtx, n: PNode; dest: var TDest) =
- # if (!expr1) goto lab1;
- # thenPart
- # goto LEnd
- # lab1:
- # if (!expr2) goto lab2;
- # thenPart2
- # goto LEnd
- # lab2:
- # elsePart
- # Lend:
- if dest < 0 and not isEmptyType(n.typ): dest = getTemp(c, n.typ)
- var endings: seq[TPosition] = @[]
- for i in 0..<n.len:
- var it = n[i]
- if it.len == 2:
- withTemp(tmp, it[0].typ):
- var elsePos: TPosition
- if isNotOpr(it[0]):
- c.gen(it[0][1], tmp)
- elsePos = c.xjmp(it[0][1], opcTJmp, tmp) # if true
- else:
- c.gen(it[0], tmp)
- elsePos = c.xjmp(it[0], opcFJmp, tmp) # if false
- c.clearDest(n, dest)
- c.gen(it[1], dest) # then part
- if i < n.len-1:
- endings.add(c.xjmp(it[1], opcJmp, 0))
- c.patch(elsePos)
- else:
- c.clearDest(n, dest)
- c.gen(it[0], dest)
- for endPos in endings: c.patch(endPos)
- c.clearDest(n, dest)
- proc isTemp(c: PCtx; dest: TDest): bool =
- result = dest >= 0 and c.prc.slots[dest].kind >= slotTempUnknown
- proc genAndOr(c: PCtx; n: PNode; opc: TOpcode; dest: var TDest) =
- # asgn dest, a
- # tjmp|fjmp lab1
- # asgn dest, b
- # lab1:
- let copyBack = dest < 0 or not isTemp(c, dest)
- let tmp = if copyBack:
- getTemp(c, n.typ)
- else:
- TRegister dest
- c.gen(n[1], tmp)
- let lab1 = c.xjmp(n, opc, tmp)
- c.gen(n[2], tmp)
- c.patch(lab1)
- if dest < 0:
- dest = tmp
- elif copyBack:
- c.gABC(n, opcAsgnInt, dest, tmp)
- freeTemp(c, tmp)
- proc canonValue*(n: PNode): PNode =
- result = n
- proc rawGenLiteral(c: PCtx; n: PNode): int =
- result = c.constants.len
- #assert(n.kind != nkCall)
- n.flags.incl nfAllConst
- c.constants.add n.canonValue
- internalAssert c.config, result < regBxMax
- proc sameConstant*(a, b: PNode): bool =
- result = false
- if a == b:
- result = true
- elif a != nil and b != nil and a.kind == b.kind:
- case a.kind
- of nkSym: result = a.sym == b.sym
- of nkIdent: result = a.ident.id == b.ident.id
- of nkCharLit..nkUInt64Lit: result = a.intVal == b.intVal
- of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
- of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
- of nkType, nkNilLit: result = a.typ == b.typ
- of nkEmpty: result = true
- else:
- if a.len == b.len:
- for i in 0..<a.len:
- if not sameConstant(a[i], b[i]): return
- result = true
- proc genLiteral(c: PCtx; n: PNode): int =
- # types do not matter here:
- for i in 0..<c.constants.len:
- if sameConstant(c.constants[i], n): return i
- result = rawGenLiteral(c, n)
- proc unused(c: PCtx; n: PNode; x: TDest) {.inline.} =
- if x >= 0:
- #debug(n)
- globalError(c.config, n.info, "not unused")
- proc genCase(c: PCtx; n: PNode; dest: var TDest) =
- # if (!expr1) goto lab1;
- # thenPart
- # goto LEnd
- # lab1:
- # if (!expr2) goto lab2;
- # thenPart2
- # goto LEnd
- # lab2:
- # elsePart
- # Lend:
- if not isEmptyType(n.typ):
- if dest < 0: dest = getTemp(c, n.typ)
- else:
- unused(c, n, dest)
- var endings: seq[TPosition] = @[]
- withTemp(tmp, n[0].typ):
- c.gen(n[0], tmp)
- # branch tmp, codeIdx
- # fjmp elseLabel
- for i in 1..<n.len:
- let it = n[i]
- if it.len == 1:
- # else stmt:
- c.gen(it[0], dest)
- else:
- let b = rawGenLiteral(c, it)
- c.gABx(it, opcBranch, tmp, b)
- let elsePos = c.xjmp(it.lastSon, opcFJmp, tmp)
- c.gen(it.lastSon, dest)
- if i < n.len-1:
- endings.add(c.xjmp(it.lastSon, opcJmp, 0))
- c.patch(elsePos)
- c.clearDest(n, dest)
- for endPos in endings: c.patch(endPos)
- proc genType(c: PCtx; typ: PType): int =
- for i, t in c.types:
- if sameType(t, typ): return i
- result = c.types.len
- c.types.add(typ)
- internalAssert(c.config, result <= regBxMax)
- proc genTry(c: PCtx; n: PNode; dest: var TDest) =
- if dest < 0 and not isEmptyType(n.typ): dest = getTemp(c, n.typ)
- var endings: seq[TPosition] = @[]
- let ehPos = c.xjmp(n, opcTry, 0)
- c.gen(n[0], dest)
- c.clearDest(n, dest)
- # Add a jump past the exception handling code
- let jumpToFinally = c.xjmp(n, opcJmp, 0)
- # This signals where the body ends and where the exception handling begins
- c.patch(ehPos)
- for i in 1..<n.len:
- let it = n[i]
- if it.kind != nkFinally:
- # first opcExcept contains the end label of the 'except' block:
- let endExcept = c.xjmp(it, opcExcept, 0)
- for j in 0..<it.len - 1:
- assert(it[j].kind == nkType)
- let typ = it[j].typ.skipTypes(abstractPtrs-{tyTypeDesc})
- c.gABx(it, opcExcept, 0, c.genType(typ))
- if it.len == 1:
- # general except section:
- c.gABx(it, opcExcept, 0, 0)
- c.gen(it.lastSon, dest)
- c.clearDest(n, dest)
- if i < n.len:
- endings.add(c.xjmp(it, opcJmp, 0))
- c.patch(endExcept)
- let fin = lastSon(n)
- # we always generate an 'opcFinally' as that pops the safepoint
- # from the stack if no exception is raised in the body.
- c.patch(jumpToFinally)
- c.gABx(fin, opcFinally, 0, 0)
- for endPos in endings: c.patch(endPos)
- if fin.kind == nkFinally:
- c.gen(fin[0])
- c.clearDest(n, dest)
- c.gABx(fin, opcFinallyEnd, 0, 0)
- proc genRaise(c: PCtx; n: PNode) =
- let dest = genx(c, n[0])
- c.gABC(n, opcRaise, dest)
- c.freeTemp(dest)
- proc genReturn(c: PCtx; n: PNode) =
- if n[0].kind != nkEmpty:
- gen(c, n[0])
- c.gABC(n, opcRet)
- proc genLit(c: PCtx; n: PNode; dest: var TDest) =
- # opcLdConst is now always valid. We produce the necessary copy in the
- # assignments now:
- #var opc = opcLdConst
- if dest < 0: dest = c.getTemp(n.typ)
- #elif c.prc.slots[dest].kind == slotFixedVar: opc = opcAsgnConst
- let lit = genLiteral(c, n)
- c.gABx(n, opcLdConst, dest, lit)
- proc genCall(c: PCtx; n: PNode; dest: var TDest) =
- # it can happen that due to inlining we have a 'n' that should be
- # treated as a constant (see issue #537).
- #if n.typ != nil and n.typ.sym != nil and n.typ.sym.magic == mPNimrodNode:
- # genLit(c, n, dest)
- # return
- # bug #10901: do not produce code for wrong call expressions:
- if n.len == 0 or n[0].typ.isNil: return
- if dest < 0 and not isEmptyType(n.typ): dest = getTemp(c, n.typ)
- let x = c.getTempRange(n.len, slotTempUnknown)
- # varargs need 'opcSetType' for the FFI support:
- let fntyp = skipTypes(n[0].typ, abstractInst)
- for i in 0..<n.len:
- #if i > 0 and i < fntyp.len:
- # let paramType = fntyp.n[i]
- # if paramType.typ.isCompileTimeOnly: continue
- var r: TRegister = x+i
- c.gen(n[i], r, {gfIsParam})
- if i >= fntyp.len:
- internalAssert c.config, tfVarargs in fntyp.flags
- c.gABx(n, opcSetType, r, c.genType(n[i].typ))
- if dest < 0:
- c.gABC(n, opcIndCall, 0, x, n.len)
- else:
- c.gABC(n, opcIndCallAsgn, dest, x, n.len)
- c.freeTempRange(x, n.len)
- template isGlobal(s: PSym): bool = sfGlobal in s.flags and s.kind != skForVar
- proc isGlobal(n: PNode): bool = n.kind == nkSym and isGlobal(n.sym)
- proc needsAsgnPatch(n: PNode): bool =
- n.kind in {nkBracketExpr, nkDotExpr, nkCheckedFieldExpr,
- nkDerefExpr, nkHiddenDeref} or (n.kind == nkSym and n.sym.isGlobal)
- proc genField(c: PCtx; n: PNode): TRegister =
- if n.kind != nkSym or n.sym.kind != skField:
- globalError(c.config, n.info, "no field symbol")
- let s = n.sym
- if s.position > high(result):
- globalError(c.config, n.info,
- "too large offset! cannot generate code for: " & s.name.s)
- result = s.position
- proc genIndex(c: PCtx; n: PNode; arr: PType): TRegister =
- if arr.skipTypes(abstractInst).kind == tyArray and (let x = firstOrd(c.config, arr);
- x != Zero):
- let tmp = c.genx(n)
- # freeing the temporary here means we can produce: regA = regA - Imm
- c.freeTemp(tmp)
- result = c.getTemp(n.typ)
- c.gABI(n, opcSubImmInt, result, tmp, toInt(x))
- else:
- result = c.genx(n)
- proc genCheckedObjAccessAux(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags)
- proc genAsgnPatch(c: PCtx; le: PNode, value: TRegister) =
- case le.kind
- of nkBracketExpr:
- let dest = c.genx(le[0], {gfNode})
- let idx = c.genIndex(le[1], le[0].typ)
- c.gABC(le, opcWrArr, dest, idx, value)
- c.freeTemp(dest)
- c.freeTemp(idx)
- of nkCheckedFieldExpr:
- var objR: TDest = -1
- genCheckedObjAccessAux(c, le, objR, {gfNode})
- let idx = genField(c, le[0][1])
- c.gABC(le[0], opcWrObj, objR, idx, value)
- c.freeTemp(objR)
- of nkDotExpr:
- let dest = c.genx(le[0], {gfNode})
- let idx = genField(c, le[1])
- c.gABC(le, opcWrObj, dest, idx, value)
- c.freeTemp(dest)
- of nkDerefExpr, nkHiddenDeref:
- let dest = c.genx(le[0], {gfNode})
- c.gABC(le, opcWrDeref, dest, 0, value)
- c.freeTemp(dest)
- of nkSym:
- if le.sym.isGlobal:
- let dest = c.genx(le, {gfNodeAddr})
- c.gABC(le, opcWrDeref, dest, 0, value)
- c.freeTemp(dest)
- else:
- discard
- proc genNew(c: PCtx; n: PNode) =
- let dest = if needsAsgnPatch(n[1]): c.getTemp(n[1].typ)
- else: c.genx(n[1])
- # we use the ref's base type here as the VM conflates 'ref object'
- # and 'object' since internally we already have a pointer.
- c.gABx(n, opcNew, dest,
- c.genType(n[1].typ.skipTypes(abstractVar-{tyTypeDesc})[0]))
- c.genAsgnPatch(n[1], dest)
- c.freeTemp(dest)
- proc genNewSeq(c: PCtx; n: PNode) =
- let t = n[1].typ
- let dest = if needsAsgnPatch(n[1]): c.getTemp(t)
- else: c.genx(n[1])
- let tmp = c.genx(n[2])
- c.gABx(n, opcNewSeq, dest, c.genType(t.skipTypes(
- abstractVar-{tyTypeDesc})))
- c.gABx(n, opcNewSeq, tmp, 0)
- c.freeTemp(tmp)
- c.genAsgnPatch(n[1], dest)
- c.freeTemp(dest)
- proc genNewSeqOfCap(c: PCtx; n: PNode; dest: var TDest) =
- let t = n.typ
- let tmp = c.getTemp(n[1].typ)
- c.gABx(n, opcLdNull, dest, c.genType(t))
- c.gABx(n, opcLdImmInt, tmp, 0)
- c.gABx(n, opcNewSeq, dest, c.genType(t.skipTypes(
- abstractVar-{tyTypeDesc})))
- c.gABx(n, opcNewSeq, tmp, 0)
- c.freeTemp(tmp)
- proc genUnaryABC(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
- let tmp = c.genx(n[1])
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABC(n, opc, dest, tmp)
- c.freeTemp(tmp)
- proc genUnaryABI(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode; imm: BiggestInt=0) =
- let tmp = c.genx(n[1])
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABI(n, opc, dest, tmp, imm)
- c.freeTemp(tmp)
- proc genBinaryABC(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
- let
- tmp = c.genx(n[1])
- tmp2 = c.genx(n[2])
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABC(n, opc, dest, tmp, tmp2)
- c.freeTemp(tmp)
- c.freeTemp(tmp2)
- proc genBinaryABCD(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
- let
- tmp = c.genx(n[1])
- tmp2 = c.genx(n[2])
- tmp3 = c.genx(n[3])
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABC(n, opc, dest, tmp, tmp2)
- c.gABC(n, opc, tmp3)
- c.freeTemp(tmp)
- c.freeTemp(tmp2)
- c.freeTemp(tmp3)
- template sizeOfLikeMsg(name): string =
- "'$1' requires '.importc' types to be '.completeStruct'" % [name]
- proc genNarrow(c: PCtx; n: PNode; dest: TDest) =
- let t = skipTypes(n.typ, abstractVar-{tyTypeDesc})
- # uint is uint64 in the VM, we we only need to mask the result for
- # other unsigned types:
- if t.kind in {tyUInt8..tyUInt32} or (t.kind == tyUInt and t.size < 8):
- c.gABC(n, opcNarrowU, dest, TRegister(t.size*8))
- elif t.kind in {tyInt8..tyInt32} or (t.kind == tyInt and t.size < 8):
- c.gABC(n, opcNarrowS, dest, TRegister(t.size*8))
- proc genNarrowU(c: PCtx; n: PNode; dest: TDest) =
- let t = skipTypes(n.typ, abstractVar-{tyTypeDesc})
- # uint is uint64 in the VM, we we only need to mask the result for
- # other unsigned types:
- if t.kind in {tyUInt8..tyUInt32, tyInt8..tyInt32} or
- (t.kind in {tyUInt, tyInt} and t.size < 8):
- c.gABC(n, opcNarrowU, dest, TRegister(t.size*8))
- proc genBinaryABCnarrow(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
- genBinaryABC(c, n, dest, opc)
- genNarrow(c, n, dest)
- proc genBinaryABCnarrowU(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
- genBinaryABC(c, n, dest, opc)
- genNarrowU(c, n, dest)
- proc genSetType(c: PCtx; n: PNode; dest: TRegister) =
- let t = skipTypes(n.typ, abstractInst-{tyTypeDesc})
- if t.kind == tySet:
- c.gABx(n, opcSetType, dest, c.genType(t))
- proc genBinarySet(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
- let
- tmp = c.genx(n[1])
- tmp2 = c.genx(n[2])
- if dest < 0: dest = c.getTemp(n.typ)
- c.genSetType(n[1], tmp)
- c.genSetType(n[2], tmp2)
- c.gABC(n, opc, dest, tmp, tmp2)
- c.freeTemp(tmp)
- c.freeTemp(tmp2)
- proc genBinaryStmt(c: PCtx; n: PNode; opc: TOpcode) =
- let
- dest = c.genx(n[1])
- tmp = c.genx(n[2])
- c.gABC(n, opc, dest, tmp, 0)
- c.freeTemp(tmp)
- c.freeTemp(dest)
- proc genBinaryStmtVar(c: PCtx; n: PNode; opc: TOpcode) =
- var x = n[1]
- if x.kind in {nkAddr, nkHiddenAddr}: x = x[0]
- let
- dest = c.genx(x)
- tmp = c.genx(n[2])
- c.gABC(n, opc, dest, tmp, 0)
- #c.genAsgnPatch(n[1], dest)
- c.freeTemp(tmp)
- c.freeTemp(dest)
- proc genUnaryStmt(c: PCtx; n: PNode; opc: TOpcode) =
- let tmp = c.genx(n[1])
- c.gABC(n, opc, tmp, 0, 0)
- c.freeTemp(tmp)
- proc genVarargsABC(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
- if dest < 0: dest = getTemp(c, n.typ)
- var x = c.getTempRange(n.len-1, slotTempStr)
- for i in 1..<n.len:
- var r: TRegister = x+i-1
- c.gen(n[i], r)
- c.gABC(n, opc, dest, x, n.len-1)
- c.freeTempRange(x, n.len)
- proc isInt8Lit(n: PNode): bool =
- if n.kind in {nkCharLit..nkUInt64Lit}:
- result = n.intVal >= low(int8) and n.intVal <= high(int8)
- proc isInt16Lit(n: PNode): bool =
- if n.kind in {nkCharLit..nkUInt64Lit}:
- result = n.intVal >= low(int16) and n.intVal <= high(int16)
- proc genAddSubInt(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
- if n[2].isInt8Lit:
- let tmp = c.genx(n[1])
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABI(n, succ(opc), dest, tmp, n[2].intVal)
- c.freeTemp(tmp)
- else:
- genBinaryABC(c, n, dest, opc)
- c.genNarrow(n, dest)
- proc genConv(c: PCtx; n, arg: PNode; dest: var TDest; opc=opcConv) =
- if n.typ.kind == arg.typ.kind and arg.typ.kind == tyProc:
- # don't do anything for lambda lifting conversions:
- gen(c, arg, dest)
- return
- let tmp = c.genx(arg)
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABC(n, opc, dest, tmp)
- c.gABx(n, opc, 0, genType(c, n.typ.skipTypes({tyStatic})))
- c.gABx(n, opc, 0, genType(c, arg.typ.skipTypes({tyStatic})))
- c.freeTemp(tmp)
- proc genCard(c: PCtx; n: PNode; dest: var TDest) =
- let tmp = c.genx(n[1])
- if dest < 0: dest = c.getTemp(n.typ)
- c.genSetType(n[1], tmp)
- c.gABC(n, opcCard, dest, tmp)
- c.freeTemp(tmp)
- proc genCastIntFloat(c: PCtx; n: PNode; dest: var TDest) =
- const allowedIntegers = {tyInt..tyInt64, tyUInt..tyUInt64, tyChar}
- var signedIntegers = {tyInt..tyInt64}
- var unsignedIntegers = {tyUInt..tyUInt64, tyChar}
- let src = n[1].typ.skipTypes(abstractRange)#.kind
- let dst = n[0].typ.skipTypes(abstractRange)#.kind
- let srcSize = getSize(c.config, src)
- let dstSize = getSize(c.config, dst)
- if src.kind in allowedIntegers and dst.kind in allowedIntegers:
- let tmp = c.genx(n[1])
- if dest < 0: dest = c.getTemp(n[0].typ)
- c.gABC(n, opcAsgnInt, dest, tmp)
- if dstSize != sizeof(BiggestInt): # don't do anything on biggest int types
- if dst.kind in signedIntegers: # we need to do sign extensions
- if dstSize <= srcSize:
- # Sign extension can be omitted when the size increases.
- c.gABC(n, opcSignExtend, dest, TRegister(dstSize*8))
- elif dst.kind in unsignedIntegers:
- if src.kind in signedIntegers or dstSize < srcSize:
- # Cast from signed to unsigned always needs narrowing. Cast
- # from unsigned to unsigned only needs narrowing when target
- # is smaller than source.
- c.gABC(n, opcNarrowU, dest, TRegister(dstSize*8))
- c.freeTemp(tmp)
- elif srcSize == dstSize and src.kind in allowedIntegers and
- dst.kind in {tyFloat, tyFloat32, tyFloat64}:
- let tmp = c.genx(n[1])
- if dest < 0: dest = c.getTemp(n[0].typ)
- if dst.kind == tyFloat32:
- c.gABC(n, opcCastIntToFloat32, dest, tmp)
- else:
- c.gABC(n, opcCastIntToFloat64, dest, tmp)
- c.freeTemp(tmp)
- elif srcSize == dstSize and src.kind in {tyFloat, tyFloat32, tyFloat64} and
- dst.kind in allowedIntegers:
- let tmp = c.genx(n[1])
- if dest < 0: dest = c.getTemp(n[0].typ)
- if src.kind == tyFloat32:
- c.gABC(n, opcCastFloatToInt32, dest, tmp)
- if dst.kind in unsignedIntegers:
- # integers are sign extended by default.
- # since there is no opcCastFloatToUInt32, narrowing should do the trick.
- c.gABC(n, opcNarrowU, dest, TRegister(32))
- else:
- c.gABC(n, opcCastFloatToInt64, dest, tmp)
- # narrowing for 64 bits not needed (no extended sign bits available).
- c.freeTemp(tmp)
- elif src.kind in PtrLikeKinds + {tyRef} and dst.kind == tyInt:
- let tmp = c.genx(n[1])
- if dest < 0: dest = c.getTemp(n[0].typ)
- var imm: BiggestInt = if src.kind in PtrLikeKinds: 1 else: 2
- c.gABI(n, opcCastPtrToInt, dest, tmp, imm)
- c.freeTemp(tmp)
- elif src.kind in PtrLikeKinds + {tyInt} and dst.kind in PtrLikeKinds:
- let tmp = c.genx(n[1])
- if dest < 0: dest = c.getTemp(n[0].typ)
- c.gABx(n, opcSetType, dest, c.genType(dst))
- c.gABC(n, opcCastIntToPtr, dest, tmp)
- c.freeTemp(tmp)
- else:
- # todo: support cast from tyInt to tyRef
- globalError(c.config, n.info, "VM does not support 'cast' from " & $src.kind & " to " & $dst.kind)
- proc genVoidABC(c: PCtx, n: PNode, dest: TDest, opcode: TOpcode) =
- unused(c, n, dest)
- var
- tmp1 = c.genx(n[1])
- tmp2 = c.genx(n[2])
- tmp3 = c.genx(n[3])
- c.gABC(n, opcode, tmp1, tmp2, tmp3)
- c.freeTemp(tmp1)
- c.freeTemp(tmp2)
- c.freeTemp(tmp3)
- proc genBindSym(c: PCtx; n: PNode; dest: var TDest) =
- # nah, cannot use c.config.features because sempass context
- # can have local experimental switch
- # if dynamicBindSym notin c.config.features:
- if n.len == 2: # hmm, reliable?
- # bindSym with static input
- if n[1].kind in {nkClosedSymChoice, nkOpenSymChoice, nkSym}:
- let idx = c.genLiteral(n[1])
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABx(n, opcNBindSym, dest, idx)
- else:
- localError(c.config, n.info, "invalid bindSym usage")
- else:
- # experimental bindSym
- if dest < 0: dest = c.getTemp(n.typ)
- let x = c.getTempRange(n.len, slotTempUnknown)
- # callee symbol
- var tmp0 = TDest(x)
- c.genLit(n[0], tmp0)
- # original parameters
- for i in 1..<n.len-2:
- var r = TRegister(x+i)
- c.gen(n[i], r)
- # info node
- var tmp1 = TDest(x+n.len-2)
- c.genLit(n[^2], tmp1)
- # payload idx
- var tmp2 = TDest(x+n.len-1)
- c.genLit(n[^1], tmp2)
- c.gABC(n, opcNDynBindSym, dest, x, n.len)
- c.freeTempRange(x, n.len)
- proc fitsRegister*(t: PType): bool =
- assert t != nil
- t.skipTypes(abstractInst-{tyTypeDesc}).kind in {
- tyRange, tyEnum, tyBool, tyInt..tyUInt64, tyChar}
- proc ldNullOpcode(t: PType): TOpcode =
- assert t != nil
- if fitsRegister(t): opcLdNullReg else: opcLdNull
- proc whichAsgnOpc(n: PNode; requiresCopy = true): TOpcode =
- case n.typ.skipTypes(abstractRange+{tyOwned}-{tyTypeDesc}).kind
- of tyBool, tyChar, tyEnum, tyOrdinal, tyInt..tyInt64, tyUInt..tyUInt64:
- opcAsgnInt
- of tyFloat..tyFloat128:
- opcAsgnFloat
- of tyRef, tyNil, tyVar, tyLent, tyPtr:
- opcAsgnRef
- else:
- (if requiresCopy: opcAsgnComplex else: opcFastAsgnComplex)
- proc genMagic(c: PCtx; n: PNode; dest: var TDest; m: TMagic) =
- case m
- of mAnd: c.genAndOr(n, opcFJmp, dest)
- of mOr: c.genAndOr(n, opcTJmp, dest)
- of mPred, mSubI:
- c.genAddSubInt(n, dest, opcSubInt)
- of mSucc, mAddI:
- c.genAddSubInt(n, dest, opcAddInt)
- of mInc, mDec:
- unused(c, n, dest)
- let isUnsigned = n[1].typ.skipTypes(abstractVarRange).kind in {tyUInt..tyUInt64}
- let opc = if not isUnsigned:
- if m == mInc: opcAddInt else: opcSubInt
- else:
- if m == mInc: opcAddu else: opcSubu
- let d = c.genx(n[1])
- if n[2].isInt8Lit and not isUnsigned:
- c.gABI(n, succ(opc), d, d, n[2].intVal)
- else:
- let tmp = c.genx(n[2])
- c.gABC(n, opc, d, d, tmp)
- c.freeTemp(tmp)
- c.genNarrow(n[1], d)
- c.genAsgnPatch(n[1], d)
- c.freeTemp(d)
- of mOrd, mChr, mArrToSeq, mUnown: c.gen(n[1], dest)
- of mNew, mNewFinalize:
- unused(c, n, dest)
- c.genNew(n)
- of mNewSeq:
- unused(c, n, dest)
- c.genNewSeq(n)
- of mNewSeqOfCap: c.genNewSeqOfCap(n, dest)
- of mNewString:
- genUnaryABC(c, n, dest, opcNewStr)
- # XXX buggy
- of mNewStringOfCap:
- # we ignore the 'cap' argument and translate it as 'newString(0)'.
- # eval n[1] for possible side effects:
- c.freeTemp(c.genx(n[1]))
- var tmp = c.getTemp(n[1].typ)
- c.gABx(n, opcLdImmInt, tmp, 0)
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABC(n, opcNewStr, dest, tmp)
- c.freeTemp(tmp)
- # XXX buggy
- of mLengthOpenArray, mLengthArray, mLengthSeq:
- genUnaryABI(c, n, dest, opcLenSeq)
- of mLengthStr:
- genUnaryABI(c, n, dest, opcLenStr)
- of mIncl, mExcl:
- unused(c, n, dest)
- var d = c.genx(n[1])
- var tmp = c.genx(n[2])
- c.genSetType(n[1], d)
- c.gABC(n, if m == mIncl: opcIncl else: opcExcl, d, tmp)
- c.freeTemp(d)
- c.freeTemp(tmp)
- of mCard: genCard(c, n, dest)
- of mMulI: genBinaryABCnarrow(c, n, dest, opcMulInt)
- of mDivI: genBinaryABCnarrow(c, n, dest, opcDivInt)
- of mModI: genBinaryABCnarrow(c, n, dest, opcModInt)
- of mAddF64: genBinaryABC(c, n, dest, opcAddFloat)
- of mSubF64: genBinaryABC(c, n, dest, opcSubFloat)
- of mMulF64: genBinaryABC(c, n, dest, opcMulFloat)
- of mDivF64: genBinaryABC(c, n, dest, opcDivFloat)
- of mShrI:
- # modified: genBinaryABC(c, n, dest, opcShrInt)
- # narrowU is applied to the left operandthe idea here is to narrow the left operand
- let tmp = c.genx(n[1])
- c.genNarrowU(n, tmp)
- let tmp2 = c.genx(n[2])
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABC(n, opcShrInt, dest, tmp, tmp2)
- c.freeTemp(tmp)
- c.freeTemp(tmp2)
- of mShlI:
- genBinaryABC(c, n, dest, opcShlInt)
- # genNarrowU modified
- let t = skipTypes(n.typ, abstractVar-{tyTypeDesc})
- if t.kind in {tyUInt8..tyUInt32} or (t.kind == tyUInt and t.size < 8):
- c.gABC(n, opcNarrowU, dest, TRegister(t.size*8))
- elif t.kind in {tyInt8..tyInt32} or (t.kind == tyInt and t.size < 8):
- c.gABC(n, opcSignExtend, dest, TRegister(t.size*8))
- of mAshrI: genBinaryABC(c, n, dest, opcAshrInt)
- of mBitandI: genBinaryABC(c, n, dest, opcBitandInt)
- of mBitorI: genBinaryABC(c, n, dest, opcBitorInt)
- of mBitxorI: genBinaryABC(c, n, dest, opcBitxorInt)
- of mAddU: genBinaryABCnarrowU(c, n, dest, opcAddu)
- of mSubU: genBinaryABCnarrowU(c, n, dest, opcSubu)
- of mMulU: genBinaryABCnarrowU(c, n, dest, opcMulu)
- of mDivU: genBinaryABCnarrowU(c, n, dest, opcDivu)
- of mModU: genBinaryABCnarrowU(c, n, dest, opcModu)
- of mEqI, mEqB, mEqEnum, mEqCh:
- genBinaryABC(c, n, dest, opcEqInt)
- of mLeI, mLeEnum, mLeCh, mLeB:
- genBinaryABC(c, n, dest, opcLeInt)
- of mLtI, mLtEnum, mLtCh, mLtB:
- genBinaryABC(c, n, dest, opcLtInt)
- of mEqF64: genBinaryABC(c, n, dest, opcEqFloat)
- of mLeF64: genBinaryABC(c, n, dest, opcLeFloat)
- of mLtF64: genBinaryABC(c, n, dest, opcLtFloat)
- of mLePtr, mLeU: genBinaryABC(c, n, dest, opcLeu)
- of mLtPtr, mLtU: genBinaryABC(c, n, dest, opcLtu)
- of mEqProc, mEqRef:
- genBinaryABC(c, n, dest, opcEqRef)
- of mXor: genBinaryABC(c, n, dest, opcXor)
- of mNot: genUnaryABC(c, n, dest, opcNot)
- of mUnaryMinusI, mUnaryMinusI64:
- genUnaryABC(c, n, dest, opcUnaryMinusInt)
- genNarrow(c, n, dest)
- of mUnaryMinusF64: genUnaryABC(c, n, dest, opcUnaryMinusFloat)
- of mUnaryPlusI, mUnaryPlusF64: gen(c, n[1], dest)
- of mBitnotI:
- genUnaryABC(c, n, dest, opcBitnotInt)
- #genNarrowU modified, do not narrow signed types
- let t = skipTypes(n.typ, abstractVar-{tyTypeDesc})
- if t.kind in {tyUInt8..tyUInt32} or (t.kind == tyUInt and t.size < 8):
- c.gABC(n, opcNarrowU, dest, TRegister(t.size*8))
- of mCharToStr, mBoolToStr, mIntToStr, mInt64ToStr,
- mFloatToStr, mCStrToStr, mStrToStr, mEnumToStr:
- genConv(c, n, n[1], dest)
- of mEqStr, mEqCString: genBinaryABC(c, n, dest, opcEqStr)
- of mLeStr: genBinaryABC(c, n, dest, opcLeStr)
- of mLtStr: genBinaryABC(c, n, dest, opcLtStr)
- of mEqSet: genBinarySet(c, n, dest, opcEqSet)
- of mLeSet: genBinarySet(c, n, dest, opcLeSet)
- of mLtSet: genBinarySet(c, n, dest, opcLtSet)
- of mMulSet: genBinarySet(c, n, dest, opcMulSet)
- of mPlusSet: genBinarySet(c, n, dest, opcPlusSet)
- of mMinusSet: genBinarySet(c, n, dest, opcMinusSet)
- of mConStrStr: genVarargsABC(c, n, dest, opcConcatStr)
- of mInSet: genBinarySet(c, n, dest, opcContainsSet)
- of mRepr: genUnaryABC(c, n, dest, opcRepr)
- of mExit:
- unused(c, n, dest)
- var tmp = c.genx(n[1])
- c.gABC(n, opcQuit, tmp)
- c.freeTemp(tmp)
- of mSetLengthStr, mSetLengthSeq:
- unused(c, n, dest)
- var d = c.genx(n[1])
- var tmp = c.genx(n[2])
- c.gABC(n, if m == mSetLengthStr: opcSetLenStr else: opcSetLenSeq, d, tmp)
- c.genAsgnPatch(n[1], d)
- c.freeTemp(tmp)
- c.freeTemp(d)
- of mSwap:
- unused(c, n, dest)
- c.gen(lowerSwap(c.graph, n, if c.prc == nil: c.module else: c.prc.sym))
- of mIsNil: genUnaryABC(c, n, dest, opcIsNil)
- of mParseBiggestFloat:
- if dest < 0: dest = c.getTemp(n.typ)
- var d2: TRegister
- # skip 'nkHiddenAddr':
- let d2AsNode = n[2][0]
- if needsAsgnPatch(d2AsNode):
- d2 = c.getTemp(getSysType(c.graph, n.info, tyFloat))
- else:
- d2 = c.genx(d2AsNode)
- var
- tmp1 = c.genx(n[1])
- tmp3 = c.genx(n[3])
- c.gABC(n, opcParseFloat, dest, tmp1, d2)
- c.gABC(n, opcParseFloat, tmp3)
- c.freeTemp(tmp1)
- c.freeTemp(tmp3)
- c.genAsgnPatch(d2AsNode, d2)
- c.freeTemp(d2)
- of mReset:
- unused(c, n, dest)
- var d = c.genx(n[1])
- # XXX use ldNullOpcode() here?
- c.gABx(n, opcLdNull, d, c.genType(n[1].typ))
- c.gABx(n, opcNodeToReg, d, d)
- c.genAsgnPatch(n[1], d)
- of mDefault:
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABx(n, ldNullOpcode(n.typ), dest, c.genType(n.typ))
- of mOf, mIs:
- if dest < 0: dest = c.getTemp(n.typ)
- var tmp = c.genx(n[1])
- var idx = c.getTemp(getSysType(c.graph, n.info, tyInt))
- var typ = n[2].typ
- if m == mOf: typ = typ.skipTypes(abstractPtrs)
- c.gABx(n, opcLdImmInt, idx, c.genType(typ))
- c.gABC(n, if m == mOf: opcOf else: opcIs, dest, tmp, idx)
- c.freeTemp(tmp)
- c.freeTemp(idx)
- of mHigh:
- if dest < 0: dest = c.getTemp(n.typ)
- let tmp = c.genx(n[1])
- case n[1].typ.skipTypes(abstractVar-{tyTypeDesc}).kind:
- of tyString, tyCString:
- c.gABI(n, opcLenStr, dest, tmp, 1)
- else:
- c.gABI(n, opcLenSeq, dest, tmp, 1)
- c.freeTemp(tmp)
- of mEcho:
- unused(c, n, dest)
- let n = n[1].skipConv
- if n.kind == nkBracket:
- # can happen for nim check, see bug #9609
- let x = c.getTempRange(n.len, slotTempUnknown)
- for i in 0..<n.len:
- var r: TRegister = x+i
- c.gen(n[i], r)
- c.gABC(n, opcEcho, x, n.len)
- c.freeTempRange(x, n.len)
- of mAppendStrCh:
- unused(c, n, dest)
- genBinaryStmtVar(c, n, opcAddStrCh)
- of mAppendStrStr:
- unused(c, n, dest)
- genBinaryStmtVar(c, n, opcAddStrStr)
- of mAppendSeqElem:
- unused(c, n, dest)
- genBinaryStmtVar(c, n, opcAddSeqElem)
- of mParseExprToAst:
- genUnaryABC(c, n, dest, opcParseExprToAst)
- of mParseStmtToAst:
- genUnaryABC(c, n, dest, opcParseStmtToAst)
- of mTypeTrait:
- let tmp = c.genx(n[1])
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABx(n, opcSetType, tmp, c.genType(n[1].typ))
- c.gABC(n, opcTypeTrait, dest, tmp)
- c.freeTemp(tmp)
- of mSlurp: genUnaryABC(c, n, dest, opcSlurp)
- of mStaticExec: genBinaryABCD(c, n, dest, opcGorge)
- of mNLen: genUnaryABI(c, n, dest, opcLenSeq, nimNodeFlag)
- of mGetImpl: genUnaryABC(c, n, dest, opcGetImpl)
- of mGetImplTransf: genUnaryABC(c, n, dest, opcGetImplTransf)
- of mSymOwner: genUnaryABC(c, n, dest, opcSymOwner)
- of mSymIsInstantiationOf: genBinaryABC(c, n, dest, opcSymIsInstantiationOf)
- of mNChild: genBinaryABC(c, n, dest, opcNChild)
- of mNSetChild: genVoidABC(c, n, dest, opcNSetChild)
- of mNDel: genVoidABC(c, n, dest, opcNDel)
- of mNAdd: genBinaryABC(c, n, dest, opcNAdd)
- of mNAddMultiple: genBinaryABC(c, n, dest, opcNAddMultiple)
- of mNKind: genUnaryABC(c, n, dest, opcNKind)
- of mNSymKind: genUnaryABC(c, n, dest, opcNSymKind)
- of mNccValue: genUnaryABC(c, n, dest, opcNccValue)
- of mNccInc: genBinaryABC(c, n, dest, opcNccInc)
- of mNcsAdd: genBinaryABC(c, n, dest, opcNcsAdd)
- of mNcsIncl: genBinaryABC(c, n, dest, opcNcsIncl)
- of mNcsLen: genUnaryABC(c, n, dest, opcNcsLen)
- of mNcsAt: genBinaryABC(c, n, dest, opcNcsAt)
- of mNctPut: genVoidABC(c, n, dest, opcNctPut)
- of mNctLen: genUnaryABC(c, n, dest, opcNctLen)
- of mNctGet: genBinaryABC(c, n, dest, opcNctGet)
- of mNctHasNext: genBinaryABC(c, n, dest, opcNctHasNext)
- of mNctNext: genBinaryABC(c, n, dest, opcNctNext)
- of mNIntVal: genUnaryABC(c, n, dest, opcNIntVal)
- of mNFloatVal: genUnaryABC(c, n, dest, opcNFloatVal)
- of mNSymbol: genUnaryABC(c, n, dest, opcNSymbol)
- of mNIdent: genUnaryABC(c, n, dest, opcNIdent)
- of mNGetType:
- let tmp = c.genx(n[1])
- if dest < 0: dest = c.getTemp(n.typ)
- let rc = case n[0].sym.name.s:
- of "getType": 0
- of "typeKind": 1
- of "getTypeInst": 2
- else: 3 # "getTypeImpl"
- c.gABC(n, opcNGetType, dest, tmp, rc)
- c.freeTemp(tmp)
- #genUnaryABC(c, n, dest, opcNGetType)
- of mNSizeOf:
- let imm = case n[0].sym.name.s:
- of "getSize": 0
- of "getAlign": 1
- else: 2 # "getOffset"
- c.genUnaryABI(n, dest, opcNGetSize, imm)
- of mNStrVal: genUnaryABC(c, n, dest, opcNStrVal)
- of mNSigHash: genUnaryABC(c, n , dest, opcNSigHash)
- of mNSetIntVal:
- unused(c, n, dest)
- genBinaryStmt(c, n, opcNSetIntVal)
- of mNSetFloatVal:
- unused(c, n, dest)
- genBinaryStmt(c, n, opcNSetFloatVal)
- of mNSetSymbol:
- unused(c, n, dest)
- genBinaryStmt(c, n, opcNSetSymbol)
- of mNSetIdent:
- unused(c, n, dest)
- genBinaryStmt(c, n, opcNSetIdent)
- of mNSetType:
- unused(c, n, dest)
- genBinaryStmt(c, n, opcNSetType)
- of mNSetStrVal:
- unused(c, n, dest)
- genBinaryStmt(c, n, opcNSetStrVal)
- of mNNewNimNode: genBinaryABC(c, n, dest, opcNNewNimNode)
- of mNCopyNimNode: genUnaryABC(c, n, dest, opcNCopyNimNode)
- of mNCopyNimTree: genUnaryABC(c, n, dest, opcNCopyNimTree)
- of mNBindSym: genBindSym(c, n, dest)
- of mStrToIdent: genUnaryABC(c, n, dest, opcStrToIdent)
- of mEqIdent: genBinaryABC(c, n, dest, opcEqIdent)
- of mEqNimrodNode: genBinaryABC(c, n, dest, opcEqNimNode)
- of mSameNodeType: genBinaryABC(c, n, dest, opcSameNodeType)
- of mNLineInfo:
- case n[0].sym.name.s
- of "getFile": genUnaryABI(c, n, dest, opcNGetLineInfo, 0)
- of "getLine": genUnaryABI(c, n, dest, opcNGetLineInfo, 1)
- of "getColumn": genUnaryABI(c, n, dest, opcNGetLineInfo, 2)
- of "copyLineInfo":
- internalAssert c.config, n.len == 3
- unused(c, n, dest)
- genBinaryStmt(c, n, opcNSetLineInfo)
- else: internalAssert c.config, false
- of mNHint:
- unused(c, n, dest)
- genBinaryStmt(c, n, opcNHint)
- of mNWarning:
- unused(c, n, dest)
- genBinaryStmt(c, n, opcNWarning)
- of mNError:
- if n.len <= 1:
- # query error condition:
- c.gABC(n, opcQueryErrorFlag, dest)
- else:
- # setter
- unused(c, n, dest)
- genBinaryStmt(c, n, opcNError)
- of mNCallSite:
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABC(n, opcCallSite, dest)
- of mNGenSym: genBinaryABC(c, n, dest, opcGenSym)
- of mMinI, mMaxI, mAbsI, mDotDot:
- c.genCall(n, dest)
- of mExpandToAst:
- if n.len != 2:
- globalError(c.config, n.info, "expandToAst requires 1 argument")
- let arg = n[1]
- if arg.kind in nkCallKinds:
- #if arg[0].kind != nkSym or arg[0].sym.kind notin {skTemplate, skMacro}:
- # "ExpandToAst: expanded symbol is no macro or template"
- if dest < 0: dest = c.getTemp(n.typ)
- c.genCall(arg, dest)
- # do not call clearDest(n, dest) here as getAst has a meta-type as such
- # produces a value
- else:
- globalError(c.config, n.info, "expandToAst requires a call expression")
- of mSizeOf:
- globalError(c.config, n.info, sizeOfLikeMsg("sizeof"))
- of mAlignOf:
- globalError(c.config, n.info, sizeOfLikeMsg("alignof"))
- of mOffsetOf:
- globalError(c.config, n.info, sizeOfLikeMsg("offsetof"))
- of mRunnableExamples:
- discard "just ignore any call to runnableExamples"
- of mDestroy: discard "ignore calls to the default destructor"
- of mMove:
- let arg = n[1]
- let a = c.genx(arg)
- if dest < 0: dest = c.getTemp(arg.typ)
- gABC(c, arg, whichAsgnOpc(arg, requiresCopy=false), dest, a)
- # XXX use ldNullOpcode() here?
- c.gABx(n, opcLdNull, a, c.genType(arg.typ))
- c.gABx(n, opcNodeToReg, a, a)
- c.genAsgnPatch(arg, a)
- c.freeTemp(a)
- of mNodeId:
- c.genUnaryABC(n, dest, opcNodeId)
- else:
- # mGCref, mGCunref,
- globalError(c.config, n.info, "cannot generate code for: " & $m)
- proc genMarshalLoad(c: PCtx, n: PNode, dest: var TDest) =
- ## Signature: proc to*[T](data: string): T
- if dest < 0: dest = c.getTemp(n.typ)
- var tmp = c.genx(n[1])
- c.gABC(n, opcMarshalLoad, dest, tmp)
- c.gABx(n, opcMarshalLoad, 0, c.genType(n.typ))
- c.freeTemp(tmp)
- proc genMarshalStore(c: PCtx, n: PNode, dest: var TDest) =
- ## Signature: proc `$$`*[T](x: T): string
- if dest < 0: dest = c.getTemp(n.typ)
- var tmp = c.genx(n[1])
- c.gABC(n, opcMarshalStore, dest, tmp)
- c.gABx(n, opcMarshalStore, 0, c.genType(n[1].typ))
- c.freeTemp(tmp)
- const
- atomicTypes = {tyBool, tyChar,
- tyUntyped, tyTyped, tyTypeDesc, tyStatic,
- tyEnum,
- tyOrdinal,
- tyRange,
- tyProc,
- tyPointer, tyOpenArray,
- tyString, tyCString,
- tyInt, tyInt8, tyInt16, tyInt32, tyInt64,
- tyFloat, tyFloat32, tyFloat64, tyFloat128,
- tyUInt, tyUInt8, tyUInt16, tyUInt32, tyUInt64}
- proc unneededIndirection(n: PNode): bool =
- n.typ.skipTypes(abstractInstOwned-{tyTypeDesc}).kind == tyRef
- proc canElimAddr(n: PNode): PNode =
- if n[0].typ.skipTypes(abstractInst).kind in {tyObject, tyTuple, tyArray}:
- # objects are reference types in the VM
- return n[0]
- case n[0].kind
- of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
- var m = n[0][0]
- if m.kind in {nkDerefExpr, nkHiddenDeref}:
- # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
- result = copyNode(n[0])
- result.add m[0]
- of nkHiddenStdConv, nkHiddenSubConv, nkConv:
- var m = n[0][1]
- if m.kind in {nkDerefExpr, nkHiddenDeref}:
- # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
- result = copyNode(n[0])
- result.add m[0]
- else:
- if n[0].kind in {nkDerefExpr, nkHiddenDeref}:
- # addr ( deref ( x )) --> x
- result = n[0][0]
- proc genAddr(c: PCtx, n: PNode, dest: var TDest, flags: TGenFlags) =
- if (let m = canElimAddr(n); m != nil):
- gen(c, m, dest, flags)
- return
- let newflags = flags-{gfNode}+{gfNodeAddr}
- if isGlobal(n[0]) or n[0].kind in {nkDotExpr, nkCheckedFieldExpr, nkBracketExpr}:
- # checking for this pattern: addr(obj.field) / addr(array[i])
- gen(c, n[0], dest, newflags)
- else:
- let tmp = c.genx(n[0], newflags)
- if dest < 0: dest = c.getTemp(n.typ)
- if c.prc.slots[tmp].kind >= slotTempUnknown:
- gABC(c, n, opcAddrNode, dest, tmp)
- # hack ahead; in order to fix bug #1781 we mark the temporary as
- # permanent, so that it's not used for anything else:
- c.prc.slots[tmp].kind = slotTempPerm
- # XXX this is still a hack
- #message(n.info, warnUser, "suspicious opcode used")
- else:
- gABC(c, n, opcAddrReg, dest, tmp)
- c.freeTemp(tmp)
- proc genDeref(c: PCtx, n: PNode, dest: var TDest, flags: TGenFlags) =
- if unneededIndirection(n[0]):
- gen(c, n[0], dest, flags)
- if {gfNodeAddr, gfNode} * flags == {} and fitsRegister(n.typ):
- c.gABC(n, opcNodeToReg, dest, dest)
- else:
- let tmp = c.genx(n[0], flags)
- if dest < 0: dest = c.getTemp(n.typ)
- gABC(c, n, opcLdDeref, dest, tmp)
- assert n.typ != nil
- if {gfNodeAddr, gfNode} * flags == {} and fitsRegister(n.typ):
- c.gABC(n, opcNodeToReg, dest, dest)
- c.freeTemp(tmp)
- proc genAsgn(c: PCtx; dest: TDest; ri: PNode; requiresCopy: bool) =
- let tmp = c.genx(ri)
- assert dest >= 0
- gABC(c, ri, whichAsgnOpc(ri, requiresCopy), dest, tmp)
- c.freeTemp(tmp)
- proc setSlot(c: PCtx; v: PSym) =
- # XXX generate type initialization here?
- if v.position == 0:
- v.position = getFreeRegister(c, if v.kind == skLet: slotFixedLet else: slotFixedVar, start = 1)
- proc cannotEval(c: PCtx; n: PNode) {.noinline.} =
- globalError(c.config, n.info, "cannot evaluate at compile time: " &
- n.renderTree)
- proc isOwnedBy(a, b: PSym): bool =
- var a = a.owner
- while a != nil and a.kind != skModule:
- if a == b: return true
- a = a.owner
- proc getOwner(c: PCtx): PSym =
- result = c.prc.sym
- if result.isNil: result = c.module
- proc importcCondVar*(s: PSym): bool {.inline.} =
- # see also importcCond
- if sfImportc in s.flags:
- return s.kind in {skVar, skLet, skConst}
- proc checkCanEval(c: PCtx; n: PNode) =
- # we need to ensure that we don't evaluate 'x' here:
- # proc foo() = var x ...
- let s = n.sym
- if {sfCompileTime, sfGlobal} <= s.flags: return
- if s.importcCondVar: return
- if s.kind in {skVar, skTemp, skLet, skParam, skResult} and
- not s.isOwnedBy(c.prc.sym) and s.owner != c.module and c.mode != emRepl:
- # little hack ahead for bug #12612: assume gensym'ed variables
- # are in the right scope:
- if sfGenSym in s.flags and c.prc.sym == nil: discard
- else: cannotEval(c, n)
- elif s.kind in {skProc, skFunc, skConverter, skMethod,
- skIterator} and sfForward in s.flags:
- cannotEval(c, n)
- template needsAdditionalCopy(n): untyped =
- not c.isTemp(dest) and not fitsRegister(n.typ)
- proc genAdditionalCopy(c: PCtx; n: PNode; opc: TOpcode;
- dest, idx, value: TRegister) =
- var cc = c.getTemp(n.typ)
- c.gABC(n, whichAsgnOpc(n), cc, value)
- c.gABC(n, opc, dest, idx, cc)
- c.freeTemp(cc)
- proc preventFalseAlias(c: PCtx; n: PNode; opc: TOpcode;
- dest, idx, value: TRegister) =
- # opcLdObj et al really means "load address". We sometimes have to create a
- # copy in order to not introduce false aliasing:
- # mylocal = a.b # needs a copy of the data!
- assert n.typ != nil
- if needsAdditionalCopy(n):
- genAdditionalCopy(c, n, opc, dest, idx, value)
- else:
- c.gABC(n, opc, dest, idx, value)
- proc genAsgn(c: PCtx; le, ri: PNode; requiresCopy: bool) =
- case le.kind
- of nkBracketExpr:
- let dest = c.genx(le[0], {gfNode})
- let idx = c.genIndex(le[1], le[0].typ)
- let tmp = c.genx(ri)
- if le[0].typ.skipTypes(abstractVarRange-{tyTypeDesc}).kind in {
- tyString, tyCString}:
- c.preventFalseAlias(le, opcWrStrIdx, dest, idx, tmp)
- else:
- c.preventFalseAlias(le, opcWrArr, dest, idx, tmp)
- c.freeTemp(tmp)
- c.freeTemp(idx)
- c.freeTemp(dest)
- of nkCheckedFieldExpr:
- var objR: TDest = -1
- genCheckedObjAccessAux(c, le, objR, {gfNode})
- let idx = genField(c, le[0][1])
- let tmp = c.genx(ri)
- c.preventFalseAlias(le[0], opcWrObj, objR, idx, tmp)
- c.freeTemp(tmp)
- c.freeTemp(idx)
- c.freeTemp(objR)
- of nkDotExpr:
- let dest = c.genx(le[0], {gfNode})
- let idx = genField(c, le[1])
- let tmp = c.genx(ri)
- c.preventFalseAlias(le, opcWrObj, dest, idx, tmp)
- c.freeTemp(idx)
- c.freeTemp(tmp)
- c.freeTemp(dest)
- of nkDerefExpr, nkHiddenDeref:
- let dest = c.genx(le[0], {gfNode})
- let tmp = c.genx(ri)
- c.preventFalseAlias(le, opcWrDeref, dest, 0, tmp)
- c.freeTemp(dest)
- c.freeTemp(tmp)
- of nkSym:
- let s = le.sym
- checkCanEval(c, le)
- if s.isGlobal:
- withTemp(tmp, le.typ):
- c.gen(le, tmp, {gfNodeAddr})
- let val = c.genx(ri)
- c.preventFalseAlias(le, opcWrDeref, tmp, 0, val)
- c.freeTemp(val)
- else:
- if s.kind == skForVar: c.setSlot s
- internalAssert c.config, s.position > 0 or (s.position == 0 and
- s.kind in {skParam, skResult})
- var dest: TRegister = s.position + ord(s.kind == skParam)
- assert le.typ != nil
- if needsAdditionalCopy(le) and s.kind in {skResult, skVar, skParam}:
- var cc = c.getTemp(le.typ)
- gen(c, ri, cc)
- c.gABC(le, whichAsgnOpc(le), dest, cc)
- c.freeTemp(cc)
- else:
- gen(c, ri, dest)
- else:
- let dest = c.genx(le, {gfNodeAddr})
- genAsgn(c, dest, ri, requiresCopy)
- c.freeTemp(dest)
- proc genTypeLit(c: PCtx; t: PType; dest: var TDest) =
- var n = newNode(nkType)
- n.typ = t
- genLit(c, n, dest)
- proc importcCond*(s: PSym): bool {.inline.} =
- ## return true to importc `s`, false to execute its body instead (refs #8405)
- if sfImportc in s.flags:
- if s.kind in routineKinds:
- return s.ast[bodyPos].kind == nkEmpty
- proc importcSym(c: PCtx; info: TLineInfo; s: PSym) =
- when hasFFI:
- if compiletimeFFI in c.config.features:
- c.globals.add(importcSymbol(c.config, s))
- s.position = c.globals.len
- else:
- localError(c.config, info,
- "VM is not allowed to 'importc' without --experimental:compiletimeFFI")
- else:
- localError(c.config, info,
- "cannot 'importc' variable at compile time; " & s.name.s)
- proc getNullValue*(typ: PType, info: TLineInfo; conf: ConfigRef): PNode
- proc genGlobalInit(c: PCtx; n: PNode; s: PSym) =
- c.globals.add(getNullValue(s.typ, n.info, c.config))
- s.position = c.globals.len
- # This is rather hard to support, due to the laziness of the VM code
- # generator. See tests/compile/tmacro2 for why this is necessary:
- # var decls{.compileTime.}: seq[NimNode] = @[]
- let dest = c.getTemp(s.typ)
- c.gABx(n, opcLdGlobal, dest, s.position)
- if s.astdef != nil:
- let tmp = c.genx(s.astdef)
- c.genAdditionalCopy(n, opcWrDeref, dest, 0, tmp)
- c.freeTemp(dest)
- c.freeTemp(tmp)
- proc genRdVar(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
- # gfNodeAddr and gfNode are mutually exclusive
- assert card(flags * {gfNodeAddr, gfNode}) < 2
- let s = n.sym
- if s.isGlobal:
- let isImportcVar = importcCondVar(s)
- if sfCompileTime in s.flags or c.mode == emRepl or isImportcVar:
- discard
- elif s.position == 0:
- cannotEval(c, n)
- if s.position == 0:
- if importcCond(s) or isImportcVar: c.importcSym(n.info, s)
- else: genGlobalInit(c, n, s)
- if dest < 0: dest = c.getTemp(n.typ)
- assert s.typ != nil
- if gfNodeAddr in flags:
- if isImportcVar:
- c.gABx(n, opcLdGlobalAddrDerefFFI, dest, s.position)
- else:
- c.gABx(n, opcLdGlobalAddr, dest, s.position)
- elif isImportcVar:
- c.gABx(n, opcLdGlobalDerefFFI, dest, s.position)
- elif fitsRegister(s.typ) and gfNode notin flags:
- var cc = c.getTemp(n.typ)
- c.gABx(n, opcLdGlobal, cc, s.position)
- c.gABC(n, opcNodeToReg, dest, cc)
- c.freeTemp(cc)
- else:
- c.gABx(n, opcLdGlobal, dest, s.position)
- else:
- if s.kind == skForVar and c.mode == emRepl: c.setSlot(s)
- if s.position > 0 or (s.position == 0 and
- s.kind in {skParam, skResult}):
- if dest < 0:
- dest = s.position + ord(s.kind == skParam)
- internalAssert(c.config, c.prc.slots[dest].kind < slotSomeTemp)
- else:
- # we need to generate an assignment:
- let requiresCopy = c.prc.slots[dest].kind >= slotSomeTemp and
- gfIsParam notin flags
- genAsgn(c, dest, n, requiresCopy)
- else:
- # see tests/t99bott for an example that triggers it:
- cannotEval(c, n)
- template needsRegLoad(): untyped =
- {gfNode, gfNodeAddr} * flags == {} and
- fitsRegister(n.typ.skipTypes({tyVar, tyLent, tyStatic}))
- proc genArrAccessOpcode(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode;
- flags: TGenFlags) =
- let a = c.genx(n[0], flags)
- let b = c.genIndex(n[1], n[0].typ)
- if dest < 0: dest = c.getTemp(n.typ)
- if opc == opcLdArr and {gfNodeAddr} * flags != {}:
- c.gABC(n, opcLdArrAddr, dest, a, b)
- elif needsRegLoad():
- var cc = c.getTemp(n.typ)
- c.gABC(n, opc, cc, a, b)
- c.gABC(n, opcNodeToReg, dest, cc)
- c.freeTemp(cc)
- else:
- #message(n.info, warnUser, "argh")
- #echo "FLAGS ", flags, " ", fitsRegister(n.typ), " ", typeToString(n.typ)
- c.gABC(n, opc, dest, a, b)
- c.freeTemp(a)
- c.freeTemp(b)
- proc genObjAccess(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
- let a = c.genx(n[0], flags)
- let b = genField(c, n[1])
- if dest < 0: dest = c.getTemp(n.typ)
- if {gfNodeAddr} * flags != {}:
- c.gABC(n, opcLdObjAddr, dest, a, b)
- elif needsRegLoad():
- var cc = c.getTemp(n.typ)
- c.gABC(n, opcLdObj, cc, a, b)
- c.gABC(n, opcNodeToReg, dest, cc)
- c.freeTemp(cc)
- else:
- c.gABC(n, opcLdObj, dest, a, b)
- c.freeTemp(a)
- proc genCheckedObjAccessAux(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
- internalAssert c.config, n.kind == nkCheckedFieldExpr
- # nkDotExpr to access the requested field
- let accessExpr = n[0]
- # nkCall to check if the discriminant is valid
- var checkExpr = n[1]
- let negCheck = checkExpr[0].sym.magic == mNot
- if negCheck:
- checkExpr = checkExpr[^1]
- # Discriminant symbol
- let disc = checkExpr[2]
- internalAssert c.config, disc.sym.kind == skField
- # Load the object in `dest`
- c.gen(accessExpr[0], dest, flags)
- # Load the discriminant
- var discVal = c.getTemp(disc.typ)
- c.gABC(n, opcLdObj, discVal, dest, genField(c, disc))
- # Check if its value is contained in the supplied set
- let setLit = c.genx(checkExpr[1])
- var rs = c.getTemp(getSysType(c.graph, n.info, tyBool))
- c.gABC(n, opcContainsSet, rs, setLit, discVal)
- c.freeTemp(discVal)
- c.freeTemp(setLit)
- # If the check fails let the user know
- let lab1 = c.xjmp(n, if negCheck: opcFJmp else: opcTJmp, rs)
- c.freeTemp(rs)
- let strType = getSysType(c.graph, n.info, tyString)
- var fieldNameRegister: TDest = c.getTemp(strType)
- let strLit = newStrNode($accessExpr[1], accessExpr[1].info)
- strLit.typ = strType
- c.genLit(strLit, fieldNameRegister)
- c.gABC(n, opcInvalidField, fieldNameRegister)
- c.freeTemp(fieldNameRegister)
- c.patch(lab1)
- proc genCheckedObjAccess(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
- var objR: TDest = -1
- genCheckedObjAccessAux(c, n, objR, flags)
- let accessExpr = n[0]
- # Field symbol
- var field = accessExpr[1]
- internalAssert c.config, field.sym.kind == skField
- # Load the content now
- if dest < 0: dest = c.getTemp(n.typ)
- let fieldPos = genField(c, field)
- if {gfNodeAddr} * flags != {}:
- c.gABC(n, opcLdObjAddr, dest, objR, fieldPos)
- elif needsRegLoad():
- var cc = c.getTemp(accessExpr.typ)
- c.gABC(n, opcLdObj, cc, objR, fieldPos)
- c.gABC(n, opcNodeToReg, dest, cc)
- c.freeTemp(cc)
- else:
- c.gABC(n, opcLdObj, dest, objR, fieldPos)
- c.freeTemp(objR)
- proc genArrAccess(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
- let arrayType = n[0].typ.skipTypes(abstractVarRange-{tyTypeDesc}).kind
- if arrayType in {tyString, tyCString}:
- genArrAccessOpcode(c, n, dest, opcLdStrIdx, {})
- elif arrayType == tyTypeDesc:
- c.genTypeLit(n.typ, dest)
- else:
- genArrAccessOpcode(c, n, dest, opcLdArr, flags)
- proc getNullValueAux(t: PType; obj: PNode, result: PNode; conf: ConfigRef; currPosition: var int) =
- if t != nil and t.len > 0 and t[0] != nil:
- let b = skipTypes(t[0], skipPtrs)
- getNullValueAux(b, b.n, result, conf, currPosition)
- case obj.kind
- of nkRecList:
- for i in 0..<obj.len: getNullValueAux(nil, obj[i], result, conf, currPosition)
- of nkRecCase:
- getNullValueAux(nil, obj[0], result, conf, currPosition)
- for i in 1..<obj.len:
- getNullValueAux(nil, lastSon(obj[i]), result, conf, currPosition)
- of nkSym:
- let field = newNodeI(nkExprColonExpr, result.info)
- field.add(obj)
- field.add(getNullValue(obj.sym.typ, result.info, conf))
- result.add field
- doAssert obj.sym.position == currPosition
- inc currPosition
- else: globalError(conf, result.info, "cannot create null element for: " & $obj)
- proc getNullValue(typ: PType, info: TLineInfo; conf: ConfigRef): PNode =
- var t = skipTypes(typ, abstractRange+{tyStatic, tyOwned}-{tyTypeDesc})
- case t.kind
- of tyBool, tyEnum, tyChar, tyInt..tyInt64:
- result = newNodeIT(nkIntLit, info, t)
- of tyUInt..tyUInt64:
- result = newNodeIT(nkUIntLit, info, t)
- of tyFloat..tyFloat128:
- result = newNodeIT(nkFloatLit, info, t)
- of tyCString, tyString:
- result = newNodeIT(nkStrLit, info, t)
- result.strVal = ""
- of tyVar, tyLent, tyPointer, tyPtr, tyUntyped,
- tyTyped, tyTypeDesc, tyRef, tyNil:
- result = newNodeIT(nkNilLit, info, t)
- of tyProc:
- if t.callConv != ccClosure:
- result = newNodeIT(nkNilLit, info, t)
- else:
- result = newNodeIT(nkTupleConstr, info, t)
- result.add(newNodeIT(nkNilLit, info, t))
- result.add(newNodeIT(nkNilLit, info, t))
- of tyObject:
- result = newNodeIT(nkObjConstr, info, t)
- result.add(newNodeIT(nkEmpty, info, t))
- # initialize inherited fields, and all in the correct order:
- var currPosition = 0
- getNullValueAux(t, t.n, result, conf, currPosition)
- of tyArray:
- result = newNodeIT(nkBracket, info, t)
- for i in 0..<toInt(lengthOrd(conf, t)):
- result.add getNullValue(elemType(t), info, conf)
- of tyTuple:
- result = newNodeIT(nkTupleConstr, info, t)
- for i in 0..<t.len:
- result.add getNullValue(t[i], info, conf)
- of tySet:
- result = newNodeIT(nkCurly, info, t)
- of tySequence:
- result = newNodeIT(nkBracket, info, t)
- else:
- globalError(conf, info, "cannot create null element for: " & $t.kind)
- result = newNodeI(nkEmpty, info)
- proc genVarSection(c: PCtx; n: PNode) =
- for a in n:
- if a.kind == nkCommentStmt: continue
- #assert(a[0].kind == nkSym) can happen for transformed vars
- if a.kind == nkVarTuple:
- for i in 0..<a.len-2:
- if a[i].kind == nkSym:
- if not a[i].sym.isGlobal: setSlot(c, a[i].sym)
- checkCanEval(c, a[i])
- c.gen(lowerTupleUnpacking(c.graph, a, c.getOwner))
- elif a[0].kind == nkSym:
- let s = a[0].sym
- checkCanEval(c, a[0])
- if s.isGlobal:
- if s.position == 0:
- if importcCond(s): c.importcSym(a.info, s)
- else:
- let sa = getNullValue(s.typ, a.info, c.config)
- #if s.ast.isNil: getNullValue(s.typ, a.info)
- #else: canonValue(s.ast)
- assert sa.kind != nkCall
- c.globals.add(sa)
- s.position = c.globals.len
- if a[2].kind != nkEmpty:
- let tmp = c.genx(a[0], {gfNodeAddr})
- let val = c.genx(a[2])
- c.genAdditionalCopy(a[2], opcWrDeref, tmp, 0, val)
- c.freeTemp(val)
- c.freeTemp(tmp)
- else:
- setSlot(c, s)
- if a[2].kind == nkEmpty:
- c.gABx(a, ldNullOpcode(s.typ), s.position, c.genType(s.typ))
- else:
- assert s.typ != nil
- if not fitsRegister(s.typ):
- c.gABx(a, ldNullOpcode(s.typ), s.position, c.genType(s.typ))
- let le = a[0]
- assert le.typ != nil
- if not fitsRegister(le.typ) and s.kind in {skResult, skVar, skParam}:
- var cc = c.getTemp(le.typ)
- gen(c, a[2], cc)
- c.gABC(le, whichAsgnOpc(le), s.position.TRegister, cc)
- c.freeTemp(cc)
- else:
- gen(c, a[2], s.position.TRegister)
- else:
- # assign to a[0]; happens for closures
- if a[2].kind == nkEmpty:
- let tmp = genx(c, a[0])
- c.gABx(a, ldNullOpcode(a[0].typ), tmp, c.genType(a[0].typ))
- c.freeTemp(tmp)
- else:
- genAsgn(c, a[0], a[2], true)
- proc genArrayConstr(c: PCtx, n: PNode, dest: var TDest) =
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABx(n, opcLdNull, dest, c.genType(n.typ))
- let intType = getSysType(c.graph, n.info, tyInt)
- let seqType = n.typ.skipTypes(abstractVar-{tyTypeDesc})
- if seqType.kind == tySequence:
- var tmp = c.getTemp(intType)
- c.gABx(n, opcLdImmInt, tmp, n.len)
- c.gABx(n, opcNewSeq, dest, c.genType(seqType))
- c.gABx(n, opcNewSeq, tmp, 0)
- c.freeTemp(tmp)
- if n.len > 0:
- var tmp = getTemp(c, intType)
- c.gABx(n, opcLdNullReg, tmp, c.genType(intType))
- for x in n:
- let a = c.genx(x)
- c.preventFalseAlias(n, opcWrArr, dest, tmp, a)
- c.gABI(n, opcAddImmInt, tmp, tmp, 1)
- c.freeTemp(a)
- c.freeTemp(tmp)
- proc genSetConstr(c: PCtx, n: PNode, dest: var TDest) =
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABx(n, opcLdNull, dest, c.genType(n.typ))
- for x in n:
- if x.kind == nkRange:
- let a = c.genx(x[0])
- let b = c.genx(x[1])
- c.gABC(n, opcInclRange, dest, a, b)
- c.freeTemp(b)
- c.freeTemp(a)
- else:
- let a = c.genx(x)
- c.gABC(n, opcIncl, dest, a)
- c.freeTemp(a)
- proc genObjConstr(c: PCtx, n: PNode, dest: var TDest) =
- if dest < 0: dest = c.getTemp(n.typ)
- let t = n.typ.skipTypes(abstractRange+{tyOwned}-{tyTypeDesc})
- if t.kind == tyRef:
- c.gABx(n, opcNew, dest, c.genType(t[0]))
- else:
- c.gABx(n, opcLdNull, dest, c.genType(n.typ))
- for i in 1..<n.len:
- let it = n[i]
- if it.kind == nkExprColonExpr and it[0].kind == nkSym:
- let idx = genField(c, it[0])
- let tmp = c.genx(it[1])
- c.preventFalseAlias(it[1], opcWrObj,
- dest, idx, tmp)
- c.freeTemp(tmp)
- else:
- globalError(c.config, n.info, "invalid object constructor")
- proc genTupleConstr(c: PCtx, n: PNode, dest: var TDest) =
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABx(n, opcLdNull, dest, c.genType(n.typ))
- # XXX x = (x.old, 22) produces wrong code ... stupid self assignments
- for i in 0..<n.len:
- let it = n[i]
- if it.kind == nkExprColonExpr:
- let idx = genField(c, it[0])
- let tmp = c.genx(it[1])
- c.preventFalseAlias(it[1], opcWrObj,
- dest, idx, tmp)
- c.freeTemp(tmp)
- else:
- let tmp = c.genx(it)
- c.preventFalseAlias(it, opcWrObj, dest, i.TRegister, tmp)
- c.freeTemp(tmp)
- proc genProc*(c: PCtx; s: PSym): int
- proc matches(s: PSym; x: string): bool =
- let y = x.split('.')
- var s = s
- for i in 1..y.len:
- if s == nil or (y[^i].cmpIgnoreStyle(s.name.s) != 0 and y[^i] != "*"):
- return false
- s = s.owner
- result = true
- proc matches(s: PSym; y: varargs[string]): bool =
- var s = s
- for i in 1..y.len:
- if s == nil or (y[^i].cmpIgnoreStyle(s.name.s) != 0 and y[^i] != "*"):
- return false
- s = if sfFromGeneric in s.flags: s.owner.owner else: s.owner
- result = true
- proc procIsCallback(c: PCtx; s: PSym): bool =
- if s.offset < -1: return true
- var i = -2
- for key, value in items(c.callbacks):
- if s.matches(key):
- doAssert s.offset == -1
- s.offset = i
- return true
- dec i
- proc gen(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags = {}) =
- case n.kind
- of nkSym:
- let s = n.sym
- checkCanEval(c, n)
- case s.kind
- of skVar, skForVar, skTemp, skLet, skParam, skResult:
- genRdVar(c, n, dest, flags)
- of skProc, skFunc, skConverter, skMacro, skTemplate, skMethod, skIterator:
- # 'skTemplate' is only allowed for 'getAst' support:
- if procIsCallback(c, s): discard
- elif importcCond(s): c.importcSym(n.info, s)
- genLit(c, n, dest)
- of skConst:
- let constVal = if s.ast != nil: s.ast else: s.typ.n
- gen(c, constVal, dest)
- of skEnumField:
- # we never reach this case - as of the time of this comment,
- # skEnumField is folded to an int in semfold.nim, but this code
- # remains for robustness
- if dest < 0: dest = c.getTemp(n.typ)
- if s.position >= low(int16) and s.position <= high(int16):
- c.gABx(n, opcLdImmInt, dest, s.position)
- else:
- var lit = genLiteral(c, newIntNode(nkIntLit, s.position))
- c.gABx(n, opcLdConst, dest, lit)
- of skType:
- genTypeLit(c, s.typ, dest)
- of skGenericParam:
- if c.prc.sym != nil and c.prc.sym.kind == skMacro:
- genRdVar(c, n, dest, flags)
- else:
- globalError(c.config, n.info, "cannot generate code for: " & s.name.s)
- else:
- globalError(c.config, n.info, "cannot generate code for: " & s.name.s)
- of nkCallKinds:
- if n[0].kind == nkSym:
- let s = n[0].sym
- if s.magic != mNone:
- genMagic(c, n, dest, s.magic)
- elif s.kind == skMethod:
- localError(c.config, n.info, "cannot call method " & s.name.s &
- " at compile time")
- elif matches(s, "stdlib", "marshal", "to"):
- # XXX marshal load&store should not be opcodes, but use the
- # general callback mechanisms.
- genMarshalLoad(c, n, dest)
- elif matches(s, "stdlib", "marshal", "$$"):
- genMarshalStore(c, n, dest)
- else:
- genCall(c, n, dest)
- clearDest(c, n, dest)
- else:
- genCall(c, n, dest)
- clearDest(c, n, dest)
- of nkCharLit..nkInt64Lit:
- if isInt16Lit(n):
- if dest < 0: dest = c.getTemp(n.typ)
- c.gABx(n, opcLdImmInt, dest, n.intVal.int)
- else:
- genLit(c, n, dest)
- of nkUIntLit..pred(nkNilLit): genLit(c, n, dest)
- of nkNilLit:
- if not n.typ.isEmptyType: genLit(c, getNullValue(n.typ, n.info, c.config), dest)
- else: unused(c, n, dest)
- of nkAsgn, nkFastAsgn:
- unused(c, n, dest)
- genAsgn(c, n[0], n[1], n.kind == nkAsgn)
- of nkDotExpr: genObjAccess(c, n, dest, flags)
- of nkCheckedFieldExpr: genCheckedObjAccess(c, n, dest, flags)
- of nkBracketExpr: genArrAccess(c, n, dest, flags)
- of nkDerefExpr, nkHiddenDeref: genDeref(c, n, dest, flags)
- of nkAddr, nkHiddenAddr: genAddr(c, n, dest, flags)
- of nkIfStmt, nkIfExpr: genIf(c, n, dest)
- of nkWhenStmt:
- # This is "when nimvm" node. Chose the first branch.
- gen(c, n[0][1], dest)
- of nkCaseStmt: genCase(c, n, dest)
- of nkWhileStmt:
- unused(c, n, dest)
- genWhile(c, n)
- of nkBlockExpr, nkBlockStmt: genBlock(c, n, dest)
- of nkReturnStmt:
- genReturn(c, n)
- of nkRaiseStmt:
- genRaise(c, n)
- of nkBreakStmt:
- genBreak(c, n)
- of nkTryStmt, nkHiddenTryStmt: genTry(c, n, dest)
- of nkStmtList:
- #unused(c, n, dest)
- # XXX Fix this bug properly, lexim triggers it
- for x in n: gen(c, x)
- of nkStmtListExpr:
- for i in 0..<n.len-1: gen(c, n[i])
- gen(c, n[^1], dest, flags)
- of nkPragmaBlock:
- gen(c, n.lastSon, dest, flags)
- of nkDiscardStmt:
- unused(c, n, dest)
- gen(c, n[0])
- of nkHiddenStdConv, nkHiddenSubConv, nkConv:
- genConv(c, n, n[1], dest)
- of nkObjDownConv:
- genConv(c, n, n[0], dest)
- of nkObjUpConv:
- genConv(c, n, n[0], dest)
- of nkVarSection, nkLetSection:
- unused(c, n, dest)
- genVarSection(c, n)
- of declarativeDefs, nkMacroDef:
- unused(c, n, dest)
- of nkLambdaKinds:
- #let s = n[namePos].sym
- #discard genProc(c, s)
- genLit(c, newSymNode(n[namePos].sym), dest)
- of nkChckRangeF, nkChckRange64, nkChckRange:
- let
- tmp0 = c.genx(n[0])
- tmp1 = c.genx(n[1])
- tmp2 = c.genx(n[2])
- c.gABC(n, opcRangeChck, tmp0, tmp1, tmp2)
- c.freeTemp(tmp1)
- c.freeTemp(tmp2)
- if dest >= 0:
- gABC(c, n, whichAsgnOpc(n), dest, tmp0)
- c.freeTemp(tmp0)
- else:
- dest = tmp0
- of nkEmpty, nkCommentStmt, nkTypeSection, nkConstSection, nkPragma,
- nkTemplateDef, nkIncludeStmt, nkImportStmt, nkFromStmt, nkExportStmt:
- unused(c, n, dest)
- of nkStringToCString, nkCStringToString:
- gen(c, n[0], dest)
- of nkBracket: genArrayConstr(c, n, dest)
- of nkCurly: genSetConstr(c, n, dest)
- of nkObjConstr: genObjConstr(c, n, dest)
- of nkPar, nkClosure, nkTupleConstr: genTupleConstr(c, n, dest)
- of nkCast:
- if allowCast in c.features:
- genConv(c, n, n[1], dest, opcCast)
- else:
- genCastIntFloat(c, n, dest)
- of nkTypeOfExpr:
- genTypeLit(c, n.typ, dest)
- of nkComesFrom:
- discard "XXX to implement for better stack traces"
- else:
- if n.typ != nil and n.typ.isCompileTimeOnly:
- genTypeLit(c, n.typ, dest)
- else:
- globalError(c.config, n.info, "cannot generate VM code for " & $n)
- proc removeLastEof(c: PCtx) =
- let last = c.code.len-1
- if last >= 0 and c.code[last].opcode == opcEof:
- # overwrite last EOF:
- assert c.code.len == c.debug.len
- c.code.setLen(last)
- c.debug.setLen(last)
- proc genStmt*(c: PCtx; n: PNode): int =
- c.removeLastEof
- result = c.code.len
- var d: TDest = -1
- c.gen(n, d)
- c.gABC(n, opcEof)
- if d >= 0:
- globalError(c.config, n.info, "VM problem: dest register is set")
- proc genExpr*(c: PCtx; n: PNode, requiresValue = true): int =
- c.removeLastEof
- result = c.code.len
- var d: TDest = -1
- c.gen(n, d)
- if d < 0:
- if requiresValue:
- globalError(c.config, n.info, "VM problem: dest register is not set")
- d = 0
- c.gABC(n, opcEof, d)
- #echo renderTree(n)
- #c.echoCode(result)
- proc genParams(c: PCtx; params: PNode) =
- # res.sym.position is already 0
- c.prc.slots[0] = (inUse: true, kind: slotFixedVar)
- for i in 1..<params.len:
- c.prc.slots[i] = (inUse: true, kind: slotFixedLet)
- c.prc.maxSlots = max(params.len, 1)
- proc finalJumpTarget(c: PCtx; pc, diff: int) =
- internalAssert(c.config, regBxMin < diff and diff < regBxMax)
- let oldInstr = c.code[pc]
- # opcode and regA stay the same:
- c.code[pc] = ((oldInstr.TInstrType and ((regOMask shl regOShift) or (regAMask shl regAShift))).TInstrType or
- TInstrType(diff+wordExcess) shl regBxShift).TInstr
- proc genGenericParams(c: PCtx; gp: PNode) =
- var base = c.prc.maxSlots
- for i in 0..<gp.len:
- var param = gp[i].sym
- param.position = base + i # XXX: fix this earlier; make it consistent with templates
- c.prc.slots[base + i] = (inUse: true, kind: slotFixedLet)
- c.prc.maxSlots = base + gp.len
- proc optimizeJumps(c: PCtx; start: int) =
- const maxIterations = 10
- for i in start..<c.code.len:
- let opc = c.code[i].opcode
- case opc
- of opcTJmp, opcFJmp:
- var reg = c.code[i].regA
- var d = i + c.code[i].jmpDiff
- for iters in countdown(maxIterations, 0):
- case c.code[d].opcode
- of opcJmp:
- d = d + c.code[d].jmpDiff
- of opcTJmp, opcFJmp:
- if c.code[d].regA != reg: break
- # tjmp x, 23
- # ...
- # tjmp x, 12
- # -- we know 'x' is true, and so can jump to 12+13:
- if c.code[d].opcode == opc:
- d = d + c.code[d].jmpDiff
- else:
- # tjmp x, 23
- # fjmp x, 22
- # We know 'x' is true so skip to the next instruction:
- d = d + 1
- else: break
- if d != i + c.code[i].jmpDiff:
- c.finalJumpTarget(i, d - i)
- of opcJmp, opcJmpBack:
- var d = i + c.code[i].jmpDiff
- var iters = maxIterations
- while c.code[d].opcode == opcJmp and iters > 0:
- d = d + c.code[d].jmpDiff
- dec iters
- if c.code[d].opcode == opcRet:
- # optimize 'jmp to ret' to 'ret' here
- c.code[i] = c.code[d]
- elif d != i + c.code[i].jmpDiff:
- c.finalJumpTarget(i, d - i)
- else: discard
- proc genProc(c: PCtx; s: PSym): int =
- var x = s.ast[miscPos]
- if x.kind == nkEmpty or x[0].kind == nkEmpty:
- #if s.name.s == "outterMacro" or s.name.s == "innerProc":
- # echo "GENERATING CODE FOR ", s.name.s
- let last = c.code.len-1
- var eofInstr: TInstr
- if last >= 0 and c.code[last].opcode == opcEof:
- eofInstr = c.code[last]
- c.code.setLen(last)
- c.debug.setLen(last)
- #c.removeLastEof
- result = c.code.len+1 # skip the jump instruction
- if x.kind == nkEmpty:
- x = newTree(nkBracket, newIntNode(nkIntLit, result), x)
- else:
- x[0] = newIntNode(nkIntLit, result)
- s.ast[miscPos] = x
- # thanks to the jmp we can add top level statements easily and also nest
- # procs easily:
- let body = transformBody(c.graph, s, cache = not isCompileTimeProc(s))
- let procStart = c.xjmp(body, opcJmp, 0)
- var p = PProc(blocks: @[], sym: s)
- let oldPrc = c.prc
- c.prc = p
- # iterate over the parameters and allocate space for them:
- genParams(c, s.typ.n)
- # allocate additional space for any generically bound parameters
- if s.kind == skMacro and s.ast[genericParamsPos].kind != nkEmpty:
- genGenericParams(c, s.ast[genericParamsPos])
- if tfCapturesEnv in s.typ.flags:
- #let env = s.ast[paramsPos].lastSon.sym
- #assert env.position == 2
- c.prc.slots[c.prc.maxSlots] = (inUse: true, kind: slotFixedLet)
- inc c.prc.maxSlots
- gen(c, body)
- # generate final 'return' statement:
- c.gABC(body, opcRet)
- c.patch(procStart)
- c.gABC(body, opcEof, eofInstr.regA)
- c.optimizeJumps(result)
- s.offset = c.prc.maxSlots
- #if s.name.s == "main" or s.name.s == "[]":
- # echo renderTree(body)
- # c.echoCode(result)
- c.prc = oldPrc
- else:
- c.prc.maxSlots = s.offset
- result = x[0].intVal.int
|