12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2015 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## The compiler depends on the System module to work properly and the System
- ## module depends on the compiler. Most of the routines listed here use
- ## special compiler magic.
- ## Each module implicitly imports the System module; it must not be listed
- ## explicitly. Because of this there cannot be a user-defined module named
- ## ``system``.
- ##
- ## Module system
- ## =============
- ##
- # That lonesome header above is to prevent :idx: entries from being mentioned
- # in the global index as part of the previous header (Exception hierarchy).
- type
- int* {.magic: Int.} ## default integer type; bitwidth depends on
- ## architecture, but is always the same as a pointer
- int8* {.magic: Int8.} ## signed 8 bit integer type
- int16* {.magic: Int16.} ## signed 16 bit integer type
- int32* {.magic: Int32.} ## signed 32 bit integer type
- int64* {.magic: Int64.} ## signed 64 bit integer type
- uint* {.magic: UInt.} ## unsigned default integer type
- uint8* {.magic: UInt8.} ## unsigned 8 bit integer type
- uint16* {.magic: UInt16.} ## unsigned 16 bit integer type
- uint32* {.magic: UInt32.} ## unsigned 32 bit integer type
- uint64* {.magic: UInt64.} ## unsigned 64 bit integer type
- float* {.magic: Float.} ## default floating point type
- float32* {.magic: Float32.} ## 32 bit floating point type
- float64* {.magic: Float.} ## 64 bit floating point type
- # 'float64' is now an alias to 'float'; this solves many problems
- type # we need to start a new type section here, so that ``0`` can have a type
- bool* {.magic: Bool.} = enum ## built-in boolean type
- false = 0, true = 1
- type
- char* {.magic: Char.} ## built-in 8 bit character type (unsigned)
- string* {.magic: String.} ## built-in string type
- cstring* {.magic: Cstring.} ## built-in cstring (*compatible string*) type
- pointer* {.magic: Pointer.} ## built-in pointer type, use the ``addr``
- ## operator to get a pointer to a variable
- typedesc* {.magic: TypeDesc.} ## meta type to denote a type description
- const
- on* = true ## alias for ``true``
- off* = false ## alias for ``false``
- {.push warning[GcMem]: off, warning[Uninit]: off.}
- {.push hints: off.}
- proc `or`*(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
- ## Constructs an `or` meta class
- proc `and`*(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
- ## Constructs an `and` meta class
- proc `not`*(a: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
- ## Constructs an `not` meta class
- type
- Ordinal* {.magic: Ordinal.}[T] ## Generic ordinal type. Includes integer,
- ## bool, character, and enumeration types
- ## as well as their subtypes. Note `uint`
- ## and `uint64` are not ordinal types for
- ## implementation reasons
- `ptr`* {.magic: Pointer.}[T] ## built-in generic untraced pointer type
- `ref`* {.magic: Pointer.}[T] ## built-in generic traced pointer type
- `nil` {.magic: "Nil".}
- void* {.magic: "VoidType".} ## meta type to denote the absence of any type
- auto* {.magic: Expr.} ## meta type for automatic type determination
- any* = distinct auto ## meta type for any supported type
- untyped* {.magic: Expr.} ## meta type to denote an expression that
- ## is not resolved (for templates)
- typed* {.magic: Stmt.} ## meta type to denote an expression that
- ## is resolved (for templates)
- SomeSignedInt* = int|int8|int16|int32|int64
- ## type class matching all signed integer types
- SomeUnsignedInt* = uint|uint8|uint16|uint32|uint64
- ## type class matching all unsigned integer types
- SomeInteger* = SomeSignedInt|SomeUnsignedInt
- ## type class matching all integer types
- SomeOrdinal* = int|int8|int16|int32|int64|bool|enum|uint8|uint16|uint32
- ## type class matching all ordinal types; however this includes enums with
- ## holes.
- SomeFloat* = float|float32|float64
- ## type class matching all floating point number types
- SomeNumber* = SomeInteger|SomeFloat
- ## type class matching all number types
- {.deprecated: [SomeReal: SomeFloat].}
- proc defined*(x: untyped): bool {.magic: "Defined", noSideEffect, compileTime.}
- ## Special compile-time procedure that checks whether `x` is
- ## defined.
- ## `x` is an external symbol introduced through the compiler's
- ## `-d:x switch <nimc.html#compile-time-symbols>`_ to enable build time
- ## conditionals:
- ##
- ## .. code-block:: Nim
- ## when not defined(release):
- ## # Do here programmer friendly expensive sanity checks.
- ## # Put here the normal code
- proc declared*(x: untyped): bool {.magic: "Defined", noSideEffect, compileTime.}
- ## Special compile-time procedure that checks whether `x` is
- ## declared. `x` has to be an identifier or a qualified identifier.
- ## This can be used to check whether a library provides a certain
- ## feature or not:
- ##
- ## .. code-block:: Nim
- ## when not declared(strutils.toUpper):
- ## # provide our own toUpper proc here, because strutils is
- ## # missing it.
- when defined(useNimRtl):
- {.deadCodeElim: on.} # dce option deprecated
- proc declaredInScope*(x: untyped): bool {.
- magic: "DefinedInScope", noSideEffect, compileTime.}
- ## Special compile-time procedure that checks whether `x` is
- ## declared in the current scope. `x` has to be an identifier.
- proc `addr`*[T](x: var T): ptr T {.magic: "Addr", noSideEffect.} =
- ## Builtin 'addr' operator for taking the address of a memory location.
- ## Cannot be overloaded.
- ##
- ## .. code-block:: nim
- ## var
- ## buf: seq[char] = @['a','b','c']
- ## p: pointer = buf[1].addr
- ## echo cast[ptr char](p)[] # b
- discard
- proc unsafeAddr*[T](x: T): ptr T {.magic: "Addr", noSideEffect.} =
- ## Builtin 'addr' operator for taking the address of a memory
- ## location. This works even for ``let`` variables or parameters
- ## for better interop with C and so it is considered even more
- ## unsafe than the ordinary ``addr``. When you use it to write a
- ## wrapper for a C library, you should always check that the
- ## original library does never write to data behind the pointer that
- ## is returned from this procedure.
- ## Cannot be overloaded.
- discard
- when defined(nimNewTypedesc):
- type
- `static`* {.magic: "Static".}[T]
- ## meta type representing all values that can be evaluated at compile-time.
- ##
- ## The type coercion ``static(x)`` can be used to force the compile-time
- ## evaluation of the given expression ``x``.
- `type`* {.magic: "Type".}[T]
- ## meta type representing the type of all type values.
- ##
- ## The coercion ``type(x)`` can be used to obtain the type of the given
- ## expression ``x``.
- else:
- proc `type`*(x: untyped): typeDesc {.magic: "TypeOf", noSideEffect, compileTime.} =
- ## Builtin 'type' operator for accessing the type of an expression.
- ## Cannot be overloaded.
- discard
- when defined(nimHasTypeof):
- type
- TypeOfMode* = enum ## Possible modes of `typeof`.
- typeOfProc, ## Prefer the interpretation that means `x` is a proc call.
- typeOfIter ## Prefer the interpretation that means `x` is an iterator call.
- proc typeof*(x: untyped; mode = typeOfIter): typeDesc {.magic: "TypeOf", noSideEffect, compileTime.} =
- ## Builtin 'typeof' operation for accessing the type of an expression. Since version 0.20.0.
- discard
- proc `not`*(x: bool): bool {.magic: "Not", noSideEffect.}
- ## Boolean not; returns true iff ``x == false``.
- proc `and`*(x, y: bool): bool {.magic: "And", noSideEffect.}
- ## Boolean ``and``; returns true iff ``x == y == true``.
- ## Evaluation is lazy: if ``x`` is false,
- ## ``y`` will not even be evaluated.
- proc `or`*(x, y: bool): bool {.magic: "Or", noSideEffect.}
- ## Boolean ``or``; returns true iff ``not (not x and not y)``.
- ## Evaluation is lazy: if ``x`` is true,
- ## ``y`` will not even be evaluated.
- proc `xor`*(x, y: bool): bool {.magic: "Xor", noSideEffect.}
- ## Boolean `exclusive or`; returns true iff ``x != y``.
- const ThisIsSystem = true
- proc internalNew*[T](a: var ref T) {.magic: "New", noSideEffect.}
- ## leaked implementation detail. Do not use.
- proc new*[T](a: var ref T, finalizer: proc (x: ref T) {.nimcall.}) {.
- magic: "NewFinalize", noSideEffect.}
- ## creates a new object of type ``T`` and returns a safe (traced)
- ## reference to it in ``a``. When the garbage collector frees the object,
- ## `finalizer` is called. The `finalizer` may not keep a reference to the
- ## object pointed to by `x`. The `finalizer` cannot prevent the GC from
- ## freeing the object. Note: The `finalizer` refers to the type `T`, not to
- ## the object! This means that for each object of type `T` the finalizer
- ## will be called!
- proc reset*[T](obj: var T) {.magic: "Reset", noSideEffect.}
- ## resets an object `obj` to its initial (binary zero) value. This needs to
- ## be called before any possible `object branch transition`:idx:.
- when defined(nimNewRuntime):
- proc wasMoved*[T](obj: var T) {.magic: "WasMoved", noSideEffect.} =
- ## resets an object `obj` to its initial (binary zero) value to signify
- ## it was "moved" and to signify its destructor should do nothing and
- ## ideally be optimized away.
- discard
- proc move*[T](x: var T): T {.magic: "Move", noSideEffect.} =
- result = x
- wasMoved(x)
- type
- range*{.magic: "Range".}[T] ## Generic type to construct range types.
- array*{.magic: "Array".}[I, T] ## Generic type to construct
- ## fixed-length arrays.
- openArray*{.magic: "OpenArray".}[T] ## Generic type to construct open arrays.
- ## Open arrays are implemented as a
- ## pointer to the array data and a
- ## length field.
- varargs*{.magic: "Varargs".}[T] ## Generic type to construct a varargs type.
- seq*{.magic: "Seq".}[T] ## Generic type to construct sequences.
- set*{.magic: "Set".}[T] ## Generic type to construct bit sets.
- when defined(nimUncheckedArrayTyp):
- type
- UncheckedArray*{.magic: "UncheckedArray".}[T]
- ## Array with no bounds checking
- else:
- type
- UncheckedArray*{.unchecked.}[T] = array[0,T]
- ## Array with no bounds checking
- when defined(nimHasOpt):
- type opt*{.magic: "Opt".}[T]
- when defined(nimNewRuntime):
- type sink*{.magic: "BuiltinType".}[T]
- type lent*{.magic: "BuiltinType".}[T]
- proc high*[T: Ordinal](x: T): T {.magic: "High", noSideEffect.}
- ## returns the highest possible value of an ordinal value `x`. As a special
- ## semantic rule, `x` may also be a type identifier.
- ##
- ## .. code-block:: nim
- ## high(2) #=> 9223372036854775807
- proc high*[T: Ordinal|enum](x: typeDesc[T]): T {.magic: "High", noSideEffect.}
- ## returns the highest possible value of an ordinal or enum type.
- ## ``high(int)`` is Nim's way of writing `INT_MAX`:idx: or `MAX_INT`:idx:.
- ##
- ## .. code-block:: nim
- ## high(int) #=> 9223372036854775807
- proc high*[T](x: openArray[T]): int {.magic: "High", noSideEffect.}
- ## returns the highest possible index of a sequence `x`.
- ##
- ## .. code-block:: nim
- ## var s = @[1,2,3,4,5,6,7]
- ## high(s) #=> 6
- ## for i in low(s)..high(s):
- ## echo s[i]
- proc high*[I, T](x: array[I, T]): I {.magic: "High", noSideEffect.}
- ## returns the highest possible index of an array `x`.
- ##
- ## .. code-block:: nim
- ## var arr = [1,2,3,4,5,6,7]
- ## high(arr) #=> 6
- ## for i in low(arr)..high(arr):
- ## echo arr[i]
- proc high*[I, T](x: typeDesc[array[I, T]]): I {.magic: "High", noSideEffect.}
- ## returns the highest possible index of an array type.
- ##
- ## .. code-block:: nim
- ## high(array[7, int]) #=> 6
- proc high*(x: cstring): int {.magic: "High", noSideEffect.}
- ## returns the highest possible index of a compatible string `x`.
- ## This is sometimes an O(n) operation.
- proc high*(x: string): int {.magic: "High", noSideEffect.}
- ## returns the highest possible index of a string `x`.
- ##
- ## .. code-block:: nim
- ## var str = "Hello world!"
- ## high(str) #=> 11
- proc low*[T: Ordinal|enum](x: typeDesc[T]): T {.magic: "Low", noSideEffect.}
- ## returns the lowest possible value of an ordinal or enum type.
- ## ``low(int)`` is Nim's way of writing `INT_MIN`:idx: or `MIN_INT`:idx:.
- ##
- ## .. code-block:: nim
- ## low(int) #=> -9223372036854775808
- proc low*[T](x: openArray[T]): int {.magic: "Low", noSideEffect.}
- ## returns the lowest possible index of a sequence `x`.
- ##
- ## .. code-block:: nim
- ## var s = @[1,2,3,4,5,6,7]
- ## low(s) #=> 0
- proc low*[I, T](x: array[I, T]): I {.magic: "Low", noSideEffect.}
- ## returns the lowest possible index of an array `x`.
- ##
- ## .. code-block:: nim
- ## var arr = [1,2,3,4,5,6,7]
- ## low(arr) #=> 0
- proc low*[T](x: T): T {.magic: "Low", noSideEffect.}
- ## returns the lowest possible value of an ordinal value `x`. As a special
- ## semantic rule, `x` may also be a type identifier.
- ##
- ## .. code-block:: nim
- ## low(2) #=> -9223372036854775808
- proc low*[I, T](x: typeDesc[array[I, T]]): I {.magic: "Low", noSideEffect.}
- ## returns the lowest possible index of an array type.
- ##
- ## .. code-block:: nim
- ## low(array[7, int]) #=> 0
- proc low*(x: cstring): int {.magic: "Low", noSideEffect.}
- ## returns the lowest possible index of a compatible string `x`.
- proc low*(x: string): int {.magic: "Low", noSideEffect.}
- ## returns the lowest possible index of a string `x`.
- ##
- ## .. code-block:: nim
- ## var str = "Hello world!"
- ## low(str) #=> 0
- proc shallowCopy*[T](x: var T, y: T) {.noSideEffect, magic: "ShallowCopy".}
- ## use this instead of `=` for a `shallow copy`:idx:. The shallow copy
- ## only changes the semantics for sequences and strings (and types which
- ## contain those). Be careful with the changed semantics though! There
- ## is a reason why the default assignment does a deep copy of sequences
- ## and strings.
- when defined(nimArrIdx):
- # :array|openarray|string|seq|cstring|tuple
- proc `[]`*[I: Ordinal;T](a: T; i: I): T {.
- noSideEffect, magic: "ArrGet".}
- proc `[]=`*[I: Ordinal;T,S](a: T; i: I;
- x: S) {.noSideEffect, magic: "ArrPut".}
- proc `=`*[T](dest: var T; src: T) {.noSideEffect, magic: "Asgn".}
- proc arrGet[I: Ordinal;T](a: T; i: I): T {.
- noSideEffect, magic: "ArrGet".}
- proc arrPut[I: Ordinal;T,S](a: T; i: I;
- x: S) {.noSideEffect, magic: "ArrPut".}
- when defined(nimNewRuntime):
- proc `=destroy`*[T](x: var T) {.inline, magic: "Asgn".} =
- ## generic `destructor`:idx: implementation that can be overriden.
- discard
- proc `=sink`*[T](x: var T; y: T) {.inline, magic: "Asgn".} =
- ## generic `sink`:idx: implementation that can be overriden.
- shallowCopy(x, y)
- type
- HSlice*[T, U] = object ## "heterogenous" slice type
- a*: T ## the lower bound (inclusive)
- b*: U ## the upper bound (inclusive)
- Slice*[T] = HSlice[T, T] ## an alias for ``HSlice[T, T]``
- proc `..`*[T, U](a: T, b: U): HSlice[T, U] {.noSideEffect, inline, magic: "DotDot".} =
- ## binary `slice`:idx: operator that constructs an interval ``[a, b]``, both `a`
- ## and `b` are inclusive. Slices can also be used in the set constructor
- ## and in ordinal case statements, but then they are special-cased by the
- ## compiler.
- result.a = a
- result.b = b
- proc `..`*[T](b: T): HSlice[int, T] {.noSideEffect, inline, magic: "DotDot".} =
- ## unary `slice`:idx: operator that constructs an interval ``[default(int), b]``
- result.b = b
- when not defined(niminheritable):
- {.pragma: inheritable.}
- when not defined(nimunion):
- {.pragma: unchecked.}
- # comparison operators:
- proc `==`*[Enum: enum](x, y: Enum): bool {.magic: "EqEnum", noSideEffect.}
- ## Checks whether values within the *same enum* have the same underlying value
- ##
- ## .. code-block:: nim
- ## type
- ## Enum1 = enum
- ## Field1 = 3, Field2
- ## Enum2 = enum
- ## Place1, Place2 = 3
- ## var
- ## e1 = Field1
- ## e2 = Enum1(Place2)
- ## echo (e1 == e2) # true
- ## echo (e1 == Place2) # raises error
- proc `==`*(x, y: pointer): bool {.magic: "EqRef", noSideEffect.}
- ## .. code-block:: nim
- ## var # this is a wildly dangerous example
- ## a = cast[pointer](0)
- ## b = cast[pointer](nil)
- ## echo (a == b) # true due to the special meaning of `nil`/0 as a pointer
- proc `==`*(x, y: string): bool {.magic: "EqStr", noSideEffect.}
- ## Checks for equality between two `string` variables
- proc `==`*(x, y: char): bool {.magic: "EqCh", noSideEffect.}
- ## Checks for equality between two `char` variables
- proc `==`*(x, y: bool): bool {.magic: "EqB", noSideEffect.}
- ## Checks for equality between two `bool` variables
- proc `==`*[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.}
- ## Checks for equality between two variables of type `set`
- ##
- ## .. code-block:: nim
- ## var a = {1, 2, 2, 3} # duplication in sets is ignored
- ## var b = {1, 2, 3}
- ## echo (a == b) # true
- proc `==`*[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.}
- ## Checks that two `ref` variables refer to the same item
- proc `==`*[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.}
- ## Checks that two `ptr` variables refer to the same item
- proc `==`*[T: proc](x, y: T): bool {.magic: "EqProc", noSideEffect.}
- ## Checks that two `proc` variables refer to the same procedure
- proc `<=`*[Enum: enum](x, y: Enum): bool {.magic: "LeEnum", noSideEffect.}
- proc `<=`*(x, y: string): bool {.magic: "LeStr", noSideEffect.}
- proc `<=`*(x, y: char): bool {.magic: "LeCh", noSideEffect.}
- proc `<=`*[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.}
- proc `<=`*(x, y: bool): bool {.magic: "LeB", noSideEffect.}
- proc `<=`*[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.}
- proc `<=`*(x, y: pointer): bool {.magic: "LePtr", noSideEffect.}
- proc `<`*[Enum: enum](x, y: Enum): bool {.magic: "LtEnum", noSideEffect.}
- proc `<`*(x, y: string): bool {.magic: "LtStr", noSideEffect.}
- proc `<`*(x, y: char): bool {.magic: "LtCh", noSideEffect.}
- proc `<`*[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.}
- proc `<`*(x, y: bool): bool {.magic: "LtB", noSideEffect.}
- proc `<`*[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.}
- proc `<`*[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.}
- proc `<`*(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.}
- template `!=`*(x, y: untyped): untyped =
- ## unequals operator. This is a shorthand for ``not (x == y)``.
- not (x == y)
- template `>=`*(x, y: untyped): untyped =
- ## "is greater or equals" operator. This is the same as ``y <= x``.
- y <= x
- template `>`*(x, y: untyped): untyped =
- ## "is greater" operator. This is the same as ``y < x``.
- y < x
- const
- appType* {.magic: "AppType"}: string = ""
- ## a string that describes the application type. Possible values:
- ## "console", "gui", "lib".
- include "system/inclrtl"
- const NoFakeVars* = defined(nimscript) ## true if the backend doesn't support \
- ## "fake variables" like 'var EBADF {.importc.}: cint'.
- when not defined(JS) and not defined(gcDestructors):
- type
- TGenericSeq {.compilerproc, pure, inheritable.} = object
- len, reserved: int
- when defined(gogc):
- elemSize: int
- PGenericSeq {.exportc.} = ptr TGenericSeq
- # len and space without counting the terminating zero:
- NimStringDesc {.compilerproc, final.} = object of TGenericSeq
- data: UncheckedArray[char]
- NimString = ptr NimStringDesc
- when not defined(JS) and not defined(nimscript):
- when not defined(gcDestructors):
- template space(s: PGenericSeq): int {.dirty.} =
- s.reserved and not (seqShallowFlag or strlitFlag)
- include "system/hti"
- type
- byte* = uint8 ## this is an alias for ``uint8``, that is an unsigned
- ## int 8 bits wide.
- Natural* = range[0..high(int)]
- ## is an int type ranging from zero to the maximum value
- ## of an int. This type is often useful for documentation and debugging.
- Positive* = range[1..high(int)]
- ## is an int type ranging from one to the maximum value
- ## of an int. This type is often useful for documentation and debugging.
- RootObj* {.compilerProc, inheritable.} =
- object ## the root of Nim's object hierarchy. Objects should
- ## inherit from RootObj or one of its descendants. However,
- ## objects that have no ancestor are allowed.
- RootRef* = ref RootObj ## reference to RootObj
- RootEffect* {.compilerproc.} = object of RootObj ## \
- ## base effect class; each effect should
- ## inherit from `RootEffect` unless you know what
- ## you doing.
- TimeEffect* = object of RootEffect ## Time effect.
- IOEffect* = object of RootEffect ## IO effect.
- ReadIOEffect* = object of IOEffect ## Effect describing a read IO operation.
- WriteIOEffect* = object of IOEffect ## Effect describing a write IO operation.
- ExecIOEffect* = object of IOEffect ## Effect describing an executing IO operation.
- StackTraceEntry* = object ## In debug mode exceptions store the stack trace that led
- ## to them. A StackTraceEntry is a single entry of the
- ## stack trace.
- procname*: cstring ## name of the proc that is currently executing
- line*: int ## line number of the proc that is currently executing
- filename*: cstring ## filename of the proc that is currently executing
- Exception* {.compilerproc, magic: "Exception".} = object of RootObj ## \
- ## Base exception class.
- ##
- ## Each exception has to inherit from `Exception`. See the full `exception
- ## hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
- parent*: ref Exception ## parent exception (can be used as a stack)
- name*: cstring ## The exception's name is its Nim identifier.
- ## This field is filled automatically in the
- ## ``raise`` statement.
- msg* {.exportc: "message".}: string ## the exception's message. Not
- ## providing an exception message
- ## is bad style.
- when defined(js):
- trace: string
- else:
- trace: seq[StackTraceEntry]
- raiseId: uint # set when exception is raised
- up: ref Exception # used for stacking exceptions. Not exported!
- Defect* = object of Exception ## \
- ## Abstract base class for all exceptions that Nim's runtime raises
- ## but that are strictly uncatchable as they can also be mapped to
- ## a ``quit`` / ``trap`` / ``exit`` operation.
- CatchableError* = object of Exception ## \
- ## Abstract class for all exceptions that are catchable.
- IOError* = object of CatchableError ## \
- ## Raised if an IO error occurred.
- EOFError* = object of IOError ## \
- ## Raised if an IO "end of file" error occurred.
- OSError* = object of CatchableError ## \
- ## Raised if an operating system service failed.
- errorCode*: int32 ## OS-defined error code describing this error.
- LibraryError* = object of OSError ## \
- ## Raised if a dynamic library could not be loaded.
- ResourceExhaustedError* = object of CatchableError ## \
- ## Raised if a resource request could not be fulfilled.
- ArithmeticError* = object of Defect ## \
- ## Raised if any kind of arithmetic error occurred.
- DivByZeroError* = object of ArithmeticError ## \
- ## Raised for runtime integer divide-by-zero errors.
- OverflowError* = object of ArithmeticError ## \
- ## Raised for runtime integer overflows.
- ##
- ## This happens for calculations whose results are too large to fit in the
- ## provided bits.
- AccessViolationError* = object of Defect ## \
- ## Raised for invalid memory access errors
- AssertionError* = object of Defect ## \
- ## Raised when assertion is proved wrong.
- ##
- ## Usually the result of using the `assert() template <#assert>`_.
- ValueError* = object of Defect ## \
- ## Raised for string and object conversion errors.
- KeyError* = object of ValueError ## \
- ## Raised if a key cannot be found in a table.
- ##
- ## Mostly used by the `tables <tables.html>`_ module, it can also be raised
- ## by other collection modules like `sets <sets.html>`_ or `strtabs
- ## <strtabs.html>`_.
- OutOfMemError* = object of Defect ## \
- ## Raised for unsuccessful attempts to allocate memory.
- IndexError* = object of Defect ## \
- ## Raised if an array index is out of bounds.
- FieldError* = object of Defect ## \
- ## Raised if a record field is not accessible because its dicriminant's
- ## value does not fit.
- RangeError* = object of Defect ## \
- ## Raised if a range check error occurred.
- StackOverflowError* = object of Defect ## \
- ## Raised if the hardware stack used for subroutine calls overflowed.
- ReraiseError* = object of Defect ## \
- ## Raised if there is no exception to reraise.
- ObjectAssignmentError* = object of Defect ## \
- ## Raised if an object gets assigned to its parent's object.
- ObjectConversionError* = object of Defect ## \
- ## Raised if an object is converted to an incompatible object type.
- ## You can use ``of`` operator to check if conversion will succeed.
- FloatingPointError* = object of Defect ## \
- ## Base class for floating point exceptions.
- FloatInvalidOpError* = object of FloatingPointError ## \
- ## Raised by invalid operations according to IEEE.
- ##
- ## Raised by ``0.0/0.0``, for example.
- FloatDivByZeroError* = object of FloatingPointError ## \
- ## Raised by division by zero.
- ##
- ## Divisor is zero and dividend is a finite nonzero number.
- FloatOverflowError* = object of FloatingPointError ## \
- ## Raised for overflows.
- ##
- ## The operation produced a result that exceeds the range of the exponent.
- FloatUnderflowError* = object of FloatingPointError ## \
- ## Raised for underflows.
- ##
- ## The operation produced a result that is too small to be represented as a
- ## normal number.
- FloatInexactError* = object of FloatingPointError ## \
- ## Raised for inexact results.
- ##
- ## The operation produced a result that cannot be represented with infinite
- ## precision -- for example: ``2.0 / 3.0, log(1.1)``
- ##
- ## **NOTE**: Nim currently does not detect these!
- DeadThreadError* = object of Defect ## \
- ## Raised if it is attempted to send a message to a dead thread.
- NilAccessError* = object of Defect ## \
- ## Raised on dereferences of ``nil`` pointers.
- ##
- ## This is only raised if the ``segfaults.nim`` module was imported!
- when defined(nimNewRuntime):
- type
- MoveError* = object of Defect ## \
- ## Raised on attempts to re-sink an already consumed ``sink`` parameter.
- when defined(js) or defined(nimdoc):
- type
- JsRoot* = ref object of RootObj
- ## Root type of the JavaScript object hierarchy
- proc unsafeNew*[T](a: var ref T, size: Natural) {.magic: "New", noSideEffect.}
- ## creates a new object of type ``T`` and returns a safe (traced)
- ## reference to it in ``a``. This is **unsafe** as it allocates an object
- ## of the passed ``size``. This should only be used for optimization
- ## purposes when you know what you're doing!
- proc sizeof*[T](x: T): int {.magic: "SizeOf", noSideEffect.}
- ## returns the size of ``x`` in bytes. Since this is a low-level proc,
- ## its usage is discouraged - using ``new`` for the most cases suffices
- ## that one never needs to know ``x``'s size. As a special semantic rule,
- ## ``x`` may also be a type identifier (``sizeof(int)`` is valid).
- ##
- ## Limitations: If used for types that are imported from C or C++,
- ## sizeof should fallback to the ``sizeof`` in the C compiler. The
- ## result isn't available for the Nim compiler and therefore can't
- ## be used inside of macros.
- ##
- ## .. code-block:: nim
- ## sizeof('A') #=> 1
- ## sizeof(2) #=> 8
- when defined(nimHasalignOf):
- proc alignof*[T](x: T): int {.magic: "AlignOf", noSideEffect.}
- proc alignof*(x: typedesc): int {.magic: "AlignOf", noSideEffect.}
- proc offsetOfDotExpr(typeAccess: typed): int {.magic: "OffsetOf", noSideEffect, compileTime.}
- template offsetOf*[T](t: typedesc[T]; member: untyped): int =
- var tmp: T
- offsetOfDotExpr(tmp.member)
- template offsetOf*[T](value: T; member: untyped): int =
- offsetOfDotExpr(value.member)
- #proc offsetOf*(memberaccess: typed): int {.magic: "OffsetOf", noSideEffect.}
- when defined(nimtypedescfixed):
- proc sizeof*(x: typedesc): int {.magic: "SizeOf", noSideEffect.}
- proc `<`*[T](x: Ordinal[T]): T {.magic: "UnaryLt", noSideEffect, deprecated.}
- ## unary ``<`` that can be used for nice looking excluding ranges:
- ##
- ## .. code-block:: nim
- ## for i in 0 .. <10: echo i #=> 0 1 2 3 4 5 6 7 8 9
- ##
- ## Semantically this is the same as ``pred``.
- ##
- ## **Deprecated since version 0.18.0**. For the common excluding range
- ## write ``0 ..< 10`` instead of ``0 .. < 10`` (look at the spacing).
- ## For ``<x`` write ``pred(x)``.
- proc succ*[T: Ordinal](x: T, y = 1): T {.magic: "Succ", noSideEffect.}
- ## returns the ``y``-th successor of the value ``x``. ``T`` has to be
- ## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised
- ## or a compile time error occurs.
- proc pred*[T: Ordinal](x: T, y = 1): T {.magic: "Pred", noSideEffect.}
- ## returns the ``y``-th predecessor of the value ``x``. ``T`` has to be
- ## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised
- ## or a compile time error occurs.
- proc inc*[T: Ordinal|uint|uint64](x: var T, y = 1) {.magic: "Inc", noSideEffect.}
- ## increments the ordinal ``x`` by ``y``. If such a value does not
- ## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a
- ## short notation for: ``x = succ(x, y)``.
- ##
- ## .. code-block:: nim
- ## var i = 2
- ## inc(i) #=> 3
- ## inc(i, 3) #=> 6
- proc dec*[T: Ordinal|uint|uint64](x: var T, y = 1) {.magic: "Dec", noSideEffect.}
- ## decrements the ordinal ``x`` by ``y``. If such a value does not
- ## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a
- ## short notation for: ``x = pred(x, y)``.
- ##
- ## .. code-block:: nim
- ## var i = 2
- ## dec(i) #=> 1
- ## dec(i, 3) #=> -2
- proc newSeq*[T](s: var seq[T], len: Natural) {.magic: "NewSeq", noSideEffect.}
- ## creates a new sequence of type ``seq[T]`` with length ``len``.
- ## This is equivalent to ``s = @[]; setlen(s, len)``, but more
- ## efficient since no reallocation is needed.
- ##
- ## Note that the sequence will be filled with zeroed entries, which can be a
- ## problem for sequences containing strings since their value will be
- ## ``nil``. After the creation of the sequence you should assign entries to
- ## the sequence instead of adding them. Example:
- ##
- ## .. code-block:: nim
- ## var inputStrings : seq[string]
- ## newSeq(inputStrings, 3)
- ## inputStrings[0] = "The fourth"
- ## inputStrings[1] = "assignment"
- ## inputStrings[2] = "would crash"
- ## #inputStrings[3] = "out of bounds"
- proc newSeq*[T](len = 0.Natural): seq[T] =
- ## creates a new sequence of type ``seq[T]`` with length ``len``.
- ##
- ## Note that the sequence will be filled with zeroed entries, which can be a
- ## problem for sequences containing strings since their value will be
- ## ``nil``. After the creation of the sequence you should assign entries to
- ## the sequence instead of adding them. Example:
- ##
- ## .. code-block:: nim
- ## var inputStrings = newSeq[string](3)
- ## inputStrings[0] = "The fourth"
- ## inputStrings[1] = "assignment"
- ## inputStrings[2] = "would crash"
- ## #inputStrings[3] = "out of bounds"
- newSeq(result, len)
- proc newSeqOfCap*[T](cap: Natural): seq[T] {.
- magic: "NewSeqOfCap", noSideEffect.} =
- ## creates a new sequence of type ``seq[T]`` with length 0 and capacity
- ## ``cap``.
- discard
- when not defined(JS) and not defined(gcDestructors):
- # XXX enable this for --gc:destructors
- proc newSeqUninitialized*[T: SomeNumber](len: Natural): seq[T] =
- ## creates a new sequence of type ``seq[T]`` with length ``len``.
- ##
- ## Only available for numbers types. Note that the sequence will be
- ## uninitialized. After the creation of the sequence you should assign
- ## entries to the sequence instead of adding them.
- result = newSeqOfCap[T](len)
- var s = cast[PGenericSeq](result)
- s.len = len
- proc len*[TOpenArray: openArray|varargs](x: TOpenArray): int {.
- magic: "LengthOpenArray", noSideEffect.}
- ## returns the length of an openarray.
- ##
- ## .. code-block:: nim
- ## var s = [1,1,1,1,1]
- ## len(s) #=> 5
- proc len*(x: string): int {.magic: "LengthStr", noSideEffect.}
- ## returns the length of a string.
- ##
- ## .. code-block:: nim
- ## var str = "Hello world!"
- ## len(str) #=> 12
- proc len*(x: cstring): int {.magic: "LengthStr", noSideEffect.}
- ## returns the length of a compatible string. This is sometimes
- ## an O(n) operation.
- ##
- ## .. code-block:: nim
- ## var str: cstring = "Hello world!"
- ## len(str) #=> 12
- proc len*(x: (type array)|array): int {.magic: "LengthArray", noSideEffect.}
- ## returns the length of an array or an array type.
- ## This is roughly the same as ``high(T)-low(T)+1``.
- ##
- ## .. code-block:: nim
- ## var arr = [1,1,1,1,1]
- ## len(arr) #=> 5
- ## len(array[3..8, int]) #=> 6
- proc len*[T](x: seq[T]): int {.magic: "LengthSeq", noSideEffect.}
- ## returns the length of a sequence.
- ##
- ## .. code-block:: nim
- ## var s = @[1,1,1,1,1]
- ## len(s) #=> 5
- # set routines:
- proc incl*[T](x: var set[T], y: T) {.magic: "Incl", noSideEffect.}
- ## includes element ``y`` to the set ``x``. This is the same as
- ## ``x = x + {y}``, but it might be more efficient.
- ##
- ## .. code-block:: nim
- ## var a = initSet[int](4)
- ## a.incl(2) #=> {2}
- ## a.incl(3) #=> {2, 3}
- template incl*[T](s: var set[T], flags: set[T]) =
- ## includes the set of flags to the set ``x``.
- s = s + flags
- proc excl*[T](x: var set[T], y: T) {.magic: "Excl", noSideEffect.}
- ## excludes element ``y`` to the set ``x``. This is the same as
- ## ``x = x - {y}``, but it might be more efficient.
- ##
- ## .. code-block:: nim
- ## var b = {2,3,5,6,12,545}
- ## b.excl(5) #=> {2,3,6,12,545}
- template excl*[T](s: var set[T], flags: set[T]) =
- ## excludes the set of flags to ``x``.
- s = s - flags
- proc card*[T](x: set[T]): int {.magic: "Card", noSideEffect.}
- ## returns the cardinality of the set ``x``, i.e. the number of elements
- ## in the set.
- ##
- ## .. code-block:: nim
- ## var i = {1,2,3,4}
- ## card(i) #=> 4
- proc ord*[T: Ordinal|enum](x: T): int {.magic: "Ord", noSideEffect.}
- ## returns the internal int value of an ordinal value ``x``.
- ##
- ## .. code-block:: nim
- ## ord('A') #=> 65
- proc chr*(u: range[0..255]): char {.magic: "Chr", noSideEffect.}
- ## converts an int in the range 0..255 to a character.
- ##
- ## .. code-block:: nim
- ## chr(65) #=> A
- # --------------------------------------------------------------------------
- # built-in operators
- when not defined(JS):
- proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect.}
- ## zero extends a smaller integer type to ``int``. This treats `x` as
- ## unsigned.
- proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect.}
- ## zero extends a smaller integer type to ``int``. This treats `x` as
- ## unsigned.
- proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect.}
- ## zero extends a smaller integer type to ``int64``. This treats `x` as
- ## unsigned.
- proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect.}
- ## zero extends a smaller integer type to ``int64``. This treats `x` as
- ## unsigned.
- proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect.}
- ## zero extends a smaller integer type to ``int64``. This treats `x` as
- ## unsigned.
- proc ze64*(x: int): int64 {.magic: "ZeIToI64", noSideEffect.}
- ## zero extends a smaller integer type to ``int64``. This treats `x` as
- ## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
- ## (This is the case on 64 bit processors.)
- proc toU8*(x: int): int8 {.magic: "ToU8", noSideEffect.}
- ## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
- ## from `x`.
- proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect.}
- ## treats `x` as unsigned and converts it to an ``int16`` by taking the last
- ## 16 bits from `x`.
- proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect.}
- ## treats `x` as unsigned and converts it to an ``int32`` by taking the
- ## last 32 bits from `x`.
- # integer calculations:
- proc `+`*(x: int): int {.magic: "UnaryPlusI", noSideEffect.}
- proc `+`*(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.}
- proc `+`*(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.}
- proc `+`*(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.}
- proc `+`*(x: int64): int64 {.magic: "UnaryPlusI", noSideEffect.}
- ## Unary `+` operator for an integer. Has no effect.
- proc `-`*(x: int): int {.magic: "UnaryMinusI", noSideEffect.}
- proc `-`*(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.}
- proc `-`*(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.}
- proc `-`*(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.}
- proc `-`*(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.}
- ## Unary `-` operator for an integer. Negates `x`.
- proc `not`*(x: int): int {.magic: "BitnotI", noSideEffect.}
- proc `not`*(x: int8): int8 {.magic: "BitnotI", noSideEffect.}
- proc `not`*(x: int16): int16 {.magic: "BitnotI", noSideEffect.}
- proc `not`*(x: int32): int32 {.magic: "BitnotI", noSideEffect.}
- ## computes the `bitwise complement` of the integer `x`.
- when defined(nimnomagic64):
- proc `not`*(x: int64): int64 {.magic: "BitnotI", noSideEffect.}
- else:
- proc `not`*(x: int64): int64 {.magic: "BitnotI64", noSideEffect.}
- proc `+`*(x, y: int): int {.magic: "AddI", noSideEffect.}
- proc `+`*(x, y: int8): int8 {.magic: "AddI", noSideEffect.}
- proc `+`*(x, y: int16): int16 {.magic: "AddI", noSideEffect.}
- proc `+`*(x, y: int32): int32 {.magic: "AddI", noSideEffect.}
- ## Binary `+` operator for an integer.
- when defined(nimnomagic64):
- proc `+`*(x, y: int64): int64 {.magic: "AddI", noSideEffect.}
- else:
- proc `+`*(x, y: int64): int64 {.magic: "AddI64", noSideEffect.}
- proc `-`*(x, y: int): int {.magic: "SubI", noSideEffect.}
- proc `-`*(x, y: int8): int8 {.magic: "SubI", noSideEffect.}
- proc `-`*(x, y: int16): int16 {.magic: "SubI", noSideEffect.}
- proc `-`*(x, y: int32): int32 {.magic: "SubI", noSideEffect.}
- ## Binary `-` operator for an integer.
- when defined(nimnomagic64):
- proc `-`*(x, y: int64): int64 {.magic: "SubI", noSideEffect.}
- else:
- proc `-`*(x, y: int64): int64 {.magic: "SubI64", noSideEffect.}
- proc `*`*(x, y: int): int {.magic: "MulI", noSideEffect.}
- proc `*`*(x, y: int8): int8 {.magic: "MulI", noSideEffect.}
- proc `*`*(x, y: int16): int16 {.magic: "MulI", noSideEffect.}
- proc `*`*(x, y: int32): int32 {.magic: "MulI", noSideEffect.}
- ## Binary `*` operator for an integer.
- when defined(nimnomagic64):
- proc `*`*(x, y: int64): int64 {.magic: "MulI", noSideEffect.}
- else:
- proc `*`*(x, y: int64): int64 {.magic: "MulI64", noSideEffect.}
- proc `div`*(x, y: int): int {.magic: "DivI", noSideEffect.}
- proc `div`*(x, y: int8): int8 {.magic: "DivI", noSideEffect.}
- proc `div`*(x, y: int16): int16 {.magic: "DivI", noSideEffect.}
- proc `div`*(x, y: int32): int32 {.magic: "DivI", noSideEffect.}
- ## computes the integer division. This is roughly the same as
- ## ``trunc(x/y)``.
- ##
- ## .. code-block:: Nim
- ## ( 1 div 2) == 0
- ## ( 2 div 2) == 1
- ## ( 3 div 2) == 1
- ## ( 7 div 3) == 2
- ## (-7 div 3) == -2
- ## ( 7 div -3) == -2
- ## (-7 div -3) == 2
- when defined(nimnomagic64):
- proc `div`*(x, y: int64): int64 {.magic: "DivI", noSideEffect.}
- else:
- proc `div`*(x, y: int64): int64 {.magic: "DivI64", noSideEffect.}
- proc `mod`*(x, y: int): int {.magic: "ModI", noSideEffect.}
- proc `mod`*(x, y: int8): int8 {.magic: "ModI", noSideEffect.}
- proc `mod`*(x, y: int16): int16 {.magic: "ModI", noSideEffect.}
- proc `mod`*(x, y: int32): int32 {.magic: "ModI", noSideEffect.}
- ## computes the integer modulo operation (remainder).
- ## This is the same as
- ## ``x - (x div y) * y``.
- ##
- ## .. code-block:: Nim
- ## ( 7 mod 5) == 2
- ## (-7 mod 5) == -2
- ## ( 7 mod -5) == 2
- ## (-7 mod -5) == -2
- when defined(nimnomagic64):
- proc `mod`*(x, y: int64): int64 {.magic: "ModI", noSideEffect.}
- else:
- proc `mod`*(x, y: int64): int64 {.magic: "ModI64", noSideEffect.}
- when defined(nimNewShiftOps):
- proc `shr`*(x: int, y: SomeInteger): int {.magic: "ShrI", noSideEffect.}
- proc `shr`*(x: int8, y: SomeInteger): int8 {.magic: "ShrI", noSideEffect.}
- proc `shr`*(x: int16, y: SomeInteger): int16 {.magic: "ShrI", noSideEffect.}
- proc `shr`*(x: int32, y: SomeInteger): int32 {.magic: "ShrI", noSideEffect.}
- proc `shr`*(x: int64, y: SomeInteger): int64 {.magic: "ShrI", noSideEffect.}
- ## computes the `shift right` operation of `x` and `y`, filling
- ## vacant bit positions with zeros.
- ##
- ## .. code-block:: Nim
- ## 0b0001_0000'i8 shr 2 == 0b0000_0100'i8
- ## 0b1000_0000'i8 shr 8 == 0b0000_0000'i8
- ## 0b0000_0001'i8 shr 1 == 0b0000_0000'i8
- proc `shl`*(x: int, y: SomeInteger): int {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x: int8, y: SomeInteger): int8 {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x: int16, y: SomeInteger): int16 {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x: int32, y: SomeInteger): int32 {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x: int64, y: SomeInteger): int64 {.magic: "ShlI", noSideEffect.}
- ## computes the `shift left` operation of `x` and `y`.
- ##
- ## .. code-block:: Nim
- ## 1'i32 shl 4 == 0x0000_0010
- ## 1'i64 shl 4 == 0x0000_0000_0000_0010
- else:
- proc `shr`*(x, y: int): int {.magic: "ShrI", noSideEffect.}
- proc `shr`*(x, y: int8): int8 {.magic: "ShrI", noSideEffect.}
- proc `shr`*(x, y: int16): int16 {.magic: "ShrI", noSideEffect.}
- proc `shr`*(x, y: int32): int32 {.magic: "ShrI", noSideEffect.}
- proc `shr`*(x, y: int64): int64 {.magic: "ShrI", noSideEffect.}
- proc `shl`*(x, y: int): int {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x, y: int8): int8 {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x, y: int16): int16 {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x, y: int32): int32 {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x, y: int64): int64 {.magic: "ShlI", noSideEffect.}
- when defined(nimAshr):
- proc ashr*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.}
- proc ashr*(x: int8, y: SomeInteger): int8 {.magic: "AshrI", noSideEffect.}
- proc ashr*(x: int16, y: SomeInteger): int16 {.magic: "AshrI", noSideEffect.}
- proc ashr*(x: int32, y: SomeInteger): int32 {.magic: "AshrI", noSideEffect.}
- proc ashr*(x: int64, y: SomeInteger): int64 {.magic: "AshrI", noSideEffect.}
- ## Shifts right by pushing copies of the leftmost bit in from the left,
- ## and let the rightmost bits fall off.
- ##
- ## .. code-block:: Nim
- ## 0b0001_0000'i8 shr 2 == 0b0000_0100'i8
- ## 0b1000_0000'i8 shr 8 == 0b1111_1111'i8
- ## 0b1000_0000'i8 shr 1 == 0b1100_0000'i8
- else:
- # used for bootstrapping the compiler
- proc ashr*[T](x: T, y: SomeInteger): T = discard
- proc `and`*(x, y: int): int {.magic: "BitandI", noSideEffect.}
- proc `and`*(x, y: int8): int8 {.magic: "BitandI", noSideEffect.}
- proc `and`*(x, y: int16): int16 {.magic: "BitandI", noSideEffect.}
- proc `and`*(x, y: int32): int32 {.magic: "BitandI", noSideEffect.}
- proc `and`*(x, y: int64): int64 {.magic: "BitandI", noSideEffect.}
- ## computes the `bitwise and` of numbers `x` and `y`.
- ##
- ## .. code-block:: Nim
- ## (0xffff'i16 and 0x0010'i16) == 0x0010
- proc `or`*(x, y: int): int {.magic: "BitorI", noSideEffect.}
- proc `or`*(x, y: int8): int8 {.magic: "BitorI", noSideEffect.}
- proc `or`*(x, y: int16): int16 {.magic: "BitorI", noSideEffect.}
- proc `or`*(x, y: int32): int32 {.magic: "BitorI", noSideEffect.}
- proc `or`*(x, y: int64): int64 {.magic: "BitorI", noSideEffect.}
- ## computes the `bitwise or` of numbers `x` and `y`.
- ##
- ## .. code-block:: Nim
- ## (0x0005'i16 or 0x0010'i16) == 0x0015
- proc `xor`*(x, y: int): int {.magic: "BitxorI", noSideEffect.}
- proc `xor`*(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.}
- proc `xor`*(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.}
- proc `xor`*(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.}
- proc `xor`*(x, y: int64): int64 {.magic: "BitxorI", noSideEffect.}
- ## computes the `bitwise xor` of numbers `x` and `y`.
- ##
- ## .. code-block:: Nim
- ## (0x1011'i16 xor 0x0101'i16) == 0x1110
- proc `==`*(x, y: int): bool {.magic: "EqI", noSideEffect.}
- proc `==`*(x, y: int8): bool {.magic: "EqI", noSideEffect.}
- proc `==`*(x, y: int16): bool {.magic: "EqI", noSideEffect.}
- proc `==`*(x, y: int32): bool {.magic: "EqI", noSideEffect.}
- proc `==`*(x, y: int64): bool {.magic: "EqI", noSideEffect.}
- ## Compares two integers for equality.
- proc `<=`*(x, y: int): bool {.magic: "LeI", noSideEffect.}
- proc `<=`*(x, y: int8): bool {.magic: "LeI", noSideEffect.}
- proc `<=`*(x, y: int16): bool {.magic: "LeI", noSideEffect.}
- proc `<=`*(x, y: int32): bool {.magic: "LeI", noSideEffect.}
- proc `<=`*(x, y: int64): bool {.magic: "LeI", noSideEffect.}
- ## Returns true iff `x` is less than or equal to `y`.
- proc `<`*(x, y: int): bool {.magic: "LtI", noSideEffect.}
- proc `<`*(x, y: int8): bool {.magic: "LtI", noSideEffect.}
- proc `<`*(x, y: int16): bool {.magic: "LtI", noSideEffect.}
- proc `<`*(x, y: int32): bool {.magic: "LtI", noSideEffect.}
- proc `<`*(x, y: int64): bool {.magic: "LtI", noSideEffect.}
- ## Returns true iff `x` is less than `y`.
- type
- IntMax32 = int|int8|int16|int32
- proc `+%`*(x, y: IntMax32): IntMax32 {.magic: "AddU", noSideEffect.}
- proc `+%`*(x, y: int64): int64 {.magic: "AddU", noSideEffect.}
- ## treats `x` and `y` as unsigned and adds them. The result is truncated to
- ## fit into the result. This implements modulo arithmetic. No overflow
- ## errors are possible.
- proc `-%`*(x, y: IntMax32): IntMax32 {.magic: "SubU", noSideEffect.}
- proc `-%`*(x, y: int64): int64 {.magic: "SubU", noSideEffect.}
- ## treats `x` and `y` as unsigned and subtracts them. The result is
- ## truncated to fit into the result. This implements modulo arithmetic.
- ## No overflow errors are possible.
- proc `*%`*(x, y: IntMax32): IntMax32 {.magic: "MulU", noSideEffect.}
- proc `*%`*(x, y: int64): int64 {.magic: "MulU", noSideEffect.}
- ## treats `x` and `y` as unsigned and multiplies them. The result is
- ## truncated to fit into the result. This implements modulo arithmetic.
- ## No overflow errors are possible.
- proc `/%`*(x, y: IntMax32): IntMax32 {.magic: "DivU", noSideEffect.}
- proc `/%`*(x, y: int64): int64 {.magic: "DivU", noSideEffect.}
- ## treats `x` and `y` as unsigned and divides them. The result is
- ## truncated to fit into the result. This implements modulo arithmetic.
- ## No overflow errors are possible.
- proc `%%`*(x, y: IntMax32): IntMax32 {.magic: "ModU", noSideEffect.}
- proc `%%`*(x, y: int64): int64 {.magic: "ModU", noSideEffect.}
- ## treats `x` and `y` as unsigned and compute the modulo of `x` and `y`.
- ## The result is truncated to fit into the result.
- ## This implements modulo arithmetic.
- ## No overflow errors are possible.
- proc `<=%`*(x, y: IntMax32): bool {.magic: "LeU", noSideEffect.}
- proc `<=%`*(x, y: int64): bool {.magic: "LeU64", noSideEffect.}
- ## treats `x` and `y` as unsigned and compares them.
- ## Returns true iff ``unsigned(x) <= unsigned(y)``.
- proc `<%`*(x, y: IntMax32): bool {.magic: "LtU", noSideEffect.}
- proc `<%`*(x, y: int64): bool {.magic: "LtU64", noSideEffect.}
- ## treats `x` and `y` as unsigned and compares them.
- ## Returns true iff ``unsigned(x) < unsigned(y)``.
- # unsigned integer operations:
- proc `not`*[T: SomeUnsignedInt](x: T): T {.magic: "BitnotI", noSideEffect.}
- ## computes the `bitwise complement` of the integer `x`.
- when defined(nimNewShiftOps):
- proc `shr`*[T: SomeUnsignedInt](x: T, y: SomeInteger): T {.magic: "ShrI", noSideEffect.}
- ## computes the `shift right` operation of `x` and `y`.
- proc `shl`*[T: SomeUnsignedInt](x: T, y: SomeInteger): T {.magic: "ShlI", noSideEffect.}
- ## computes the `shift left` operation of `x` and `y`.
- else:
- proc `shr`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ShrI", noSideEffect.}
- ## computes the `shift right` operation of `x` and `y`.
- proc `shl`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ShlI", noSideEffect.}
- ## computes the `shift left` operation of `x` and `y`.
- proc `and`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitandI", noSideEffect.}
- ## computes the `bitwise and` of numbers `x` and `y`.
- proc `or`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitorI", noSideEffect.}
- ## computes the `bitwise or` of numbers `x` and `y`.
- proc `xor`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitxorI", noSideEffect.}
- ## computes the `bitwise xor` of numbers `x` and `y`.
- proc `==`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "EqI", noSideEffect.}
- ## Compares two unsigned integers for equality.
- proc `+`*[T: SomeUnsignedInt](x, y: T): T {.magic: "AddU", noSideEffect.}
- ## Binary `+` operator for unsigned integers.
- proc `-`*[T: SomeUnsignedInt](x, y: T): T {.magic: "SubU", noSideEffect.}
- ## Binary `-` operator for unsigned integers.
- proc `*`*[T: SomeUnsignedInt](x, y: T): T {.magic: "MulU", noSideEffect.}
- ## Binary `*` operator for unsigned integers.
- proc `div`*[T: SomeUnsignedInt](x, y: T): T {.magic: "DivU", noSideEffect.}
- ## computes the integer division. This is roughly the same as
- ## ``trunc(x/y)``.
- ##
- ## .. code-block:: Nim
- ## (7 div 5) == 1
- proc `mod`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ModU", noSideEffect.}
- ## computes the integer modulo operation (remainder).
- ## This is the same as
- ## ``x - (x div y) * y``.
- ##
- ## .. code-block:: Nim
- ## (7 mod 5) == 2
- proc `<=`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "LeU", noSideEffect.}
- ## Returns true iff ``x <= y``.
- proc `<`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "LtU", noSideEffect.}
- ## Returns true iff ``unsigned(x) < unsigned(y)``.
- # floating point operations:
- proc `+`*(x: float32): float32 {.magic: "UnaryPlusF64", noSideEffect.}
- proc `-`*(x: float32): float32 {.magic: "UnaryMinusF64", noSideEffect.}
- proc `+`*(x, y: float32): float32 {.magic: "AddF64", noSideEffect.}
- proc `-`*(x, y: float32): float32 {.magic: "SubF64", noSideEffect.}
- proc `*`*(x, y: float32): float32 {.magic: "MulF64", noSideEffect.}
- proc `/`*(x, y: float32): float32 {.magic: "DivF64", noSideEffect.}
- proc `+`*(x: float): float {.magic: "UnaryPlusF64", noSideEffect.}
- proc `-`*(x: float): float {.magic: "UnaryMinusF64", noSideEffect.}
- proc `+`*(x, y: float): float {.magic: "AddF64", noSideEffect.}
- proc `-`*(x, y: float): float {.magic: "SubF64", noSideEffect.}
- proc `*`*(x, y: float): float {.magic: "MulF64", noSideEffect.}
- proc `/`*(x, y: float): float {.magic: "DivF64", noSideEffect.}
- ## computes the floating point division
- proc `==`*(x, y: float32): bool {.magic: "EqF64", noSideEffect.}
- proc `<=`*(x, y: float32): bool {.magic: "LeF64", noSideEffect.}
- proc `<` *(x, y: float32): bool {.magic: "LtF64", noSideEffect.}
- proc `==`*(x, y: float): bool {.magic: "EqF64", noSideEffect.}
- proc `<=`*(x, y: float): bool {.magic: "LeF64", noSideEffect.}
- proc `<`*(x, y: float): bool {.magic: "LtF64", noSideEffect.}
- # set operators
- proc `*`*[T](x, y: set[T]): set[T] {.magic: "MulSet", noSideEffect.}
- ## This operator computes the intersection of two sets.
- proc `+`*[T](x, y: set[T]): set[T] {.magic: "PlusSet", noSideEffect.}
- ## This operator computes the union of two sets.
- proc `-`*[T](x, y: set[T]): set[T] {.magic: "MinusSet", noSideEffect.}
- ## This operator computes the difference of two sets.
- proc contains*[T](x: set[T], y: T): bool {.magic: "InSet", noSideEffect.}
- ## One should overload this proc if one wants to overload the ``in`` operator.
- ## The parameters are in reverse order! ``a in b`` is a template for
- ## ``contains(b, a)``.
- ## This is because the unification algorithm that Nim uses for overload
- ## resolution works from left to right.
- ## But for the ``in`` operator that would be the wrong direction for this
- ## piece of code:
- ##
- ## .. code-block:: Nim
- ## var s: set[range['a'..'z']] = {'a'..'c'}
- ## writeLine(stdout, 'b' in s)
- ##
- ## If ``in`` had been declared as ``[T](elem: T, s: set[T])`` then ``T`` would
- ## have been bound to ``char``. But ``s`` is not compatible to type
- ## ``set[char]``! The solution is to bind ``T`` to ``range['a'..'z']``. This
- ## is achieved by reversing the parameters for ``contains``; ``in`` then
- ## passes its arguments in reverse order.
- proc contains*[U, V, W](s: HSlice[U, V], value: W): bool {.noSideEffect, inline.} =
- ## Checks if `value` is within the range of `s`; returns true iff
- ## `value >= s.a and value <= s.b`
- ##
- ## .. code-block:: Nim
- ## assert((1..3).contains(1) == true)
- ## assert((1..3).contains(2) == true)
- ## assert((1..3).contains(4) == false)
- result = s.a <= value and value <= s.b
- template `in`*(x, y: untyped): untyped {.dirty.} = contains(y, x)
- ## Sugar for contains
- ##
- ## .. code-block:: Nim
- ## assert(1 in (1..3) == true)
- ## assert(5 in (1..3) == false)
- template `notin`*(x, y: untyped): untyped {.dirty.} = not contains(y, x)
- ## Sugar for not containing
- ##
- ## .. code-block:: Nim
- ## assert(1 notin (1..3) == false)
- ## assert(5 notin (1..3) == true)
- proc `is`*[T, S](x: T, y: S): bool {.magic: "Is", noSideEffect.}
- ## Checks if T is of the same type as S
- ##
- ## .. code-block:: Nim
- ## proc test[T](a: T): int =
- ## when (T is int):
- ## return a
- ## else:
- ## return 0
- ##
- ## assert(test[int](3) == 3)
- ## assert(test[string]("xyz") == 0)
- template `isnot`*(x, y: untyped): untyped = not (x is y)
- ## Negated version of `is`. Equivalent to ``not(x is y)``.
- proc new*[T](a: var ref T) {.magic: "New", noSideEffect.}
- ## creates a new object of type ``T`` and returns a safe (traced)
- ## reference to it in ``a``.
- proc new*(t: typedesc): auto =
- ## creates a new object of type ``T`` and returns a safe (traced)
- ## reference to it as result value.
- ##
- ## When ``T`` is a ref type then the resulting type will be ``T``,
- ## otherwise it will be ``ref T``.
- when (t is ref):
- var r: t
- else:
- var r: ref t
- new(r)
- return r
- proc `of`*[T, S](x: typeDesc[T], y: typeDesc[S]): bool {.magic: "Of", noSideEffect.}
- proc `of`*[T, S](x: T, y: typeDesc[S]): bool {.magic: "Of", noSideEffect.}
- proc `of`*[T, S](x: T, y: S): bool {.magic: "Of", noSideEffect.}
- ## Checks if `x` has a type of `y`
- ##
- ## .. code-block:: Nim
- ## assert(FloatingPointError of Exception)
- ## assert(DivByZeroError of Exception)
- proc cmp*[T](x, y: T): int {.procvar.} =
- ## Generic compare proc. Returns a value < 0 iff x < y, a value > 0 iff x > y
- ## and 0 iff x == y. This is useful for writing generic algorithms without
- ## performance loss. This generic implementation uses the `==` and `<`
- ## operators.
- ##
- ## .. code-block:: Nim
- ## import algorithm
- ## echo sorted(@[4,2,6,5,8,7], cmp[int])
- if x == y: return 0
- if x < y: return -1
- return 1
- proc cmp*(x, y: string): int {.noSideEffect, procvar.}
- ## Compare proc for strings. More efficient than the generic version.
- ## **Note**: The precise result values depend on the used C runtime library and
- ## can differ between operating systems!
- proc `@`* [IDX, T](a: array[IDX, T]): seq[T] {.
- magic: "ArrToSeq", nosideeffect.}
- ## turns an array into a sequence. This most often useful for constructing
- ## sequences with the array constructor: ``@[1, 2, 3]`` has the type
- ## ``seq[int]``, while ``[1, 2, 3]`` has the type ``array[0..2, int]``.
- proc setLen*[T](s: var seq[T], newlen: Natural) {.
- magic: "SetLengthSeq", noSideEffect.}
- ## sets the length of `s` to `newlen`.
- ## ``T`` may be any sequence type.
- ## If the current length is greater than the new length,
- ## ``s`` will be truncated.
- proc setLen*(s: var string, newlen: Natural) {.
- magic: "SetLengthStr", noSideEffect.}
- ## sets the length of `s` to `newlen`.
- ## If the current length is greater than the new length,
- ## ``s`` will be truncated.
- ##
- ## .. code-block:: Nim
- ## var myS = "Nim is great!!"
- ## myS.setLen(3)
- ## echo myS, " is fantastic!!"
- proc newString*(len: Natural): string {.
- magic: "NewString", importc: "mnewString", noSideEffect.}
- ## returns a new string of length ``len`` but with uninitialized
- ## content. One needs to fill the string character after character
- ## with the index operator ``s[i]``. This procedure exists only for
- ## optimization purposes; the same effect can be achieved with the
- ## ``&`` operator or with ``add``.
- proc newStringOfCap*(cap: Natural): string {.
- magic: "NewStringOfCap", importc: "rawNewString", noSideEffect.}
- ## returns a new string of length ``0`` but with capacity `cap`.This
- ## procedure exists only for optimization purposes; the same effect can
- ## be achieved with the ``&`` operator or with ``add``.
- proc `&`*(x: string, y: char): string {.
- magic: "ConStrStr", noSideEffect, merge.}
- ## Concatenates `x` with `y`
- ##
- ## .. code-block:: Nim
- ## assert("ab" & 'c' == "abc")
- proc `&`*(x, y: char): string {.
- magic: "ConStrStr", noSideEffect, merge.}
- ## Concatenates `x` and `y` into a string
- ##
- ## .. code-block:: Nim
- ## assert('a' & 'b' == "ab")
- proc `&`*(x, y: string): string {.
- magic: "ConStrStr", noSideEffect, merge.}
- ## Concatenates `x` and `y`
- ##
- ## .. code-block:: Nim
- ## assert("ab" & "cd" == "abcd")
- proc `&`*(x: char, y: string): string {.
- magic: "ConStrStr", noSideEffect, merge.}
- ## Concatenates `x` with `y`
- ##
- ## .. code-block:: Nim
- ## assert('a' & "bc" == "abc")
- # implementation note: These must all have the same magic value "ConStrStr" so
- # that the merge optimization works properly.
- proc add*(x: var string, y: char) {.magic: "AppendStrCh", noSideEffect.}
- ## Appends `y` to `x` in place
- ##
- ## .. code-block:: Nim
- ## var tmp = ""
- ## tmp.add('a')
- ## tmp.add('b')
- ## assert(tmp == "ab")
- proc add*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
- ## Concatenates `x` and `y` in place
- ##
- ## .. code-block:: Nim
- ## var tmp = ""
- ## tmp.add("ab")
- ## tmp.add("cd")
- ## assert(tmp == "abcd")
- type
- Endianness* = enum ## is a type describing the endianness of a processor.
- littleEndian, bigEndian
- const
- isMainModule* {.magic: "IsMainModule".}: bool = false
- ## is true only when accessed in the main module. This works thanks to
- ## compiler magic. It is useful to embed testing code in a module.
- CompileDate* {.magic: "CompileDate"}: string = "0000-00-00"
- ## is the date (in UTC) of compilation as a string of the form
- ## ``YYYY-MM-DD``. This works thanks to compiler magic.
- CompileTime* {.magic: "CompileTime"}: string = "00:00:00"
- ## is the time (in UTC) of compilation as a string of the form
- ## ``HH:MM:SS``. This works thanks to compiler magic.
- cpuEndian* {.magic: "CpuEndian"}: Endianness = littleEndian
- ## is the endianness of the target CPU. This is a valuable piece of
- ## information for low-level code only. This works thanks to compiler
- ## magic.
- hostOS* {.magic: "HostOS".}: string = ""
- ## a string that describes the host operating system. Possible values:
- ## "windows", "macosx", "linux", "netbsd", "freebsd", "openbsd", "solaris",
- ## "aix", "haiku", "standalone".
- hostCPU* {.magic: "HostCPU".}: string = ""
- ## a string that describes the host CPU. Possible values:
- ## "i386", "alpha", "powerpc", "powerpc64", "powerpc64el", "sparc",
- ## "amd64", "mips", "mipsel", "arm", "arm64", "mips64", "mips64el",
- ## "riscv64".
- seqShallowFlag = low(int)
- strlitFlag = 1 shl (sizeof(int)*8 - 2) # later versions of the codegen \
- # emit this flag
- # for string literals, it allows for some optimizations.
- {.push profiler: off.}
- when defined(nimKnowsNimvm):
- let nimvm* {.magic: "Nimvm".}: bool = false
- ## may be used only in "when" expression.
- ## It is true in Nim VM context and false otherwise
- else:
- const nimvm*: bool = false
- {.pop.}
- proc compileOption*(option: string): bool {.
- magic: "CompileOption", noSideEffect.}
- ## can be used to determine an on|off compile-time option. Example:
- ##
- ## .. code-block:: nim
- ## when compileOption("floatchecks"):
- ## echo "compiled with floating point NaN and Inf checks"
- proc compileOption*(option, arg: string): bool {.
- magic: "CompileOptionArg", noSideEffect.}
- ## can be used to determine an enum compile-time option. Example:
- ##
- ## .. code-block:: nim
- ## when compileOption("opt", "size") and compileOption("gc", "boehm"):
- ## echo "compiled with optimization for size and uses Boehm's GC"
- const
- hasThreadSupport = compileOption("threads") and not defined(nimscript)
- hasSharedHeap = defined(boehmgc) or defined(gogc) # don't share heaps; every thread has its own
- taintMode = compileOption("taintmode")
- nimEnableCovariance* = defined(nimEnableCovariance) # or true
- when hasThreadSupport and defined(tcc) and not compileOption("tlsEmulation"):
- # tcc doesn't support TLS
- {.error: "``--tlsEmulation:on`` must be used when using threads with tcc backend".}
- when defined(boehmgc):
- when defined(windows):
- const boehmLib = "boehmgc.dll"
- elif defined(macosx):
- const boehmLib = "libgc.dylib"
- else:
- const boehmLib = "libgc.so.1"
- {.pragma: boehmGC, noconv, dynlib: boehmLib.}
- when taintMode:
- type TaintedString* = distinct string ## a distinct string type that
- ## is `tainted`:idx:, see `taint mode
- ## <manual.html#taint-mode>`_ for
- ## details. It is an alias for
- ## ``string`` if the taint mode is not
- ## turned on.
- proc len*(s: TaintedString): int {.borrow.}
- else:
- type TaintedString* = string ## a distinct string type that
- ## is `tainted`:idx:, see `taint mode
- ## <manual.html#taint-mode>`_ for
- ## details. It is an alias for
- ## ``string`` if the taint mode is not
- ## turned on.
- when defined(profiler):
- proc nimProfile() {.compilerProc, noinline.}
- when hasThreadSupport:
- {.pragma: rtlThreadVar, threadvar.}
- else:
- {.pragma: rtlThreadVar.}
- const
- QuitSuccess* = 0
- ## is the value that should be passed to `quit <#quit>`_ to indicate
- ## success.
- QuitFailure* = 1
- ## is the value that should be passed to `quit <#quit>`_ to indicate
- ## failure.
- when defined(nodejs):
- var programResult* {.importc: "process.exitCode".}: int
- programResult = 0
- else:
- var programResult* {.exportc: "nim_program_result".}: int
- ## modify this variable to specify the exit code of the program
- ## under normal circumstances. When the program is terminated
- ## prematurely using ``quit``, this value is ignored.
- when defined(nimdoc):
- proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit", noreturn.}
- ## Stops the program immediately with an exit code.
- ##
- ## Before stopping the program the "quit procedures" are called in the
- ## opposite order they were added with `addQuitProc <#addQuitProc>`_.
- ## ``quit`` never returns and ignores any exception that may have been raised
- ## by the quit procedures. It does *not* call the garbage collector to free
- ## all the memory, unless a quit procedure calls `GC_fullCollect
- ## <#GC_fullCollect>`_.
- ##
- ## The proc ``quit(QuitSuccess)`` is called implicitly when your nim
- ## program finishes without incident for platforms where this is the
- ## expected behavior. A raised unhandled exception is
- ## equivalent to calling ``quit(QuitFailure)``.
- ##
- ## Note that this is a *runtime* call and using ``quit`` inside a macro won't
- ## have any compile time effect. If you need to stop the compiler inside a
- ## macro, use the `error <manual.html#pragmas-error-pragma>`_ or `fatal
- ## <manual.html#pragmas-fatal-pragma>`_ pragmas.
- elif defined(genode):
- include genode/env
- var systemEnv {.exportc: runtimeEnvSym.}: GenodeEnvPtr
- type GenodeEnv* = GenodeEnvPtr
- ## Opaque type representing Genode environment.
- proc quit*(env: GenodeEnv; errorcode: int) {.magic: "Exit", noreturn,
- importcpp: "#->parent().exit(@); Genode::sleep_forever()", header: "<base/sleep.h>".}
- proc quit*(errorcode: int = QuitSuccess) =
- systemEnv.quit(errorCode)
- elif defined(nodejs):
- proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit",
- importc: "process.exit", noreturn.}
- else:
- proc quit*(errorcode: int = QuitSuccess) {.
- magic: "Exit", importc: "exit", header: "<stdlib.h>", noreturn.}
- template sysAssert(cond: bool, msg: string) =
- when defined(useSysAssert):
- if not cond:
- echo "[SYSASSERT] ", msg
- quit 1
- const hasAlloc = (hostOS != "standalone" or not defined(nogc)) and not defined(nimscript)
- when not defined(JS) and not defined(nimscript) and hostOS != "standalone":
- include "system/cgprocs"
- when not defined(JS) and not defined(nimscript) and hasAlloc and not defined(gcDestructors):
- proc addChar(s: NimString, c: char): NimString {.compilerProc, benign.}
- when defined(gcDestructors):
- proc add*[T](x: var seq[T], y: sink T) {.magic: "AppendSeqElem", noSideEffect.} =
- let xl = x.len
- setLen(x, xl + 1)
- x[xl] = y
- else:
- proc add*[T](x: var seq[T], y: T) {.magic: "AppendSeqElem", noSideEffect.}
- proc add*[T](x: var seq[T], y: openArray[T]) {.noSideEffect.} =
- ## Generic proc for adding a data item `y` to a container `x`.
- ## For containers that have an order, `add` means *append*. New generic
- ## containers should also call their adding proc `add` for consistency.
- ## Generic code becomes much easier to write if the Nim naming scheme is
- ## respected.
- ##
- ## .. code-block:: nim
- ## var s: seq[string] = @["test2","test2"]
- ## s.add("test") #=> @[test2, test2, test]
- let xl = x.len
- setLen(x, xl + y.len)
- for i in 0..high(y): x[xl+i] = y[i]
- proc del*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
- ## deletes the item at index `i` by putting ``x[high(x)]`` into position `i`.
- ## This is an O(1) operation.
- ##
- ## .. code-block:: nim
- ## var i = @[1, 2, 3, 4, 5]
- ## i.del(2) #=> @[1, 2, 5, 4]
- let xl = x.len - 1
- shallowCopy(x[i], x[xl])
- setLen(x, xl)
- proc delete*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
- ## deletes the item at index `i` by moving ``x[i+1..]`` by one position.
- ## This is an O(n) operation.
- ##
- ## .. code-block:: nim
- ## var i = @[1, 2, 3, 4, 5]
- ## i.delete(2) #=> @[1, 2, 4, 5]
- template defaultImpl =
- let xl = x.len
- for j in i.int..xl-2: shallowCopy(x[j], x[j+1])
- setLen(x, xl-1)
- when nimvm:
- defaultImpl()
- else:
- when defined(js):
- {.emit: "`x`.splice(`i`, 1);".}
- else:
- defaultImpl()
- proc insert*[T](x: var seq[T], item: T, i = 0.Natural) {.noSideEffect.} =
- ## inserts `item` into `x` at position `i`.
- ##
- ## .. code-block:: nim
- ## var i = @[1, 2, 3, 4, 5]
- ## i.insert(2, 4) #=> @[1, 2, 3, 4, 2, 5]
- template defaultImpl =
- let xl = x.len
- setLen(x, xl+1)
- var j = xl-1
- while j >= i:
- shallowCopy(x[j+1], x[j])
- dec(j)
- when nimvm:
- defaultImpl()
- else:
- when defined(js):
- var it : T
- {.emit: "`x`.splice(`i`, 0, `it`);".}
- else:
- defaultImpl()
- x[i] = item
- proc repr*[T](x: T): string {.magic: "Repr", noSideEffect.}
- ## takes any Nim variable and returns its string representation. It
- ## works even for complex data graphs with cycles. This is a great
- ## debugging tool.
- ##
- ## .. code-block:: nim
- ## var s: seq[string] = @["test2", "test2"]
- ## var i = @[1, 2, 3, 4, 5]
- ## repr(s) #=> 0x1055eb050[0x1055ec050"test2", 0x1055ec078"test2"]
- ## repr(i) #=> 0x1055ed050[1, 2, 3, 4, 5]
- type
- ByteAddress* = int
- ## is the signed integer type that should be used for converting
- ## pointers to integer addresses for readability.
- BiggestInt* = int64
- ## is an alias for the biggest signed integer type the Nim compiler
- ## supports. Currently this is ``int64``, but it is platform-dependant
- ## in general.
- BiggestFloat* = float64
- ## is an alias for the biggest floating point type the Nim
- ## compiler supports. Currently this is ``float64``, but it is
- ## platform-dependant in general.
- when defined(JS):
- type BiggestUInt* = uint32
- ## is an alias for the biggest unsigned integer type the Nim compiler
- ## supports. Currently this is ``uint32`` for JS and ``uint64`` for other
- ## targets.
- else:
- type BiggestUInt* = uint64
- ## is an alias for the biggest unsigned integer type the Nim compiler
- ## supports. Currently this is ``uint32`` for JS and ``uint64`` for other
- ## targets.
- when defined(windows):
- type
- clong* {.importc: "long", nodecl.} = int32
- ## This is the same as the type ``long`` in *C*.
- culong* {.importc: "unsigned long", nodecl.} = uint32
- ## This is the same as the type ``unsigned long`` in *C*.
- else:
- type
- clong* {.importc: "long", nodecl.} = int
- ## This is the same as the type ``long`` in *C*.
- culong* {.importc: "unsigned long", nodecl.} = uint
- ## This is the same as the type ``unsigned long`` in *C*.
- type # these work for most platforms:
- cchar* {.importc: "char", nodecl.} = char
- ## This is the same as the type ``char`` in *C*.
- cschar* {.importc: "signed char", nodecl.} = int8
- ## This is the same as the type ``signed char`` in *C*.
- cshort* {.importc: "short", nodecl.} = int16
- ## This is the same as the type ``short`` in *C*.
- cint* {.importc: "int", nodecl.} = int32
- ## This is the same as the type ``int`` in *C*.
- csize* {.importc: "size_t", nodecl.} = int
- ## This is the same as the type ``size_t`` in *C*.
- clonglong* {.importc: "long long", nodecl.} = int64
- ## This is the same as the type ``long long`` in *C*.
- cfloat* {.importc: "float", nodecl.} = float32
- ## This is the same as the type ``float`` in *C*.
- cdouble* {.importc: "double", nodecl.} = float64
- ## This is the same as the type ``double`` in *C*.
- clongdouble* {.importc: "long double", nodecl.} = BiggestFloat
- ## This is the same as the type ``long double`` in *C*.
- ## This C type is not supported by Nim's code generator.
- cuchar* {.importc: "unsigned char", nodecl.} = char
- ## This is the same as the type ``unsigned char`` in *C*.
- cushort* {.importc: "unsigned short", nodecl.} = uint16
- ## This is the same as the type ``unsigned short`` in *C*.
- cuint* {.importc: "unsigned int", nodecl.} = uint32
- ## This is the same as the type ``unsigned int`` in *C*.
- culonglong* {.importc: "unsigned long long", nodecl.} = uint64
- ## This is the same as the type ``unsigned long long`` in *C*.
- cstringArray* {.importc: "char**", nodecl.} = ptr UncheckedArray[cstring]
- ## This is binary compatible to the type ``char**`` in *C*. The array's
- ## high value is large enough to disable bounds checking in practice.
- ## Use `cstringArrayToSeq` to convert it into a ``seq[string]``.
- PFloat32* = ptr float32 ## an alias for ``ptr float32``
- PFloat64* = ptr float64 ## an alias for ``ptr float64``
- PInt64* = ptr int64 ## an alias for ``ptr int64``
- PInt32* = ptr int32 ## an alias for ``ptr int32``
- proc toFloat*(i: int): float {.
- magic: "ToFloat", noSideEffect, importc: "toFloat".}
- ## converts an integer `i` into a ``float``. If the conversion
- ## fails, `ValueError` is raised. However, on most platforms the
- ## conversion cannot fail.
- proc toBiggestFloat*(i: BiggestInt): BiggestFloat {.
- magic: "ToBiggestFloat", noSideEffect, importc: "toBiggestFloat".}
- ## converts an biggestint `i` into a ``biggestfloat``. If the conversion
- ## fails, `ValueError` is raised. However, on most platforms the
- ## conversion cannot fail.
- proc toInt*(f: float): int {.
- magic: "ToInt", noSideEffect, importc: "toInt".}
- ## converts a floating point number `f` into an ``int``. Conversion
- ## rounds `f` if it does not contain an integer value. If the conversion
- ## fails (because `f` is infinite for example), `ValueError` is raised.
- proc toBiggestInt*(f: BiggestFloat): BiggestInt {.
- magic: "ToBiggestInt", noSideEffect, importc: "toBiggestInt".}
- ## converts a biggestfloat `f` into a ``biggestint``. Conversion
- ## rounds `f` if it does not contain an integer value. If the conversion
- ## fails (because `f` is infinite for example), `ValueError` is raised.
- proc addQuitProc*(quitProc: proc() {.noconv.}) {.
- importc: "atexit", header: "<stdlib.h>".}
- ## Adds/registers a quit procedure.
- ##
- ## Each call to ``addQuitProc`` registers another quit procedure. Up to 30
- ## procedures can be registered. They are executed on a last-in, first-out
- ## basis (that is, the last function registered is the first to be executed).
- ## ``addQuitProc`` raises an EOutOfIndex exception if ``quitProc`` cannot be
- ## registered.
- # Support for addQuitProc() is done by Ansi C's facilities here.
- # In case of an unhandled exeption the exit handlers should
- # not be called explicitly! The user may decide to do this manually though.
- when not defined(nimscript) and not defined(JS):
- proc zeroMem*(p: pointer, size: Natural) {.inline, benign.}
- ## overwrites the contents of the memory at ``p`` with the value 0.
- ## Exactly ``size`` bytes will be overwritten. Like any procedure
- ## dealing with raw memory this is *unsafe*.
- proc copyMem*(dest, source: pointer, size: Natural) {.inline, benign,
- tags: [], locks: 0.}
- ## copies the contents from the memory at ``source`` to the memory
- ## at ``dest``. Exactly ``size`` bytes will be copied. The memory
- ## regions may not overlap. Like any procedure dealing with raw
- ## memory this is *unsafe*.
- proc moveMem*(dest, source: pointer, size: Natural) {.inline, benign,
- tags: [], locks: 0.}
- ## copies the contents from the memory at ``source`` to the memory
- ## at ``dest``. Exactly ``size`` bytes will be copied. The memory
- ## regions may overlap, ``moveMem`` handles this case appropriately
- ## and is thus somewhat more safe than ``copyMem``. Like any procedure
- ## dealing with raw memory this is still *unsafe*, though.
- proc equalMem*(a, b: pointer, size: Natural): bool {.inline, noSideEffect, tags: [], locks: 0.}
- ## compares the memory blocks ``a`` and ``b``. ``size`` bytes will
- ## be compared. If the blocks are equal, true is returned, false
- ## otherwise. Like any procedure dealing with raw memory this is
- ## *unsafe*.
- when not defined(nimscript):
- when hasAlloc:
- proc alloc*(size: Natural): pointer {.noconv, rtl, tags: [], benign.}
- ## allocates a new memory block with at least ``size`` bytes. The
- ## block has to be freed with ``realloc(block, 0)`` or
- ## ``dealloc(block)``. The block is not initialized, so reading
- ## from it before writing to it is undefined behaviour!
- ## The allocated memory belongs to its allocating thread!
- ## Use `allocShared` to allocate from a shared heap.
- proc createU*(T: typedesc, size = 1.Positive): ptr T {.inline, benign.} =
- ## allocates a new memory block with at least ``T.sizeof * size``
- ## bytes. The block has to be freed with ``resize(block, 0)`` or
- ## ``dealloc(block)``. The block is not initialized, so reading
- ## from it before writing to it is undefined behaviour!
- ## The allocated memory belongs to its allocating thread!
- ## Use `createSharedU` to allocate from a shared heap.
- cast[ptr T](alloc(T.sizeof * size))
- proc alloc0*(size: Natural): pointer {.noconv, rtl, tags: [], benign.}
- ## allocates a new memory block with at least ``size`` bytes. The
- ## block has to be freed with ``realloc(block, 0)`` or
- ## ``dealloc(block)``. The block is initialized with all bytes
- ## containing zero, so it is somewhat safer than ``alloc``.
- ## The allocated memory belongs to its allocating thread!
- ## Use `allocShared0` to allocate from a shared heap.
- proc create*(T: typedesc, size = 1.Positive): ptr T {.inline, benign.} =
- ## allocates a new memory block with at least ``T.sizeof * size``
- ## bytes. The block has to be freed with ``resize(block, 0)`` or
- ## ``dealloc(block)``. The block is initialized with all bytes
- ## containing zero, so it is somewhat safer than ``createU``.
- ## The allocated memory belongs to its allocating thread!
- ## Use `createShared` to allocate from a shared heap.
- cast[ptr T](alloc0(sizeof(T) * size))
- proc realloc*(p: pointer, newSize: Natural): pointer {.noconv, rtl, tags: [],
- benign.}
- ## grows or shrinks a given memory block. If p is **nil** then a new
- ## memory block is returned. In either way the block has at least
- ## ``newSize`` bytes. If ``newSize == 0`` and p is not **nil**
- ## ``realloc`` calls ``dealloc(p)``. In other cases the block has to
- ## be freed with ``dealloc``.
- ## The allocated memory belongs to its allocating thread!
- ## Use `reallocShared` to reallocate from a shared heap.
- proc resize*[T](p: ptr T, newSize: Natural): ptr T {.inline, benign.} =
- ## grows or shrinks a given memory block. If p is **nil** then a new
- ## memory block is returned. In either way the block has at least
- ## ``T.sizeof * newSize`` bytes. If ``newSize == 0`` and p is not
- ## **nil** ``resize`` calls ``dealloc(p)``. In other cases the block
- ## has to be freed with ``free``. The allocated memory belongs to
- ## its allocating thread!
- ## Use `resizeShared` to reallocate from a shared heap.
- cast[ptr T](realloc(p, T.sizeof * newSize))
- proc dealloc*(p: pointer) {.noconv, rtl, tags: [], benign.}
- ## frees the memory allocated with ``alloc``, ``alloc0`` or
- ## ``realloc``. This procedure is dangerous! If one forgets to
- ## free the memory a leak occurs; if one tries to access freed
- ## memory (or just freeing it twice!) a core dump may happen
- ## or other memory may be corrupted.
- ## The freed memory must belong to its allocating thread!
- ## Use `deallocShared` to deallocate from a shared heap.
- proc allocShared*(size: Natural): pointer {.noconv, rtl, benign.}
- ## allocates a new memory block on the shared heap with at
- ## least ``size`` bytes. The block has to be freed with
- ## ``reallocShared(block, 0)`` or ``deallocShared(block)``. The block
- ## is not initialized, so reading from it before writing to it is
- ## undefined behaviour!
- proc createSharedU*(T: typedesc, size = 1.Positive): ptr T {.inline,
- benign.} =
- ## allocates a new memory block on the shared heap with at
- ## least ``T.sizeof * size`` bytes. The block has to be freed with
- ## ``resizeShared(block, 0)`` or ``freeShared(block)``. The block
- ## is not initialized, so reading from it before writing to it is
- ## undefined behaviour!
- cast[ptr T](allocShared(T.sizeof * size))
- proc allocShared0*(size: Natural): pointer {.noconv, rtl, benign.}
- ## allocates a new memory block on the shared heap with at
- ## least ``size`` bytes. The block has to be freed with
- ## ``reallocShared(block, 0)`` or ``deallocShared(block)``.
- ## The block is initialized with all bytes
- ## containing zero, so it is somewhat safer than ``allocShared``.
- proc createShared*(T: typedesc, size = 1.Positive): ptr T {.inline.} =
- ## allocates a new memory block on the shared heap with at
- ## least ``T.sizeof * size`` bytes. The block has to be freed with
- ## ``resizeShared(block, 0)`` or ``freeShared(block)``.
- ## The block is initialized with all bytes
- ## containing zero, so it is somewhat safer than ``createSharedU``.
- cast[ptr T](allocShared0(T.sizeof * size))
- proc reallocShared*(p: pointer, newSize: Natural): pointer {.noconv, rtl,
- benign.}
- ## grows or shrinks a given memory block on the heap. If p is **nil**
- ## then a new memory block is returned. In either way the block has at
- ## least ``newSize`` bytes. If ``newSize == 0`` and p is not **nil**
- ## ``reallocShared`` calls ``deallocShared(p)``. In other cases the
- ## block has to be freed with ``deallocShared``.
- proc resizeShared*[T](p: ptr T, newSize: Natural): ptr T {.inline.} =
- ## grows or shrinks a given memory block on the heap. If p is **nil**
- ## then a new memory block is returned. In either way the block has at
- ## least ``T.sizeof * newSize`` bytes. If ``newSize == 0`` and p is
- ## not **nil** ``resizeShared`` calls ``freeShared(p)``. In other
- ## cases the block has to be freed with ``freeShared``.
- cast[ptr T](reallocShared(p, T.sizeof * newSize))
- proc deallocShared*(p: pointer) {.noconv, rtl, benign.}
- ## frees the memory allocated with ``allocShared``, ``allocShared0`` or
- ## ``reallocShared``. This procedure is dangerous! If one forgets to
- ## free the memory a leak occurs; if one tries to access freed
- ## memory (or just freeing it twice!) a core dump may happen
- ## or other memory may be corrupted.
- proc freeShared*[T](p: ptr T) {.inline, benign.} =
- ## frees the memory allocated with ``createShared``, ``createSharedU`` or
- ## ``resizeShared``. This procedure is dangerous! If one forgets to
- ## free the memory a leak occurs; if one tries to access freed
- ## memory (or just freeing it twice!) a core dump may happen
- ## or other memory may be corrupted.
- deallocShared(p)
- proc swap*[T](a, b: var T) {.magic: "Swap", noSideEffect.}
- ## swaps the values `a` and `b`. This is often more efficient than
- ## ``tmp = a; a = b; b = tmp``. Particularly useful for sorting algorithms.
- when not defined(js) and not defined(booting) and defined(nimTrMacros):
- template swapRefsInArray*{swap(arr[a], arr[b])}(arr: openarray[ref], a, b: int) =
- # Optimize swapping of array elements if they are refs. Default swap
- # implementation will cause unsureAsgnRef to be emitted which causes
- # unnecessary slow down in this case.
- swap(cast[ptr pointer](addr arr[a])[], cast[ptr pointer](addr arr[b])[])
- template `>=%`*(x, y: untyped): untyped = y <=% x
- ## treats `x` and `y` as unsigned and compares them.
- ## Returns true iff ``unsigned(x) >= unsigned(y)``.
- template `>%`*(x, y: untyped): untyped = y <% x
- ## treats `x` and `y` as unsigned and compares them.
- ## Returns true iff ``unsigned(x) > unsigned(y)``.
- proc `$`*(x: int): string {.magic: "IntToStr", noSideEffect.}
- ## The stringify operator for an integer argument. Returns `x`
- ## converted to a decimal string. ``$`` is Nim's general way of
- ## spelling `toString`:idx:.
- proc `$`*(x: int64): string {.magic: "Int64ToStr", noSideEffect.}
- ## The stringify operator for an integer argument. Returns `x`
- ## converted to a decimal string.
- when not defined(nimscript):
- when not defined(JS) and hasAlloc:
- proc `$`*(x: uint64): string {.noSideEffect.}
- ## The stringify operator for an unsigned integer argument. Returns `x`
- ## converted to a decimal string.
- proc `$`*(x: float): string {.magic: "FloatToStr", noSideEffect.}
- ## The stringify operator for a float argument. Returns `x`
- ## converted to a decimal string.
- proc `$`*(x: bool): string {.magic: "BoolToStr", noSideEffect.}
- ## The stringify operator for a boolean argument. Returns `x`
- ## converted to the string "false" or "true".
- proc `$`*(x: char): string {.magic: "CharToStr", noSideEffect.}
- ## The stringify operator for a character argument. Returns `x`
- ## converted to a string.
- proc `$`*(x: cstring): string {.magic: "CStrToStr", noSideEffect.}
- ## The stringify operator for a CString argument. Returns `x`
- ## converted to a string.
- proc `$`*(x: string): string {.magic: "StrToStr", noSideEffect.}
- ## The stringify operator for a string argument. Returns `x`
- ## as it is. This operator is useful for generic code, so
- ## that ``$expr`` also works if ``expr`` is already a string.
- proc `$`*[Enum: enum](x: Enum): string {.magic: "EnumToStr", noSideEffect.}
- ## The stringify operator for an enumeration argument. This works for
- ## any enumeration type thanks to compiler magic. If
- ## a ``$`` operator for a concrete enumeration is provided, this is
- ## used instead. (In other words: *Overwriting* is possible.)
- # undocumented:
- proc getRefcount*[T](x: ref T): int {.importc: "getRefcount", noSideEffect,
- deprecated: "the refcount never was reliable, the GC does not use traditional refcounting".}
- proc getRefcount*(x: string): int {.importc: "getRefcount", noSideEffect,
- deprecated: "the refcount never was reliable, the GC does not use traditional refcounting".}
- proc getRefcount*[T](x: seq[T]): int {.importc: "getRefcount", noSideEffect,
- deprecated: "the refcount never was reliable, the GC does not use traditional refcounting".}
- ## retrieves the reference count of an heap-allocated object. The
- ## value is implementation-dependent.
- const
- Inf* {.magic: "Inf".} = 1.0 / 0.0
- ## contains the IEEE floating point value of positive infinity.
- NegInf* {.magic: "NegInf".} = -Inf
- ## contains the IEEE floating point value of negative infinity.
- NaN* {.magic: "NaN".} = 0.0 / 0.0
- ## contains an IEEE floating point value of *Not A Number*. Note
- ## that you cannot compare a floating point value to this value
- ## and expect a reasonable result - use the `classify` procedure
- ## in the module ``math`` for checking for NaN.
- NimMajor* {.intdefine.}: int = 0
- ## is the major number of Nim's version.
- NimMinor* {.intdefine.}: int = 19
- ## is the minor number of Nim's version.
- NimPatch* {.intdefine.}: int = 9
- ## is the patch number of Nim's version.
- NimVersion*: string = $NimMajor & "." & $NimMinor & "." & $NimPatch
- ## is the version of Nim as a string.
- # GC interface:
- when not defined(nimscript) and hasAlloc:
- proc getOccupiedMem*(): int {.rtl.}
- ## returns the number of bytes that are owned by the process and hold data.
- proc getFreeMem*(): int {.rtl.}
- ## returns the number of bytes that are owned by the process, but do not
- ## hold any meaningful data.
- proc getTotalMem*(): int {.rtl.}
- ## returns the number of bytes that are owned by the process.
- when hasThreadSupport:
- proc getOccupiedSharedMem*(): int {.rtl.}
- ## returns the number of bytes that are owned by the process
- ## on the shared heap and hold data. This is only available when
- ## threads are enabled.
- proc getFreeSharedMem*(): int {.rtl.}
- ## returns the number of bytes that are owned by the
- ## process on the shared heap, but do not hold any meaningful data.
- ## This is only available when threads are enabled.
- proc getTotalSharedMem*(): int {.rtl.}
- ## returns the number of bytes on the shared heap that are owned by the
- ## process. This is only available when threads are enabled.
- proc `|`*(a, b: typedesc): typedesc = discard
- when sizeof(int) <= 2:
- type IntLikeForCount = int|int8|int16|char|bool|uint8|enum
- else:
- type IntLikeForCount = int|int8|int16|int32|char|bool|uint8|uint16|enum
- iterator countdown*[T](a, b: T, step: Positive = 1): T {.inline.} =
- ## Counts from ordinal value `a` down to `b` (inclusive) with the given
- ## step count. `T` may be any ordinal type, `step` may only
- ## be positive. **Note**: This fails to count to ``low(int)`` if T = int for
- ## efficiency reasons.
- when T is (uint|uint64):
- var res = a
- while res >= b:
- yield res
- if res == b: break
- dec(res, step)
- elif T is IntLikeForCount:
- var res = int(a)
- while res >= int(b):
- yield T(res)
- dec(res, step)
- else:
- var res = a
- while res >= b:
- yield res
- dec(res, step)
- when defined(nimNewRoof):
- iterator countup*[T](a, b: T, step: Positive = 1): T {.inline.} =
- ## Counts from ordinal value `a` up to `b` (inclusive) with the given
- ## step count. `S`, `T` may be any ordinal type, `step` may only
- ## be positive. **Note**: This fails to count to ``high(int)`` if T = int for
- ## efficiency reasons.
- when T is IntLikeForCount:
- var res = int(a)
- while res <= int(b):
- yield T(res)
- inc(res, step)
- else:
- var res: T = T(a)
- while res <= b:
- yield res
- inc(res, step)
- iterator `..`*[T](a, b: T): T {.inline.} =
- ## An alias for `countup(a, b, 1)`.
- when T is IntLikeForCount:
- var res = int(a)
- while res <= int(b):
- yield T(res)
- inc(res)
- else:
- var res: T = T(a)
- while res <= b:
- yield res
- inc(res)
- template dotdotImpl(t) {.dirty.} =
- iterator `..`*(a, b: t): t {.inline.} =
- ## A type specialized version of ``..`` for convenience so that
- ## mixing integer types works better.
- var res = a
- while res <= b:
- yield res
- inc(res)
- dotdotImpl(int64)
- dotdotImpl(int32)
- dotdotImpl(uint64)
- dotdotImpl(uint32)
- else:
- iterator countup*[S, T](a: S, b: T, step = 1): T {.inline.} =
- ## Counts from ordinal value `a` up to `b` (inclusive) with the given
- ## step count. `S`, `T` may be any ordinal type, `step` may only
- ## be positive. **Note**: This fails to count to ``high(int)`` if T = int for
- ## efficiency reasons.
- when T is IntLikeForCount:
- var res = int(a)
- while res <= int(b):
- yield T(res)
- inc(res, step)
- else:
- var res: T = T(a)
- while res <= b:
- yield res
- inc(res, step)
- iterator `..`*[S, T](a: S, b: T): T {.inline.} =
- ## An alias for `countup`.
- when T is IntLikeForCount:
- var res = int(a)
- while res <= int(b):
- yield T(res)
- inc(res)
- else:
- var res: T = T(a)
- while res <= b:
- yield res
- inc(res)
- iterator `||`*[S, T](a: S, b: T, annotation: static string = "parallel for"): T {.
- inline, magic: "OmpParFor", sideEffect.} =
- ## OpenMP parallel loop iterator. Same as `..` but the loop may run in parallel.
- ## `annotation` is an additional annotation for the code generator to use.
- ## The default annotation is `parallel for`.
- ## Please refer to the `OpenMP Syntax Reference<https://www.openmp.org/wp-content/uploads/OpenMP-4.5-1115-CPP-web.pdf>`_
- ## for further information.
- ##
- ## Note that the compiler maps that to
- ## the ``#pragma omp parallel for`` construct of `OpenMP`:idx: and as
- ## such isn't aware of the parallelism in your code! Be careful! Later
- ## versions of ``||`` will get proper support by Nim's code generator
- ## and GC.
- discard
- {.push stackTrace:off.}
- proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} =
- if x <= y: x else: y
- proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} =
- if x <= y: x else: y
- proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} =
- if x <= y: x else: y
- proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} =
- if x <= y: x else: y
- proc min*(x, y: int64): int64 {.magic: "MinI", noSideEffect.} =
- ## The minimum value of two integers.
- if x <= y: x else: y
- proc min*[T](x: openArray[T]): T =
- ## The minimum value of `x`. ``T`` needs to have a ``<`` operator.
- result = x[0]
- for i in 1..high(x):
- if x[i] < result: result = x[i]
- proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} =
- if y <= x: x else: y
- proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} =
- if y <= x: x else: y
- proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} =
- if y <= x: x else: y
- proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} =
- if y <= x: x else: y
- proc max*(x, y: int64): int64 {.magic: "MaxI", noSideEffect.} =
- ## The maximum value of two integers.
- if y <= x: x else: y
- proc max*[T](x: openArray[T]): T =
- ## The maximum value of `x`. ``T`` needs to have a ``<`` operator.
- result = x[0]
- for i in 1..high(x):
- if result < x[i]: result = x[i]
- proc abs*(x: float): float {.magic: "AbsF64", noSideEffect.} =
- if x < 0.0: -x else: x
- proc min*(x, y: float): float {.magic: "MinF64", noSideEffect.} =
- if x <= y: x else: y
- proc max*(x, y: float): float {.magic: "MaxF64", noSideEffect.} =
- if y <= x: x else: y
- proc min*[T](x, y: T): T =
- if x <= y: x else: y
- proc max*[T](x, y: T): T =
- if y <= x: x else: y
- {.pop.}
- proc high*(T: typedesc[SomeFloat]): T = Inf
- proc low*(T: typedesc[SomeFloat]): T = NegInf
- proc clamp*[T](x, a, b: T): T =
- ## limits the value ``x`` within the interval [a, b]
- ##
- ## .. code-block:: Nim
- ## assert((1.4).clamp(0.0, 1.0) == 1.0)
- ## assert((0.5).clamp(0.0, 1.0) == 0.5)
- if x < a: return a
- if x > b: return b
- return x
- proc len*[U: Ordinal; V: Ordinal](x: HSlice[U, V]): int {.noSideEffect, inline.} =
- ## length of ordinal slice, when x.b < x.a returns zero length
- ##
- ## .. code-block:: Nim
- ## assert((0..5).len == 6)
- ## assert((5..2).len == 0)
- result = max(0, ord(x.b) - ord(x.a) + 1)
- iterator items*[T](a: openArray[T]): T {.inline.} =
- ## iterates over each item of `a`.
- var i = 0
- while i < len(a):
- yield a[i]
- inc(i)
- iterator mitems*[T](a: var openArray[T]): var T {.inline.} =
- ## iterates over each item of `a` so that you can modify the yielded value.
- var i = 0
- while i < len(a):
- yield a[i]
- inc(i)
- iterator items*[IX, T](a: array[IX, T]): T {.inline.} =
- ## iterates over each item of `a`.
- var i = low(IX)
- if i <= high(IX):
- while true:
- yield a[i]
- if i >= high(IX): break
- inc(i)
- iterator mitems*[IX, T](a: var array[IX, T]): var T {.inline.} =
- ## iterates over each item of `a` so that you can modify the yielded value.
- var i = low(IX)
- if i <= high(IX):
- while true:
- yield a[i]
- if i >= high(IX): break
- inc(i)
- iterator items*[T](a: set[T]): T {.inline.} =
- ## iterates over each element of `a`. `items` iterates only over the
- ## elements that are really in the set (and not over the ones the set is
- ## able to hold).
- var i = low(T).int
- while i <= high(T).int:
- if T(i) in a: yield T(i)
- inc(i)
- iterator items*(a: cstring): char {.inline.} =
- ## iterates over each item of `a`.
- when defined(js):
- var i = 0
- var L = len(a)
- while i < L:
- yield a[i]
- inc(i)
- else:
- var i = 0
- while a[i] != '\0':
- yield a[i]
- inc(i)
- iterator mitems*(a: var cstring): var char {.inline.} =
- ## iterates over each item of `a` so that you can modify the yielded value.
- var i = 0
- while a[i] != '\0':
- yield a[i]
- inc(i)
- iterator items*(E: typedesc[enum]): E =
- ## iterates over the values of the enum ``E``.
- for v in low(E)..high(E):
- yield v
- iterator items*[T](s: HSlice[T, T]): T =
- ## iterates over the slice `s`, yielding each value between `s.a` and `s.b`
- ## (inclusively).
- for x in s.a..s.b:
- yield x
- iterator pairs*[T](a: openArray[T]): tuple[key: int, val: T] {.inline.} =
- ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
- var i = 0
- while i < len(a):
- yield (i, a[i])
- inc(i)
- iterator mpairs*[T](a: var openArray[T]): tuple[key:int, val:var T]{.inline.} =
- ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
- ## ``a[index]`` can be modified.
- var i = 0
- while i < len(a):
- yield (i, a[i])
- inc(i)
- iterator pairs*[IX, T](a: array[IX, T]): tuple[key: IX, val: T] {.inline.} =
- ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
- var i = low(IX)
- if i <= high(IX):
- while true:
- yield (i, a[i])
- if i >= high(IX): break
- inc(i)
- iterator mpairs*[IX, T](a:var array[IX, T]):tuple[key:IX,val:var T] {.inline.} =
- ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
- ## ``a[index]`` can be modified.
- var i = low(IX)
- if i <= high(IX):
- while true:
- yield (i, a[i])
- if i >= high(IX): break
- inc(i)
- iterator pairs*[T](a: seq[T]): tuple[key: int, val: T] {.inline.} =
- ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
- var i = 0
- while i < len(a):
- yield (i, a[i])
- inc(i)
- iterator mpairs*[T](a: var seq[T]): tuple[key: int, val: var T] {.inline.} =
- ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
- ## ``a[index]`` can be modified.
- var i = 0
- while i < len(a):
- yield (i, a[i])
- inc(i)
- iterator pairs*(a: string): tuple[key: int, val: char] {.inline.} =
- ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
- var i = 0
- while i < len(a):
- yield (i, a[i])
- inc(i)
- iterator mpairs*(a: var string): tuple[key: int, val: var char] {.inline.} =
- ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
- ## ``a[index]`` can be modified.
- var i = 0
- while i < len(a):
- yield (i, a[i])
- inc(i)
- iterator pairs*(a: cstring): tuple[key: int, val: char] {.inline.} =
- ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
- var i = 0
- while a[i] != '\0':
- yield (i, a[i])
- inc(i)
- iterator mpairs*(a: var cstring): tuple[key: int, val: var char] {.inline.} =
- ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
- ## ``a[index]`` can be modified.
- var i = 0
- while a[i] != '\0':
- yield (i, a[i])
- inc(i)
- when defined(nimNoNilSeqs2):
- when not compileOption("nilseqs"):
- {.pragma: nilError, error.}
- else:
- {.pragma: nilError.}
- else:
- {.pragma: nilError.}
- proc isNil*[T](x: seq[T]): bool {.noSideEffect, magic: "IsNil", nilError.}
- proc isNil*[T](x: ref T): bool {.noSideEffect, magic: "IsNil".}
- proc isNil*(x: string): bool {.noSideEffect, magic: "IsNil", nilError.}
- proc isNil*[T](x: ptr T): bool {.noSideEffect, magic: "IsNil".}
- proc isNil*(x: pointer): bool {.noSideEffect, magic: "IsNil".}
- proc isNil*(x: cstring): bool {.noSideEffect, magic: "IsNil".}
- proc isNil*[T: proc](x: T): bool {.noSideEffect, magic: "IsNil".}
- ## Fast check whether `x` is nil. This is sometimes more efficient than
- ## ``== nil``.
- proc `==`*[I, T](x, y: array[I, T]): bool =
- for f in low(x)..high(x):
- if x[f] != y[f]:
- return
- result = true
- proc `==`*[T](x, y: openarray[T]): bool =
- if x.len != y.len:
- return false
- for f in low(x)..high(x):
- if x[f] != y[f]:
- return false
- result = true
- proc `@`*[T](a: openArray[T]): seq[T] =
- ## turns an openarray into a sequence. This is not as efficient as turning
- ## a fixed length array into a sequence as it always copies every element
- ## of `a`.
- newSeq(result, a.len)
- for i in 0..a.len-1: result[i] = a[i]
- proc `&`*[T](x, y: seq[T]): seq[T] {.noSideEffect.} =
- ## Concatenates two sequences.
- ## Requires copying of the sequences.
- ##
- ## .. code-block:: Nim
- ## assert(@[1, 2, 3, 4] & @[5, 6] == @[1, 2, 3, 4, 5, 6])
- newSeq(result, x.len + y.len)
- for i in 0..x.len-1:
- result[i] = x[i]
- for i in 0..y.len-1:
- result[i+x.len] = y[i]
- proc `&`*[T](x: seq[T], y: T): seq[T] {.noSideEffect.} =
- ## Appends element y to the end of the sequence.
- ## Requires copying of the sequence
- ##
- ## .. code-block:: Nim
- ## assert(@[1, 2, 3] & 4 == @[1, 2, 3, 4])
- newSeq(result, x.len + 1)
- for i in 0..x.len-1:
- result[i] = x[i]
- result[x.len] = y
- proc `&`*[T](x: T, y: seq[T]): seq[T] {.noSideEffect.} =
- ## Prepends the element x to the beginning of the sequence.
- ## Requires copying of the sequence
- ##
- ## .. code-block:: Nim
- ## assert(1 & @[2, 3, 4] == @[1, 2, 3, 4])
- newSeq(result, y.len + 1)
- result[0] = x
- for i in 0..y.len-1:
- result[i+1] = y[i]
- proc `==`*[T](x, y: seq[T]): bool {.noSideEffect.} =
- ## Generic equals operator for sequences: relies on a equals operator for
- ## the element type `T`.
- when nimvm:
- when not defined(nimNoNil):
- if x.isNil and y.isNil:
- return true
- else:
- if x.len == 0 and y.len == 0:
- return true
- else:
- when not defined(JS):
- proc seqToPtr[T](x: seq[T]): pointer {.inline, nosideeffect.} =
- result = cast[pointer](x)
- else:
- proc seqToPtr[T](x: seq[T]): pointer {.asmNoStackFrame, nosideeffect.} =
- asm """return `x`"""
- if seqToPtr(x) == seqToPtr(y):
- return true
- when not defined(nimNoNil):
- if x.isNil or y.isNil:
- return false
- if x.len != y.len:
- return false
- for i in 0..x.len-1:
- if x[i] != y[i]:
- return false
- return true
- proc find*[T, S](a: T, item: S): int {.inline.}=
- ## Returns the first index of `item` in `a` or -1 if not found. This requires
- ## appropriate `items` and `==` operations to work.
- for i in items(a):
- if i == item: return
- inc(result)
- result = -1
- proc contains*[T](a: openArray[T], item: T): bool {.inline.}=
- ## Returns true if `item` is in `a` or false if not found. This is a shortcut
- ## for ``find(a, item) >= 0``.
- return find(a, item) >= 0
- proc pop*[T](s: var seq[T]): T {.inline, noSideEffect.} =
- ## returns the last item of `s` and decreases ``s.len`` by one. This treats
- ## `s` as a stack and implements the common *pop* operation.
- var L = s.len-1
- result = s[L]
- setLen(s, L)
- iterator fields*[T: tuple|object](x: T): RootObj {.
- magic: "Fields", noSideEffect.}
- ## iterates over every field of `x`. Warning: This really transforms
- ## the 'for' and unrolls the loop. The current implementation also has a bug
- ## that affects symbol binding in the loop body.
- iterator fields*[S:tuple|object, T:tuple|object](x: S, y: T): tuple[a,b: untyped] {.
- magic: "Fields", noSideEffect.}
- ## iterates over every field of `x` and `y`.
- ## Warning: This is really transforms the 'for' and unrolls the loop.
- ## The current implementation also has a bug that affects symbol binding
- ## in the loop body.
- iterator fieldPairs*[T: tuple|object](x: T): RootObj {.
- magic: "FieldPairs", noSideEffect.}
- ## Iterates over every field of `x` returning their name and value.
- ##
- ## When you iterate over objects with different field types you have to use
- ## the compile time ``when`` instead of a runtime ``if`` to select the code
- ## you want to run for each type. To perform the comparison use the `is
- ## operator <manual.html#generics-is-operator>`_. Example:
- ##
- ## .. code-block:: Nim
- ##
- ## type
- ## Custom = object
- ## foo: string
- ## bar: bool
- ##
- ## proc `$`(x: Custom): string =
- ## result = "Custom:"
- ## for name, value in x.fieldPairs:
- ## when value is bool:
- ## result.add("\n\t" & name & " is " & $value)
- ## else:
- ## if value.isNil:
- ## result.add("\n\t" & name & " (nil)")
- ## else:
- ## result.add("\n\t" & name & " '" & value & "'")
- ##
- ## Another way to do the same without ``when`` is to leave the task of
- ## picking the appropriate code to a secondary proc which you overload for
- ## each field type and pass the `value` to.
- ##
- ## Warning: This really transforms the 'for' and unrolls the loop. The
- ## current implementation also has a bug that affects symbol binding in the
- ## loop body.
- iterator fieldPairs*[S: tuple|object, T: tuple|object](x: S, y: T): tuple[
- a, b: untyped] {.
- magic: "FieldPairs", noSideEffect.}
- ## iterates over every field of `x` and `y`.
- ## Warning: This really transforms the 'for' and unrolls the loop.
- ## The current implementation also has a bug that affects symbol binding
- ## in the loop body.
- proc `==`*[T: tuple|object](x, y: T): bool =
- ## generic ``==`` operator for tuples that is lifted from the components
- ## of `x` and `y`.
- for a, b in fields(x, y):
- if a != b: return false
- return true
- proc `<=`*[T: tuple](x, y: T): bool =
- ## generic ``<=`` operator for tuples that is lifted from the components
- ## of `x` and `y`. This implementation uses `cmp`.
- for a, b in fields(x, y):
- var c = cmp(a, b)
- if c < 0: return true
- if c > 0: return false
- return true
- proc `<`*[T: tuple](x, y: T): bool =
- ## generic ``<`` operator for tuples that is lifted from the components
- ## of `x` and `y`. This implementation uses `cmp`.
- for a, b in fields(x, y):
- var c = cmp(a, b)
- if c < 0: return true
- if c > 0: return false
- return false
- proc compiles*(x: untyped): bool {.magic: "Compiles", noSideEffect, compileTime.} =
- ## Special compile-time procedure that checks whether `x` can be compiled
- ## without any semantic error.
- ## This can be used to check whether a type supports some operation:
- ##
- ## .. code-block:: Nim
- ## when compiles(3 + 4):
- ## echo "'+' for integers is available"
- discard
- proc `$`*[T: tuple|object](x: T): string =
- ## generic ``$`` operator for tuples that is lifted from the components
- ## of `x`. Example:
- ##
- ## .. code-block:: nim
- ## $(23, 45) == "(23, 45)"
- ## $() == "()"
- result = "("
- var firstElement = true
- for name, value in fieldPairs(x):
- if not firstElement: result.add(", ")
- result.add(name)
- result.add(": ")
- when compiles($value):
- when value isnot string and value isnot seq and compiles(value.isNil):
- if value.isNil: result.add "nil"
- else: result.addQuoted(value)
- else:
- result.addQuoted(value)
- firstElement = false
- else:
- result.add("...")
- result.add(")")
- proc collectionToString[T](x: T, prefix, separator, suffix: string): string =
- result = prefix
- var firstElement = true
- for value in items(x):
- if firstElement:
- firstElement = false
- else:
- result.add(separator)
- when value isnot string and value isnot seq and compiles(value.isNil):
- # this branch should not be necessary
- if value.isNil:
- result.add "nil"
- else:
- result.addQuoted(value)
- else:
- result.addQuoted(value)
- result.add(suffix)
- proc `$`*[T](x: set[T]): string =
- ## generic ``$`` operator for sets that is lifted from the components
- ## of `x`. Example:
- ##
- ## .. code-block:: nim
- ## ${23, 45} == "{23, 45}"
- collectionToString(x, "{", ", ", "}")
- proc `$`*[T](x: seq[T]): string =
- ## generic ``$`` operator for seqs that is lifted from the components
- ## of `x`. Example:
- ##
- ## .. code-block:: nim
- ## $(@[23, 45]) == "@[23, 45]"
- collectionToString(x, "@[", ", ", "]")
- # ----------------- GC interface ---------------------------------------------
- when not defined(nimscript) and hasAlloc:
- type
- GC_Strategy* = enum ## the strategy the GC should use for the application
- gcThroughput, ## optimize for throughput
- gcResponsiveness, ## optimize for responsiveness (default)
- gcOptimizeTime, ## optimize for speed
- gcOptimizeSpace ## optimize for memory footprint
- when not defined(JS):
- proc GC_disable*() {.rtl, inl, benign.}
- ## disables the GC. If called n-times, n calls to `GC_enable` are needed to
- ## reactivate the GC. Note that in most circumstances one should only disable
- ## the mark and sweep phase with `GC_disableMarkAndSweep`.
- proc GC_enable*() {.rtl, inl, benign.}
- ## enables the GC again.
- proc GC_fullCollect*() {.rtl, benign.}
- ## forces a full garbage collection pass.
- ## Ordinary code does not need to call this (and should not).
- proc GC_enableMarkAndSweep*() {.rtl, benign.}
- proc GC_disableMarkAndSweep*() {.rtl, benign.}
- ## the current implementation uses a reference counting garbage collector
- ## with a seldomly run mark and sweep phase to free cycles. The mark and
- ## sweep phase may take a long time and is not needed if the application
- ## does not create cycles. Thus the mark and sweep phase can be deactivated
- ## and activated separately from the rest of the GC.
- proc GC_getStatistics*(): string {.rtl, benign.}
- ## returns an informative string about the GC's activity. This may be useful
- ## for tweaking.
- proc GC_ref*[T](x: ref T) {.magic: "GCref", benign.}
- proc GC_ref*[T](x: seq[T]) {.magic: "GCref", benign.}
- proc GC_ref*(x: string) {.magic: "GCref", benign.}
- ## marks the object `x` as referenced, so that it will not be freed until
- ## it is unmarked via `GC_unref`. If called n-times for the same object `x`,
- ## n calls to `GC_unref` are needed to unmark `x`.
- proc GC_unref*[T](x: ref T) {.magic: "GCunref", benign.}
- proc GC_unref*[T](x: seq[T]) {.magic: "GCunref", benign.}
- proc GC_unref*(x: string) {.magic: "GCunref", benign.}
- ## see the documentation of `GC_ref`.
- when not defined(JS) and not defined(nimscript) and hasAlloc:
- proc nimGC_setStackBottom*(theStackBottom: pointer) {.compilerRtl, noinline, benign.}
- ## Expands operating GC stack range to `theStackBottom`. Does nothing
- ## if current stack bottom is already lower than `theStackBottom`.
- else:
- template GC_disable* =
- {.warning: "GC_disable is a no-op in JavaScript".}
- template GC_enable* =
- {.warning: "GC_enable is a no-op in JavaScript".}
- template GC_fullCollect* =
- {.warning: "GC_fullCollect is a no-op in JavaScript".}
- template GC_setStrategy* =
- {.warning: "GC_setStrategy is a no-op in JavaScript".}
- template GC_enableMarkAndSweep* =
- {.warning: "GC_enableMarkAndSweep is a no-op in JavaScript".}
- template GC_disableMarkAndSweep* =
- {.warning: "GC_disableMarkAndSweep is a no-op in JavaScript".}
- template GC_ref*[T](x: ref T) =
- {.warning: "GC_ref is a no-op in JavaScript".}
- template GC_ref*[T](x: seq[T]) =
- {.warning: "GC_ref is a no-op in JavaScript".}
- template GC_ref*(x: string) =
- {.warning: "GC_ref is a no-op in JavaScript".}
- template GC_unref*[T](x: ref T) =
- {.warning: "GC_unref is a no-op in JavaScript".}
- template GC_unref*[T](x: seq[T]) =
- {.warning: "GC_unref is a no-op in JavaScript".}
- template GC_unref*(x: string) =
- {.warning: "GC_unref is a no-op in JavaScript".}
- template GC_getStatistics*(): string =
- {.warning: "GC_getStatistics is a no-op in JavaScript".}
- ""
- template accumulateResult*(iter: untyped) {.deprecated: "use `sequtils.toSeq` instead (more hygienic, sometimes more efficient)".} =
- ## helps to convert an iterator to a proc.
- ## See also `sequtils.toSeq` which is more hygienic and efficient.
- ##
- ## **Deprecated since v0.19.2:** use toSeq instead
- result = @[]
- for x in iter: add(result, x)
- # we have to compute this here before turning it off in except.nim anyway ...
- const NimStackTrace = compileOption("stacktrace")
- template coroutinesSupportedPlatform(): bool =
- when defined(sparc) or defined(ELATE) or compileOption("gc", "v2") or
- defined(boehmgc) or defined(gogc) or defined(nogc) or defined(gcRegions) or
- defined(gcMarkAndSweep):
- false
- else:
- true
- when defined(nimCoroutines):
- # Explicit opt-in.
- when not coroutinesSupportedPlatform():
- {.error: "Coroutines are not supported on this architecture and/or garbage collector.".}
- const nimCoroutines* = true
- elif defined(noNimCoroutines):
- # Explicit opt-out.
- const nimCoroutines* = false
- else:
- # Autodetect coroutine support.
- const nimCoroutines* = false
- {.push checks: off.}
- # obviously we cannot generate checking operations here :-)
- # because it would yield into an endless recursion
- # however, stack-traces are available for most parts
- # of the code
- var
- globalRaiseHook*: proc (e: ref Exception): bool {.nimcall, benign.}
- ## with this hook you can influence exception handling on a global level.
- ## If not nil, every 'raise' statement ends up calling this hook. Ordinary
- ## application code should never set this hook! You better know what you
- ## do when setting this. If ``globalRaiseHook`` returns false, the
- ## exception is caught and does not propagate further through the call
- ## stack.
- localRaiseHook* {.threadvar.}: proc (e: ref Exception): bool {.nimcall, benign.}
- ## with this hook you can influence exception handling on a
- ## thread local level.
- ## If not nil, every 'raise' statement ends up calling this hook. Ordinary
- ## application code should never set this hook! You better know what you
- ## do when setting this. If ``localRaiseHook`` returns false, the exception
- ## is caught and does not propagate further through the call stack.
- outOfMemHook*: proc () {.nimcall, tags: [], benign.}
- ## set this variable to provide a procedure that should be called
- ## in case of an `out of memory`:idx: event. The standard handler
- ## writes an error message and terminates the program. `outOfMemHook` can
- ## be used to raise an exception in case of OOM like so:
- ##
- ## .. code-block:: nim
- ##
- ## var gOutOfMem: ref EOutOfMemory
- ## new(gOutOfMem) # need to be allocated *before* OOM really happened!
- ## gOutOfMem.msg = "out of memory"
- ##
- ## proc handleOOM() =
- ## raise gOutOfMem
- ##
- ## system.outOfMemHook = handleOOM
- ##
- ## If the handler does not raise an exception, ordinary control flow
- ## continues and the program is terminated.
- type
- PFrame* = ptr TFrame ## represents a runtime frame of the call stack;
- ## part of the debugger API.
- TFrame* {.importc, nodecl, final.} = object ## the frame itself
- prev*: PFrame ## previous frame; used for chaining the call stack
- procname*: cstring ## name of the proc that is currently executing
- line*: int ## line number of the proc that is currently executing
- filename*: cstring ## filename of the proc that is currently executing
- len*: int16 ## length of the inspectable slots
- calldepth*: int16 ## used for max call depth checking
- when defined(JS):
- proc add*(x: var string, y: cstring) {.asmNoStackFrame.} =
- asm """
- if (`x` === null) { `x` = []; }
- var off = `x`.length;
- `x`.length += `y`.length;
- for (var i = 0; i < `y`.length; ++i) {
- `x`[off+i] = `y`.charCodeAt(i);
- }
- """
- proc add*(x: var cstring, y: cstring) {.magic: "AppendStrStr".}
- elif hasAlloc:
- {.push stack_trace:off, profiler:off.}
- proc add*(x: var string, y: cstring) =
- var i = 0
- while y[i] != '\0':
- add(x, y[i])
- inc(i)
- {.pop.}
- when defined(nimvarargstyped):
- proc echo*(x: varargs[typed, `$`]) {.magic: "Echo", tags: [WriteIOEffect],
- benign, sideEffect.}
- ## Writes and flushes the parameters to the standard output.
- ##
- ## Special built-in that takes a variable number of arguments. Each argument
- ## is converted to a string via ``$``, so it works for user-defined
- ## types that have an overloaded ``$`` operator.
- ## It is roughly equivalent to ``writeLine(stdout, x); flushFile(stdout)``, but
- ## available for the JavaScript target too.
- ##
- ## Unlike other IO operations this is guaranteed to be thread-safe as
- ## ``echo`` is very often used for debugging convenience. If you want to use
- ## ``echo`` inside a `proc without side effects
- ## <manual.html#pragmas-nosideeffect-pragma>`_ you can use `debugEcho <#debugEcho>`_
- ## instead.
- proc debugEcho*(x: varargs[typed, `$`]) {.magic: "Echo", noSideEffect,
- tags: [], raises: [].}
- ## Same as `echo <#echo>`_, but as a special semantic rule, ``debugEcho``
- ## pretends to be free of side effects, so that it can be used for debugging
- ## routines marked as `noSideEffect <manual.html#pragmas-nosideeffect-pragma>`_.
- else:
- proc echo*(x: varargs[untyped, `$`]) {.magic: "Echo", tags: [WriteIOEffect],
- benign, sideEffect.}
- proc debugEcho*(x: varargs[untyped, `$`]) {.magic: "Echo", noSideEffect,
- tags: [], raises: [].}
- template newException*(exceptn: typedesc, message: string;
- parentException: ref Exception = nil): untyped =
- ## creates an exception object of type ``exceptn`` and sets its ``msg`` field
- ## to `message`. Returns the new exception object.
- var
- e: ref exceptn
- new(e)
- e.msg = message
- e.parent = parentException
- e
- when hostOS == "standalone":
- include "$projectpath/panicoverride"
- when not declared(sysFatal):
- {.push profiler: off.}
- when hostOS == "standalone":
- proc sysFatal(exceptn: typedesc, message: string) {.inline.} =
- panic(message)
- proc sysFatal(exceptn: typedesc, message, arg: string) {.inline.} =
- rawoutput(message)
- panic(arg)
- else:
- proc sysFatal(exceptn: typedesc, message: string) {.inline, noReturn.} =
- var e: ref exceptn
- new(e)
- e.msg = message
- raise e
- proc sysFatal(exceptn: typedesc, message, arg: string) {.inline, noReturn.} =
- var e: ref exceptn
- new(e)
- e.msg = message & arg
- raise e
- {.pop.}
- proc getTypeInfo*[T](x: T): pointer {.magic: "GetTypeInfo", benign.}
- ## get type information for `x`. Ordinary code should not use this, but
- ## the `typeinfo` module instead.
- {.push stackTrace: off.}
- proc abs*(x: int): int {.magic: "AbsI", noSideEffect.} =
- if x < 0: -x else: x
- proc abs*(x: int8): int8 {.magic: "AbsI", noSideEffect.} =
- if x < 0: -x else: x
- proc abs*(x: int16): int16 {.magic: "AbsI", noSideEffect.} =
- if x < 0: -x else: x
- proc abs*(x: int32): int32 {.magic: "AbsI", noSideEffect.} =
- if x < 0: -x else: x
- when defined(nimnomagic64):
- proc abs*(x: int64): int64 {.magic: "AbsI", noSideEffect.} =
- ## returns the absolute value of `x`. If `x` is ``low(x)`` (that
- ## is -MININT for its type), an overflow exception is thrown (if overflow
- ## checking is turned on).
- result = if x < 0: -x else: x
- else:
- proc abs*(x: int64): int64 {.magic: "AbsI64", noSideEffect.} =
- ## returns the absolute value of `x`. If `x` is ``low(x)`` (that
- ## is -MININT for its type), an overflow exception is thrown (if overflow
- ## checking is turned on).
- if x < 0: -x else: x
- {.pop.}
- when not defined(JS):
- proc likelyProc(val: bool): bool {.importc: "likely", nodecl, nosideeffect.}
- proc unlikelyProc(val: bool): bool {.importc: "unlikely", nodecl, nosideeffect.}
- template likely*(val: bool): bool =
- ## Hints the optimizer that `val` is likely going to be true.
- ##
- ## You can use this template to decorate a branch condition. On certain
- ## platforms this can help the processor predict better which branch is
- ## going to be run. Example:
- ##
- ## .. code-block:: nim
- ## for value in inputValues:
- ## if likely(value <= 100):
- ## process(value)
- ## else:
- ## echo "Value too big!"
- ##
- ## On backends without branch prediction (JS and the nimscript VM), this
- ## template will not affect code execution.
- when nimvm:
- val
- else:
- when defined(JS):
- val
- else:
- likelyProc(val)
- template unlikely*(val: bool): bool =
- ## Hints the optimizer that `val` is likely going to be false.
- ##
- ## You can use this proc to decorate a branch condition. On certain
- ## platforms this can help the processor predict better which branch is
- ## going to be run. Example:
- ##
- ## .. code-block:: nim
- ## for value in inputValues:
- ## if unlikely(value > 100):
- ## echo "Value too big!"
- ## else:
- ## process(value)
- ##
- ## On backends without branch prediction (JS and the nimscript VM), this
- ## template will not affect code execution.
- when nimvm:
- val
- else:
- when defined(JS):
- val
- else:
- unlikelyProc(val)
- type
- FileSeekPos* = enum ## Position relative to which seek should happen
- # The values are ordered so that they match with stdio
- # SEEK_SET, SEEK_CUR and SEEK_END respectively.
- fspSet ## Seek to absolute value
- fspCur ## Seek relative to current position
- fspEnd ## Seek relative to end
- when not defined(JS): #and not defined(nimscript):
- {.push stack_trace: off, profiler:off.}
- when hasAlloc:
- when not defined(gcRegions):
- proc initGC() {.gcsafe.}
- when not defined(boehmgc) and not defined(useMalloc) and
- not defined(gogc) and not defined(gcRegions):
- proc initAllocator() {.inline.}
- proc initStackBottom() {.inline, compilerproc.} =
- # WARNING: This is very fragile! An array size of 8 does not work on my
- # Linux 64bit system. -- That's because the stack direction is the other
- # way round.
- when declared(nimGC_setStackBottom):
- var locals {.volatile.}: pointer
- locals = addr(locals)
- nimGC_setStackBottom(locals)
- proc initStackBottomWith(locals: pointer) {.inline, compilerproc.} =
- # We need to keep initStackBottom around for now to avoid
- # bootstrapping problems.
- when declared(nimGC_setStackBottom):
- nimGC_setStackBottom(locals)
- when not defined(gcDestructors):
- {.push profiler: off.}
- var
- strDesc = TNimType(size: sizeof(string), kind: tyString, flags: {ntfAcyclic})
- {.pop.}
- # ----------------- IO Part ------------------------------------------------
- type
- CFile {.importc: "FILE", header: "<stdio.h>",
- final, incompletestruct.} = object
- File* = ptr CFile ## The type representing a file handle.
- FileMode* = enum ## The file mode when opening a file.
- fmRead, ## Open the file for read access only.
- fmWrite, ## Open the file for write access only.
- ## If the file does not exist, it will be
- ## created. Existing files will be cleared!
- fmReadWrite, ## Open the file for read and write access.
- ## If the file does not exist, it will be
- ## created. Existing files will be cleared!
- fmReadWriteExisting, ## Open the file for read and write access.
- ## If the file does not exist, it will not be
- ## created. The existing file will not be cleared.
- fmAppend ## Open the file for writing only; append data
- ## at the end.
- FileHandle* = cint ## type that represents an OS file handle; this is
- ## useful for low-level file access
- include "system/ansi_c"
- include "system/memory"
- proc zeroMem(p: pointer, size: Natural) =
- nimZeroMem(p, size)
- when declared(memTrackerOp):
- memTrackerOp("zeroMem", p, size)
- proc copyMem(dest, source: pointer, size: Natural) =
- nimCopyMem(dest, source, size)
- when declared(memTrackerOp):
- memTrackerOp("copyMem", dest, size)
- proc moveMem(dest, source: pointer, size: Natural) =
- c_memmove(dest, source, size)
- when declared(memTrackerOp):
- memTrackerOp("moveMem", dest, size)
- proc equalMem(a, b: pointer, size: Natural): bool =
- nimCmpMem(a, b, size) == 0
- proc cmp(x, y: string): int =
- when nimvm:
- if x < y: result = -1
- elif x > y: result = 1
- else: result = 0
- else:
- let minlen = min(x.len, y.len)
- result = int(nimCmpMem(x.cstring, y.cstring, minlen.csize))
- if result == 0:
- result = x.len - y.len
- when defined(nimscript):
- proc readFile*(filename: string): string {.tags: [ReadIOEffect], benign.}
- ## Opens a file named `filename` for reading, calls `readAll
- ## <#readAll>`_ and closes the file afterwards. Returns the string.
- ## Raises an IO exception in case of an error. If # you need to call
- ## this inside a compile time macro you can use `staticRead
- ## <#staticRead>`_.
- proc writeFile*(filename, content: string) {.tags: [WriteIOEffect], benign.}
- ## Opens a file named `filename` for writing. Then writes the
- ## `content` completely to the file and closes the file afterwards.
- ## Raises an IO exception in case of an error.
- when not defined(nimscript) and hostOS != "standalone":
- # text file handling:
- var
- stdin* {.importc: "stdin", header: "<stdio.h>".}: File
- ## The standard input stream.
- stdout* {.importc: "stdout", header: "<stdio.h>".}: File
- ## The standard output stream.
- stderr* {.importc: "stderr", header: "<stdio.h>".}: File
- ## The standard error stream.
- when defined(windows):
- # work-around C's sucking abstraction:
- # BUGFIX: stdin and stdout should be binary files!
- proc c_setmode(handle, mode: cint) {.
- importc: when defined(bcc): "setmode" else: "_setmode",
- header: "<io.h>".}
- var
- O_BINARY {.importc: "_O_BINARY", header:"<fcntl.h>".}: cint
- # we use binary mode on Windows:
- c_setmode(c_fileno(stdin), O_BINARY)
- c_setmode(c_fileno(stdout), O_BINARY)
- c_setmode(c_fileno(stderr), O_BINARY)
- when defined(endb):
- proc endbStep()
- when defined(useStdoutAsStdmsg):
- template stdmsg*: File = stdout
- else:
- template stdmsg*: File = stderr
- ## Template which expands to either stdout or stderr depending on
- ## `useStdoutAsStdmsg` compile-time switch.
- proc open*(f: var File, filename: string,
- mode: FileMode = fmRead, bufSize: int = -1): bool {.tags: [],
- benign.}
- ## Opens a file named `filename` with given `mode`.
- ##
- ## Default mode is readonly. Returns true iff the file could be opened.
- ## This throws no exception if the file could not be opened.
- proc open*(f: var File, filehandle: FileHandle,
- mode: FileMode = fmRead): bool {.tags: [], benign.}
- ## Creates a ``File`` from a `filehandle` with given `mode`.
- ##
- ## Default mode is readonly. Returns true iff the file could be opened.
- proc open*(filename: string,
- mode: FileMode = fmRead, bufSize: int = -1): File =
- ## Opens a file named `filename` with given `mode`.
- ##
- ## Default mode is readonly. Raises an ``IO`` exception if the file
- ## could not be opened.
- if not open(result, filename, mode, bufSize):
- sysFatal(IOError, "cannot open: ", filename)
- proc reopen*(f: File, filename: string, mode: FileMode = fmRead): bool {.
- tags: [], benign.}
- ## reopens the file `f` with given `filename` and `mode`. This
- ## is often used to redirect the `stdin`, `stdout` or `stderr`
- ## file variables.
- ##
- ## Default mode is readonly. Returns true iff the file could be reopened.
- proc setStdIoUnbuffered*() {.tags: [], benign.}
- ## Configures `stdin`, `stdout` and `stderr` to be unbuffered.
- proc close*(f: File) {.tags: [], gcsafe.}
- ## Closes the file.
- proc endOfFile*(f: File): bool {.tags: [], benign.}
- ## Returns true iff `f` is at the end.
- proc readChar*(f: File): char {.tags: [ReadIOEffect].}
- ## Reads a single character from the stream `f`. Should not be used in
- ## performance sensitive code.
- proc flushFile*(f: File) {.tags: [WriteIOEffect].}
- ## Flushes `f`'s buffer.
- proc readAll*(file: File): TaintedString {.tags: [ReadIOEffect], benign.}
- ## Reads all data from the stream `file`.
- ##
- ## Raises an IO exception in case of an error. It is an error if the
- ## current file position is not at the beginning of the file.
- proc readFile*(filename: string): TaintedString {.tags: [ReadIOEffect], benign.}
- ## Opens a file named `filename` for reading.
- ##
- ## Then calls `readAll <#readAll>`_ and closes the file afterwards.
- ## Returns the string. Raises an IO exception in case of an error. If
- ## you need to call this inside a compile time macro you can use
- ## `staticRead <#staticRead>`_.
- proc writeFile*(filename, content: string) {.tags: [WriteIOEffect], benign.}
- ## Opens a file named `filename` for writing. Then writes the
- ## `content` completely to the file and closes the file afterwards.
- ## Raises an IO exception in case of an error.
- proc write*(f: File, r: float32) {.tags: [WriteIOEffect], benign.}
- proc write*(f: File, i: int) {.tags: [WriteIOEffect], benign.}
- proc write*(f: File, i: BiggestInt) {.tags: [WriteIOEffect], benign.}
- proc write*(f: File, r: BiggestFloat) {.tags: [WriteIOEffect], benign.}
- proc write*(f: File, s: string) {.tags: [WriteIOEffect], benign.}
- proc write*(f: File, b: bool) {.tags: [WriteIOEffect], benign.}
- proc write*(f: File, c: char) {.tags: [WriteIOEffect], benign.}
- proc write*(f: File, c: cstring) {.tags: [WriteIOEffect], benign.}
- proc write*(f: File, a: varargs[string, `$`]) {.tags: [WriteIOEffect], benign.}
- ## Writes a value to the file `f`. May throw an IO exception.
- proc readLine*(f: File): TaintedString {.tags: [ReadIOEffect], benign.}
- ## reads a line of text from the file `f`. May throw an IO exception.
- ## A line of text may be delimited by ``LF`` or ``CRLF``. The newline
- ## character(s) are not part of the returned string.
- proc readLine*(f: File, line: var TaintedString): bool {.tags: [ReadIOEffect],
- benign.}
- ## reads a line of text from the file `f` into `line`. May throw an IO
- ## exception.
- ## A line of text may be delimited by ``LF`` or ``CRLF``. The newline
- ## character(s) are not part of the returned string. Returns ``false``
- ## if the end of the file has been reached, ``true`` otherwise. If
- ## ``false`` is returned `line` contains no new data.
- proc writeLine*[Ty](f: File, x: varargs[Ty, `$`]) {.inline,
- tags: [WriteIOEffect], benign.}
- ## writes the values `x` to `f` and then writes "\\n".
- ## May throw an IO exception.
- proc getFileSize*(f: File): int64 {.tags: [ReadIOEffect], benign.}
- ## retrieves the file size (in bytes) of `f`.
- proc readBytes*(f: File, a: var openArray[int8|uint8], start, len: Natural): int {.
- tags: [ReadIOEffect], benign.}
- ## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns
- ## the actual number of bytes that have been read which may be less than
- ## `len` (if not as many bytes are remaining), but not greater.
- proc readChars*(f: File, a: var openArray[char], start, len: Natural): int {.
- tags: [ReadIOEffect], benign.}
- ## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns
- ## the actual number of bytes that have been read which may be less than
- ## `len` (if not as many bytes are remaining), but not greater.
- ##
- ## **Warning:** The buffer `a` must be pre-allocated. This can be done
- ## using, for example, ``newString``.
- proc readBuffer*(f: File, buffer: pointer, len: Natural): int {.
- tags: [ReadIOEffect], benign.}
- ## reads `len` bytes into the buffer pointed to by `buffer`. Returns
- ## the actual number of bytes that have been read which may be less than
- ## `len` (if not as many bytes are remaining), but not greater.
- proc writeBytes*(f: File, a: openArray[int8|uint8], start, len: Natural): int {.
- tags: [WriteIOEffect], benign.}
- ## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns
- ## the number of actual written bytes, which may be less than `len` in case
- ## of an error.
- proc writeChars*(f: File, a: openArray[char], start, len: Natural): int {.
- tags: [WriteIOEffect], benign.}
- ## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns
- ## the number of actual written bytes, which may be less than `len` in case
- ## of an error.
- proc writeBuffer*(f: File, buffer: pointer, len: Natural): int {.
- tags: [WriteIOEffect], benign.}
- ## writes the bytes of buffer pointed to by the parameter `buffer` to the
- ## file `f`. Returns the number of actual written bytes, which may be less
- ## than `len` in case of an error.
- proc setFilePos*(f: File, pos: int64, relativeTo: FileSeekPos = fspSet) {.benign.}
- ## sets the position of the file pointer that is used for read/write
- ## operations. The file's first byte has the index zero.
- proc getFilePos*(f: File): int64 {.benign.}
- ## retrieves the current position of the file pointer that is used to
- ## read from the file `f`. The file's first byte has the index zero.
- proc getFileHandle*(f: File): FileHandle
- ## returns the OS file handle of the file ``f``. This is only useful for
- ## platform specific programming.
- when declared(newSeq):
- proc cstringArrayToSeq*(a: cstringArray, len: Natural): seq[string] =
- ## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
- ## of length ``len``.
- newSeq(result, len)
- for i in 0..len-1: result[i] = $a[i]
- proc cstringArrayToSeq*(a: cstringArray): seq[string] =
- ## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
- ## terminated by ``nil``.
- var L = 0
- while a[L] != nil: inc(L)
- result = cstringArrayToSeq(a, L)
- # -------------------------------------------------------------------------
- when declared(alloc0) and declared(dealloc):
- proc allocCStringArray*(a: openArray[string]): cstringArray =
- ## creates a NULL terminated cstringArray from `a`. The result has to
- ## be freed with `deallocCStringArray` after it's not needed anymore.
- result = cast[cstringArray](alloc0((a.len+1) * sizeof(cstring)))
- let x = cast[ptr UncheckedArray[string]](a)
- for i in 0 .. a.high:
- result[i] = cast[cstring](alloc0(x[i].len+1))
- copyMem(result[i], addr(x[i][0]), x[i].len)
- proc deallocCStringArray*(a: cstringArray) =
- ## frees a NULL terminated cstringArray.
- var i = 0
- while a[i] != nil:
- dealloc(a[i])
- inc(i)
- dealloc(a)
- when not defined(nimscript):
- proc atomicInc*(memLoc: var int, x: int = 1): int {.inline,
- discardable, benign.}
- ## atomic increment of `memLoc`. Returns the value after the operation.
- proc atomicDec*(memLoc: var int, x: int = 1): int {.inline,
- discardable, benign.}
- ## atomic decrement of `memLoc`. Returns the value after the operation.
- include "system/atomics"
- type
- PSafePoint = ptr TSafePoint
- TSafePoint {.compilerproc, final.} = object
- prev: PSafePoint # points to next safe point ON THE STACK
- status: int
- context: C_JmpBuf
- hasRaiseAction: bool
- raiseAction: proc (e: ref Exception): bool {.closure.}
- SafePoint = TSafePoint
- when declared(initAllocator):
- initAllocator()
- when hasThreadSupport:
- const insideRLocksModule = false
- include "system/syslocks"
- when hostOS != "standalone": include "system/threads"
- elif not defined(nogc) and not defined(nimscript):
- when not defined(useNimRtl) and not defined(createNimRtl): initStackBottom()
- when declared(initGC): initGC()
- when not defined(nimscript):
- proc setControlCHook*(hook: proc () {.noconv.})
- ## allows you to override the behaviour of your application when CTRL+C
- ## is pressed. Only one such hook is supported.
- proc writeStackTrace*() {.tags: [], gcsafe.}
- ## writes the current stack trace to ``stderr``. This is only works
- ## for debug builds. Since it's usually used for debugging, this
- ## is proclaimed to have no IO effect!
- when hostOS != "standalone":
- proc getStackTrace*(): string {.gcsafe.}
- ## gets the current stack trace. This only works for debug builds.
- proc getStackTrace*(e: ref Exception): string {.gcsafe.}
- ## gets the stack trace associated with `e`, which is the stack that
- ## lead to the ``raise`` statement. This only works for debug builds.
- {.push stack_trace: off, profiler:off.}
- when defined(memtracker):
- include "system/memtracker"
- when hostOS == "standalone":
- include "system/embedded"
- else:
- include "system/excpt"
- include "system/chcks"
- # we cannot compile this with stack tracing on
- # as it would recurse endlessly!
- include "system/arithm"
- {.pop.} # stack trace
- {.pop.} # stack trace
- when hostOS != "standalone" and not defined(nimscript):
- include "system/dyncalls"
- when not defined(nimscript):
- include "system/sets"
- when defined(gogc):
- const GenericSeqSize = (3 * sizeof(int))
- else:
- const GenericSeqSize = (2 * sizeof(int))
- proc getDiscriminant(aa: pointer, n: ptr TNimNode): int =
- sysAssert(n.kind == nkCase, "getDiscriminant: node != nkCase")
- var d: int
- var a = cast[ByteAddress](aa)
- case n.typ.size
- of 1: d = ze(cast[ptr int8](a +% n.offset)[])
- of 2: d = ze(cast[ptr int16](a +% n.offset)[])
- of 4: d = int(cast[ptr int32](a +% n.offset)[])
- else: sysAssert(false, "getDiscriminant: invalid n.typ.size")
- return d
- proc selectBranch(aa: pointer, n: ptr TNimNode): ptr TNimNode =
- var discr = getDiscriminant(aa, n)
- if discr <% n.len:
- result = n.sons[discr]
- if result == nil: result = n.sons[n.len]
- # n.sons[n.len] contains the ``else`` part (but may be nil)
- else:
- result = n.sons[n.len]
- {.push profiler:off.}
- when hasAlloc: include "system/mmdisp"
- {.pop.}
- {.push stack_trace: off, profiler:off.}
- when hasAlloc:
- when defined(gcDestructors):
- include "core/strs"
- include "core/seqs"
- else:
- include "system/sysstr"
- {.pop.}
- when hasAlloc: include "system/strmantle"
- when hostOS != "standalone": include "system/sysio"
- when hasThreadSupport:
- when hostOS != "standalone": include "system/channels"
- else:
- include "system/sysio"
- when not defined(nimscript) and hostOS != "standalone":
- iterator lines*(filename: string): TaintedString {.tags: [ReadIOEffect].} =
- ## Iterates over any line in the file named `filename`.
- ##
- ## If the file does not exist `IOError` is raised. The trailing newline
- ## character(s) are removed from the iterated lines. Example:
- ##
- ## .. code-block:: nim
- ## import strutils
- ##
- ## proc transformLetters(filename: string) =
- ## var buffer = ""
- ## for line in filename.lines:
- ## buffer.add(line.replace("a", "0") & '\x0A')
- ## writeFile(filename, buffer)
- var f = open(filename, bufSize=8000)
- defer: close(f)
- var res = TaintedString(newStringOfCap(80))
- while f.readLine(res): yield res
- iterator lines*(f: File): TaintedString {.tags: [ReadIOEffect].} =
- ## Iterate over any line in the file `f`.
- ##
- ## The trailing newline character(s) are removed from the iterated lines.
- ## Example:
- ##
- ## .. code-block:: nim
- ## proc countZeros(filename: File): tuple[lines, zeros: int] =
- ## for line in filename.lines:
- ## for letter in line:
- ## if letter == '0':
- ## result.zeros += 1
- ## result.lines += 1
- var res = TaintedString(newStringOfCap(80))
- while f.readLine(res): yield res
- when not defined(nimscript) and hasAlloc:
- when not defined(gcDestructors):
- include "system/assign"
- include "system/repr"
- when hostOS != "standalone" and not defined(nimscript):
- proc getCurrentException*(): ref Exception {.compilerRtl, inl, benign.} =
- ## retrieves the current exception; if there is none, nil is returned.
- result = currException
- proc getCurrentExceptionMsg*(): string {.inline, benign.} =
- ## retrieves the error message that was attached to the current
- ## exception; if there is none, "" is returned.
- var e = getCurrentException()
- return if e == nil: "" else: e.msg
- proc onRaise*(action: proc(e: ref Exception): bool{.closure.}) {.deprecated.} =
- ## can be used in a ``try`` statement to setup a Lisp-like
- ## `condition system`:idx:\: This prevents the 'raise' statement to
- ## raise an exception but instead calls ``action``.
- ## If ``action`` returns false, the exception has been handled and
- ## does not propagate further through the call stack.
- ##
- ## *Deprecated since version 0.18.1*: No good usages of this
- ## feature are known.
- if not isNil(excHandler):
- excHandler.hasRaiseAction = true
- excHandler.raiseAction = action
- proc setCurrentException*(exc: ref Exception) {.inline, benign.} =
- ## sets the current exception.
- ##
- ## **Warning**: Only use this if you know what you are doing.
- currException = exc
- {.push stack_trace: off, profiler:off.}
- when defined(endb) and not defined(nimscript):
- include "system/debugger"
- when defined(profiler) or defined(memProfiler):
- include "system/profiler"
- {.pop.} # stacktrace
- when not defined(nimscript):
- proc rawProc*[T: proc](x: T): pointer {.noSideEffect, inline.} =
- ## retrieves the raw proc pointer of the closure `x`. This is
- ## useful for interfacing closures with C.
- {.emit: """
- `result` = `x`.ClP_0;
- """.}
- proc rawEnv*[T: proc](x: T): pointer {.noSideEffect, inline.} =
- ## retrieves the raw environment pointer of the closure `x`. This is
- ## useful for interfacing closures with C.
- {.emit: """
- `result` = `x`.ClE_0;
- """.}
- proc finished*[T: proc](x: T): bool {.noSideEffect, inline.} =
- ## can be used to determine if a first class iterator has finished.
- {.emit: """
- `result` = ((NI*) `x`.ClE_0)[1] < 0;
- """.}
- elif defined(JS):
- # Stubs:
- proc getOccupiedMem(): int = return -1
- proc getFreeMem(): int = return -1
- proc getTotalMem(): int = return -1
- proc dealloc(p: pointer) = discard
- proc alloc(size: Natural): pointer = discard
- proc alloc0(size: Natural): pointer = discard
- proc realloc(p: pointer, newsize: Natural): pointer = discard
- proc allocShared(size: Natural): pointer = discard
- proc allocShared0(size: Natural): pointer = discard
- proc deallocShared(p: pointer) = discard
- proc reallocShared(p: pointer, newsize: Natural): pointer = discard
- when defined(JS):
- include "system/jssys"
- include "system/reprjs"
- elif defined(nimscript):
- proc cmp(x, y: string): int =
- if x == y: return 0
- if x < y: return -1
- return 1
- when defined(nimffi):
- include "system/sysio"
- when not defined(nimNoArrayToString):
- proc `$`*[T, IDX](x: array[IDX, T]): string =
- ## generic ``$`` operator for arrays that is lifted from the components
- collectionToString(x, "[", ", ", "]")
- proc `$`*[T](x: openarray[T]): string =
- ## generic ``$`` operator for openarrays that is lifted from the components
- ## of `x`. Example:
- ##
- ## .. code-block:: nim
- ## $(@[23, 45].toOpenArray(0, 1)) == "[23, 45]"
- collectionToString(x, "[", ", ", "]")
- proc quit*(errormsg: string, errorcode = QuitFailure) {.noReturn.} =
- ## a shorthand for ``echo(errormsg); quit(errorcode)``.
- echo(errormsg)
- quit(errorcode)
- {.pop.} # checks
- {.pop.} # hints
- proc `/`*(x, y: int): float {.inline, noSideEffect.} =
- ## integer division that results in a float.
- result = toFloat(x) / toFloat(y)
- type
- BackwardsIndex* = distinct int ## type that is constructed by ``^`` for
- ## reversed array accesses.
- template `^`*(x: int): BackwardsIndex = BackwardsIndex(x)
- ## builtin `roof`:idx: operator that can be used for convenient array access.
- ## ``a[^x]`` is a shortcut for ``a[a.len-x]``.
- template `..^`*(a, b: untyped): untyped =
- ## a shortcut for '.. ^' to avoid the common gotcha that a space between
- ## '..' and '^' is required.
- a .. ^b
- template `..<`*(a, b: untyped): untyped =
- ## a shortcut for 'a .. (when b is BackwardsIndex: succ(b) else: pred(b))'.
- a .. (when b is BackwardsIndex: succ(b) else: pred(b))
- when defined(nimNewRoof):
- iterator `..<`*[T](a, b: T): T =
- var i = T(a)
- while i < b:
- yield i
- inc i
- else:
- iterator `..<`*[S, T](a: S, b: T): T =
- var i = T(a)
- while i < b:
- yield i
- inc i
- template spliceImpl(s, a, L, b: untyped): untyped =
- # make room for additional elements or cut:
- var shift = b.len - max(0,L) # ignore negative slice size
- var newLen = s.len + shift
- if shift > 0:
- # enlarge:
- setLen(s, newLen)
- for i in countdown(newLen-1, a+b.len): shallowCopy(s[i], s[i-shift])
- else:
- for i in countup(a+b.len, newLen-1): shallowCopy(s[i], s[i-shift])
- # cut down:
- setLen(s, newLen)
- # fill the hole:
- for i in 0 ..< b.len: s[a+i] = b[i]
- template `^^`(s, i: untyped): untyped =
- (when i is BackwardsIndex: s.len - int(i) else: int(i))
- template `[]`*(s: string; i: int): char = arrGet(s, i)
- template `[]=`*(s: string; i: int; val: char) = arrPut(s, i, val)
- when hasAlloc or defined(nimscript):
- proc `[]`*[T, U](s: string, x: HSlice[T, U]): string {.inline.} =
- ## slice operation for strings.
- ## returns the inclusive range [s[x.a], s[x.b]]:
- ##
- ## .. code-block:: nim
- ## var s = "abcdef"
- ## assert s[1..3] == "bcd"
- let a = s ^^ x.a
- let L = (s ^^ x.b) - a + 1
- result = newString(L)
- for i in 0 ..< L: result[i] = s[i + a]
- proc `[]=`*[T, U](s: var string, x: HSlice[T, U], b: string) =
- ## slice assignment for strings. If
- ## ``b.len`` is not exactly the number of elements that are referred to
- ## by `x`, a `splice`:idx: is performed:
- ##
- ## .. code-block:: nim
- ## var s = "abcdef"
- ## s[1 .. ^2] = "xyz"
- ## assert s == "axyzf"
- var a = s ^^ x.a
- var L = (s ^^ x.b) - a + 1
- if L == b.len:
- for i in 0..<L: s[i+a] = b[i]
- else:
- spliceImpl(s, a, L, b)
- proc `[]`*[Idx, T, U, V](a: array[Idx, T], x: HSlice[U, V]): seq[T] =
- ## slice operation for arrays.
- ## returns the inclusive range [a[x.a], a[x.b]]:
- ##
- ## .. code-block:: nim
- ## var a = [1,2,3,4]
- ## assert a[0..2] == @[1,2,3]
- let xa = a ^^ x.a
- let L = (a ^^ x.b) - xa + 1
- result = newSeq[T](L)
- for i in 0..<L: result[i] = a[Idx(i + xa)]
- proc `[]=`*[Idx, T, U, V](a: var array[Idx, T], x: HSlice[U, V], b: openArray[T]) =
- ## slice assignment for arrays.
- let xa = a ^^ x.a
- let L = (a ^^ x.b) - xa + 1
- if L == b.len:
- for i in 0..<L: a[Idx(i + xa)] = b[i]
- else:
- sysFatal(RangeError, "different lengths for slice assignment")
- proc `[]`*[T, U, V](s: openArray[T], x: HSlice[U, V]): seq[T] =
- ## slice operation for sequences.
- ## returns the inclusive range [s[x.a], s[x.b]]:
- ##
- ## .. code-block:: nim
- ## var s = @[1,2,3,4]
- ## assert s[0..2] == @[1,2,3]
- let a = s ^^ x.a
- let L = (s ^^ x.b) - a + 1
- newSeq(result, L)
- for i in 0 ..< L: result[i] = s[i + a]
- proc `[]=`*[T, U, V](s: var seq[T], x: HSlice[U, V], b: openArray[T]) =
- ## slice assignment for sequences. If
- ## ``b.len`` is not exactly the number of elements that are referred to
- ## by `x`, a `splice`:idx: is performed.
- let a = s ^^ x.a
- let L = (s ^^ x.b) - a + 1
- if L == b.len:
- for i in 0 ..< L: s[i+a] = b[i]
- else:
- spliceImpl(s, a, L, b)
- proc `[]`*[T](s: openArray[T]; i: BackwardsIndex): T {.inline.} =
- system.`[]`(s, s.len - int(i))
- proc `[]`*[Idx, T](a: array[Idx, T]; i: BackwardsIndex): T {.inline.} =
- a[Idx(a.len - int(i) + int low(a))]
- proc `[]`*(s: string; i: BackwardsIndex): char {.inline.} = s[s.len - int(i)]
- proc `[]`*[T](s: var openArray[T]; i: BackwardsIndex): var T {.inline.} =
- system.`[]`(s, s.len - int(i))
- proc `[]`*[Idx, T](a: var array[Idx, T]; i: BackwardsIndex): var T {.inline.} =
- a[Idx(a.len - int(i) + int low(a))]
- proc `[]=`*[T](s: var openArray[T]; i: BackwardsIndex; x: T) {.inline.} =
- system.`[]=`(s, s.len - int(i), x)
- proc `[]=`*[Idx, T](a: var array[Idx, T]; i: BackwardsIndex; x: T) {.inline.} =
- a[Idx(a.len - int(i) + int low(a))] = x
- proc `[]=`*(s: var string; i: BackwardsIndex; x: char) {.inline.} =
- s[s.len - int(i)] = x
- proc slurp*(filename: string): string {.magic: "Slurp".}
- ## This is an alias for `staticRead <#staticRead>`_.
- proc staticRead*(filename: string): string {.magic: "Slurp".}
- ## Compile-time `readFile <#readFile>`_ proc for easy `resource`:idx:
- ## embedding:
- ##
- ## .. code-block:: nim
- ## const myResource = staticRead"mydatafile.bin"
- ##
- ## `slurp <#slurp>`_ is an alias for ``staticRead``.
- proc gorge*(command: string, input = "", cache = ""): string {.
- magic: "StaticExec".} = discard
- ## This is an alias for `staticExec <#staticExec>`_.
- proc staticExec*(command: string, input = "", cache = ""): string {.
- magic: "StaticExec".} = discard
- ## Executes an external process at compile-time.
- ## if `input` is not an empty string, it will be passed as a standard input
- ## to the executed program.
- ##
- ## .. code-block:: nim
- ## const buildInfo = "Revision " & staticExec("git rev-parse HEAD") &
- ## "\nCompiled on " & staticExec("uname -v")
- ##
- ## `gorge <#gorge>`_ is an alias for ``staticExec``. Note that you can use
- ## this proc inside a pragma like `passC <nimc.html#passc-pragma>`_ or `passL
- ## <nimc.html#passl-pragma>`_.
- ##
- ## If ``cache`` is not empty, the results of ``staticExec`` are cached within
- ## the ``nimcache`` directory. Use ``--forceBuild`` to get rid of this caching
- ## behaviour then. ``command & input & cache`` (the concatenated string) is
- ## used to determine whether the entry in the cache is still valid. You can
- ## use versioning information for ``cache``:
- ##
- ## .. code-block:: nim
- ## const stateMachine = staticExec("dfaoptimizer", "input", "0.8.0")
- proc gorgeEx*(command: string, input = "", cache = ""): tuple[output: string,
- exitCode: int] =
- ## Same as `gorge` but also returns the precious exit code.
- discard
- proc `+=`*[T: SomeOrdinal|uint|uint64](x: var T, y: T) {.
- magic: "Inc", noSideEffect.}
- ## Increments an ordinal
- proc `-=`*[T: SomeOrdinal|uint|uint64](x: var T, y: T) {.
- magic: "Dec", noSideEffect.}
- ## Decrements an ordinal
- proc `*=`*[T: SomeOrdinal|uint|uint64](x: var T, y: T) {.
- inline, noSideEffect.} =
- ## Binary `*=` operator for ordinals
- x = x * y
- proc `+=`*[T: float|float32|float64] (x: var T, y: T) {.
- inline, noSideEffect.} =
- ## Increments in place a floating point number
- x = x + y
- proc `-=`*[T: float|float32|float64] (x: var T, y: T) {.
- inline, noSideEffect.} =
- ## Decrements in place a floating point number
- x = x - y
- proc `*=`*[T: float|float32|float64] (x: var T, y: T) {.
- inline, noSideEffect.} =
- ## Multiplies in place a floating point number
- x = x * y
- proc `/=`*(x: var float64, y: float64) {.inline, noSideEffect.} =
- ## Divides in place a floating point number
- x = x / y
- proc `/=`*[T: float|float32](x: var T, y: T) {.inline, noSideEffect.} =
- ## Divides in place a floating point number
- x = x / y
- proc `&=`*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
- template `&=`*(x, y: typed) =
- ## generic 'sink' operator for Nim. For files an alias for ``write``.
- ## If not specialized further an alias for ``add``.
- add(x, y)
- when declared(File):
- template `&=`*(f: File, x: typed) = write(f, x)
- proc astToStr*[T](x: T): string {.magic: "AstToStr", noSideEffect.}
- ## converts the AST of `x` into a string representation. This is very useful
- ## for debugging.
- proc instantiationInfo*(index = -1, fullPaths = false): tuple[
- filename: string, line: int, column: int] {.magic: "InstantiationInfo", noSideEffect.}
- ## provides access to the compiler's instantiation stack line information
- ## of a template.
- ##
- ## While similar to the `caller info`:idx: of other languages, it is determined
- ## at compile time.
- ##
- ## This proc is mostly useful for meta programming (eg. ``assert`` template)
- ## to retrieve information about the current filename and line number.
- ## Example:
- ##
- ## .. code-block:: nim
- ## import strutils
- ##
- ## template testException(exception, code: untyped): typed =
- ## try:
- ## let pos = instantiationInfo()
- ## discard(code)
- ## echo "Test failure at $1:$2 with '$3'" % [pos.filename,
- ## $pos.line, astToStr(code)]
- ## assert false, "A test expecting failure succeeded?"
- ## except exception:
- ## discard
- ##
- ## proc tester(pos: int): int =
- ## let
- ## a = @[1, 2, 3]
- ## result = a[pos]
- ##
- ## when isMainModule:
- ## testException(IndexError, tester(30))
- ## testException(IndexError, tester(1))
- ## # --> Test failure at example.nim:20 with 'tester(1)'
- template currentSourcePath*: string = instantiationInfo(-1, true).filename
- ## returns the full file-system path of the current source
- proc raiseAssert*(msg: string) {.noinline.} =
- sysFatal(AssertionError, msg)
- proc failedAssertImpl*(msg: string) {.raises: [], tags: [].} =
- # trick the compiler to not list ``AssertionError`` when called
- # by ``assert``.
- type Hide = proc (msg: string) {.noinline, raises: [], noSideEffect,
- tags: [].}
- Hide(raiseAssert)(msg)
- include "system/helpers" # for `lineInfoToString`
- template assertImpl(cond: bool, msg: string, expr: string, enabled: static[bool]) =
- const loc = $instantiationInfo(-1, true)
- bind instantiationInfo
- mixin failedAssertImpl
- when enabled:
- # for stacktrace; fixes #8928 ; Note: `fullPaths = true` is correct
- # here, regardless of --excessiveStackTrace
- {.line: instantiationInfo(fullPaths = true).}:
- if not cond:
- failedAssertImpl(loc & " `" & expr & "` " & msg)
- template assert*(cond: untyped, msg = "") =
- ## Raises ``AssertionError`` with `msg` if `cond` is false. Note
- ## that ``AssertionError`` is hidden from the effect system, so it doesn't
- ## produce ``{.raises: [AssertionError].}``. This exception is only supposed
- ## to be caught by unit testing frameworks.
- ##
- ## The compiler may not generate any code at all for ``assert`` if it is
- ## advised to do so through the ``-d:release`` or ``--assertions:off``
- ## `command line switches <nimc.html#command-line-switches>`_.
- const expr = astToStr(cond)
- assertImpl(cond, msg, expr, compileOption("assertions"))
- template doAssert*(cond: untyped, msg = "") =
- ## same as ``assert`` but is always turned on regardless of ``--assertions``
- const expr = astToStr(cond)
- assertImpl(cond, msg, expr, true)
- iterator items*[T](a: seq[T]): T {.inline.} =
- ## iterates over each item of `a`.
- var i = 0
- let L = len(a)
- while i < L:
- yield a[i]
- inc(i)
- assert(len(a) == L, "seq modified while iterating over it")
- iterator mitems*[T](a: var seq[T]): var T {.inline.} =
- ## iterates over each item of `a` so that you can modify the yielded value.
- var i = 0
- let L = len(a)
- while i < L:
- yield a[i]
- inc(i)
- assert(len(a) == L, "seq modified while iterating over it")
- iterator items*(a: string): char {.inline.} =
- ## iterates over each item of `a`.
- var i = 0
- let L = len(a)
- while i < L:
- yield a[i]
- inc(i)
- assert(len(a) == L, "string modified while iterating over it")
- iterator mitems*(a: var string): var char {.inline.} =
- ## iterates over each item of `a` so that you can modify the yielded value.
- var i = 0
- let L = len(a)
- while i < L:
- yield a[i]
- inc(i)
- assert(len(a) == L, "string modified while iterating over it")
- when not defined(nimhygiene):
- {.pragma: inject.}
- template onFailedAssert*(msg, code: untyped): untyped {.dirty.} =
- ## Sets an assertion failure handler that will intercept any assert
- ## statements following `onFailedAssert` in the current module scope.
- ##
- ## .. code-block:: nim
- ## # module-wide policy to change the failed assert
- ## # exception type in order to include a lineinfo
- ## onFailedAssert(msg):
- ## var e = new(TMyError)
- ## e.msg = msg
- ## e.lineinfo = instantiationInfo(-2)
- ## raise e
- ##
- template failedAssertImpl(msgIMPL: string): untyped {.dirty.} =
- let msg = msgIMPL
- code
- proc shallow*[T](s: var seq[T]) {.noSideEffect, inline.} =
- ## marks a sequence `s` as `shallow`:idx:. Subsequent assignments will not
- ## perform deep copies of `s`. This is only useful for optimization
- ## purposes.
- when not defined(JS) and not defined(nimscript):
- var s = cast[PGenericSeq](s)
- s.reserved = s.reserved or seqShallowFlag
- proc shallow*(s: var string) {.noSideEffect, inline.} =
- ## marks a string `s` as `shallow`:idx:. Subsequent assignments will not
- ## perform deep copies of `s`. This is only useful for optimization
- ## purposes.
- when not defined(JS) and not defined(nimscript) and not defined(gcDestructors):
- var s = cast[PGenericSeq](s)
- # string literals cannot become 'shallow':
- if (s.reserved and strlitFlag) == 0:
- s.reserved = s.reserved or seqShallowFlag
- type
- NimNodeObj = object
- NimNode* {.magic: "PNimrodNode".} = ref NimNodeObj
- ## represents a Nim AST node. Macros operate on this type.
- {.deprecated: [PNimrodNode: NimNode].}
- when false:
- template eval*(blk: typed): typed =
- ## executes a block of code at compile time just as if it was a macro
- ## optionally, the block can return an AST tree that will replace the
- ## eval expression
- macro payload: typed {.gensym.} = blk
- payload()
- when hasAlloc:
- proc insert*(x: var string, item: string, i = 0.Natural) {.noSideEffect.} =
- ## inserts `item` into `x` at position `i`.
- var xl = x.len
- setLen(x, xl+item.len)
- var j = xl-1
- while j >= i:
- shallowCopy(x[j+item.len], x[j])
- dec(j)
- j = 0
- while j < item.len:
- x[j+i] = item[j]
- inc(j)
- when declared(initDebugger):
- initDebugger()
- proc addEscapedChar*(s: var string, c: char) {.noSideEffect, inline.} =
- ## Adds a char to string `s` and applies the following escaping:
- ##
- ## * replaces any ``\`` by ``\\``
- ## * replaces any ``'`` by ``\'``
- ## * replaces any ``"`` by ``\"``
- ## * replaces any ``\a`` by ``\\a``
- ## * replaces any ``\b`` by ``\\b``
- ## * replaces any ``\t`` by ``\\t``
- ## * replaces any ``\n`` by ``\\n``
- ## * replaces any ``\v`` by ``\\v``
- ## * replaces any ``\f`` by ``\\f``
- ## * replaces any ``\c`` by ``\\c``
- ## * replaces any ``\e`` by ``\\e``
- ## * replaces any other character not in the set ``{'\21..'\126'}
- ## by ``\xHH`` where ``HH`` is its hexadecimal value.
- ##
- ## The procedure has been designed so that its output is usable for many
- ## different common syntaxes.
- ## **Note**: This is not correct for producing Ansi C code!
- case c
- of '\a': s.add "\\a" # \x07
- of '\b': s.add "\\b" # \x08
- of '\t': s.add "\\t" # \x09
- of '\L': s.add "\\n" # \x0A
- of '\v': s.add "\\v" # \x0B
- of '\f': s.add "\\f" # \x0C
- of '\c': s.add "\\c" # \x0D
- of '\e': s.add "\\e" # \x1B
- of '\\': s.add("\\\\")
- of '\'': s.add("\\'")
- of '\"': s.add("\\\"")
- of {'\32'..'\126'} - {'\\', '\'', '\"'}: s.add(c)
- else:
- s.add("\\x")
- const HexChars = "0123456789ABCDEF"
- let n = ord(c)
- s.add(HexChars[int((n and 0xF0) shr 4)])
- s.add(HexChars[int(n and 0xF)])
- proc addQuoted*[T](s: var string, x: T) =
- ## Appends `x` to string `s` in place, applying quoting and escaping
- ## if `x` is a string or char. See
- ## `addEscapedChar <system.html#addEscapedChar>`_
- ## for the escaping scheme. When `x` is a string, characters in the
- ## range ``{\128..\255}`` are never escaped so that multibyte UTF-8
- ## characters are untouched (note that this behavior is different from
- ## ``addEscapedChar``).
- ##
- ## The Nim standard library uses this function on the elements of
- ## collections when producing a string representation of a collection.
- ## It is recommended to use this function as well for user-side collections.
- ## Users may overload `addQuoted` for custom (string-like) types if
- ## they want to implement a customized element representation.
- ##
- ## .. code-block:: Nim
- ## var tmp = ""
- ## tmp.addQuoted(1)
- ## tmp.add(", ")
- ## tmp.addQuoted("string")
- ## tmp.add(", ")
- ## tmp.addQuoted('c')
- ## assert(tmp == """1, "string", 'c'""")
- when T is string or T is cstring:
- s.add("\"")
- for c in x:
- # Only ASCII chars are escaped to avoid butchering
- # multibyte UTF-8 characters.
- if c <= 127.char:
- s.addEscapedChar(c)
- else:
- s.add c
- s.add("\"")
- elif T is char:
- s.add("'")
- s.addEscapedChar(x)
- s.add("'")
- # prevent temporary string allocation
- elif compiles(s.add(x)):
- s.add(x)
- else:
- s.add($x)
- when hasAlloc:
- # XXX: make these the default (or implement the NilObject optimization)
- proc safeAdd*[T](x: var seq[T], y: T) {.noSideEffect, deprecated.} =
- ## Adds ``y`` to ``x`` unless ``x`` is not yet initialized; in that case,
- ## ``x`` becomes ``@[y]``
- when defined(nimNoNilSeqs):
- x.add(y)
- else:
- if x == nil: x = @[y]
- else: x.add(y)
- proc safeAdd*(x: var string, y: char) {.noSideEffect, deprecated.} =
- ## Adds ``y`` to ``x``. If ``x`` is ``nil`` it is initialized to ``""``
- when defined(nimNoNilSeqs):
- x.add(y)
- else:
- if x == nil: x = ""
- x.add(y)
- proc safeAdd*(x: var string, y: string) {.noSideEffect, deprecated.} =
- ## Adds ``y`` to ``x`` unless ``x`` is not yet initalized; in that
- ## case, ``x`` becomes ``y``
- when defined(nimNoNilSeqs):
- x.add(y)
- else:
- if x == nil: x = y
- else: x.add(y)
- proc locals*(): RootObj {.magic: "Plugin", noSideEffect.} =
- ## generates a tuple constructor expression listing all the local variables
- ## in the current scope. This is quite fast as it does not rely
- ## on any debug or runtime information. Note that in contrast to what
- ## the official signature says, the return type is not ``RootObj`` but a
- ## tuple of a structure that depends on the current scope. Example:
- ##
- ## .. code-block:: nim
- ## proc testLocals() =
- ## var
- ## a = "something"
- ## b = 4
- ## c = locals()
- ## d = "super!"
- ##
- ## b = 1
- ## for name, value in fieldPairs(c):
- ## echo "name ", name, " with value ", value
- ## echo "B is ", b
- ## # -> name a with value something
- ## # -> name b with value 4
- ## # -> B is 1
- discard
- when hasAlloc and not defined(nimscript) and not defined(JS) and
- not defined(gcDestructors):
- # XXX how to implement 'deepCopy' is an open problem.
- proc deepCopy*[T](x: var T, y: T) {.noSideEffect, magic: "DeepCopy".} =
- ## performs a deep copy of `y` and copies it into `x`.
- ## This is also used by the code generator
- ## for the implementation of ``spawn``.
- discard
- include "system/deepcopy"
- proc procCall*(x: untyped) {.magic: "ProcCall", compileTime.} =
- ## special magic to prohibit dynamic binding for `method`:idx: calls.
- ## This is similar to `super`:idx: in ordinary OO languages.
- ##
- ## .. code-block:: nim
- ## # 'someMethod' will be resolved fully statically:
- ## procCall someMethod(a, b)
- discard
- proc xlen*(x: string): int {.magic: "XLenStr", noSideEffect,
- deprecated: "use len() instead".} =
- ## **Deprecated since version 0.18.1**. Use len() instead.
- discard
- proc xlen*[T](x: seq[T]): int {.magic: "XLenSeq", noSideEffect,
- deprecated: "use len() instead".} =
- ## returns the length of a sequence or a string without testing for 'nil'.
- ## This is an optimization that rarely makes sense.
- ## **Deprecated since version 0.18.1**. Use len() instead.
- discard
- proc `==`*(x, y: cstring): bool {.magic: "EqCString", noSideEffect,
- inline.} =
- ## Checks for equality between two `cstring` variables.
- proc strcmp(a, b: cstring): cint {.noSideEffect,
- importc, header: "<string.h>".}
- if pointer(x) == pointer(y): result = true
- elif x.isNil or y.isNil: result = false
- else: result = strcmp(x, y) == 0
- when defined(nimNoNilSeqs2):
- when not compileOption("nilseqs"):
- when defined(nimHasUserErrors):
- proc `==`*(x: string; y: type(nil)): bool {.
- error: "'nil' is now invalid for 'string'; compile with --nilseqs:on for a migration period".} =
- discard
- proc `==`*(x: type(nil); y: string): bool {.
- error: "'nil' is now invalid for 'string'; compile with --nilseqs:on for a migration period".} =
- discard
- else:
- proc `==`*(x: string; y: type(nil)): bool {.error.} = discard
- proc `==`*(x: type(nil); y: string): bool {.error.} = discard
- template closureScope*(body: untyped): untyped =
- ## Useful when creating a closure in a loop to capture local loop variables by
- ## their current iteration values. Example:
- ##
- ## .. code-block:: nim
- ## var myClosure : proc()
- ## # without closureScope:
- ## for i in 0 .. 5:
- ## let j = i
- ## if j == 3:
- ## myClosure = proc() = echo j
- ## myClosure() # outputs 5. `j` is changed after closure creation
- ## # with closureScope:
- ## for i in 0 .. 5:
- ## closureScope: # Everything in this scope is locked after closure creation
- ## let j = i
- ## if j == 3:
- ## myClosure = proc() = echo j
- ## myClosure() # outputs 3
- (proc() = body)()
- template once*(body: untyped): untyped =
- ## Executes a block of code only once (the first time the block is reached).
- ## When hot code reloading is enabled, protects top-level code from being
- ## re-executed on each module reload.
- ##
- ## .. code-block:: nim
- ##
- ## proc draw(t: Triangle) =
- ## once:
- ## graphicsInit()
- ## line(t.p1, t.p2)
- ## line(t.p2, t.p3)
- ## line(t.p3, t.p1)
- ##
- var alreadyExecuted {.global.} = false
- if not alreadyExecuted:
- alreadyExecuted = true
- body
- {.pop.} #{.push warning[GcMem]: off, warning[Uninit]: off.}
- proc substr*(s: string, first, last: int): string =
- let first = max(first, 0)
- let L = max(min(last, high(s)) - first + 1, 0)
- result = newString(L)
- for i in 0 .. L-1:
- result[i] = s[i+first]
- proc substr*(s: string, first = 0): string =
- ## copies a slice of `s` into a new string and returns this new
- ## string. The bounds `first` and `last` denote the indices of
- ## the first and last characters that shall be copied. If ``last``
- ## is omitted, it is treated as ``high(s)``. If ``last >= s.len``, ``s.len``
- ## is used instead: This means ``substr`` can also be used to `cut`:idx:
- ## or `limit`:idx: a string's length.
- result = substr(s, first, high(s))
- when defined(nimconfig):
- include "system/nimscript"
- when defined(windows) and appType == "console" and defined(nimSetUtf8CodePage):
- proc setConsoleOutputCP(codepage: cint): cint {.stdcall, dynlib: "kernel32",
- importc: "SetConsoleOutputCP".}
- discard setConsoleOutputCP(65001) # 65001 - utf-8 codepage
- when defined(nimHasRunnableExamples):
- proc runnableExamples*(body: untyped) {.magic: "RunnableExamples".}
- ## A section you should use to mark `runnable example`:idx: code with.
- ##
- ## - In normal debug and release builds code within
- ## a ``runnableExamples`` section is ignored.
- ## - The documentation generator is aware of these examples and considers them
- ## part of the ``##`` doc comment. As the last step of documentation
- ## generation the examples are put into an ``$file_example.nim`` file,
- ## compiled and tested. The collected examples are
- ## put into their own module to ensure the examples do not refer to
- ## non-exported symbols.
- else:
- template runnableExamples*(body: untyped) =
- discard
- template doAssertRaises*(exception, code: untyped): typed =
- ## Raises ``AssertionError`` if specified ``code`` does not raise the
- ## specified exception. Example:
- ##
- ## .. code-block:: nim
- ## doAssertRaises(ValueError):
- ## raise newException(ValueError, "Hello World")
- var wrong = false
- try:
- if true:
- code
- wrong = true
- except exception:
- discard
- except Exception as exc:
- raiseAssert(astToStr(exception) &
- " wasn't raised, another error was raised instead by:\n"&
- astToStr(code))
- if wrong:
- raiseAssert(astToStr(exception) & " wasn't raised by:\n" & astToStr(code))
- when defined(cpp) and appType != "lib" and
- not defined(js) and not defined(nimscript) and
- hostOS != "standalone" and not defined(noCppExceptions):
- proc setTerminate(handler: proc() {.noconv.})
- {.importc: "std::set_terminate", header: "<exception>".}
- setTerminate proc() {.noconv.} =
- # Remove ourself as a handler, reinstalling the default handler.
- setTerminate(nil)
- let ex = getCurrentException()
- let trace = ex.getStackTrace()
- when defined(genode):
- # stderr not available by default, use the LOG session
- echo trace & "Error: unhandled exception: " & ex.msg &
- " [" & $ex.name & "]\n"
- else:
- stderr.write trace & "Error: unhandled exception: " & ex.msg &
- " [" & $ex.name & "]\n"
- quit 1
- when not defined(js):
- proc toOpenArray*[T](x: seq[T]; first, last: int): openarray[T] {.
- magic: "Slice".}
- proc toOpenArray*[T](x: openarray[T]; first, last: int): openarray[T] {.
- magic: "Slice".}
- proc toOpenArray*[T](x: ptr UncheckedArray[T]; first, last: int): openarray[T] {.
- magic: "Slice".}
- proc toOpenArray*[I, T](x: array[I, T]; first, last: I): openarray[T] {.
- magic: "Slice".}
- proc toOpenArray*(x: string; first, last: int): openarray[char] {.
- magic: "Slice".}
- proc toOpenArrayByte*(x: string; first, last: int): openarray[byte] {.
- magic: "Slice".}
- type
- ForLoopStmt* {.compilerProc.} = object ## special type that marks a macro
- ## as a `for-loop macro`:idx:
- when defined(genode):
- var componentConstructHook*: proc (env: GenodeEnv) {.nimcall.}
- ## Hook into the Genode component bootstrap process.
- ## This hook is called after all globals are initialized.
- ## When this hook is set the component will not automatically exit,
- ## call ``quit`` explicitly to do so. This is the only available method
- ## of accessing the initial Genode environment.
- proc nim_component_construct(env: GenodeEnv) {.exportc.} =
- ## Procedure called during ``Component::construct`` by the loader.
- if componentConstructHook.isNil:
- env.quit(programResult)
- # No native Genode application initialization,
- # exit as would POSIX.
- else:
- componentConstructHook(env)
- # Perform application initialization
- # and return to thread entrypoint.
|