123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2015 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## Constructive mathematics is naturally typed. -- Simon Thompson
- ##
- ## Basic math routines for Nim.
- ## This module is available for the `JavaScript target
- ## <backends.html#the-javascript-target>`_.
- ##
- ## Note that the trigonometric functions naturally operate on radians.
- ## The helper functions `degToRad` and `radToDeg` provide conversion
- ## between radians and degrees.
- include "system/inclrtl"
- {.push debugger:off .} # the user does not want to trace a part
- # of the standard library!
- import bitops
- proc binom*(n, k: int): int {.noSideEffect.} =
- ## Computes the `binomial coefficient <https://en.wikipedia.org/wiki/Binomial_coefficient>`_.
- ##
- ## .. code-block:: nim
- ## echo binom(6, 2) ## 15
- if k <= 0: return 1
- if 2*k > n: return binom(n, n-k)
- result = n
- for i in countup(2, k):
- result = (result * (n + 1 - i)) div i
- proc createFactTable[N: static[int]]: array[N, int] =
- result[0] = 1
- for i in 1 ..< N:
- result[i] = result[i - 1] * i
- proc fac*(n: int): int =
- ## Computes the `factorial <https://en.wikipedia.org/wiki/Factorial>`_ of a non-negative integer ``n``
- ##
- ## .. code-block:: nim
- ## echo fac(4) ## 24
- const factTable =
- when sizeof(int) == 4:
- createFactTable[13]()
- else:
- createFactTable[21]()
- assert(n >= 0, $n & " must not be negative.")
- assert(n < factTable.len, $n & " is too large to look up in the table")
- factTable[n]
- {.push checks:off, line_dir:off, stack_trace:off.}
- when defined(Posix):
- {.passl: "-lm".}
- const
- PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number)
- TAU* = 2.0 * PI ## the circle constant TAU (= 2 * PI)
- E* = 2.71828182845904523536028747 ## Euler's number
- MaxFloat64Precision* = 16 ## maximum number of meaningful digits
- ## after the decimal point for Nim's
- ## ``float64`` type.
- MaxFloat32Precision* = 8 ## maximum number of meaningful digits
- ## after the decimal point for Nim's
- ## ``float32`` type.
- MaxFloatPrecision* = MaxFloat64Precision ## maximum number of
- ## meaningful digits
- ## after the decimal point
- ## for Nim's ``float`` type.
- RadPerDeg = PI / 180.0 ## number of radians per degree
- type
- FloatClass* = enum ## describes the class a floating point value belongs to.
- ## This is the type that is returned by `classify`.
- fcNormal, ## value is an ordinary nonzero floating point value
- fcSubnormal, ## value is a subnormal (a very small) floating point value
- fcZero, ## value is zero
- fcNegZero, ## value is the negative zero
- fcNan, ## value is Not-A-Number (NAN)
- fcInf, ## value is positive infinity
- fcNegInf ## value is negative infinity
- proc classify*(x: float): FloatClass =
- ## Classifies a floating point value. Returns ``x``'s class as specified by
- ## `FloatClass`.
- ##
- ## .. code-block:: nim
- ## echo classify(0.3) ## fcNormal
- ## echo classify(0.0) ## fcZero
- ## echo classify(0.3/0.0) ## fcInf
- # JavaScript and most C compilers have no classify:
- if x == 0.0:
- if 1.0/x == Inf:
- return fcZero
- else:
- return fcNegZero
- if x*0.5 == x:
- if x > 0.0: return fcInf
- else: return fcNegInf
- if x != x: return fcNan
- return fcNormal
- # XXX: fcSubnormal is not detected!
- proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
- ## Returns ``true``, if ``x`` is a power of two, ``false`` otherwise.
- ## Zero and negative numbers are not a power of two.
- ##
- ## .. code-block:: nim
- ## echo isPowerOfTwo(5) ## false
- ## echo isPowerOfTwo(8) ## true
- return (x > 0) and ((x and (x - 1)) == 0)
- proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
- ## Returns ``x`` rounded up to the nearest power of two.
- ## Zero and negative numbers get rounded up to 1.
- ##
- ## .. code-block:: nim
- ## echo nextPowerOfTwo(8) ## 8
- ## echo nextPowerOfTwo(9) ## 16
- result = x - 1
- when defined(cpu64):
- result = result or (result shr 32)
- when sizeof(int) > 2:
- result = result or (result shr 16)
- when sizeof(int) > 1:
- result = result or (result shr 8)
- result = result or (result shr 4)
- result = result or (result shr 2)
- result = result or (result shr 1)
- result += 1 + ord(x<=0)
- proc countBits32*(n: int32): int {.noSideEffect.} =
- ## Counts the set bits in ``n``.
- ##
- ## .. code-block:: nim
- ## echo countBits32(13'i32) ## 3
- var v = n
- v = v -% ((v shr 1'i32) and 0x55555555'i32)
- v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
- result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32
- proc sum*[T](x: openArray[T]): T {.noSideEffect.} =
- ## Computes the sum of the elements in ``x``.
- ## If ``x`` is empty, 0 is returned.
- ##
- ## .. code-block:: nim
- ## echo sum([1.0, 2.5, -3.0, 4.3]) ## 4.8
- for i in items(x): result = result + i
- proc prod*[T](x: openArray[T]): T {.noSideEffect.} =
- ## Computes the product of the elements in ``x``.
- ## If ``x`` is empty, 1 is returned.
- ##
- ## .. code-block:: nim
- ## echo prod([1.0, 3.0, -0.2]) ## -0.6
- result = 1.T
- for i in items(x): result = result * i
- {.push noSideEffect.}
- when not defined(JS): # C
- proc sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
- proc sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".}
- ## Computes the square root of ``x``.
- ##
- ## .. code-block:: nim
- ## echo sqrt(1.44) ## 1.2
- proc cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
- proc cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".}
- ## Computes the cubic root of ``x``.
- ##
- ## .. code-block:: nim
- ## echo cbrt(2.197) ## 1.3
- proc ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
- proc ln*(x: float64): float64 {.importc: "log", header: "<math.h>".}
- ## Computes the `natural logarithm <https://en.wikipedia.org/wiki/Natural_logarithm>`_ of ``x``.
- ##
- ## .. code-block:: nim
- ## echo ln(exp(4.0)) ## 4.0
- else: # JS
- proc sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
- proc sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
- proc ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
- proc ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
- proc log*[T: SomeFloat](x, base: T): T =
- ## Computes the logarithm of ``x`` to base ``base``.
- ##
- ## .. code-block:: nim
- ## echo log(9.0, 3.0) ## 2.0
- ln(x) / ln(base)
- when not defined(JS): # C
- proc log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
- proc log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".}
- ## Computes the common logarithm (base 10) of ``x``.
- ##
- ## .. code-block:: nim
- ## echo log10(100.0) ## 2.0
- proc exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
- proc exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".}
- ## Computes the exponential function of ``x`` (pow(E, x)).
- ##
- ## .. code-block:: nim
- ## echo exp(1.0) ## 2.718281828459045
- ## echo ln(exp(4.0)) ## 4.0
- proc sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
- proc sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".}
- ## Computes the sine of ``x``.
- ##
- ## .. code-block:: nim
- ## echo sin(PI / 6) ## 0.4999999999999999
- ## echo sin(degToRad(90.0)) ## 1.0
- proc cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
- proc cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".}
- ## Computes the cosine of ``x``.
- ##
- ## .. code-block:: nim
- ## echo cos(2 * PI) ## 1.0
- ## echo cos(degToRad(60.0)) ## 0.5000000000000001
- proc tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
- proc tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".}
- ## Computes the tangent of ``x``.
- ##
- ## .. code-block:: nim
- ## echo tan(degToRad(45.0)) ## 0.9999999999999999
- ## echo tan(PI / 4) ## 0.9999999999999999
- proc sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
- proc sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".}
- ## Computes the `hyperbolic sine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
- ##
- ## .. code-block:: nim
- ## echo sinh(1.0) ## 1.175201193643801
- proc cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
- proc cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".}
- ## Computes the `hyperbolic cosine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
- ##
- ## .. code-block:: nim
- ## echo cosh(1.0) ## 1.543080634815244
- proc tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
- proc tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".}
- ## Computes the `hyperbolic tangent <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
- ##
- ## .. code-block:: nim
- ## echo tanh(1.0) ## 0.7615941559557649
- proc arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
- proc arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".}
- ## Computes the arc cosine of ``x``.
- ##
- ## .. code-block:: nim
- ## echo arccos(1.0) ## 0.0
- proc arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
- proc arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".}
- ## Computes the arc sine of ``x``.
- proc arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
- proc arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".}
- ## Calculate the arc tangent of ``x``.
- ##
- ## .. code-block:: nim
- ## echo arctan(1.0) ## 0.7853981633974483
- ## echo radToDeg(arctan(1.0)) ## 45.0
- proc arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
- proc arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".}
- ## Calculate the arc tangent of ``y`` / ``x``.
- ## `arctan2` returns the arc tangent of ``y`` / ``x``; it produces correct
- ## results even when the resulting angle is near pi/2 or -pi/2
- ## (``x`` near 0).
- ##
- ## .. code-block:: nim
- ## echo arctan2(1.0, 0.0) ## 1.570796326794897
- ## echo radToDeg(arctan2(1.0, 0.0)) ## 90.0
- proc arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
- proc arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
- ## Computes the inverse hyperbolic sine of ``x``.
- proc arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
- proc arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
- ## Computes the inverse hyperbolic cosine of ``x``.
- proc arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
- proc arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
- ## Computes the inverse hyperbolic tangent of ``x``.
- else: # JS
- proc log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
- proc log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
- proc log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
- proc log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
- proc exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
- proc exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
- proc sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
- proc cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
- proc tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}
- proc sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
- proc cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
- proc tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}
- proc arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
- proc arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
- proc arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
- proc arctan2*[T: float32|float64](y, x: T): T {.importC: "Math.atan2", nodecl.}
- proc arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
- proc arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
- proc arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
- proc cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
- ## Computes the cotangent of ``x``.
- proc sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
- ## Computes the secant of ``x``.
- proc csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
- ## Computes the cosecant of ``x``.
- proc coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
- ## Computes the hyperbolic cotangent of ``x``.
- proc sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
- ## Computes the hyperbolic secant of ``x``.
- proc csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
- ## Computes the hyperbolic cosecant of ``x``.
- proc arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
- ## Computes the inverse cotangent of ``x``.
- proc arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
- ## Computes the inverse secant of ``x``.
- proc arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
- ## Computes the inverse cosecant of ``x``.
- proc arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
- ## Computes the inverse hyperbolic cotangent of ``x``.
- proc arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
- ## Computes the inverse hyperbolic secant of ``x``.
- proc arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
- ## Computes the inverse hyperbolic cosecant of ``x``.
- const windowsCC89 = defined(windows) and defined(bcc)
- when not defined(JS): # C
- proc hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
- proc hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".}
- ## Computes the hypotenuse of a right-angle triangle with ``x`` and
- ## ``y`` as its base and height. Equivalent to ``sqrt(x*x + y*y)``.
- ##
- ## .. code-block:: nim
- ## echo hypot(4.0, 3.0) ## 5.0
- proc pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
- proc pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".}
- ## computes x to power raised of y.
- ##
- ## To compute power between integers, use ``^`` e.g. 2 ^ 6
- ##
- ## .. code-block:: nim
- ## echo pow(16.0, 0.5) ## 4.0
- # TODO: add C89 version on windows
- when not windowsCC89:
- proc erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
- proc erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
- ## Computes the `error function <https://en.wikipedia.org/wiki/Error_function>`_ for ``x``.
- proc erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
- proc erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
- ## Computes the `complementary error function <https://en.wikipedia.org/wiki/Error_function#Complementary_error_function>`_ for ``x``.
- proc gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
- proc gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".}
- ## Computes the the `gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ for ``x``.
- proc tgamma*(x: float32): float32
- {.deprecated: "use gamma instead", importc: "tgammaf", header: "<math.h>".}
- proc tgamma*(x: float64): float64
- {.deprecated: "use gamma instead", importc: "tgamma", header: "<math.h>".}
- ## The gamma function
- ## **Deprecated since version 0.19.0**: Use ``gamma`` instead.
- proc lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
- proc lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".}
- ## Computes the natural log of the gamma function for ``x``.
- proc floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
- proc floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".}
- ## Computes the floor function (i.e., the largest integer not greater than ``x``).
- ##
- ## .. code-block:: nim
- ## echo floor(-3.5) ## -4.0
- proc ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
- proc ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".}
- ## Computes the ceiling function (i.e., the smallest integer not less than ``x``).
- ##
- ## .. code-block:: nim
- ## echo ceil(-2.1) ## -2.0
- when windowsCC89:
- # MSVC 2010 don't have trunc/truncf
- # this implementation was inspired by Go-lang Math.Trunc
- proc truncImpl(f: float64): float64 =
- const
- mask : uint64 = 0x7FF
- shift: uint64 = 64 - 12
- bias : uint64 = 0x3FF
- if f < 1:
- if f < 0: return -truncImpl(-f)
- elif f == 0: return f # Return -0 when f == -0
- else: return 0
- var x = cast[uint64](f)
- let e = (x shr shift) and mask - bias
- # Keep the top 12+e bits, the integer part; clear the rest.
- if e < 64-12:
- x = x and (not (1'u64 shl (64'u64-12'u64-e) - 1'u64))
- result = cast[float64](x)
- proc truncImpl(f: float32): float32 =
- const
- mask : uint32 = 0xFF
- shift: uint32 = 32 - 9
- bias : uint32 = 0x7F
- if f < 1:
- if f < 0: return -truncImpl(-f)
- elif f == 0: return f # Return -0 when f == -0
- else: return 0
- var x = cast[uint32](f)
- let e = (x shr shift) and mask - bias
- # Keep the top 9+e bits, the integer part; clear the rest.
- if e < 32-9:
- x = x and (not (1'u32 shl (32'u32-9'u32-e) - 1'u32))
- result = cast[float32](x)
- proc trunc*(x: float64): float64 =
- if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
- result = truncImpl(x)
- proc trunc*(x: float32): float32 =
- if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
- result = truncImpl(x)
- proc round*[T: float32|float64](x: T): T =
- ## Windows compilers prior to MSVC 2012 do not implement 'round',
- ## 'roundl' or 'roundf'.
- result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
- else:
- proc round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
- proc round*(x: float64): float64 {.importc: "round", header: "<math.h>".}
- ## Rounds a float to zero decimal places. Used internally by the round
- ## function when the specified number of places is 0.
- proc trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
- proc trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".}
- ## Truncates ``x`` to the decimal point.
- ##
- ## .. code-block:: nim
- ## echo trunc(PI) # 3.0
- ## echo trunc(-1.85) # -1.0
- proc fmod*(x, y: float32): float32 {.deprecated: "use mod instead", importc: "fmodf", header: "<math.h>".}
- proc fmod*(x, y: float64): float64 {.deprecated: "use mod instead", importc: "fmod", header: "<math.h>".}
- ## Computes the remainder of ``x`` divided by ``y``.
- ## **Deprecated since version 0.19.0**: Use the ``mod`` operator instead.
- proc `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
- proc `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".}
- ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
- ##
- ## .. code-block:: nim
- ## ( 6.5 mod 2.5) == 1.5
- ## (-6.5 mod 2.5) == -1.5
- ## ( 6.5 mod -2.5) == 1.5
- ## (-6.5 mod -2.5) == -1.5
- else: # JS
- proc hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.}
- proc hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.}
- proc pow*(x, y: float32): float32 {.importC: "Math.pow", nodecl.}
- proc pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
- proc floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
- proc floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
- proc ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
- proc ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
- proc round*(x: float): float {.importc: "Math.round", nodecl.}
- proc trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
- proc trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}
- proc `mod`*(x, y: float32): float32 {.importcpp: "# % #".}
- proc `mod`*(x, y: float64): float64 {.importcpp: "# % #".}
- ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
- ##
- ## .. code-block:: nim
- ## ( 6.5 mod 2.5) == 1.5
- ## (-6.5 mod 2.5) == -1.5
- ## ( 6.5 mod -2.5) == 1.5
- ## (-6.5 mod -2.5) == -1.5
- proc round*[T: float32|float64](x: T, places: int): T {.deprecated: "use format instead".} =
- ## Decimal rounding on a binary floating point number.
- ##
- ## This function is NOT reliable. Floating point numbers cannot hold
- ## non integer decimals precisely. If ``places`` is 0 (or omitted),
- ## round to the nearest integral value following normal mathematical
- ## rounding rules (e.g. ``round(54.5) -> 55.0``). If ``places`` is
- ## greater than 0, round to the given number of decimal places,
- ## e.g. ``round(54.346, 2) -> 54.350000000000001421...``. If ``places`` is negative, round
- ## to the left of the decimal place, e.g. ``round(537.345, -1) ->
- ## 540.0``
- if places == 0:
- result = round(x)
- else:
- var mult = pow(10.0, places.T)
- result = round(x*mult)/mult
- proc floorDiv*[T: SomeInteger](x, y: T): T =
- ## Floor division is conceptually defined as ``floor(x / y)``.
- ## This is different from the ``div`` operator, which is defined
- ## as ``trunc(x / y)``. That is, ``div`` rounds towards ``0`` and ``floorDiv``
- ## rounds down.
- ##
- ## .. code-block:: nim
- ## echo floorDiv( 13, 3) # 4
- ## echo floorDiv(-13, 3) # -5
- ## echo floorDiv( 13, -3) # -5
- ## echo floorDiv(-13, -3) # 4
- result = x div y
- let r = x mod y
- if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1
- proc floorMod*[T: SomeNumber](x, y: T): T =
- ## Floor modulus is conceptually defined as ``x - (floorDiv(x, y) * y)``.
- ## This proc behaves the same as the ``%`` operator in Python.
- ##
- ## .. code-block:: nim
- ## echo floorMod( 13, 3) # 1
- ## echo floorMod(-13, 3) # 2
- ## echo floorMod( 13, -3) # -2
- ## echo floorMod(-13, -3) # -1
- result = x mod y
- if (result > 0 and y < 0) or (result < 0 and y > 0): result += y
- when not defined(JS):
- proc c_frexp*(x: float32, exponent: var int32): float32 {.
- importc: "frexp", header: "<math.h>".}
- proc c_frexp*(x: float64, exponent: var int32): float64 {.
- importc: "frexp", header: "<math.h>".}
- proc frexp*[T, U](x: T, exponent: var U): T =
- ## Split a number into mantissa and exponent.
- ## ``frexp`` calculates the mantissa m (a float greater than or equal to 0.5
- ## and less than 1) and the integer value n such that ``x`` (the original
- ## float value) equals ``m * 2**n``. frexp stores n in `exponent` and returns
- ## m.
- ##
- ## .. code-block:: nim
- ## var x : int
- ## echo frexp(5.0, x) # 0.625
- ## echo x # 3
- var exp: int32
- result = c_frexp(x, exp)
- exponent = exp
- when windowsCC89:
- # taken from Go-lang Math.Log2
- const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
- template log2Impl[T](x: T): T =
- var exp: int32
- var frac = frexp(x, exp)
- # Make sure exact powers of two give an exact answer.
- # Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1.
- if frac == 0.5: return T(exp - 1)
- log10(frac)*(1/ln2) + T(exp)
- proc log2*(x: float32): float32 = log2Impl(x)
- proc log2*(x: float64): float64 = log2Impl(x)
- ## Log2 returns the binary logarithm of x.
- ## The special cases are the same as for Log.
- else:
- proc log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
- proc log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".}
- ## Computes the binary logarithm (base 2) of ``x``
- else:
- proc frexp*[T: float32|float64](x: T, exponent: var int): T =
- if x == 0.0:
- exponent = 0
- result = 0.0
- elif x < 0.0:
- result = -frexp(-x, exponent)
- else:
- var ex = trunc(log2(x))
- exponent = int(ex)
- result = x / pow(2.0, ex)
- if abs(result) >= 1:
- inc(exponent)
- result = result / 2
- if exponent == 1024 and result == 0.0:
- result = 0.99999999999999988898
- proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
- ## Breaks ``x`` into an integer and a fractional part.
- ##
- ## Returns a tuple containing ``intpart`` and ``floatpart`` representing
- ## the integer part and the fractional part respectively.
- ##
- ## Both parts have the same sign as ``x``. Analogous to the ``modf``
- ## function in C.
- ##
- ## .. code-block:: nim
- ## echo splitDecimal(5.25) # (intpart: 5.0, floatpart: 0.25)
- var
- absolute: T
- absolute = abs(x)
- result.intpart = floor(absolute)
- result.floatpart = absolute - result.intpart
- if x < 0:
- result.intpart = -result.intpart
- result.floatpart = -result.floatpart
- {.pop.}
- proc degToRad*[T: float32|float64](d: T): T {.inline.} =
- ## Convert from degrees to radians
- ##
- ## .. code-block:: nim
- ## echo degToRad(180.0) # 3.141592653589793
- result = T(d) * RadPerDeg
- proc radToDeg*[T: float32|float64](d: T): T {.inline.} =
- ## Convert from radians to degrees
- ## .. code-block:: nim
- ## echo degToRad(2 * PI) # 360.0
- result = T(d) / RadPerDeg
- proc sgn*[T: SomeNumber](x: T): int {.inline.} =
- ## Sign function. Returns -1 for negative numbers and ``NegInf``, 1 for
- ## positive numbers and ``Inf``, and 0 for positive zero, negative zero and
- ## ``NaN``.
- ##
- ## .. code-block:: nim
- ## echo sgn(-5) # 1
- ## echo sgn(-4.1) # -1
- ord(T(0) < x) - ord(x < T(0))
- {.pop.}
- {.pop.}
- proc `^`*[T](x: T, y: Natural): T =
- ## Computes ``x`` to the power ``y``. ``x`` must be non-negative, use
- ## `pow <#pow,float,float>`_ for negative exponents.
- ##
- ## .. code-block:: nim
- ## echo 2 ^ 3 # 8
- when compiles(y >= T(0)):
- assert y >= T(0)
- else:
- assert T(y) >= T(0)
- var (x, y) = (x, y)
- result = 1
- while true:
- if (y and 1) != 0:
- result *= x
- y = y shr 1
- if y == 0:
- break
- x *= x
- proc gcd*[T](x, y: T): T =
- ## Computes the greatest common (positive) divisor of ``x`` and ``y``.
- ## Note that for floats, the result cannot always be interpreted as
- ## "greatest decimal `z` such that ``z*N == x and z*M == y``
- ## where N and M are positive integers."
- var (x, y) = (x, y)
- while y != 0:
- x = x mod y
- swap x, y
- abs x
- proc gcd*(x, y: SomeInteger): SomeInteger =
- ## Computes the greatest common (positive) divisor of ``x`` and ``y``.
- ## Using binary GCD (aka Stein's) algorithm.
- ##
- ## .. code-block:: nim
- ## echo gcd(24, 30) # 6
- when x is SomeSignedInt:
- var x = abs(x)
- else:
- var x = x
- when y is SomeSignedInt:
- var y = abs(y)
- else:
- var y = y
- if x == 0:
- return y
- if y == 0:
- return x
- let shift = countTrailingZeroBits(x or y)
- y = y shr countTrailingZeroBits(y)
- while x != 0:
- x = x shr countTrailingZeroBits(x)
- if y > x:
- swap y, x
- x -= y
- y shl shift
- proc lcm*[T](x, y: T): T =
- ## Computes the least common multiple of ``x`` and ``y``.
- ##
- ## .. code-block:: nim
- ## echo lcm(24, 30) # 120
- x div gcd(x, y) * y
- when isMainModule and not defined(JS) and not windowsCC89:
- # Check for no side effect annotation
- proc mySqrt(num: float): float {.noSideEffect.} =
- return sqrt(num)
- # check gamma function
- assert(gamma(5.0) == 24.0) # 4!
- assert($tgamma(5.0) == $24.0) # 4!
- assert(lgamma(1.0) == 0.0) # ln(1.0) == 0.0
- assert(erf(6.0) > erf(5.0))
- assert(erfc(6.0) < erfc(5.0))
- when isMainModule:
- # Function for approximate comparison of floats
- proc `==~`(x, y: float): bool = (abs(x-y) < 1e-9)
- block: # prod
- doAssert prod([1, 2, 3, 4]) == 24
- doAssert prod([1.5, 3.4]) == 5.1
- let x: seq[float] = @[]
- doAssert prod(x) == 1.0
- block: # round() tests
- # Round to 0 decimal places
- doAssert round(54.652) ==~ 55.0
- doAssert round(54.352) ==~ 54.0
- doAssert round(-54.652) ==~ -55.0
- doAssert round(-54.352) ==~ -54.0
- doAssert round(0.0) ==~ 0.0
- # Round to positive decimal places
- doAssert round(-547.652, 1) ==~ -547.7
- doAssert round(547.652, 1) ==~ 547.7
- doAssert round(-547.652, 2) ==~ -547.65
- doAssert round(547.652, 2) ==~ 547.65
- # Round to negative decimal places
- doAssert round(547.652, -1) ==~ 550.0
- doAssert round(547.652, -2) ==~ 500.0
- doAssert round(547.652, -3) ==~ 1000.0
- doAssert round(547.652, -4) ==~ 0.0
- doAssert round(-547.652, -1) ==~ -550.0
- doAssert round(-547.652, -2) ==~ -500.0
- doAssert round(-547.652, -3) ==~ -1000.0
- doAssert round(-547.652, -4) ==~ 0.0
- block: # splitDecimal() tests
- doAssert splitDecimal(54.674).intpart ==~ 54.0
- doAssert splitDecimal(54.674).floatpart ==~ 0.674
- doAssert splitDecimal(-693.4356).intpart ==~ -693.0
- doAssert splitDecimal(-693.4356).floatpart ==~ -0.4356
- doAssert splitDecimal(0.0).intpart ==~ 0.0
- doAssert splitDecimal(0.0).floatpart ==~ 0.0
- block: # trunc tests for vcc
- doAssert(trunc(-1.1) == -1)
- doAssert(trunc(1.1) == 1)
- doAssert(trunc(-0.1) == -0)
- doAssert(trunc(0.1) == 0)
- #special case
- doAssert(classify(trunc(1e1000000)) == fcInf)
- doAssert(classify(trunc(-1e1000000)) == fcNegInf)
- doAssert(classify(trunc(0.0/0.0)) == fcNan)
- doAssert(classify(trunc(0.0)) == fcZero)
- #trick the compiler to produce signed zero
- let
- f_neg_one = -1.0
- f_zero = 0.0
- f_nan = f_zero / f_zero
- doAssert(classify(trunc(f_neg_one*f_zero)) == fcNegZero)
- doAssert(trunc(-1.1'f32) == -1)
- doAssert(trunc(1.1'f32) == 1)
- doAssert(trunc(-0.1'f32) == -0)
- doAssert(trunc(0.1'f32) == 0)
- doAssert(classify(trunc(1e1000000'f32)) == fcInf)
- doAssert(classify(trunc(-1e1000000'f32)) == fcNegInf)
- doAssert(classify(trunc(f_nan.float32)) == fcNan)
- doAssert(classify(trunc(0.0'f32)) == fcZero)
- block: # sgn() tests
- assert sgn(1'i8) == 1
- assert sgn(1'i16) == 1
- assert sgn(1'i32) == 1
- assert sgn(1'i64) == 1
- assert sgn(1'u8) == 1
- assert sgn(1'u16) == 1
- assert sgn(1'u32) == 1
- assert sgn(1'u64) == 1
- assert sgn(-12342.8844'f32) == -1
- assert sgn(123.9834'f64) == 1
- assert sgn(0'i32) == 0
- assert sgn(0'f32) == 0
- assert sgn(NegInf) == -1
- assert sgn(Inf) == 1
- assert sgn(NaN) == 0
- block: # fac() tests
- try:
- discard fac(-1)
- except AssertionError:
- discard
- doAssert fac(0) == 1
- doAssert fac(1) == 1
- doAssert fac(2) == 2
- doAssert fac(3) == 6
- doAssert fac(4) == 24
- block: # floorMod/floorDiv
- doAssert floorDiv(8, 3) == 2
- doAssert floorMod(8, 3) == 2
- doAssert floorDiv(8, -3) == -3
- doAssert floorMod(8, -3) == -1
- doAssert floorDiv(-8, 3) == -3
- doAssert floorMod(-8, 3) == 1
- doAssert floorDiv(-8, -3) == 2
- doAssert floorMod(-8, -3) == -2
- doAssert floorMod(8.0, -3.0) ==~ -1.0
- doAssert floorMod(-8.5, 3.0) ==~ 0.5
- block: # log
- doAssert log(4.0, 3.0) == ln(4.0) / ln(3.0)
- doAssert log2(8.0'f64) == 3.0'f64
- doAssert log2(4.0'f64) == 2.0'f64
- doAssert log2(2.0'f64) == 1.0'f64
- doAssert log2(1.0'f64) == 0.0'f64
- doAssert classify(log2(0.0'f64)) == fcNegInf
- doAssert log2(8.0'f32) == 3.0'f32
- doAssert log2(4.0'f32) == 2.0'f32
- doAssert log2(2.0'f32) == 1.0'f32
- doAssert log2(1.0'f32) == 0.0'f32
- doAssert classify(log2(0.0'f32)) == fcNegInf
|