123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492 |
- proc succ*[T: Ordinal](x: T, y = 1): T {.magic: "Succ", noSideEffect.}
- ## Returns the ``y``-th successor (default: 1) of the value ``x``.
- ## ``T`` has to be an `ordinal type <#Ordinal>`_.
- ##
- ## If such a value does not exist, ``OverflowDefect`` is raised
- ## or a compile time error occurs.
- ##
- ## .. code-block:: Nim
- ## let x = 5
- ## echo succ(5) # => 6
- ## echo succ(5, 3) # => 8
- proc pred*[T: Ordinal](x: T, y = 1): T {.magic: "Pred", noSideEffect.}
- ## Returns the ``y``-th predecessor (default: 1) of the value ``x``.
- ## ``T`` has to be an `ordinal type <#Ordinal>`_.
- ##
- ## If such a value does not exist, ``OverflowDefect`` is raised
- ## or a compile time error occurs.
- ##
- ## .. code-block:: Nim
- ## let x = 5
- ## echo pred(5) # => 4
- ## echo pred(5, 3) # => 2
- proc inc*[T: Ordinal](x: var T, y = 1) {.magic: "Inc", noSideEffect.}
- ## Increments the ordinal ``x`` by ``y``.
- ##
- ## If such a value does not exist, ``OverflowDefect`` is raised or a compile
- ## time error occurs. This is a short notation for: ``x = succ(x, y)``.
- ##
- ## .. code-block:: Nim
- ## var i = 2
- ## inc(i) # i <- 3
- ## inc(i, 3) # i <- 6
- proc dec*[T: Ordinal](x: var T, y = 1) {.magic: "Dec", noSideEffect.}
- ## Decrements the ordinal ``x`` by ``y``.
- ##
- ## If such a value does not exist, ``OverflowDefect`` is raised or a compile
- ## time error occurs. This is a short notation for: ``x = pred(x, y)``.
- ##
- ## .. code-block:: Nim
- ## var i = 2
- ## dec(i) # i <- 1
- ## dec(i, 3) # i <- -2
- # --------------------------------------------------------------------------
- # built-in operators
- when defined(nimNoZeroExtendMagic):
- proc ze*(x: int8): int {.deprecated.} =
- ## zero extends a smaller integer type to ``int``. This treats `x` as
- ## unsigned.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- cast[int](uint(cast[uint8](x)))
- proc ze*(x: int16): int {.deprecated.} =
- ## zero extends a smaller integer type to ``int``. This treats `x` as
- ## unsigned.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- cast[int](uint(cast[uint16](x)))
- proc ze64*(x: int8): int64 {.deprecated.} =
- ## zero extends a smaller integer type to ``int64``. This treats `x` as
- ## unsigned.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- cast[int64](uint64(cast[uint8](x)))
- proc ze64*(x: int16): int64 {.deprecated.} =
- ## zero extends a smaller integer type to ``int64``. This treats `x` as
- ## unsigned.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- cast[int64](uint64(cast[uint16](x)))
- proc ze64*(x: int32): int64 {.deprecated.} =
- ## zero extends a smaller integer type to ``int64``. This treats `x` as
- ## unsigned.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- cast[int64](uint64(cast[uint32](x)))
- proc ze64*(x: int): int64 {.deprecated.} =
- ## zero extends a smaller integer type to ``int64``. This treats `x` as
- ## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
- ## (This is the case on 64 bit processors.)
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- cast[int64](uint64(cast[uint](x)))
- proc toU8*(x: int): int8 {.deprecated.} =
- ## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
- ## from `x`.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- cast[int8](x)
- proc toU16*(x: int): int16 {.deprecated.} =
- ## treats `x` as unsigned and converts it to an ``int16`` by taking the last
- ## 16 bits from `x`.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- cast[int16](x)
- proc toU32*(x: int64): int32 {.deprecated.} =
- ## treats `x` as unsigned and converts it to an ``int32`` by taking the
- ## last 32 bits from `x`.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- cast[int32](x)
- elif not defined(js):
- proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect, deprecated.}
- ## zero extends a smaller integer type to ``int``. This treats `x` as
- ## unsigned.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect, deprecated.}
- ## zero extends a smaller integer type to ``int``. This treats `x` as
- ## unsigned.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect, deprecated.}
- ## zero extends a smaller integer type to ``int64``. This treats `x` as
- ## unsigned.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect, deprecated.}
- ## zero extends a smaller integer type to ``int64``. This treats `x` as
- ## unsigned.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect, deprecated.}
- ## zero extends a smaller integer type to ``int64``. This treats `x` as
- ## unsigned.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- proc ze64*(x: int): int64 {.magic: "ZeIToI64", noSideEffect, deprecated.}
- ## zero extends a smaller integer type to ``int64``. This treats `x` as
- ## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
- ## (This is the case on 64 bit processors.)
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- proc toU8*(x: int): int8 {.magic: "ToU8", noSideEffect, deprecated.}
- ## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
- ## from `x`.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect, deprecated.}
- ## treats `x` as unsigned and converts it to an ``int16`` by taking the last
- ## 16 bits from `x`.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect, deprecated.}
- ## treats `x` as unsigned and converts it to an ``int32`` by taking the
- ## last 32 bits from `x`.
- ## **Deprecated since version 0.19.9**: Use unsigned integers instead.
- # integer calculations:
- proc `+`*(x: int): int {.magic: "UnaryPlusI", noSideEffect.}
- ## Unary `+` operator for an integer. Has no effect.
- proc `+`*(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.}
- proc `+`*(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.}
- proc `+`*(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.}
- proc `+`*(x: int64): int64 {.magic: "UnaryPlusI", noSideEffect.}
- proc `-`*(x: int): int {.magic: "UnaryMinusI", noSideEffect.}
- ## Unary `-` operator for an integer. Negates `x`.
- proc `-`*(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.}
- proc `-`*(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.}
- proc `-`*(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.}
- proc `-`*(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.}
- proc `not`*(x: int): int {.magic: "BitnotI", noSideEffect.}
- ## Computes the `bitwise complement` of the integer `x`.
- ##
- ## .. code-block:: Nim
- ## var
- ## a = 0'u8
- ## b = 0'i8
- ## c = 1000'u16
- ## d = 1000'i16
- ##
- ## echo not a # => 255
- ## echo not b # => -1
- ## echo not c # => 64535
- ## echo not d # => -1001
- proc `not`*(x: int8): int8 {.magic: "BitnotI", noSideEffect.}
- proc `not`*(x: int16): int16 {.magic: "BitnotI", noSideEffect.}
- proc `not`*(x: int32): int32 {.magic: "BitnotI", noSideEffect.}
- proc `not`*(x: int64): int64 {.magic: "BitnotI", noSideEffect.}
- proc `+`*(x, y: int): int {.magic: "AddI", noSideEffect.}
- ## Binary `+` operator for an integer.
- proc `+`*(x, y: int8): int8 {.magic: "AddI", noSideEffect.}
- proc `+`*(x, y: int16): int16 {.magic: "AddI", noSideEffect.}
- proc `+`*(x, y: int32): int32 {.magic: "AddI", noSideEffect.}
- proc `+`*(x, y: int64): int64 {.magic: "AddI", noSideEffect.}
- proc `-`*(x, y: int): int {.magic: "SubI", noSideEffect.}
- ## Binary `-` operator for an integer.
- proc `-`*(x, y: int8): int8 {.magic: "SubI", noSideEffect.}
- proc `-`*(x, y: int16): int16 {.magic: "SubI", noSideEffect.}
- proc `-`*(x, y: int32): int32 {.magic: "SubI", noSideEffect.}
- proc `-`*(x, y: int64): int64 {.magic: "SubI", noSideEffect.}
- proc `*`*(x, y: int): int {.magic: "MulI", noSideEffect.}
- ## Binary `*` operator for an integer.
- proc `*`*(x, y: int8): int8 {.magic: "MulI", noSideEffect.}
- proc `*`*(x, y: int16): int16 {.magic: "MulI", noSideEffect.}
- proc `*`*(x, y: int32): int32 {.magic: "MulI", noSideEffect.}
- proc `*`*(x, y: int64): int64 {.magic: "MulI", noSideEffect.}
- proc `div`*(x, y: int): int {.magic: "DivI", noSideEffect.}
- ## Computes the integer division.
- ##
- ## This is roughly the same as ``trunc(x/y)``.
- ##
- ## .. code-block:: Nim
- ## ( 1 div 2) == 0
- ## ( 2 div 2) == 1
- ## ( 3 div 2) == 1
- ## ( 7 div 3) == 2
- ## (-7 div 3) == -2
- ## ( 7 div -3) == -2
- ## (-7 div -3) == 2
- proc `div`*(x, y: int8): int8 {.magic: "DivI", noSideEffect.}
- proc `div`*(x, y: int16): int16 {.magic: "DivI", noSideEffect.}
- proc `div`*(x, y: int32): int32 {.magic: "DivI", noSideEffect.}
- proc `div`*(x, y: int64): int64 {.magic: "DivI", noSideEffect.}
- proc `mod`*(x, y: int): int {.magic: "ModI", noSideEffect.}
- ## Computes the integer modulo operation (remainder).
- ##
- ## This is the same as ``x - (x div y) * y``.
- ##
- ## .. code-block:: Nim
- ## ( 7 mod 5) == 2
- ## (-7 mod 5) == -2
- ## ( 7 mod -5) == 2
- ## (-7 mod -5) == -2
- proc `mod`*(x, y: int8): int8 {.magic: "ModI", noSideEffect.}
- proc `mod`*(x, y: int16): int16 {.magic: "ModI", noSideEffect.}
- proc `mod`*(x, y: int32): int32 {.magic: "ModI", noSideEffect.}
- proc `mod`*(x, y: int64): int64 {.magic: "ModI", noSideEffect.}
- when defined(nimOldShiftRight) or not defined(nimAshr):
- const shrDepMessage = "`shr` will become sign preserving."
- proc `shr`*(x: int, y: SomeInteger): int {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
- proc `shr`*(x: int8, y: SomeInteger): int8 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
- proc `shr`*(x: int16, y: SomeInteger): int16 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
- proc `shr`*(x: int32, y: SomeInteger): int32 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
- proc `shr`*(x: int64, y: SomeInteger): int64 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
- else:
- proc `shr`*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.}
- ## Computes the `shift right` operation of `x` and `y`, filling
- ## vacant bit positions with the sign bit.
- ##
- ## **Note**: `Operator precedence <manual.html#syntax-precedence>`_
- ## is different than in *C*.
- ##
- ## See also:
- ## * `ashr proc <#ashr,int,SomeInteger>`_ for arithmetic shift right
- ##
- ## .. code-block:: Nim
- ## 0b0001_0000'i8 shr 2 == 0b0000_0100'i8
- ## 0b0000_0001'i8 shr 1 == 0b0000_0000'i8
- ## 0b1000_0000'i8 shr 4 == 0b1111_1000'i8
- ## -1 shr 5 == -1
- ## 1 shr 5 == 0
- ## 16 shr 2 == 4
- ## -16 shr 2 == -4
- proc `shr`*(x: int8, y: SomeInteger): int8 {.magic: "AshrI", noSideEffect.}
- proc `shr`*(x: int16, y: SomeInteger): int16 {.magic: "AshrI", noSideEffect.}
- proc `shr`*(x: int32, y: SomeInteger): int32 {.magic: "AshrI", noSideEffect.}
- proc `shr`*(x: int64, y: SomeInteger): int64 {.magic: "AshrI", noSideEffect.}
- proc `shl`*(x: int, y: SomeInteger): int {.magic: "ShlI", noSideEffect.}
- ## Computes the `shift left` operation of `x` and `y`.
- ##
- ## **Note**: `Operator precedence <manual.html#syntax-precedence>`_
- ## is different than in *C*.
- ##
- ## .. code-block:: Nim
- ## 1'i32 shl 4 == 0x0000_0010
- ## 1'i64 shl 4 == 0x0000_0000_0000_0010
- proc `shl`*(x: int8, y: SomeInteger): int8 {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x: int16, y: SomeInteger): int16 {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x: int32, y: SomeInteger): int32 {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x: int64, y: SomeInteger): int64 {.magic: "ShlI", noSideEffect.}
- when defined(nimAshr):
- proc ashr*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.}
- ## Shifts right by pushing copies of the leftmost bit in from the left,
- ## and let the rightmost bits fall off.
- ##
- ## Note that `ashr` is not an operator so use the normal function
- ## call syntax for it.
- ##
- ## See also:
- ## * `shr proc <#shr,int,SomeInteger>`_
- ##
- ## .. code-block:: Nim
- ## ashr(0b0001_0000'i8, 2) == 0b0000_0100'i8
- ## ashr(0b1000_0000'i8, 8) == 0b1111_1111'i8
- ## ashr(0b1000_0000'i8, 1) == 0b1100_0000'i8
- proc ashr*(x: int8, y: SomeInteger): int8 {.magic: "AshrI", noSideEffect.}
- proc ashr*(x: int16, y: SomeInteger): int16 {.magic: "AshrI", noSideEffect.}
- proc ashr*(x: int32, y: SomeInteger): int32 {.magic: "AshrI", noSideEffect.}
- proc ashr*(x: int64, y: SomeInteger): int64 {.magic: "AshrI", noSideEffect.}
- else:
- # used for bootstrapping the compiler
- proc ashr*[T](x: T, y: SomeInteger): T = discard
- proc `and`*(x, y: int): int {.magic: "BitandI", noSideEffect.}
- ## Computes the `bitwise and` of numbers `x` and `y`.
- ##
- ## .. code-block:: Nim
- ## (0b0011 and 0b0101) == 0b0001
- ## (0b0111 and 0b1100) == 0b0100
- proc `and`*(x, y: int8): int8 {.magic: "BitandI", noSideEffect.}
- proc `and`*(x, y: int16): int16 {.magic: "BitandI", noSideEffect.}
- proc `and`*(x, y: int32): int32 {.magic: "BitandI", noSideEffect.}
- proc `and`*(x, y: int64): int64 {.magic: "BitandI", noSideEffect.}
- proc `or`*(x, y: int): int {.magic: "BitorI", noSideEffect.}
- ## Computes the `bitwise or` of numbers `x` and `y`.
- ##
- ## .. code-block:: Nim
- ## (0b0011 or 0b0101) == 0b0111
- ## (0b0111 or 0b1100) == 0b1111
- proc `or`*(x, y: int8): int8 {.magic: "BitorI", noSideEffect.}
- proc `or`*(x, y: int16): int16 {.magic: "BitorI", noSideEffect.}
- proc `or`*(x, y: int32): int32 {.magic: "BitorI", noSideEffect.}
- proc `or`*(x, y: int64): int64 {.magic: "BitorI", noSideEffect.}
- proc `xor`*(x, y: int): int {.magic: "BitxorI", noSideEffect.}
- ## Computes the `bitwise xor` of numbers `x` and `y`.
- ##
- ## .. code-block:: Nim
- ## (0b0011 xor 0b0101) == 0b0110
- ## (0b0111 xor 0b1100) == 0b1011
- proc `xor`*(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.}
- proc `xor`*(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.}
- proc `xor`*(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.}
- proc `xor`*(x, y: int64): int64 {.magic: "BitxorI", noSideEffect.}
- # unsigned integer operations:
- proc `not`*(x: uint): uint {.magic: "BitnotI", noSideEffect.}
- ## Computes the `bitwise complement` of the integer `x`.
- proc `not`*(x: uint8): uint8 {.magic: "BitnotI", noSideEffect.}
- proc `not`*(x: uint16): uint16 {.magic: "BitnotI", noSideEffect.}
- proc `not`*(x: uint32): uint32 {.magic: "BitnotI", noSideEffect.}
- proc `not`*(x: uint64): uint64 {.magic: "BitnotI", noSideEffect.}
- proc `shr`*(x: uint, y: SomeInteger): uint {.magic: "ShrI", noSideEffect.}
- ## Computes the `shift right` operation of `x` and `y`.
- proc `shr`*(x: uint8, y: SomeInteger): uint8 {.magic: "ShrI", noSideEffect.}
- proc `shr`*(x: uint16, y: SomeInteger): uint16 {.magic: "ShrI", noSideEffect.}
- proc `shr`*(x: uint32, y: SomeInteger): uint32 {.magic: "ShrI", noSideEffect.}
- proc `shr`*(x: uint64, y: SomeInteger): uint64 {.magic: "ShrI", noSideEffect.}
- proc `shl`*(x: uint, y: SomeInteger): uint {.magic: "ShlI", noSideEffect.}
- ## Computes the `shift left` operation of `x` and `y`.
- proc `shl`*(x: uint8, y: SomeInteger): uint8 {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x: uint16, y: SomeInteger): uint16 {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x: uint32, y: SomeInteger): uint32 {.magic: "ShlI", noSideEffect.}
- proc `shl`*(x: uint64, y: SomeInteger): uint64 {.magic: "ShlI", noSideEffect.}
- proc `and`*(x, y: uint): uint {.magic: "BitandI", noSideEffect.}
- ## Computes the `bitwise and` of numbers `x` and `y`.
- proc `and`*(x, y: uint8): uint8 {.magic: "BitandI", noSideEffect.}
- proc `and`*(x, y: uint16): uint16 {.magic: "BitandI", noSideEffect.}
- proc `and`*(x, y: uint32): uint32 {.magic: "BitandI", noSideEffect.}
- proc `and`*(x, y: uint64): uint64 {.magic: "BitandI", noSideEffect.}
- proc `or`*(x, y: uint): uint {.magic: "BitorI", noSideEffect.}
- ## Computes the `bitwise or` of numbers `x` and `y`.
- proc `or`*(x, y: uint8): uint8 {.magic: "BitorI", noSideEffect.}
- proc `or`*(x, y: uint16): uint16 {.magic: "BitorI", noSideEffect.}
- proc `or`*(x, y: uint32): uint32 {.magic: "BitorI", noSideEffect.}
- proc `or`*(x, y: uint64): uint64 {.magic: "BitorI", noSideEffect.}
- proc `xor`*(x, y: uint): uint {.magic: "BitxorI", noSideEffect.}
- ## Computes the `bitwise xor` of numbers `x` and `y`.
- proc `xor`*(x, y: uint8): uint8 {.magic: "BitxorI", noSideEffect.}
- proc `xor`*(x, y: uint16): uint16 {.magic: "BitxorI", noSideEffect.}
- proc `xor`*(x, y: uint32): uint32 {.magic: "BitxorI", noSideEffect.}
- proc `xor`*(x, y: uint64): uint64 {.magic: "BitxorI", noSideEffect.}
- proc `+`*(x, y: uint): uint {.magic: "AddU", noSideEffect.}
- ## Binary `+` operator for unsigned integers.
- proc `+`*(x, y: uint8): uint8 {.magic: "AddU", noSideEffect.}
- proc `+`*(x, y: uint16): uint16 {.magic: "AddU", noSideEffect.}
- proc `+`*(x, y: uint32): uint32 {.magic: "AddU", noSideEffect.}
- proc `+`*(x, y: uint64): uint64 {.magic: "AddU", noSideEffect.}
- proc `-`*(x, y: uint): uint {.magic: "SubU", noSideEffect.}
- ## Binary `-` operator for unsigned integers.
- proc `-`*(x, y: uint8): uint8 {.magic: "SubU", noSideEffect.}
- proc `-`*(x, y: uint16): uint16 {.magic: "SubU", noSideEffect.}
- proc `-`*(x, y: uint32): uint32 {.magic: "SubU", noSideEffect.}
- proc `-`*(x, y: uint64): uint64 {.magic: "SubU", noSideEffect.}
- proc `*`*(x, y: uint): uint {.magic: "MulU", noSideEffect.}
- ## Binary `*` operator for unsigned integers.
- proc `*`*(x, y: uint8): uint8 {.magic: "MulU", noSideEffect.}
- proc `*`*(x, y: uint16): uint16 {.magic: "MulU", noSideEffect.}
- proc `*`*(x, y: uint32): uint32 {.magic: "MulU", noSideEffect.}
- proc `*`*(x, y: uint64): uint64 {.magic: "MulU", noSideEffect.}
- proc `div`*(x, y: uint): uint {.magic: "DivU", noSideEffect.}
- ## Computes the integer division for unsigned integers.
- ## This is roughly the same as ``trunc(x/y)``.
- proc `div`*(x, y: uint8): uint8 {.magic: "DivU", noSideEffect.}
- proc `div`*(x, y: uint16): uint16 {.magic: "DivU", noSideEffect.}
- proc `div`*(x, y: uint32): uint32 {.magic: "DivU", noSideEffect.}
- proc `div`*(x, y: uint64): uint64 {.magic: "DivU", noSideEffect.}
- proc `mod`*(x, y: uint): uint {.magic: "ModU", noSideEffect.}
- ## Computes the integer modulo operation (remainder) for unsigned integers.
- ## This is the same as ``x - (x div y) * y``.
- proc `mod`*(x, y: uint8): uint8 {.magic: "ModU", noSideEffect.}
- proc `mod`*(x, y: uint16): uint16 {.magic: "ModU", noSideEffect.}
- proc `mod`*(x, y: uint32): uint32 {.magic: "ModU", noSideEffect.}
- proc `mod`*(x, y: uint64): uint64 {.magic: "ModU", noSideEffect.}
- proc `+%`*(x, y: int): int {.inline.} =
- ## Treats `x` and `y` as unsigned and adds them.
- ##
- ## The result is truncated to fit into the result.
- ## This implements modulo arithmetic. No overflow errors are possible.
- cast[int](cast[uint](x) + cast[uint](y))
- proc `+%`*(x, y: int8): int8 {.inline.} = cast[int8](cast[uint8](x) + cast[uint8](y))
- proc `+%`*(x, y: int16): int16 {.inline.} = cast[int16](cast[uint16](x) + cast[uint16](y))
- proc `+%`*(x, y: int32): int32 {.inline.} = cast[int32](cast[uint32](x) + cast[uint32](y))
- proc `+%`*(x, y: int64): int64 {.inline.} = cast[int64](cast[uint64](x) + cast[uint64](y))
- proc `-%`*(x, y: int): int {.inline.} =
- ## Treats `x` and `y` as unsigned and subtracts them.
- ##
- ## The result is truncated to fit into the result.
- ## This implements modulo arithmetic. No overflow errors are possible.
- cast[int](cast[uint](x) - cast[uint](y))
- proc `-%`*(x, y: int8): int8 {.inline.} = cast[int8](cast[uint8](x) - cast[uint8](y))
- proc `-%`*(x, y: int16): int16 {.inline.} = cast[int16](cast[uint16](x) - cast[uint16](y))
- proc `-%`*(x, y: int32): int32 {.inline.} = cast[int32](cast[uint32](x) - cast[uint32](y))
- proc `-%`*(x, y: int64): int64 {.inline.} = cast[int64](cast[uint64](x) - cast[uint64](y))
- proc `*%`*(x, y: int): int {.inline.} =
- ## Treats `x` and `y` as unsigned and multiplies them.
- ##
- ## The result is truncated to fit into the result.
- ## This implements modulo arithmetic. No overflow errors are possible.
- cast[int](cast[uint](x) * cast[uint](y))
- proc `*%`*(x, y: int8): int8 {.inline.} = cast[int8](cast[uint8](x) * cast[uint8](y))
- proc `*%`*(x, y: int16): int16 {.inline.} = cast[int16](cast[uint16](x) * cast[uint16](y))
- proc `*%`*(x, y: int32): int32 {.inline.} = cast[int32](cast[uint32](x) * cast[uint32](y))
- proc `*%`*(x, y: int64): int64 {.inline.} = cast[int64](cast[uint64](x) * cast[uint64](y))
- proc `/%`*(x, y: int): int {.inline.} =
- ## Treats `x` and `y` as unsigned and divides them.
- ##
- ## The result is truncated to fit into the result.
- ## This implements modulo arithmetic. No overflow errors are possible.
- cast[int](cast[uint](x) div cast[uint](y))
- proc `/%`*(x, y: int8): int8 {.inline.} = cast[int8](cast[uint8](x) div cast[uint8](y))
- proc `/%`*(x, y: int16): int16 {.inline.} = cast[int16](cast[uint16](x) div cast[uint16](y))
- proc `/%`*(x, y: int32): int32 {.inline.} = cast[int32](cast[uint32](x) div cast[uint32](y))
- proc `/%`*(x, y: int64): int64 {.inline.} = cast[int64](cast[uint64](x) div cast[uint64](y))
- proc `%%`*(x, y: int): int {.inline.} =
- ## Treats `x` and `y` as unsigned and compute the modulo of `x` and `y`.
- ##
- ## The result is truncated to fit into the result.
- ## This implements modulo arithmetic. No overflow errors are possible.
- cast[int](cast[uint](x) mod cast[uint](y))
- proc `%%`*(x, y: int8): int8 {.inline.} = cast[int8](cast[uint8](x) mod cast[uint8](y))
- proc `%%`*(x, y: int16): int16 {.inline.} = cast[int16](cast[uint16](x) mod cast[uint16](y))
- proc `%%`*(x, y: int32): int32 {.inline.} = cast[int32](cast[uint32](x) mod cast[uint32](y))
- proc `%%`*(x, y: int64): int64 {.inline.} = cast[int64](cast[uint64](x) mod cast[uint64](y))
- proc `+=`*[T: SomeInteger](x: var T, y: T) {.
- magic: "Inc", noSideEffect.}
- ## Increments an integer.
- proc `-=`*[T: SomeInteger](x: var T, y: T) {.
- magic: "Dec", noSideEffect.}
- ## Decrements an integer.
- proc `*=`*[T: SomeInteger](x: var T, y: T) {.
- inline, noSideEffect.} =
- ## Binary `*=` operator for integers.
- x = x * y
|