123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 |
- discard """
- action: run
- output: '''
- [Suite] random int
- [Suite] random float
- [Suite] cumsum
- [Suite] random sample
- [Suite] ^
- '''
- """
- import math, random, os
- import unittest
- import sets, tables
- suite "random int":
- test "there might be some randomness":
- var set = initHashSet[int](128)
- for i in 1..1000:
- incl(set, rand(high(int)))
- check len(set) == 1000
- test "single number bounds work":
- var rand: int
- for i in 1..1000:
- rand = rand(1000)
- check rand < 1000
- check rand > -1
- test "slice bounds work":
- var rand: int
- for i in 1..1000:
- rand = rand(100..1000)
- check rand < 1000
- check rand >= 100
- test " again gives new numbers":
- var rand1 = rand(1000000)
- os.sleep(200)
- var rand2 = rand(1000000)
- check rand1 != rand2
- suite "random float":
- test "there might be some randomness":
- var set = initHashSet[float](128)
- for i in 1..100:
- incl(set, rand(1.0))
- check len(set) == 100
- test "single number bounds work":
- var rand: float
- for i in 1..1000:
- rand = rand(1000.0)
- check rand < 1000.0
- check rand > -1.0
- test "slice bounds work":
- var rand: float
- for i in 1..1000:
- rand = rand(100.0..1000.0)
- check rand < 1000.0
- check rand >= 100.0
- test " again gives new numbers":
- var rand1:float = rand(1000000.0)
- os.sleep(200)
- var rand2:float = rand(1000000.0)
- check rand1 != rand2
- suite "cumsum":
- test "cumsum int seq return":
- let counts = [ 1, 2, 3, 4 ]
- check counts.cumsummed == [ 1, 3, 6, 10 ]
- test "cumsum float seq return":
- let counts = [ 1.0, 2.0, 3.0, 4.0 ]
- check counts.cumsummed == [ 1.0, 3.0, 6.0, 10.0 ]
- test "cumsum int in-place":
- var counts = [ 1, 2, 3, 4 ]
- counts.cumsum
- check counts == [ 1, 3, 6, 10 ]
- test "cumsum float in-place":
- var counts = [ 1.0, 2.0, 3.0, 4.0 ]
- counts.cumsum
- check counts == [ 1.0, 3.0, 6.0, 10.0 ]
- suite "random sample":
- test "non-uniform array sample unnormalized int CDF":
- let values = [ 10, 20, 30, 40, 50 ] # values
- let counts = [ 4, 3, 2, 1, 0 ] # weights aka unnormalized probabilities
- var histo = initCountTable[int]()
- let cdf = counts.cumsummed # unnormalized CDF
- for i in 0 ..< 5000:
- histo.inc(sample(values, cdf))
- check histo.len == 4 # number of non-zero in `counts`
- # Any one bin is a binomial random var for n samples, each with prob p of
- # adding a count to k; E[k]=p*n, Var k=p*(1-p)*n, approximately Normal for
- # big n. So, P(abs(k - p*n)/sqrt(p*(1-p)*n))>3.0) =~ 0.0027, while
- # P(wholeTestFails) =~ 1 - P(binPasses)^4 =~ 1 - (1-0.0027)^4 =~ 0.01.
- for i, c in counts:
- if c == 0:
- check values[i] notin histo
- continue
- let p = float(c) / float(cdf[^1])
- let n = 5000.0
- let expected = p * n
- let stdDev = sqrt(n * p * (1.0 - p))
- check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev
- test "non-uniform array sample normalized float CDF":
- let values = [ 10, 20, 30, 40, 50 ] # values
- let counts = [ 0.4, 0.3, 0.2, 0.1, 0 ] # probabilities
- var histo = initCountTable[int]()
- let cdf = counts.cumsummed # normalized CDF
- for i in 0 ..< 5000:
- histo.inc(sample(values, cdf))
- check histo.len == 4 # number of non-zero in ``counts``
- for i, c in counts:
- if c == 0:
- check values[i] notin histo
- continue
- let p = float(c) / float(cdf[^1])
- let n = 5000.0
- let expected = p * n
- let stdDev = sqrt(n * p * (1.0 - p))
- # NOTE: like unnormalized int CDF test, P(wholeTestFails) =~ 0.01.
- check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev
- suite "^":
- test "compiles for valid types":
- check: compiles(5 ^ 2)
- check: compiles(5.5 ^ 2)
- check: compiles(5.5 ^ 2.int8)
- check: compiles(5.5 ^ 2.uint)
- check: compiles(5.5 ^ 2.uint8)
- check: not compiles(5.5 ^ 2.2)
- block:
- when not defined(js):
- # Check for no side effect annotation
- proc mySqrt(num: float): float {.noSideEffect.} =
- return sqrt(num)
- # check gamma function
- assert(gamma(5.0) == 24.0) # 4!
- assert(lgamma(1.0) == 0.0) # ln(1.0) == 0.0
- assert(erf(6.0) > erf(5.0))
- assert(erfc(6.0) < erfc(5.0))
- # Function for approximate comparison of floats
- proc `==~`(x, y: float): bool = (abs(x-y) < 1e-9)
- block: # prod
- doAssert prod([1, 2, 3, 4]) == 24
- doAssert prod([1.5, 3.4]) == 5.1
- let x: seq[float] = @[]
- doAssert prod(x) == 1.0
- block: # round() tests
- # Round to 0 decimal places
- doAssert round(54.652) ==~ 55.0
- doAssert round(54.352) ==~ 54.0
- doAssert round(-54.652) ==~ -55.0
- doAssert round(-54.352) ==~ -54.0
- doAssert round(0.0) ==~ 0.0
- block: # splitDecimal() tests
- doAssert splitDecimal(54.674).intpart ==~ 54.0
- doAssert splitDecimal(54.674).floatpart ==~ 0.674
- doAssert splitDecimal(-693.4356).intpart ==~ -693.0
- doAssert splitDecimal(-693.4356).floatpart ==~ -0.4356
- doAssert splitDecimal(0.0).intpart ==~ 0.0
- doAssert splitDecimal(0.0).floatpart ==~ 0.0
- block: # trunc tests for vcc
- doAssert(trunc(-1.1) == -1)
- doAssert(trunc(1.1) == 1)
- doAssert(trunc(-0.1) == -0)
- doAssert(trunc(0.1) == 0)
- #special case
- doAssert(classify(trunc(1e1000000)) == fcInf)
- doAssert(classify(trunc(-1e1000000)) == fcNegInf)
- doAssert(classify(trunc(0.0/0.0)) == fcNan)
- doAssert(classify(trunc(0.0)) == fcZero)
- #trick the compiler to produce signed zero
- let
- f_neg_one = -1.0
- f_zero = 0.0
- f_nan = f_zero / f_zero
- doAssert(classify(trunc(f_neg_one*f_zero)) == fcNegZero)
- doAssert(trunc(-1.1'f32) == -1)
- doAssert(trunc(1.1'f32) == 1)
- doAssert(trunc(-0.1'f32) == -0)
- doAssert(trunc(0.1'f32) == 0)
- doAssert(classify(trunc(1e1000000'f32)) == fcInf)
- doAssert(classify(trunc(-1e1000000'f32)) == fcNegInf)
- doAssert(classify(trunc(f_nan.float32)) == fcNan)
- doAssert(classify(trunc(0.0'f32)) == fcZero)
- block: # sgn() tests
- assert sgn(1'i8) == 1
- assert sgn(1'i16) == 1
- assert sgn(1'i32) == 1
- assert sgn(1'i64) == 1
- assert sgn(1'u8) == 1
- assert sgn(1'u16) == 1
- assert sgn(1'u32) == 1
- assert sgn(1'u64) == 1
- assert sgn(-12342.8844'f32) == -1
- assert sgn(123.9834'f64) == 1
- assert sgn(0'i32) == 0
- assert sgn(0'f32) == 0
- assert sgn(NegInf) == -1
- assert sgn(Inf) == 1
- assert sgn(NaN) == 0
- block: # fac() tests
- try:
- discard fac(-1)
- except AssertionDefect:
- discard
- doAssert fac(0) == 1
- doAssert fac(1) == 1
- doAssert fac(2) == 2
- doAssert fac(3) == 6
- doAssert fac(4) == 24
- block: # floorMod/floorDiv
- doAssert floorDiv(8, 3) == 2
- doAssert floorMod(8, 3) == 2
- doAssert floorDiv(8, -3) == -3
- doAssert floorMod(8, -3) == -1
- doAssert floorDiv(-8, 3) == -3
- doAssert floorMod(-8, 3) == 1
- doAssert floorDiv(-8, -3) == 2
- doAssert floorMod(-8, -3) == -2
- doAssert floorMod(8.0, -3.0) ==~ -1.0
- doAssert floorMod(-8.5, 3.0) ==~ 0.5
- block: # log
- doAssert log(4.0, 3.0) ==~ ln(4.0) / ln(3.0)
- doAssert log2(8.0'f64) == 3.0'f64
- doAssert log2(4.0'f64) == 2.0'f64
- doAssert log2(2.0'f64) == 1.0'f64
- doAssert log2(1.0'f64) == 0.0'f64
- doAssert classify(log2(0.0'f64)) == fcNegInf
- doAssert log2(8.0'f32) == 3.0'f32
- doAssert log2(4.0'f32) == 2.0'f32
- doAssert log2(2.0'f32) == 1.0'f32
- doAssert log2(1.0'f32) == 0.0'f32
- doAssert classify(log2(0.0'f32)) == fcNegInf
|