123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2018 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- # Compilerprocs for strings that do not depend on the string implementation.
- import std/private/digitsutils
- proc cmpStrings(a, b: string): int {.inline, compilerproc.} =
- let alen = a.len
- let blen = b.len
- let minlen = min(alen, blen)
- if minlen > 0:
- result = c_memcmp(unsafeAddr a[0], unsafeAddr b[0], cast[csize_t](minlen)).int
- if result == 0:
- result = alen - blen
- else:
- result = alen - blen
- proc eqStrings(a, b: string): bool {.inline, compilerproc.} =
- let alen = a.len
- let blen = b.len
- if alen == blen:
- if alen == 0: return true
- return equalMem(unsafeAddr(a[0]), unsafeAddr(b[0]), alen)
- proc hashString(s: string): int {.compilerproc.} =
- # the compiler needs exactly the same hash function!
- # this used to be used for efficient generation of string case statements
- var h = 0'u
- for i in 0..len(s)-1:
- h = h + uint(s[i])
- h = h + h shl 10
- h = h xor (h shr 6)
- h = h + h shl 3
- h = h xor (h shr 11)
- h = h + h shl 15
- result = cast[int](h)
- proc eqCstrings(a, b: cstring): bool {.inline, compilerproc.} =
- if pointer(a) == pointer(b): result = true
- elif a.isNil or b.isNil: result = false
- else: result = c_strcmp(a, b) == 0
- proc hashCstring(s: cstring): int {.compilerproc.} =
- # the compiler needs exactly the same hash function!
- # this used to be used for efficient generation of cstring case statements
- if s.isNil: return 0
- var h : uint = 0
- var i = 0
- while true:
- let c = s[i]
- if c == '\0': break
- h = h + uint(c)
- h = h + h shl 10
- h = h xor (h shr 6)
- inc i
- h = h + h shl 3
- h = h xor (h shr 11)
- h = h + h shl 15
- result = cast[int](h)
- proc c_strtod(buf: cstring, endptr: ptr cstring): float64 {.
- importc: "strtod", header: "<stdlib.h>", noSideEffect.}
- const
- IdentChars = {'a'..'z', 'A'..'Z', '0'..'9', '_'}
- powtens = [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
- 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
- 1e20, 1e21, 1e22]
- {.push staticBoundChecks: off.}
- proc nimParseBiggestFloat(s: openArray[char], number: var BiggestFloat,
- ): int {.compilerproc.} =
- # This routine attempt to parse float that can parsed quickly.
- # i.e. whose integer part can fit inside a 53bits integer.
- # their real exponent must also be <= 22. If the float doesn't follow
- # these restrictions, transform the float into this form:
- # INTEGER * 10 ^ exponent and leave the work to standard `strtod()`.
- # This avoid the problems of decimal character portability.
- # see: http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
- var
- i = 0
- sign = 1.0
- kdigits, fdigits = 0
- exponent = 0
- integer = uint64(0)
- fracExponent = 0
- expSign = 1
- firstDigit = -1
- hasSign = false
- # Sign?
- if i < s.len and (s[i] == '+' or s[i] == '-'):
- hasSign = true
- if s[i] == '-':
- sign = -1.0
- inc(i)
- # NaN?
- if i+2 < s.len and (s[i] == 'N' or s[i] == 'n'):
- if s[i+1] == 'A' or s[i+1] == 'a':
- if s[i+2] == 'N' or s[i+2] == 'n':
- if i+3 >= s.len or s[i+3] notin IdentChars:
- number = NaN
- return i+3
- return 0
- # Inf?
- if i+2 < s.len and (s[i] == 'I' or s[i] == 'i'):
- if s[i+1] == 'N' or s[i+1] == 'n':
- if s[i+2] == 'F' or s[i+2] == 'f':
- if i+3 >= s.len or s[i+3] notin IdentChars:
- number = Inf*sign
- return i+3
- return 0
- if i < s.len and s[i] in {'0'..'9'}:
- firstDigit = (s[i].ord - '0'.ord)
- # Integer part?
- while i < s.len and s[i] in {'0'..'9'}:
- inc(kdigits)
- integer = integer * 10'u64 + (s[i].ord - '0'.ord).uint64
- inc(i)
- while i < s.len and s[i] == '_': inc(i)
- # Fractional part?
- if i < s.len and s[i] == '.':
- inc(i)
- # if no integer part, Skip leading zeros
- if kdigits <= 0:
- while i < s.len and s[i] == '0':
- inc(fracExponent)
- inc(i)
- while i < s.len and s[i] == '_': inc(i)
- if firstDigit == -1 and i < s.len and s[i] in {'0'..'9'}:
- firstDigit = (s[i].ord - '0'.ord)
- # get fractional part
- while i < s.len and s[i] in {'0'..'9'}:
- inc(fdigits)
- inc(fracExponent)
- integer = integer * 10'u64 + (s[i].ord - '0'.ord).uint64
- inc(i)
- while i < s.len and s[i] == '_': inc(i)
- # if has no digits: return error
- if kdigits + fdigits <= 0 and
- (i == 0 or # no char consumed (empty string).
- (i == 1 and hasSign)): # or only '+' or '-
- return 0
- if i+1 < s.len and s[i] in {'e', 'E'}:
- inc(i)
- if s[i] == '+' or s[i] == '-':
- if s[i] == '-':
- expSign = -1
- inc(i)
- if s[i] notin {'0'..'9'}:
- return 0
- while i < s.len and s[i] in {'0'..'9'}:
- exponent = exponent * 10 + (ord(s[i]) - ord('0'))
- inc(i)
- while i < s.len and s[i] == '_': inc(i) # underscores are allowed and ignored
- var realExponent = expSign*exponent - fracExponent
- let expNegative = realExponent < 0
- var absExponent = abs(realExponent)
- # if exponent greater than can be represented: +/- zero or infinity
- if absExponent > 999:
- if integer == 0:
- number = 0.0
- elif expNegative:
- number = 0.0*sign
- else:
- number = Inf*sign
- return i
- # if integer is representable in 53 bits: fast path
- # max fast path integer is 1<<53 - 1 or 8999999999999999 (16 digits)
- let digits = kdigits + fdigits
- if digits <= 15 or (digits <= 16 and firstDigit <= 8):
- # max float power of ten with set bits above the 53th bit is 10^22
- if absExponent <= 22:
- if expNegative:
- number = sign * integer.float / powtens[absExponent]
- else:
- number = sign * integer.float * powtens[absExponent]
- return i
- # if exponent is greater try to fit extra exponent above 22 by multiplying
- # integer part is there is space left.
- let slop = 15 - kdigits - fdigits
- if absExponent <= 22 + slop and not expNegative:
- number = sign * integer.float * powtens[slop] * powtens[absExponent-slop]
- return i
- # if failed: slow path with strtod.
- var t: array[500, char] # flaviu says: 325 is the longest reasonable literal
- var ti = 0
- let maxlen = t.high - "e+000".len # reserve enough space for exponent
- let endPos = i
- result = endPos
- i = 0
- # re-parse without error checking, any error should be handled by the code above.
- if i < endPos and s[i] == '.': i.inc
- while i < endPos and s[i] in {'0'..'9','+','-'}:
- if ti < maxlen:
- t[ti] = s[i]; inc(ti)
- inc(i)
- while i < endPos and s[i] in {'.', '_'}: # skip underscore and decimal point
- inc(i)
- # insert exponent
- t[ti] = 'E'
- inc(ti)
- t[ti] = if expNegative: '-' else: '+'
- inc(ti, 4)
- # insert adjusted exponent
- t[ti-1] = ('0'.ord + absExponent mod 10).char
- absExponent = absExponent div 10
- t[ti-2] = ('0'.ord + absExponent mod 10).char
- absExponent = absExponent div 10
- t[ti-3] = ('0'.ord + absExponent mod 10).char
- number = c_strtod(cast[cstring](addr t), nil)
- {.pop.} # staticBoundChecks
- proc nimBoolToStr(x: bool): string {.compilerRtl.} =
- return if x: "true" else: "false"
- proc nimCharToStr(x: char): string {.compilerRtl.} =
- result = newString(1)
- result[0] = x
- when defined(gcDestructors):
- proc GC_getStatistics*(): string =
- result = "[GC] total memory: "
- result.addInt getTotalMem()
- result.add "\n[GC] occupied memory: "
- result.addInt getOccupiedMem()
- result.add '\n'
- #"[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" &
|