1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2015 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## *Constructive mathematics is naturally typed.* -- Simon Thompson
- ##
- ## Basic math routines for Nim.
- ##
- ## Note that the trigonometric functions naturally operate on radians.
- ## The helper functions `degToRad <#degToRad,T>`_ and `radToDeg <#radToDeg,T>`_
- ## provide conversion between radians and degrees.
- runnableExamples:
- from std/fenv import epsilon
- from std/random import rand
- proc generateGaussianNoise(mu: float = 0.0, sigma: float = 1.0): (float, float) =
- # Generates values from a normal distribution.
- # Translated from https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform#Implementation.
- var u1: float
- var u2: float
- while true:
- u1 = rand(1.0)
- u2 = rand(1.0)
- if u1 > epsilon(float): break
- let mag = sigma * sqrt(-2 * ln(u1))
- let z0 = mag * cos(2 * PI * u2) + mu
- let z1 = mag * sin(2 * PI * u2) + mu
- (z0, z1)
- echo generateGaussianNoise()
- ## This module is available for the `JavaScript target
- ## <backends.html#backends-the-javascript-target>`_.
- ##
- ## See also
- ## ========
- ## * `complex module <complex.html>`_ for complex numbers and their
- ## mathematical operations
- ## * `rationals module <rationals.html>`_ for rational numbers and their
- ## mathematical operations
- ## * `fenv module <fenv.html>`_ for handling of floating-point rounding
- ## and exceptions (overflow, zero-divide, etc.)
- ## * `random module <random.html>`_ for a fast and tiny random number generator
- ## * `stats module <stats.html>`_ for statistical analysis
- ## * `strformat module <strformat.html>`_ for formatting floats for printing
- ## * `system module <system.html>`_ for some very basic and trivial math operators
- ## (`shr`, `shl`, `xor`, `clamp`, etc.)
- import std/private/since
- {.push debugger: off.} # the user does not want to trace a part
- # of the standard library!
- import std/[bitops, fenv]
- when defined(nimPreviewSlimSystem):
- import std/assertions
- when defined(c) or defined(cpp):
- proc c_isnan(x: float): bool {.importc: "isnan", header: "<math.h>".}
- # a generic like `x: SomeFloat` might work too if this is implemented via a C macro.
- proc c_copysign(x, y: cfloat): cfloat {.importc: "copysignf", header: "<math.h>".}
- proc c_copysign(x, y: cdouble): cdouble {.importc: "copysign", header: "<math.h>".}
- proc c_signbit(x: SomeFloat): cint {.importc: "signbit", header: "<math.h>".}
- # don't export `c_frexp` in the future and remove `c_frexp2`.
- func c_frexp2(x: cfloat, exponent: var cint): cfloat {.
- importc: "frexpf", header: "<math.h>".}
- func c_frexp2(x: cdouble, exponent: var cint): cdouble {.
- importc: "frexp", header: "<math.h>".}
-
- type
- div_t {.importc, header: "<stdlib.h>".} = object
- quot: cint
- rem: cint
- ldiv_t {.importc, header: "<stdlib.h>".} = object
- quot: clong
- rem: clong
- lldiv_t {.importc, header: "<stdlib.h>".} = object
- quot: clonglong
- rem: clonglong
-
- when cint isnot clong:
- func divmod_c(x, y: cint): div_t {.importc: "div", header: "<stdlib.h>".}
- when clong isnot clonglong:
- func divmod_c(x, y: clonglong): lldiv_t {.importc: "lldiv", header: "<stdlib.h>".}
- func divmod_c(x, y: clong): ldiv_t {.importc: "ldiv", header: "<stdlib.h>".}
- func divmod*[T: SomeInteger](x, y: T): (T, T) {.inline.} =
- ## Specialized instructions for computing both division and modulus.
- ## Return structure is: (quotient, remainder)
- runnableExamples:
- doAssert divmod(5, 2) == (2, 1)
- doAssert divmod(5, -3) == (-1, 2)
- when T is cint | clong | clonglong:
- when compileOption("overflowChecks"):
- if y == 0:
- raise new(DivByZeroDefect)
- elif (x == T.low and y == -1.T):
- raise new(OverflowDefect)
- let res = divmod_c(x, y)
- result[0] = res.quot
- result[1] = res.rem
- else:
- result[0] = x div y
- result[1] = x mod y
- func binom*(n, k: int): int =
- ## Computes the [binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient).
- runnableExamples:
- doAssert binom(6, 2) == 15
- doAssert binom(-6, 2) == 1
- doAssert binom(6, 0) == 1
- if k <= 0: return 1
- if 2 * k > n: return binom(n, n - k)
- result = n
- for i in countup(2, k):
- result = (result * (n + 1 - i)) div i
- func createFactTable[N: static[int]]: array[N, int] =
- result[0] = 1
- for i in 1 ..< N:
- result[i] = result[i - 1] * i
- func fac*(n: int): int =
- ## Computes the [factorial](https://en.wikipedia.org/wiki/Factorial) of
- ## a non-negative integer `n`.
- ##
- ## **See also:**
- ## * `prod func <#prod,openArray[T]>`_
- runnableExamples:
- doAssert fac(0) == 1
- doAssert fac(4) == 24
- doAssert fac(10) == 3628800
- const factTable =
- when sizeof(int) == 2:
- createFactTable[5]()
- elif sizeof(int) == 4:
- createFactTable[13]()
- else:
- createFactTable[21]()
- assert(n >= 0, $n & " must not be negative.")
- assert(n < factTable.len, $n & " is too large to look up in the table")
- factTable[n]
- {.push checks: off, line_dir: off, stack_trace: off.}
- when defined(posix) and not defined(genode) and not defined(macosx):
- {.passl: "-lm".}
- const
- PI* = 3.1415926535897932384626433 ## The circle constant PI (Ludolph's number).
- TAU* = 2.0 * PI ## The circle constant TAU (= 2 * PI).
- E* = 2.71828182845904523536028747 ## Euler's number.
- MaxFloat64Precision* = 16 ## Maximum number of meaningful digits
- ## after the decimal point for Nim's
- ## `float64` type.
- MaxFloat32Precision* = 8 ## Maximum number of meaningful digits
- ## after the decimal point for Nim's
- ## `float32` type.
- MaxFloatPrecision* = MaxFloat64Precision ## Maximum number of
- ## meaningful digits
- ## after the decimal point
- ## for Nim's `float` type.
- MinFloatNormal* = 2.225073858507201e-308 ## Smallest normal number for Nim's
- ## `float` type (= 2^-1022).
- RadPerDeg = PI / 180.0 ## Number of radians per degree.
- type
- FloatClass* = enum ## Describes the class a floating point value belongs to.
- ## This is the type that is returned by the
- ## `classify func <#classify,float>`_.
- fcNormal, ## value is an ordinary nonzero floating point value
- fcSubnormal, ## value is a subnormal (a very small) floating point value
- fcZero, ## value is zero
- fcNegZero, ## value is the negative zero
- fcNan, ## value is Not a Number (NaN)
- fcInf, ## value is positive infinity
- fcNegInf ## value is negative infinity
- func isNaN*(x: SomeFloat): bool {.inline, since: (1,5,1).} =
- ## Returns whether `x` is a `NaN`, more efficiently than via `classify(x) == fcNan`.
- ## Works even with `--passc:-ffast-math`.
- runnableExamples:
- doAssert NaN.isNaN
- doAssert not Inf.isNaN
- doAssert not isNaN(3.1415926)
- template fn: untyped = result = x != x
- when nimvm: fn()
- else:
- when defined(js) or defined(nimscript): fn()
- else: result = c_isnan(x)
- when defined(js):
- import std/private/jsutils
- proc toBitsImpl(x: float): array[2, uint32] =
- let buffer = newArrayBuffer(8)
- let a = newFloat64Array(buffer)
- let b = newUint32Array(buffer)
- a[0] = x
- {.emit: "`result` = `b`;".}
- # result = cast[array[2, uint32]](b)
- proc jsSetSign(x: float, sgn: bool): float =
- let buffer = newArrayBuffer(8)
- let a = newFloat64Array(buffer)
- let b = newUint32Array(buffer)
- a[0] = x
- {.emit: """
- function updateBit(num, bitPos, bitVal) {
- return (num & ~(1 << bitPos)) | (bitVal << bitPos);
- }
- `b`[1] = updateBit(`b`[1], 31, `sgn`);
- `result` = `a`[0]
- """.}
- proc signbit*(x: SomeFloat): bool {.inline, since: (1, 5, 1).} =
- ## Returns true if `x` is negative, false otherwise.
- runnableExamples:
- doAssert not signbit(0.0)
- doAssert signbit(-0.0)
- doAssert signbit(-0.1)
- doAssert not signbit(0.1)
- when defined(js):
- let uintBuffer = toBitsImpl(x)
- result = (uintBuffer[1] shr 31) != 0
- else:
- result = c_signbit(x) != 0
- func copySign*[T: SomeFloat](x, y: T): T {.inline, since: (1, 5, 1).} =
- ## Returns a value with the magnitude of `x` and the sign of `y`;
- ## this works even if x or y are NaN, infinity or zero, all of which can carry a sign.
- runnableExamples:
- doAssert copySign(10.0, 1.0) == 10.0
- doAssert copySign(10.0, -1.0) == -10.0
- doAssert copySign(-Inf, -0.0) == -Inf
- doAssert copySign(NaN, 1.0).isNaN
- doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0
- # TODO: use signbit for examples
- when defined(js):
- let uintBuffer = toBitsImpl(y)
- let sgn = (uintBuffer[1] shr 31) != 0
- result = jsSetSign(x, sgn)
- else:
- when nimvm: # not exact but we have a vmops for recent enough nim
- if y > 0.0 or (y == 0.0 and 1.0 / y > 0.0):
- result = abs(x)
- elif y <= 0.0:
- result = -abs(x)
- else: # must be NaN
- result = abs(x)
- else: result = c_copysign(x, y)
- func classify*(x: float): FloatClass =
- ## Classifies a floating point value.
- ##
- ## Returns `x`'s class as specified by the `FloatClass enum<#FloatClass>`_.
- runnableExamples:
- doAssert classify(0.3) == fcNormal
- doAssert classify(0.0) == fcZero
- doAssert classify(0.3 / 0.0) == fcInf
- doAssert classify(-0.3 / 0.0) == fcNegInf
- doAssert classify(5.0e-324) == fcSubnormal
- # JavaScript and most C compilers have no classify:
- if isNan(x): return fcNan
- if x == 0.0:
- if 1.0 / x == Inf:
- return fcZero
- else:
- return fcNegZero
- if x * 0.5 == x:
- if x > 0.0: return fcInf
- else: return fcNegInf
- if abs(x) < MinFloatNormal:
- return fcSubnormal
- return fcNormal
- func almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {.
- since: (1, 5), inline.} =
- ## Checks if two float values are almost equal, using the
- ## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon).
- ##
- ## `unitsInLastPlace` is the max number of
- ## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
- ## difference tolerated when comparing two numbers. The larger the value, the
- ## more error is allowed. A `0` value means that two numbers must be exactly the
- ## same to be considered equal.
- ##
- ## The machine epsilon has to be scaled to the magnitude of the values used
- ## and multiplied by the desired precision in ULPs unless the difference is
- ## subnormal.
- ##
- # taken from: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
- runnableExamples:
- doAssert almostEqual(PI, 3.14159265358979)
- doAssert almostEqual(Inf, Inf)
- doAssert not almostEqual(NaN, NaN)
- if x == y:
- # short circuit exact equality -- needed to catch two infinities of
- # the same sign. And perhaps speeds things up a bit sometimes.
- return true
- let diff = abs(x - y)
- result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or
- diff < minimumPositiveValue(T)
- func isPowerOfTwo*(x: int): bool =
- ## Returns `true`, if `x` is a power of two, `false` otherwise.
- ##
- ## Zero and negative numbers are not a power of two.
- ##
- ## **See also:**
- ## * `nextPowerOfTwo func <#nextPowerOfTwo,int>`_
- runnableExamples:
- doAssert isPowerOfTwo(16)
- doAssert not isPowerOfTwo(5)
- doAssert not isPowerOfTwo(0)
- doAssert not isPowerOfTwo(-16)
- return (x > 0) and ((x and (x - 1)) == 0)
- func nextPowerOfTwo*(x: int): int =
- ## Returns `x` rounded up to the nearest power of two.
- ##
- ## Zero and negative numbers get rounded up to 1.
- ##
- ## **See also:**
- ## * `isPowerOfTwo func <#isPowerOfTwo,int>`_
- runnableExamples:
- doAssert nextPowerOfTwo(16) == 16
- doAssert nextPowerOfTwo(5) == 8
- doAssert nextPowerOfTwo(0) == 1
- doAssert nextPowerOfTwo(-16) == 1
- result = x - 1
- when defined(cpu64):
- result = result or (result shr 32)
- when sizeof(int) > 2:
- result = result or (result shr 16)
- when sizeof(int) > 1:
- result = result or (result shr 8)
- result = result or (result shr 4)
- result = result or (result shr 2)
- result = result or (result shr 1)
- result += 1 + ord(x <= 0)
- when not defined(js): # C
- func sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
- func sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".} =
- ## Computes the square root of `x`.
- ##
- ## **See also:**
- ## * `cbrt func <#cbrt,float64>`_ for the cube root
- runnableExamples:
- doAssert almostEqual(sqrt(4.0), 2.0)
- doAssert almostEqual(sqrt(1.44), 1.2)
- func cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
- func cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".} =
- ## Computes the cube root of `x`.
- ##
- ## **See also:**
- ## * `sqrt func <#sqrt,float64>`_ for the square root
- runnableExamples:
- doAssert almostEqual(cbrt(8.0), 2.0)
- doAssert almostEqual(cbrt(2.197), 1.3)
- doAssert almostEqual(cbrt(-27.0), -3.0)
- func ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
- func ln*(x: float64): float64 {.importc: "log", header: "<math.h>".} =
- ## Computes the [natural logarithm](https://en.wikipedia.org/wiki/Natural_logarithm)
- ## of `x`.
- ##
- ## **See also:**
- ## * `log func <#log,T,T>`_
- ## * `log10 func <#log10,float64>`_
- ## * `log2 func <#log2,float64>`_
- ## * `exp func <#exp,float64>`_
- runnableExamples:
- doAssert almostEqual(ln(exp(4.0)), 4.0)
- doAssert almostEqual(ln(1.0), 0.0)
- doAssert almostEqual(ln(0.0), -Inf)
- doAssert ln(-7.0).isNaN
- else: # JS
- func sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
- func sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
- func cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.}
- func cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.}
- func ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
- func ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
- func log*[T: SomeFloat](x, base: T): T =
- ## Computes the logarithm of `x` to base `base`.
- ##
- ## **See also:**
- ## * `ln func <#ln,float64>`_
- ## * `log10 func <#log10,float64>`_
- ## * `log2 func <#log2,float64>`_
- runnableExamples:
- doAssert almostEqual(log(9.0, 3.0), 2.0)
- doAssert almostEqual(log(0.0, 2.0), -Inf)
- doAssert log(-7.0, 4.0).isNaN
- doAssert log(8.0, -2.0).isNaN
- ln(x) / ln(base)
- when not defined(js): # C
- func log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
- func log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".} =
- ## Computes the common logarithm (base 10) of `x`.
- ##
- ## **See also:**
- ## * `ln func <#ln,float64>`_
- ## * `log func <#log,T,T>`_
- ## * `log2 func <#log2,float64>`_
- runnableExamples:
- doAssert almostEqual(log10(100.0) , 2.0)
- doAssert almostEqual(log10(0.0), -Inf)
- doAssert log10(-100.0).isNaN
- func exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
- func exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".} =
- ## Computes the exponential function of `x` (`e^x`).
- ##
- ## **See also:**
- ## * `ln func <#ln,float64>`_
- runnableExamples:
- doAssert almostEqual(exp(1.0), E)
- doAssert almostEqual(ln(exp(4.0)), 4.0)
- doAssert almostEqual(exp(0.0), 1.0)
- func sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
- func sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".} =
- ## Computes the sine of `x`.
- ##
- ## **See also:**
- ## * `arcsin func <#arcsin,float64>`_
- runnableExamples:
- doAssert almostEqual(sin(PI / 6), 0.5)
- doAssert almostEqual(sin(degToRad(90.0)), 1.0)
- func cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
- func cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".} =
- ## Computes the cosine of `x`.
- ##
- ## **See also:**
- ## * `arccos func <#arccos,float64>`_
- runnableExamples:
- doAssert almostEqual(cos(2 * PI), 1.0)
- doAssert almostEqual(cos(degToRad(60.0)), 0.5)
- func tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
- func tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".} =
- ## Computes the tangent of `x`.
- ##
- ## **See also:**
- ## * `arctan func <#arctan,float64>`_
- runnableExamples:
- doAssert almostEqual(tan(degToRad(45.0)), 1.0)
- doAssert almostEqual(tan(PI / 4), 1.0)
- func sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
- func sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".} =
- ## Computes the [hyperbolic sine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
- ##
- ## **See also:**
- ## * `arcsinh func <#arcsinh,float64>`_
- runnableExamples:
- doAssert almostEqual(sinh(0.0), 0.0)
- doAssert almostEqual(sinh(1.0), 1.175201193643801)
- func cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
- func cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".} =
- ## Computes the [hyperbolic cosine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
- ##
- ## **See also:**
- ## * `arccosh func <#arccosh,float64>`_
- runnableExamples:
- doAssert almostEqual(cosh(0.0), 1.0)
- doAssert almostEqual(cosh(1.0), 1.543080634815244)
- func tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
- func tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".} =
- ## Computes the [hyperbolic tangent](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
- ##
- ## **See also:**
- ## * `arctanh func <#arctanh,float64>`_
- runnableExamples:
- doAssert almostEqual(tanh(0.0), 0.0)
- doAssert almostEqual(tanh(1.0), 0.7615941559557649)
- func arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
- func arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".} =
- ## Computes the arc sine of `x`.
- ##
- ## **See also:**
- ## * `sin func <#sin,float64>`_
- runnableExamples:
- doAssert almostEqual(radToDeg(arcsin(0.0)), 0.0)
- doAssert almostEqual(radToDeg(arcsin(1.0)), 90.0)
- func arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
- func arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".} =
- ## Computes the arc cosine of `x`.
- ##
- ## **See also:**
- ## * `cos func <#cos,float64>`_
- runnableExamples:
- doAssert almostEqual(radToDeg(arccos(0.0)), 90.0)
- doAssert almostEqual(radToDeg(arccos(1.0)), 0.0)
- func arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
- func arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".} =
- ## Calculate the arc tangent of `x`.
- ##
- ## **See also:**
- ## * `arctan2 func <#arctan2,float64,float64>`_
- ## * `tan func <#tan,float64>`_
- runnableExamples:
- doAssert almostEqual(arctan(1.0), 0.7853981633974483)
- doAssert almostEqual(radToDeg(arctan(1.0)), 45.0)
- func arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
- func arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".} =
- ## Calculate the arc tangent of `y/x`.
- ##
- ## It produces correct results even when the resulting angle is near
- ## `PI/2` or `-PI/2` (`x` near 0).
- ##
- ## **See also:**
- ## * `arctan func <#arctan,float64>`_
- runnableExamples:
- doAssert almostEqual(arctan2(1.0, 0.0), PI / 2.0)
- doAssert almostEqual(radToDeg(arctan2(1.0, 0.0)), 90.0)
- func arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
- func arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
- ## Computes the inverse hyperbolic sine of `x`.
- ##
- ## **See also:**
- ## * `sinh func <#sinh,float64>`_
- func arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
- func arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
- ## Computes the inverse hyperbolic cosine of `x`.
- ##
- ## **See also:**
- ## * `cosh func <#cosh,float64>`_
- func arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
- func arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
- ## Computes the inverse hyperbolic tangent of `x`.
- ##
- ## **See also:**
- ## * `tanh func <#tanh,float64>`_
- else: # JS
- func log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
- func log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
- func log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
- func log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
- func exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
- func exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
- func sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
- func cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
- func tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}
- func sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
- func cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
- func tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}
- func arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
- # keep this as generic or update test in `tvmops.nim` to make sure we
- # keep testing that generic importc procs work
- func arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
- func arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
- func arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.}
- func arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
- func arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
- func arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
- func cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
- ## Computes the cotangent of `x` (`1/tan(x)`).
- func sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
- ## Computes the secant of `x` (`1/cos(x)`).
- func csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
- ## Computes the cosecant of `x` (`1/sin(x)`).
- func coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
- ## Computes the hyperbolic cotangent of `x` (`1/tanh(x)`).
- func sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
- ## Computes the hyperbolic secant of `x` (`1/cosh(x)`).
- func csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
- ## Computes the hyperbolic cosecant of `x` (`1/sinh(x)`).
- func arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
- ## Computes the inverse cotangent of `x` (`arctan(1/x)`).
- func arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
- ## Computes the inverse secant of `x` (`arccos(1/x)`).
- func arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
- ## Computes the inverse cosecant of `x` (`arcsin(1/x)`).
- func arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
- ## Computes the inverse hyperbolic cotangent of `x` (`arctanh(1/x)`).
- func arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
- ## Computes the inverse hyperbolic secant of `x` (`arccosh(1/x)`).
- func arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
- ## Computes the inverse hyperbolic cosecant of `x` (`arcsinh(1/x)`).
- const windowsCC89 = defined(windows) and defined(bcc)
- when not defined(js): # C
- func hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
- func hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".} =
- ## Computes the length of the hypotenuse of a right-angle triangle with
- ## `x` as its base and `y` as its height. Equivalent to `sqrt(x*x + y*y)`.
- runnableExamples:
- doAssert almostEqual(hypot(3.0, 4.0), 5.0)
- func pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
- func pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".} =
- ## Computes `x` raised to the power of `y`.
- ##
- ## To compute the power between integers (e.g. 2^6),
- ## use the `^ func <#^,T,Natural>`_.
- ##
- ## **See also:**
- ## * `^ func <#^,T,Natural>`_
- ## * `sqrt func <#sqrt,float64>`_
- ## * `cbrt func <#cbrt,float64>`_
- runnableExamples:
- doAssert almostEqual(pow(100, 1.5), 1000.0)
- doAssert almostEqual(pow(16.0, 0.5), 4.0)
- # TODO: add C89 version on windows
- when not windowsCC89:
- func erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
- func erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
- ## Computes the [error function](https://en.wikipedia.org/wiki/Error_function) for `x`.
- ##
- ## **Note:** Not available for the JS backend.
- func erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
- func erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
- ## Computes the [complementary error function](https://en.wikipedia.org/wiki/Error_function#Complementary_error_function) for `x`.
- ##
- ## **Note:** Not available for the JS backend.
- func gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
- func gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".} =
- ## Computes the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) for `x`.
- ##
- ## **Note:** Not available for the JS backend.
- ##
- ## **See also:**
- ## * `lgamma func <#lgamma,float64>`_ for the natural logarithm of the gamma function
- runnableExamples:
- doAssert almostEqual(gamma(1.0), 1.0)
- doAssert almostEqual(gamma(4.0), 6.0)
- doAssert almostEqual(gamma(11.0), 3628800.0)
- func lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
- func lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".} =
- ## Computes the natural logarithm of the gamma function for `x`.
- ##
- ## **Note:** Not available for the JS backend.
- ##
- ## **See also:**
- ## * `gamma func <#gamma,float64>`_ for gamma function
- func floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
- func floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".} =
- ## Computes the floor function (i.e. the largest integer not greater than `x`).
- ##
- ## **See also:**
- ## * `ceil func <#ceil,float64>`_
- ## * `round func <#round,float64>`_
- ## * `trunc func <#trunc,float64>`_
- runnableExamples:
- doAssert floor(2.1) == 2.0
- doAssert floor(2.9) == 2.0
- doAssert floor(-3.5) == -4.0
- func ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
- func ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".} =
- ## Computes the ceiling function (i.e. the smallest integer not smaller
- ## than `x`).
- ##
- ## **See also:**
- ## * `floor func <#floor,float64>`_
- ## * `round func <#round,float64>`_
- ## * `trunc func <#trunc,float64>`_
- runnableExamples:
- doAssert ceil(2.1) == 3.0
- doAssert ceil(2.9) == 3.0
- doAssert ceil(-2.1) == -2.0
- when windowsCC89:
- # MSVC 2010 don't have trunc/truncf
- # this implementation was inspired by Go-lang Math.Trunc
- func truncImpl(f: float64): float64 =
- const
- mask: uint64 = 0x7FF
- shift: uint64 = 64 - 12
- bias: uint64 = 0x3FF
- if f < 1:
- if f < 0: return -truncImpl(-f)
- elif f == 0: return f # Return -0 when f == -0
- else: return 0
- var x = cast[uint64](f)
- let e = (x shr shift) and mask - bias
- # Keep the top 12+e bits, the integer part; clear the rest.
- if e < 64 - 12:
- x = x and (not (1'u64 shl (64'u64 - 12'u64 - e) - 1'u64))
- result = cast[float64](x)
- func truncImpl(f: float32): float32 =
- const
- mask: uint32 = 0xFF
- shift: uint32 = 32 - 9
- bias: uint32 = 0x7F
- if f < 1:
- if f < 0: return -truncImpl(-f)
- elif f == 0: return f # Return -0 when f == -0
- else: return 0
- var x = cast[uint32](f)
- let e = (x shr shift) and mask - bias
- # Keep the top 9+e bits, the integer part; clear the rest.
- if e < 32 - 9:
- x = x and (not (1'u32 shl (32'u32 - 9'u32 - e) - 1'u32))
- result = cast[float32](x)
- func trunc*(x: float64): float64 =
- if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
- result = truncImpl(x)
- func trunc*(x: float32): float32 =
- if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
- result = truncImpl(x)
- func round*[T: float32|float64](x: T): T =
- ## Windows compilers prior to MSVC 2012 do not implement 'round',
- ## 'roundl' or 'roundf'.
- result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
- else:
- func round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
- func round*(x: float64): float64 {.importc: "round", header: "<math.h>".} =
- ## Rounds a float to zero decimal places.
- ##
- ## Used internally by the `round func <#round,T,int>`_
- ## when the specified number of places is 0.
- ##
- ## **See also:**
- ## * `round func <#round,T,int>`_ for rounding to the specific
- ## number of decimal places
- ## * `floor func <#floor,float64>`_
- ## * `ceil func <#ceil,float64>`_
- ## * `trunc func <#trunc,float64>`_
- runnableExamples:
- doAssert round(3.4) == 3.0
- doAssert round(3.5) == 4.0
- doAssert round(4.5) == 5.0
- func trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
- func trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".} =
- ## Truncates `x` to the decimal point.
- ##
- ## **See also:**
- ## * `floor func <#floor,float64>`_
- ## * `ceil func <#ceil,float64>`_
- ## * `round func <#round,float64>`_
- runnableExamples:
- doAssert trunc(PI) == 3.0
- doAssert trunc(-1.85) == -1.0
- func `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
- func `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".} =
- ## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
- ##
- ## **See also:**
- ## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
- runnableExamples:
- doAssert 6.5 mod 2.5 == 1.5
- doAssert -6.5 mod 2.5 == -1.5
- doAssert 6.5 mod -2.5 == 1.5
- doAssert -6.5 mod -2.5 == -1.5
- else: # JS
- func hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.}
- func hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.}
- func pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.}
- func pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
- func floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
- func floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
- func ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
- func ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
- when (NimMajor, NimMinor) < (1, 5) or defined(nimLegacyJsRound):
- func round*(x: float): float {.importc: "Math.round", nodecl.}
- else:
- func jsRound(x: float): float {.importc: "Math.round", nodecl.}
- func round*[T: float64 | float32](x: T): T =
- if x >= 0: result = jsRound(x)
- else:
- result = ceil(x)
- if result - x >= T(0.5):
- result -= T(1.0)
- func trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
- func trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}
- func `mod`*(x, y: float32): float32 {.importjs: "(# % #)".}
- func `mod`*(x, y: float64): float64 {.importjs: "(# % #)".} =
- ## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
- runnableExamples:
- doAssert 6.5 mod 2.5 == 1.5
- doAssert -6.5 mod 2.5 == -1.5
- doAssert 6.5 mod -2.5 == 1.5
- doAssert -6.5 mod -2.5 == -1.5
-
- func divmod*[T:SomeInteger](num, denom: T): (T, T) =
- runnableExamples:
- doAssert divmod(5, 2) == (2, 1)
- doAssert divmod(5, -3) == (-1, 2)
- result[0] = num div denom
- result[1] = num mod denom
-
- func round*[T: float32|float64](x: T, places: int): T =
- ## Decimal rounding on a binary floating point number.
- ##
- ## This function is NOT reliable. Floating point numbers cannot hold
- ## non integer decimals precisely. If `places` is 0 (or omitted),
- ## round to the nearest integral value following normal mathematical
- ## rounding rules (e.g. `round(54.5) -> 55.0`). If `places` is
- ## greater than 0, round to the given number of decimal places,
- ## e.g. `round(54.346, 2) -> 54.350000000000001421…`. If `places` is negative, round
- ## to the left of the decimal place, e.g. `round(537.345, -1) -> 540.0`.
- runnableExamples:
- doAssert round(PI, 2) == 3.14
- doAssert round(PI, 4) == 3.1416
- if places == 0:
- result = round(x)
- else:
- var mult = pow(10.0, T(places))
- result = round(x * mult) / mult
- func floorDiv*[T: SomeInteger](x, y: T): T =
- ## Floor division is conceptually defined as `floor(x / y)`.
- ##
- ## This is different from the `system.div <system.html#div,int,int>`_
- ## operator, which is defined as `trunc(x / y)`.
- ## That is, `div` rounds towards `0` and `floorDiv` rounds down.
- ##
- ## **See also:**
- ## * `system.div proc <system.html#div,int,int>`_ for integer division
- ## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
- runnableExamples:
- doAssert floorDiv( 13, 3) == 4
- doAssert floorDiv(-13, 3) == -5
- doAssert floorDiv( 13, -3) == -5
- doAssert floorDiv(-13, -3) == 4
- result = x div y
- let r = x mod y
- if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1
- func floorMod*[T: SomeNumber](x, y: T): T =
- ## Floor modulo is conceptually defined as `x - (floorDiv(x, y) * y)`.
- ##
- ## This func behaves the same as the `%` operator in Python.
- ##
- ## **See also:**
- ## * `mod func <#mod,float64,float64>`_
- ## * `floorDiv func <#floorDiv,T,T>`_
- runnableExamples:
- doAssert floorMod( 13, 3) == 1
- doAssert floorMod(-13, 3) == 2
- doAssert floorMod( 13, -3) == -2
- doAssert floorMod(-13, -3) == -1
- result = x mod y
- if (result > 0 and y < 0) or (result < 0 and y > 0): result += y
- func euclDiv*[T: SomeInteger](x, y: T): T {.since: (1, 5, 1).} =
- ## Returns euclidean division of `x` by `y`.
- runnableExamples:
- doAssert euclDiv(13, 3) == 4
- doAssert euclDiv(-13, 3) == -5
- doAssert euclDiv(13, -3) == -4
- doAssert euclDiv(-13, -3) == 5
- result = x div y
- if x mod y < 0:
- if y > 0:
- dec result
- else:
- inc result
- func euclMod*[T: SomeNumber](x, y: T): T {.since: (1, 5, 1).} =
- ## Returns euclidean modulo of `x` by `y`.
- ## `euclMod(x, y)` is non-negative.
- runnableExamples:
- doAssert euclMod(13, 3) == 1
- doAssert euclMod(-13, 3) == 2
- doAssert euclMod(13, -3) == 1
- doAssert euclMod(-13, -3) == 2
- result = x mod y
- if result < 0:
- result += abs(y)
- func ceilDiv*[T: SomeInteger](x, y: T): T {.inline, since: (1, 5, 1).} =
- ## Ceil division is conceptually defined as `ceil(x / y)`.
- ##
- ## Assumes `x >= 0` and `y > 0` (and `x + y - 1 <= high(T)` if T is SomeUnsignedInt).
- ##
- ## This is different from the `system.div <system.html#div,int,int>`_
- ## operator, which works like `trunc(x / y)`.
- ## That is, `div` rounds towards `0` and `ceilDiv` rounds up.
- ##
- ## This function has the above input limitation, because that allows the
- ## compiler to generate faster code and it is rarely used with
- ## negative values or unsigned integers close to `high(T)/2`.
- ## If you need a `ceilDiv` that works with any input, see:
- ## https://github.com/demotomohiro/divmath.
- ##
- ## **See also:**
- ## * `system.div proc <system.html#div,int,int>`_ for integer division
- ## * `floorDiv func <#floorDiv,T,T>`_ for integer division which rounds down.
- runnableExamples:
- assert ceilDiv(12, 3) == 4
- assert ceilDiv(13, 3) == 5
- when sizeof(T) == 8:
- type UT = uint64
- elif sizeof(T) == 4:
- type UT = uint32
- elif sizeof(T) == 2:
- type UT = uint16
- elif sizeof(T) == 1:
- type UT = uint8
- else:
- {.fatal: "Unsupported int type".}
- assert x >= 0 and y > 0
- when T is SomeUnsignedInt:
- assert x + y - 1 >= x
- # If the divisor is const, the backend C/C++ compiler generates code without a `div`
- # instruction, as it is slow on most CPUs.
- # If the divisor is a power of 2 and a const unsigned integer type, the
- # compiler generates faster code.
- # If the divisor is const and a signed integer, generated code becomes slower
- # than the code with unsigned integers, because division with signed integers
- # need to works for both positive and negative value without `idiv`/`sdiv`.
- # That is why this code convert parameters to unsigned.
- # This post contains a comparison of the performance of signed/unsigned integers:
- # https://github.com/nim-lang/Nim/pull/18596#issuecomment-894420984.
- # If signed integer arguments were not converted to unsigned integers,
- # `ceilDiv` wouldn't work for any positive signed integer value, because
- # `x + (y - 1)` can overflow.
- ((x.UT + (y.UT - 1.UT)) div y.UT).T
- func frexp*[T: float32|float64](x: T): tuple[frac: T, exp: int] {.inline.} =
- ## Splits `x` into a normalized fraction `frac` and an integral power of 2 `exp`,
- ## such that `abs(frac) in 0.5..<1` and `x == frac * 2 ^ exp`, except for special
- ## cases shown below.
- runnableExamples:
- doAssert frexp(8.0) == (0.5, 4)
- doAssert frexp(-8.0) == (-0.5, 4)
- doAssert frexp(0.0) == (0.0, 0)
- # special cases:
- when sizeof(int) == 8:
- doAssert frexp(-0.0).frac.signbit # signbit preserved for +-0
- doAssert frexp(Inf).frac == Inf # +- Inf preserved
- doAssert frexp(NaN).frac.isNaN
- when not defined(js):
- var exp: cint
- result.frac = c_frexp2(x, exp)
- result.exp = exp
- else:
- if x == 0.0:
- # reuse signbit implementation
- let uintBuffer = toBitsImpl(x)
- if (uintBuffer[1] shr 31) != 0:
- # x is -0.0
- result = (-0.0, 0)
- else:
- result = (0.0, 0)
- elif x < 0.0:
- result = frexp(-x)
- result.frac = -result.frac
- else:
- var ex = trunc(log2(x))
- result.exp = int(ex)
- result.frac = x / pow(2.0, ex)
- if abs(result.frac) >= 1:
- inc(result.exp)
- result.frac = result.frac / 2
- if result.exp == 1024 and result.frac == 0.0:
- result.frac = 0.99999999999999988898
- func frexp*[T: float32|float64](x: T, exponent: var int): T {.inline.} =
- ## Overload of `frexp` that calls `(result, exponent) = frexp(x)`.
- runnableExamples:
- var x: int
- doAssert frexp(5.0, x) == 0.625
- doAssert x == 3
- (result, exponent) = frexp(x)
- when not defined(js):
- when windowsCC89:
- # taken from Go-lang Math.Log2
- const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
- template log2Impl[T](x: T): T =
- var exp: int
- var frac = frexp(x, exp)
- # Make sure exact powers of two give an exact answer.
- # Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1.
- if frac == 0.5: return T(exp - 1)
- log10(frac) * (1 / ln2) + T(exp)
- func log2*(x: float32): float32 = log2Impl(x)
- func log2*(x: float64): float64 = log2Impl(x)
- ## Log2 returns the binary logarithm of x.
- ## The special cases are the same as for Log.
- else:
- func log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
- func log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".} =
- ## Computes the binary logarithm (base 2) of `x`.
- ##
- ## **See also:**
- ## * `log func <#log,T,T>`_
- ## * `log10 func <#log10,float64>`_
- ## * `ln func <#ln,float64>`_
- runnableExamples:
- doAssert almostEqual(log2(8.0), 3.0)
- doAssert almostEqual(log2(1.0), 0.0)
- doAssert almostEqual(log2(0.0), -Inf)
- doAssert log2(-2.0).isNaN
- func splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
- ## Breaks `x` into an integer and a fractional part.
- ##
- ## Returns a tuple containing `intpart` and `floatpart`, representing
- ## the integer part and the fractional part, respectively.
- ##
- ## Both parts have the same sign as `x`. Analogous to the `modf`
- ## function in C.
- runnableExamples:
- doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25)
- doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73)
- var
- absolute: T
- absolute = abs(x)
- result.intpart = floor(absolute)
- result.floatpart = absolute - result.intpart
- if x < 0:
- result.intpart = -result.intpart
- result.floatpart = -result.floatpart
- func degToRad*[T: float32|float64](d: T): T {.inline.} =
- ## Converts from degrees to radians.
- ##
- ## **See also:**
- ## * `radToDeg func <#radToDeg,T>`_
- runnableExamples:
- doAssert almostEqual(degToRad(180.0), PI)
- result = d * T(RadPerDeg)
- func radToDeg*[T: float32|float64](d: T): T {.inline.} =
- ## Converts from radians to degrees.
- ##
- ## **See also:**
- ## * `degToRad func <#degToRad,T>`_
- runnableExamples:
- doAssert almostEqual(radToDeg(2 * PI), 360.0)
- result = d / T(RadPerDeg)
- func sgn*[T: SomeNumber](x: T): int {.inline.} =
- ## Sign function.
- ##
- ## Returns:
- ## * `-1` for negative numbers and `NegInf`,
- ## * `1` for positive numbers and `Inf`,
- ## * `0` for positive zero, negative zero and `NaN`
- runnableExamples:
- doAssert sgn(5) == 1
- doAssert sgn(0) == 0
- doAssert sgn(-4.1) == -1
- ord(T(0) < x) - ord(x < T(0))
- {.pop.}
- {.pop.}
- func sum*[T](x: openArray[T]): T =
- ## Computes the sum of the elements in `x`.
- ##
- ## If `x` is empty, 0 is returned.
- ##
- ## **See also:**
- ## * `prod func <#prod,openArray[T]>`_
- ## * `cumsum func <#cumsum,openArray[T]>`_
- ## * `cumsummed func <#cumsummed,openArray[T]>`_
- runnableExamples:
- doAssert sum([1, 2, 3, 4]) == 10
- doAssert sum([-4, 3, 5]) == 4
- for i in items(x): result = result + i
- func prod*[T](x: openArray[T]): T =
- ## Computes the product of the elements in `x`.
- ##
- ## If `x` is empty, 1 is returned.
- ##
- ## **See also:**
- ## * `sum func <#sum,openArray[T]>`_
- ## * `fac func <#fac,int>`_
- runnableExamples:
- doAssert prod([1, 2, 3, 4]) == 24
- doAssert prod([-4, 3, 5]) == -60
- result = T(1)
- for i in items(x): result = result * i
- func cumsummed*[T](x: openArray[T]): seq[T] =
- ## Returns the cumulative (aka prefix) summation of `x`.
- ##
- ## If `x` is empty, `@[]` is returned.
- ##
- ## **See also:**
- ## * `sum func <#sum,openArray[T]>`_
- ## * `cumsum func <#cumsum,openArray[T]>`_ for the in-place version
- runnableExamples:
- doAssert cumsummed([1, 2, 3, 4]) == @[1, 3, 6, 10]
- let xLen = x.len
- if xLen == 0:
- return @[]
- result.setLen(xLen)
- result[0] = x[0]
- for i in 1 ..< xLen: result[i] = result[i - 1] + x[i]
- func cumsum*[T](x: var openArray[T]) =
- ## Transforms `x` in-place (must be declared as `var`) into its
- ## cumulative (aka prefix) summation.
- ##
- ## **See also:**
- ## * `sum func <#sum,openArray[T]>`_
- ## * `cumsummed func <#cumsummed,openArray[T]>`_ for a version which
- ## returns a cumsummed sequence
- runnableExamples:
- var a = [1, 2, 3, 4]
- cumsum(a)
- doAssert a == @[1, 3, 6, 10]
- for i in 1 ..< x.len: x[i] = x[i - 1] + x[i]
- func `^`*[T: SomeNumber](x: T, y: Natural): T =
- ## Computes `x` to the power of `y`.
- ##
- ## The exponent `y` must be non-negative, use
- ## `pow <#pow,float64,float64>`_ for negative exponents.
- ##
- ## **See also:**
- ## * `pow func <#pow,float64,float64>`_ for negative exponent or
- ## floats
- ## * `sqrt func <#sqrt,float64>`_
- ## * `cbrt func <#cbrt,float64>`_
- runnableExamples:
- doAssert -3 ^ 0 == 1
- doAssert -3 ^ 1 == -3
- doAssert -3 ^ 2 == 9
- case y
- of 0: result = 1
- of 1: result = x
- of 2: result = x * x
- of 3: result = x * x * x
- else:
- var (x, y) = (x, y)
- result = 1
- while true:
- if (y and 1) != 0:
- result *= x
- y = y shr 1
- if y == 0:
- break
- x *= x
- func gcd*[T](x, y: T): T =
- ## Computes the greatest common (positive) divisor of `x` and `y`.
- ##
- ## Note that for floats, the result cannot always be interpreted as
- ## "greatest decimal `z` such that `z*N == x and z*M == y`
- ## where N and M are positive integers".
- ##
- ## **See also:**
- ## * `gcd func <#gcd,SomeInteger,SomeInteger>`_ for an integer version
- ## * `lcm func <#lcm,T,T>`_
- runnableExamples:
- doAssert gcd(13.5, 9.0) == 4.5
- var (x, y) = (x, y)
- while y != 0:
- x = x mod y
- swap x, y
- abs x
- func gcd*(x, y: SomeInteger): SomeInteger =
- ## Computes the greatest common (positive) divisor of `x` and `y`,
- ## using the binary GCD (aka Stein's) algorithm.
- ##
- ## **See also:**
- ## * `gcd func <#gcd,T,T>`_ for a float version
- ## * `lcm func <#lcm,T,T>`_
- runnableExamples:
- doAssert gcd(12, 8) == 4
- doAssert gcd(17, 63) == 1
- when x is SomeSignedInt:
- var x = abs(x)
- else:
- var x = x
- when y is SomeSignedInt:
- var y = abs(y)
- else:
- var y = y
- if x == 0:
- return y
- if y == 0:
- return x
- let shift = countTrailingZeroBits(x or y)
- y = y shr countTrailingZeroBits(y)
- while x != 0:
- x = x shr countTrailingZeroBits(x)
- if y > x:
- swap y, x
- x -= y
- y shl shift
- func gcd*[T](x: openArray[T]): T {.since: (1, 1).} =
- ## Computes the greatest common (positive) divisor of the elements of `x`.
- ##
- ## **See also:**
- ## * `gcd func <#gcd,T,T>`_ for a version with two arguments
- runnableExamples:
- doAssert gcd(@[13.5, 9.0]) == 4.5
- result = x[0]
- for i in 1 ..< x.len:
- result = gcd(result, x[i])
- func lcm*[T](x, y: T): T =
- ## Computes the least common multiple of `x` and `y`.
- ##
- ## **See also:**
- ## * `gcd func <#gcd,T,T>`_
- runnableExamples:
- doAssert lcm(24, 30) == 120
- doAssert lcm(13, 39) == 39
- x div gcd(x, y) * y
- func clamp*[T](val: T, bounds: Slice[T]): T {.since: (1, 5), inline.} =
- ## Like `system.clamp`, but takes a slice, so you can easily clamp within a range.
- runnableExamples:
- assert clamp(10, 1 .. 5) == 5
- assert clamp(1, 1 .. 3) == 1
- type A = enum a0, a1, a2, a3, a4, a5
- assert a1.clamp(a2..a4) == a2
- assert clamp((3, 0), (1, 0) .. (2, 9)) == (2, 9)
- doAssertRaises(AssertionDefect): discard clamp(1, 3..2) # invalid bounds
- assert bounds.a <= bounds.b, $(bounds.a, bounds.b)
- clamp(val, bounds.a, bounds.b)
- func lcm*[T](x: openArray[T]): T {.since: (1, 1).} =
- ## Computes the least common multiple of the elements of `x`.
- ##
- ## **See also:**
- ## * `lcm func <#lcm,T,T>`_ for a version with two arguments
- runnableExamples:
- doAssert lcm(@[24, 30]) == 120
- result = x[0]
- for i in 1 ..< x.len:
- result = lcm(result, x[i])
|