123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2015 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- include "system/inclrtl"
- ## This module contains the interface to the compiler's abstract syntax
- ## tree (`AST`:idx:). Macros operate on this tree.
- ##
- ## See also:
- ## * `macros tutorial <https://nim-lang.github.io/Nim/tut3.html>`_
- ## * `macros section in Nim manual <https://nim-lang.github.io/Nim/manual.html#macros>`_
- ## .. include:: ../../doc/astspec.txt
- # If you look for the implementation of the magic symbol
- # ``{.magic: "Foo".}``, search for `mFoo` and `opcFoo`.
- type
- NimNodeKind* = enum
- nnkNone, nnkEmpty, nnkIdent, nnkSym,
- nnkType, nnkCharLit, nnkIntLit, nnkInt8Lit,
- nnkInt16Lit, nnkInt32Lit, nnkInt64Lit, nnkUIntLit, nnkUInt8Lit,
- nnkUInt16Lit, nnkUInt32Lit, nnkUInt64Lit, nnkFloatLit,
- nnkFloat32Lit, nnkFloat64Lit, nnkFloat128Lit, nnkStrLit, nnkRStrLit,
- nnkTripleStrLit, nnkNilLit, nnkComesFrom, nnkDotCall,
- nnkCommand, nnkCall, nnkCallStrLit, nnkInfix,
- nnkPrefix, nnkPostfix, nnkHiddenCallConv,
- nnkExprEqExpr,
- nnkExprColonExpr, nnkIdentDefs, nnkVarTuple,
- nnkPar, nnkObjConstr, nnkCurly, nnkCurlyExpr,
- nnkBracket, nnkBracketExpr, nnkPragmaExpr, nnkRange,
- nnkDotExpr, nnkCheckedFieldExpr, nnkDerefExpr, nnkIfExpr,
- nnkElifExpr, nnkElseExpr, nnkLambda, nnkDo, nnkAccQuoted,
- nnkTableConstr, nnkBind,
- nnkClosedSymChoice,
- nnkOpenSymChoice,
- nnkHiddenStdConv,
- nnkHiddenSubConv, nnkConv, nnkCast, nnkStaticExpr,
- nnkAddr, nnkHiddenAddr, nnkHiddenDeref, nnkObjDownConv,
- nnkObjUpConv, nnkChckRangeF, nnkChckRange64, nnkChckRange,
- nnkStringToCString, nnkCStringToString, nnkAsgn,
- nnkFastAsgn, nnkGenericParams, nnkFormalParams, nnkOfInherit,
- nnkImportAs, nnkProcDef, nnkMethodDef, nnkConverterDef,
- nnkMacroDef, nnkTemplateDef, nnkIteratorDef, nnkOfBranch,
- nnkElifBranch, nnkExceptBranch, nnkElse,
- nnkAsmStmt, nnkPragma, nnkPragmaBlock, nnkIfStmt, nnkWhenStmt,
- nnkForStmt, nnkParForStmt, nnkWhileStmt, nnkCaseStmt,
- nnkTypeSection, nnkVarSection, nnkLetSection, nnkConstSection,
- nnkConstDef, nnkTypeDef,
- nnkYieldStmt, nnkDefer, nnkTryStmt, nnkFinally, nnkRaiseStmt,
- nnkReturnStmt, nnkBreakStmt, nnkContinueStmt, nnkBlockStmt, nnkStaticStmt,
- nnkDiscardStmt, nnkStmtList,
- nnkImportStmt,
- nnkImportExceptStmt,
- nnkExportStmt,
- nnkExportExceptStmt,
- nnkFromStmt,
- nnkIncludeStmt,
- nnkBindStmt, nnkMixinStmt, nnkUsingStmt,
- nnkCommentStmt, nnkStmtListExpr, nnkBlockExpr,
- nnkStmtListType, nnkBlockType,
- nnkWith, nnkWithout,
- nnkTypeOfExpr, nnkObjectTy,
- nnkTupleTy, nnkTupleClassTy, nnkTypeClassTy, nnkStaticTy,
- nnkRecList, nnkRecCase, nnkRecWhen,
- nnkRefTy, nnkPtrTy, nnkVarTy,
- nnkConstTy, nnkMutableTy,
- nnkDistinctTy,
- nnkProcTy,
- nnkIteratorTy, # iterator type
- nnkSharedTy, # 'shared T'
- nnkEnumTy,
- nnkEnumFieldDef,
- nnkArglist, nnkPattern
- nnkHiddenTryStmt,
- nnkClosure,
- nnkGotoState,
- nnkState,
- nnkBreakState,
- nnkFuncDef,
- nnkTupleConstr
- NimNodeKinds* = set[NimNodeKind]
- NimTypeKind* = enum # some types are no longer used, see ast.nim
- ntyNone, ntyBool, ntyChar, ntyEmpty,
- ntyAlias, ntyNil, ntyExpr, ntyStmt,
- ntyTypeDesc, ntyGenericInvocation, ntyGenericBody, ntyGenericInst,
- ntyGenericParam, ntyDistinct, ntyEnum, ntyOrdinal,
- ntyArray, ntyObject, ntyTuple, ntySet,
- ntyRange, ntyPtr, ntyRef, ntyVar,
- ntySequence, ntyProc, ntyPointer, ntyOpenArray,
- ntyString, ntyCString, ntyForward, ntyInt,
- ntyInt8, ntyInt16, ntyInt32, ntyInt64,
- ntyFloat, ntyFloat32, ntyFloat64, ntyFloat128,
- ntyUInt, ntyUInt8, ntyUInt16, ntyUInt32, ntyUInt64,
- ntyUnused0, ntyUnused1, ntyUnused2,
- ntyVarargs,
- ntyUncheckedArray,
- ntyError,
- ntyBuiltinTypeClass, ntyUserTypeClass, ntyUserTypeClassInst,
- ntyCompositeTypeClass, ntyInferred, ntyAnd, ntyOr, ntyNot,
- ntyAnything, ntyStatic, ntyFromExpr, ntyOpt, ntyVoid
- TNimTypeKinds* {.deprecated.} = set[NimTypeKind]
- NimSymKind* = enum
- nskUnknown, nskConditional, nskDynLib, nskParam,
- nskGenericParam, nskTemp, nskModule, nskType, nskVar, nskLet,
- nskConst, nskResult,
- nskProc, nskFunc, nskMethod, nskIterator,
- nskConverter, nskMacro, nskTemplate, nskField,
- nskEnumField, nskForVar, nskLabel,
- nskStub
- TNimSymKinds* {.deprecated.} = set[NimSymKind]
- type
- NimIdent* {.deprecated.} = object of RootObj
- ## represents a Nim identifier in the AST. **Note**: This is only
- ## rarely useful, for identifier construction from a string
- ## use ``ident"abc"``.
- NimSymObj = object # hidden
- NimSym* {.deprecated.} = ref NimSymObj
- ## represents a Nim *symbol* in the compiler; a *symbol* is a looked-up
- ## *ident*.
- const
- nnkLiterals* = {nnkCharLit..nnkNilLit}
- nnkCallKinds* = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand,
- nnkCallStrLit}
- nnkPragmaCallKinds = {nnkExprColonExpr, nnkCall, nnkCallStrLit}
- {.push warnings: off.}
- proc `!`*(s: string): NimIdent {.magic: "StrToIdent", noSideEffect, deprecated:
- "Deprecated since version 0.18.0: Use 'ident' or 'newIdentNode' instead.".}
- ## constructs an identifier from the string `s`
- proc toNimIdent*(s: string): NimIdent {.magic: "StrToIdent", noSideEffect, deprecated:
- "Deprecated since version 0.18.0: Use 'ident' or 'newIdentNode' instead.".}
- ## constructs an identifier from the string `s`
- proc `==`*(a, b: NimIdent): bool {.magic: "EqIdent", noSideEffect, deprecated:
- "Deprecated since version 0.18.1; Use '==' on 'NimNode' instead.".}
- ## compares two Nim identifiers
- proc `==`*(a, b: NimNode): bool {.magic: "EqNimrodNode", noSideEffect.}
- ## compares two Nim nodes
- proc `==`*(a, b: NimSym): bool {.magic: "EqNimrodNode", noSideEffect, deprecated:
- "Deprecated since version 0.18.1; Use '==(NimNode, NimNode)' instead.".}
- ## compares two Nim symbols
- {.pop.}
- proc sameType*(a, b: NimNode): bool {.magic: "SameNodeType", noSideEffect.} =
- ## compares two Nim nodes' types. Return true if the types are the same,
- ## eg. true when comparing alias with original type.
- discard
- proc len*(n: NimNode): int {.magic: "NLen", noSideEffect.}
- ## returns the number of children of `n`.
- proc `[]`*(n: NimNode, i: int): NimNode {.magic: "NChild", noSideEffect.}
- ## get `n`'s `i`'th child.
- proc `[]`*(n: NimNode, i: BackwardsIndex): NimNode = n[n.len - i.int]
- ## get `n`'s `i`'th child.
- template `^^`(n: NimNode, i: untyped): untyped =
- (when i is BackwardsIndex: n.len - int(i) else: int(i))
- proc `[]`*[T, U](n: NimNode, x: HSlice[T, U]): seq[NimNode] =
- ## slice operation for NimNode.
- ## returns a seq of child of `n` who inclusive range [n[x.a], n[x.b]].
- let xa = n ^^ x.a
- let L = (n ^^ x.b) - xa + 1
- result = newSeq[NimNode](L)
- for i in 0..<L:
- result[i] = n[i + xa]
- proc `[]=`*(n: NimNode, i: int, child: NimNode) {.magic: "NSetChild",
- noSideEffect.}
- ## set `n`'s `i`'th child to `child`.
- proc `[]=`*(n: NimNode, i: BackwardsIndex, child: NimNode) =
- ## set `n`'s `i`'th child to `child`.
- n[n.len - i.int] = child
- template `or`*(x, y: NimNode): NimNode =
- ## Evaluate ``x`` and when it is not an empty node, return
- ## it. Otherwise evaluate to ``y``. Can be used to chain several
- ## expressions to get the first expression that is not empty.
- ##
- ## .. code-block:: nim
- ##
- ## let node = mightBeEmpty() or mightAlsoBeEmpty() or fallbackNode
- let arg = x
- if arg != nil and arg.kind != nnkEmpty:
- arg
- else:
- y
- proc add*(father, child: NimNode): NimNode {.magic: "NAdd", discardable,
- noSideEffect, locks: 0.}
- ## Adds the `child` to the `father` node. Returns the
- ## father node so that calls can be nested.
- proc add*(father: NimNode, children: varargs[NimNode]): NimNode {.
- magic: "NAddMultiple", discardable, noSideEffect, locks: 0.}
- ## Adds each child of `children` to the `father` node.
- ## Returns the `father` node so that calls can be nested.
- proc del*(father: NimNode, idx = 0, n = 1) {.magic: "NDel", noSideEffect.}
- ## deletes `n` children of `father` starting at index `idx`.
- proc kind*(n: NimNode): NimNodeKind {.magic: "NKind", noSideEffect.}
- ## returns the `kind` of the node `n`.
- proc intVal*(n: NimNode): BiggestInt {.magic: "NIntVal", noSideEffect.}
- ## Returns an integer value from any integer literal or enum field symbol.
- proc floatVal*(n: NimNode): BiggestFloat {.magic: "NFloatVal", noSideEffect.}
- ## Returns a float from any floating point literal.
- {.push warnings: off.}
- proc ident*(n: NimNode): NimIdent {.magic: "NIdent", noSideEffect, deprecated:
- "Deprecated since version 0.18.1; All functionality is defined on 'NimNode'.".}
- proc symbol*(n: NimNode): NimSym {.magic: "NSymbol", noSideEffect, deprecated:
- "Deprecated since version 0.18.1; All functionality is defined on 'NimNode'.".}
- proc getImpl*(s: NimSym): NimNode {.magic: "GetImpl", noSideEffect, deprecated: "use `getImpl: NimNode -> NimNode` instead".}
- when defined(nimSymKind):
- proc symKind*(symbol: NimNode): NimSymKind {.magic: "NSymKind", noSideEffect.}
- proc getImpl*(symbol: NimNode): NimNode {.magic: "GetImpl", noSideEffect.}
- proc strVal*(n: NimNode): string {.magic: "NStrVal", noSideEffect.}
- ## retrieve the implementation of `symbol`. `symbol` can be a
- ## routine or a const.
- proc `$`*(i: NimIdent): string {.magic: "NStrVal", noSideEffect, deprecated:
- "Deprecated since version 0.18.1; Use 'strVal' instead.".}
- ## converts a Nim identifier to a string
- proc `$`*(s: NimSym): string {.magic: "NStrVal", noSideEffect, deprecated:
- "Deprecated since version 0.18.1; Use 'strVal' instead.".}
- ## converts a Nim symbol to a string
- else: # bootstrapping substitute
- proc getImpl*(symbol: NimNode): NimNode =
- symbol.symbol.getImpl
- proc strValOld(n: NimNode): string {.magic: "NStrVal", noSideEffect.}
- proc `$`*(s: NimSym): string {.magic: "IdentToStr", noSideEffect.}
- proc `$`*(i: NimIdent): string {.magic: "IdentToStr", noSideEffect.}
- proc strVal*(n: NimNode): string =
- if n.kind == nnkIdent:
- $n.ident
- elif n.kind == nnkSym:
- $n.symbol
- else:
- n.strValOld
- {.pop.}
- when defined(nimSymImplTransform):
- proc getImplTransformed*(symbol: NimNode): NimNode {.magic: "GetImplTransf", noSideEffect.}
- ## for a typed proc returns the AST after transformation pass
- when defined(nimHasSymOwnerInMacro):
- proc owner*(sym: NimNode): NimNode {.magic: "SymOwner", noSideEffect.}
- ## accepts node of kind nnkSym and returns its owner's symbol.
- ## result is also mnde of kind nnkSym if owner exists otherwise
- ## nnkNilLit is returned
- when defined(nimHasInstantiationOfInMacro):
- proc isInstantiationOf*(instanceProcSym, genProcSym: NimNode): bool {.magic: "SymIsInstantiationOf", noSideEffect.}
- ## check if proc symbol is instance of the generic proc symbol
- ## useful to check proc symbols against generic symbols
- ## returned by `bindSym`
- proc getType*(n: NimNode): NimNode {.magic: "NGetType", noSideEffect.}
- ## with 'getType' you can access the node's `type`:idx:. A Nim type is
- ## mapped to a Nim AST too, so it's slightly confusing but it means the same
- ## API can be used to traverse types. Recursive types are flattened for you
- ## so there is no danger of infinite recursions during traversal. To
- ## resolve recursive types, you have to call 'getType' again. To see what
- ## kind of type it is, call `typeKind` on getType's result.
- proc getType*(n: typedesc): NimNode {.magic: "NGetType", noSideEffect.}
- ## Returns the Nim type node for given type. This can be used to turn macro
- ## typedesc parameter into proper NimNode representing type, since typedesc
- ## are an exception in macro calls - they are not mapped implicitly to
- ## NimNode like any other arguments.
- proc typeKind*(n: NimNode): NimTypeKind {.magic: "NGetType", noSideEffect.}
- ## Returns the type kind of the node 'n' that should represent a type, that
- ## means the node should have been obtained via ``getType``.
- proc getTypeInst*(n: NimNode): NimNode {.magic: "NGetType", noSideEffect.} =
- ## Returns the `type`:idx: of a node in a form matching the way the
- ## type instance was declared in the code.
- runnableExamples:
- type
- Vec[N: static[int], T] = object
- arr: array[N, T]
- Vec4[T] = Vec[4, T]
- Vec4f = Vec4[float32]
- var a: Vec4f
- var b: Vec4[float32]
- var c: Vec[4, float32]
- macro dumpTypeInst(x: typed): untyped =
- newLit(x.getTypeInst.repr)
- doAssert(dumpTypeInst(a) == "Vec4f")
- doAssert(dumpTypeInst(b) == "Vec4[float32]")
- doAssert(dumpTypeInst(c) == "Vec[4, float32]")
- proc getTypeInst*(n: typedesc): NimNode {.magic: "NGetType", noSideEffect.}
- ## Version of ``getTypeInst`` which takes a ``typedesc``.
- proc getTypeImpl*(n: NimNode): NimNode {.magic: "NGetType", noSideEffect.} =
- ## Returns the `type`:idx: of a node in a form matching the implementation
- ## of the type. Any intermediate aliases are expanded to arrive at the final
- ## type implementation. You can instead use ``getImpl`` on a symbol if you
- ## want to find the intermediate aliases.
- runnableExamples:
- type
- Vec[N: static[int], T] = object
- arr: array[N, T]
- Vec4[T] = Vec[4, T]
- Vec4f = Vec4[float32]
- var a: Vec4f
- var b: Vec4[float32]
- var c: Vec[4, float32]
- macro dumpTypeImpl(x: typed): untyped =
- newLit(x.getTypeImpl.repr)
- let t = """
- object
- arr: array[0 .. 3, float32]
- """
- doAssert(dumpTypeImpl(a) == t)
- doAssert(dumpTypeImpl(b) == t)
- doAssert(dumpTypeImpl(c) == t)
- when defined(nimHasSignatureHashInMacro):
- proc signatureHash*(n: NimNode): string {.magic: "NSigHash", noSideEffect.}
- ## Returns a stable identifier derived from the signature of a symbol.
- ## The signature combines many factors such as the type of the symbol,
- ## the owning module of the symbol and others. The same identifier is
- ## used in the back-end to produce the mangled symbol name.
- proc symBodyHash*(s: NimNode): string {.noSideEffect.} =
- ## Returns a stable digest for symbols derived not only from type signature
- ## and owning module, but also implementation body. All procs/varibles used in
- ## the implementation of this symbol are hashed recursively as well, including
- ## magics from system module.
- discard
- proc getTypeImpl*(n: typedesc): NimNode {.magic: "NGetType", noSideEffect.}
- ## Version of ``getTypeImpl`` which takes a ``typedesc``.
- proc `intVal=`*(n: NimNode, val: BiggestInt) {.magic: "NSetIntVal", noSideEffect.}
- proc `floatVal=`*(n: NimNode, val: BiggestFloat) {.magic: "NSetFloatVal", noSideEffect.}
- {.push warnings: off.}
- proc `symbol=`*(n: NimNode, val: NimSym) {.magic: "NSetSymbol", noSideEffect, deprecated:
- "Deprecated since version 0.18.1; Generate a new 'NimNode' with 'genSym' instead.".}
- proc `ident=`*(n: NimNode, val: NimIdent) {.magic: "NSetIdent", noSideEffect, deprecated:
- "Deprecated since version 0.18.1; Generate a new 'NimNode' with 'ident(string)' instead.".}
- {.pop.}
- #proc `typ=`*(n: NimNode, typ: typedesc) {.magic: "NSetType".}
- # this is not sound! Unfortunately forbidding 'typ=' is not enough, as you
- # can easily do:
- # let bracket = semCheck([1, 2])
- # let fake = semCheck(2.0)
- # bracket[0] = fake # constructs a mixed array with ints and floats!
- proc `strVal=`*(n: NimNode, val: string) {.magic: "NSetStrVal", noSideEffect.}
- proc newNimNode*(kind: NimNodeKind,
- lineInfoFrom: NimNode = nil): NimNode
- {.magic: "NNewNimNode", noSideEffect.}
- ## Creates a new AST node of the specified kind.
- ##
- ## The ``lineInfoFrom`` parameter is used for line information when the
- ## produced code crashes. You should ensure that it is set to a node that
- ## you are transforming.
- proc copyNimNode*(n: NimNode): NimNode {.magic: "NCopyNimNode", noSideEffect.}
- proc copyNimTree*(n: NimNode): NimNode {.magic: "NCopyNimTree", noSideEffect.}
- proc error*(msg: string, n: NimNode = nil) {.magic: "NError", benign.}
- ## writes an error message at compile time. The optional ``n: NimNode``
- ## parameter is used as the source for file and line number information in
- ## the compilation error message.
- proc warning*(msg: string, n: NimNode = nil) {.magic: "NWarning", benign.}
- ## writes a warning message at compile time
- proc hint*(msg: string, n: NimNode = nil) {.magic: "NHint", benign.}
- ## writes a hint message at compile time
- proc newStrLitNode*(s: string): NimNode {.compileTime, noSideEffect.} =
- ## creates a string literal node from `s`
- result = newNimNode(nnkStrLit)
- result.strVal = s
- proc newCommentStmtNode*(s: string): NimNode {.compileTime, noSideEffect.} =
- ## creates a comment statement node
- result = newNimNode(nnkCommentStmt)
- result.strVal = s
- proc newIntLitNode*(i: BiggestInt): NimNode {.compileTime.} =
- ## creates a int literal node from `i`
- result = newNimNode(nnkIntLit)
- result.intVal = i
- proc newFloatLitNode*(f: BiggestFloat): NimNode {.compileTime.} =
- ## creates a float literal node from `f`
- result = newNimNode(nnkFloatLit)
- result.floatVal = f
- {.push warnings: off.}
- proc newIdentNode*(i: NimIdent): NimNode {.compileTime, deprecated.} =
- ## creates an identifier node from `i`
- result = newNimNode(nnkIdent)
- result.ident = i
- {.pop.}
- proc newIdentNode*(i: string): NimNode {.magic: "StrToIdent", noSideEffect.}
- ## creates an identifier node from `i`. It is simply an alias for
- ## ``ident(string)``. Use that, it's shorter.
- type
- BindSymRule* = enum ## specifies how ``bindSym`` behaves
- brClosed, ## only the symbols in current scope are bound
- brOpen, ## open wrt overloaded symbols, but may be a single
- ## symbol if not ambiguous (the rules match that of
- ## binding in generics)
- brForceOpen ## same as brOpen, but it will always be open even
- ## if not ambiguous (this cannot be achieved with
- ## any other means in the language currently)
- proc bindSym*(ident: string | NimNode, rule: BindSymRule = brClosed): NimNode {.
- magic: "NBindSym", noSideEffect.}
- ## creates a node that binds `ident` to a symbol node. The bound symbol
- ## may be an overloaded symbol.
- ## if `ident` is a NimNode, it must have nkIdent kind.
- ## If ``rule == brClosed`` either an ``nkClosedSymChoice`` tree is
- ## returned or ``nkSym`` if the symbol is not ambiguous.
- ## If ``rule == brOpen`` either an ``nkOpenSymChoice`` tree is
- ## returned or ``nkSym`` if the symbol is not ambiguous.
- ## If ``rule == brForceOpen`` always an ``nkOpenSymChoice`` tree is
- ## returned even if the symbol is not ambiguous.
- ##
- ## experimental feature:
- ## use {.experimental: "dynamicBindSym".} to activate it
- ## if called from template / regular code, `ident` and `rule` must be
- ## constant expression / literal value.
- ## if called from macros / compile time procs / static blocks,
- ## `ident` and `rule` can be VM computed value.
- proc genSym*(kind: NimSymKind = nskLet; ident = ""): NimNode {.
- magic: "NGenSym", noSideEffect.}
- ## generates a fresh symbol that is guaranteed to be unique. The symbol
- ## needs to occur in a declaration context.
- proc callsite*(): NimNode {.magic: "NCallSite", benign, deprecated:
- "Deprecated since v0.18.1; use varargs[untyped] in the macro prototype instead".}
- ## returns the AST of the invocation expression that invoked this macro.
- proc toStrLit*(n: NimNode): NimNode {.compileTime.} =
- ## converts the AST `n` to the concrete Nim code and wraps that
- ## in a string literal node
- return newStrLitNode(repr(n))
- type
- LineInfo* = object
- filename*: string
- line*,column*: int
- proc `$`*(arg: Lineinfo): string =
- # BUG: without `result = `, gives compile error
- result = arg.filename & "(" & $arg.line & ", " & $arg.column & ")"
- #proc lineinfo*(n: NimNode): LineInfo {.magic: "NLineInfo", noSideEffect.}
- ## returns the position the node appears in the original source file
- ## in the form filename(line, col)
- proc getLine(arg: NimNode): int {.magic: "NLineInfo", noSideEffect.}
- proc getColumn(arg: NimNode): int {.magic: "NLineInfo", noSideEffect.}
- proc getFile(arg: NimNode): string {.magic: "NLineInfo", noSideEffect.}
- proc copyLineInfo*(arg: NimNode, info: NimNode) {.magic: "NLineInfo", noSideEffect.}
- ## copy lineinfo from info node
- proc lineInfoObj*(n: NimNode): LineInfo {.compileTime.} =
- ## returns ``LineInfo`` of ``n``, using absolute path for ``filename``
- result.filename = n.getFile
- result.line = n.getLine
- result.column = n.getColumn
- proc lineInfo*(arg: NimNode): string {.compileTime.} =
- $arg.lineInfoObj
- proc internalParseExpr(s: string): NimNode {.
- magic: "ParseExprToAst", noSideEffect.}
- proc internalParseStmt(s: string): NimNode {.
- magic: "ParseStmtToAst", noSideEffect.}
- proc internalErrorFlag*(): string {.magic: "NError", noSideEffect.}
- ## Some builtins set an error flag. This is then turned into a proper
- ## exception. **Note**: Ordinary application code should not call this.
- proc parseExpr*(s: string): NimNode {.noSideEffect, compileTime.} =
- ## Compiles the passed string to its AST representation.
- ## Expects a single expression. Raises ``ValueError`` for parsing errors.
- result = internalParseExpr(s)
- let x = internalErrorFlag()
- if x.len > 0: raise newException(ValueError, x)
- proc parseStmt*(s: string): NimNode {.noSideEffect, compileTime.} =
- ## Compiles the passed string to its AST representation.
- ## Expects one or more statements. Raises ``ValueError`` for parsing errors.
- result = internalParseStmt(s)
- let x = internalErrorFlag()
- if x.len > 0: raise newException(ValueError, x)
- proc getAst*(macroOrTemplate: untyped): NimNode {.magic: "ExpandToAst", noSideEffect.}
- ## Obtains the AST nodes returned from a macro or template invocation.
- ## Example:
- ##
- ## .. code-block:: nim
- ##
- ## macro FooMacro() =
- ## var ast = getAst(BarTemplate())
- proc quote*(bl: typed, op = "``"): NimNode {.magic: "QuoteAst", noSideEffect.}
- ## Quasi-quoting operator.
- ## Accepts an expression or a block and returns the AST that represents it.
- ## Within the quoted AST, you are able to interpolate NimNode expressions
- ## from the surrounding scope. If no operator is given, quoting is done using
- ## backticks. Otherwise, the given operator must be used as a prefix operator
- ## for any interpolated expression.
- ##
- ## Example:
- ##
- ## .. code-block:: nim
- ##
- ## macro check(ex: untyped) =
- ## # this is a simplified version of the check macro from the
- ## # unittest module.
- ##
- ## # If there is a failed check, we want to make it easy for
- ## # the user to jump to the faulty line in the code, so we
- ## # get the line info here:
- ## var info = ex.lineinfo
- ##
- ## # We will also display the code string of the failed check:
- ## var expString = ex.toStrLit
- ##
- ## # Finally we compose the code to implement the check:
- ## result = quote do:
- ## if not `ex`:
- ## echo `info` & ": Check failed: " & `expString`
- proc expectKind*(n: NimNode, k: NimNodeKind) {.compileTime.} =
- ## checks that `n` is of kind `k`. If this is not the case,
- ## compilation aborts with an error message. This is useful for writing
- ## macros that check the AST that is passed to them.
- if n.kind != k: error("Expected a node of kind " & $k & ", got " & $n.kind, n)
- proc expectMinLen*(n: NimNode, min: int) {.compileTime.} =
- ## checks that `n` has at least `min` children. If this is not the case,
- ## compilation aborts with an error message. This is useful for writing
- ## macros that check its number of arguments.
- if n.len < min: error("macro expects a node with " & $min & " children", n)
- proc expectLen*(n: NimNode, len: int) {.compileTime.} =
- ## checks that `n` has exactly `len` children. If this is not the case,
- ## compilation aborts with an error message. This is useful for writing
- ## macros that check its number of arguments.
- if n.len != len: error("macro expects a node with " & $len & " children", n)
- proc expectLen*(n: NimNode, min, max: int) {.compileTime.} =
- ## checks that `n` has a number of children in the range ``min..max``.
- ## If this is not the case, compilation aborts with an error message.
- ## This is useful for writing macros that check its number of arguments.
- if n.len < min or n.len > max:
- error("macro expects a node with " & $min & ".." & $max " children", n)
- proc newTree*(kind: NimNodeKind,
- children: varargs[NimNode]): NimNode {.compileTime.} =
- ## produces a new node with children.
- result = newNimNode(kind)
- result.add(children)
- proc newCall*(theProc: NimNode,
- args: varargs[NimNode]): NimNode {.compileTime.} =
- ## produces a new call node. `theProc` is the proc that is called with
- ## the arguments ``args[0..]``.
- result = newNimNode(nnkCall)
- result.add(theProc)
- result.add(args)
- {.push warnings: off.}
- proc newCall*(theProc: NimIdent, args: varargs[NimNode]): NimNode {.compileTime, deprecated:
- "Deprecated since v0.18.1; use 'newCall(string, ...)' or 'newCall(NimNode, ...)' instead".} =
- ## produces a new call node. `theProc` is the proc that is called with
- ## the arguments ``args[0..]``.
- result = newNimNode(nnkCall)
- result.add(newIdentNode(theProc))
- result.add(args)
- {.pop.}
- proc newCall*(theProc: string,
- args: varargs[NimNode]): NimNode {.compileTime.} =
- ## produces a new call node. `theProc` is the proc that is called with
- ## the arguments ``args[0..]``.
- result = newNimNode(nnkCall)
- result.add(newIdentNode(theProc))
- result.add(args)
- proc newLit*(c: char): NimNode {.compileTime.} =
- ## produces a new character literal node.
- result = newNimNode(nnkCharLit)
- result.intVal = ord(c)
- proc newLit*(i: int): NimNode {.compileTime.} =
- ## produces a new integer literal node.
- result = newNimNode(nnkIntLit)
- result.intVal = i
- proc newLit*(i: int8): NimNode {.compileTime.} =
- ## produces a new integer literal node.
- result = newNimNode(nnkInt8Lit)
- result.intVal = i
- proc newLit*(i: int16): NimNode {.compileTime.} =
- ## produces a new integer literal node.
- result = newNimNode(nnkInt16Lit)
- result.intVal = i
- proc newLit*(i: int32): NimNode {.compileTime.} =
- ## produces a new integer literal node.
- result = newNimNode(nnkInt32Lit)
- result.intVal = i
- proc newLit*(i: int64): NimNode {.compileTime.} =
- ## produces a new integer literal node.
- result = newNimNode(nnkInt64Lit)
- result.intVal = i
- proc newLit*(i: uint): NimNode {.compileTime.} =
- ## produces a new unsigned integer literal node.
- result = newNimNode(nnkUIntLit)
- result.intVal = BiggestInt(i)
- proc newLit*(i: uint8): NimNode {.compileTime.} =
- ## produces a new unsigned integer literal node.
- result = newNimNode(nnkUInt8Lit)
- result.intVal = BiggestInt(i)
- proc newLit*(i: uint16): NimNode {.compileTime.} =
- ## produces a new unsigned integer literal node.
- result = newNimNode(nnkUInt16Lit)
- result.intVal = BiggestInt(i)
- proc newLit*(i: uint32): NimNode {.compileTime.} =
- ## produces a new unsigned integer literal node.
- result = newNimNode(nnkUInt32Lit)
- result.intVal = BiggestInt(i)
- proc newLit*(i: uint64): NimNode {.compileTime.} =
- ## produces a new unsigned integer literal node.
- result = newNimNode(nnkUInt64Lit)
- result.intVal = BiggestInt(i)
- proc newLit*(b: bool): NimNode {.compileTime.} =
- ## produces a new boolean literal node.
- result = if b: bindSym"true" else: bindSym"false"
- when false:
- # the float type is not really a distinct type as described in https://github.com/nim-lang/Nim/issues/5875
- proc newLit*(f: float): NimNode {.compileTime.} =
- ## produces a new float literal node.
- result = newNimNode(nnkFloatLit)
- result.floatVal = f
- proc newLit*(f: float32): NimNode {.compileTime.} =
- ## produces a new float literal node.
- result = newNimNode(nnkFloat32Lit)
- result.floatVal = f
- proc newLit*(f: float64): NimNode {.compileTime.} =
- ## produces a new float literal node.
- result = newNimNode(nnkFloat64Lit)
- result.floatVal = f
- when declared(float128):
- proc newLit*(f: float128): NimNode {.compileTime.} =
- ## produces a new float literal node.
- result = newNimNode(nnkFloat128Lit)
- result.floatVal = f
- proc newLit*(arg: enum): NimNode {.compileTime.} =
- result = newCall(
- arg.type.getTypeInst[1],
- newLit(int(arg))
- )
- proc newLit*[N,T](arg: array[N,T]): NimNode {.compileTime.}
- proc newLit*[T](arg: seq[T]): NimNode {.compileTime.}
- proc newLit*[T](s: set[T]): NimNode {.compileTime.}
- proc newLit*(arg: tuple): NimNode {.compileTime.}
- proc newLit*(arg: object): NimNode {.compileTime.} =
- result = nnkObjConstr.newTree(arg.type.getTypeInst[1])
- for a, b in arg.fieldPairs:
- result.add nnkExprColonExpr.newTree( newIdentNode(a), newLit(b) )
- proc newLit*[N,T](arg: array[N,T]): NimNode {.compileTime.} =
- result = nnkBracket.newTree
- for x in arg:
- result.add newLit(x)
- proc newLit*[T](arg: seq[T]): NimNode {.compileTime.} =
- let bracket = nnkBracket.newTree
- for x in arg:
- bracket.add newLit(x)
- result = nnkPrefix.newTree(
- bindSym"@",
- bracket
- )
- if arg.len == 0:
- # add type cast for empty seq
- var typ = getTypeInst(typeof(arg))[1]
- result = newCall(typ,result)
- proc newLit*[T](s: set[T]): NimNode {.compileTime.} =
- result = nnkCurly.newTree
- for x in s:
- result.add newLit(x)
- proc newLit*(arg: tuple): NimNode {.compileTime.} =
- result = nnkPar.newTree
- for a,b in arg.fieldPairs:
- result.add nnkExprColonExpr.newTree(newIdentNode(a), newLit(b))
- proc newLit*(s: string): NimNode {.compileTime.} =
- ## produces a new string literal node.
- result = newNimNode(nnkStrLit)
- result.strVal = s
- proc nestList*(op: NimNode; pack: NimNode): NimNode {.compileTime.} =
- ## nests the list `pack` into a tree of call expressions:
- ## ``[a, b, c]`` is transformed into ``op(a, op(c, d))``.
- ## This is also known as fold expression.
- if pack.len < 1:
- error("`nestList` expects a node with at least 1 child")
- result = pack[^1]
- for i in countdown(pack.len - 2, 0):
- result = newCall(op, pack[i], result)
- proc nestList*(op: NimNode; pack: NimNode; init: NimNode): NimNode {.compileTime.} =
- ## nests the list `pack` into a tree of call expressions:
- ## ``[a, b, c]`` is transformed into ``op(a, op(c, d))``.
- ## This is also known as fold expression.
- result = init
- for i in countdown(pack.len - 1, 0):
- result = newCall(op, pack[i], result)
- {.push warnings: off.}
- proc nestList*(theProc: NimIdent, x: NimNode): NimNode {.compileTime, deprecated:
- "Deprecated since v0.18.1; use one of 'nestList(NimNode, ...)' instead.".} =
- nestList(newIdentNode(theProc), x)
- {.pop.}
- proc treeTraverse(n: NimNode; res: var string; level = 0; isLisp = false, indented = false) {.benign.} =
- if level > 0:
- if indented:
- res.add("\n")
- for i in 0 .. level-1:
- if isLisp:
- res.add(" ") # dumpLisp indentation
- else:
- res.add(" ") # dumpTree indentation
- else:
- res.add(" ")
- if isLisp:
- res.add("(")
- res.add(($n.kind).substr(3))
- case n.kind
- of nnkEmpty, nnkNilLit:
- discard # same as nil node in this representation
- of nnkCharLit .. nnkInt64Lit:
- res.add(" " & $n.intVal)
- of nnkFloatLit .. nnkFloat64Lit:
- res.add(" " & $n.floatVal)
- of nnkStrLit .. nnkTripleStrLit, nnkCommentStmt, nnkIdent, nnkSym:
- res.add(" " & $n.strVal.newLit.repr)
- of nnkNone:
- assert false
- else:
- for j in 0 .. n.len-1:
- n[j].treeTraverse(res, level+1, isLisp, indented)
- if isLisp:
- res.add(")")
- proc treeRepr*(n: NimNode): string {.compileTime, benign.} =
- ## Convert the AST `n` to a human-readable tree-like string.
- ##
- ## See also `repr`, `lispRepr`, and `astGenRepr`.
- n.treeTraverse(result, isLisp = false, indented = true)
- proc lispRepr*(n: NimNode; indented = false): string {.compileTime, benign.} =
- ## Convert the AST ``n`` to a human-readable lisp-like string.
- ##
- ## See also ``repr``, ``treeRepr``, and ``astGenRepr``.
- n.treeTraverse(result, isLisp = true, indented = indented)
- proc astGenRepr*(n: NimNode): string {.compileTime, benign.} =
- ## Convert the AST ``n`` to the code required to generate that AST.
- ##
- ## See also ``repr``, ``treeRepr``, and ``lispRepr``.
- const
- NodeKinds = {nnkEmpty, nnkIdent, nnkSym, nnkNone, nnkCommentStmt}
- LitKinds = {nnkCharLit..nnkInt64Lit, nnkFloatLit..nnkFloat64Lit, nnkStrLit..nnkTripleStrLit}
- proc traverse(res: var string, level: int, n: NimNode) {.benign.} =
- for i in 0..level-1: res.add " "
- if n.kind in NodeKinds:
- res.add("new" & ($n.kind).substr(3) & "Node(")
- elif n.kind in LitKinds:
- res.add("newLit(")
- elif n.kind == nnkNilLit:
- res.add("newNilLit()")
- else:
- res.add($n.kind)
- case n.kind
- of nnkEmpty, nnkNilLit: discard
- of nnkCharLit: res.add("'" & $chr(n.intVal) & "'")
- of nnkIntLit..nnkInt64Lit: res.add($n.intVal)
- of nnkFloatLit..nnkFloat64Lit: res.add($n.floatVal)
- of nnkStrLit..nnkTripleStrLit, nnkCommentStmt, nnkIdent, nnkSym:
- res.add(n.strVal.newLit.repr)
- of nnkNone: assert false
- else:
- res.add(".newTree(")
- for j in 0..<n.len:
- res.add "\n"
- traverse(res, level + 1, n[j])
- if j != n.len-1:
- res.add(",")
- res.add("\n")
- for i in 0..level-1: res.add " "
- res.add(")")
- if n.kind in NodeKinds+LitKinds:
- res.add(")")
- result = ""
- traverse(result, 0, n)
- macro dumpTree*(s: untyped): untyped = echo s.treeRepr
- ## Accepts a block of nim code and prints the parsed abstract syntax
- ## tree using the ``treeRepr`` proc. Printing is done *at compile time*.
- ##
- ## You can use this as a tool to explore the Nim's abstract syntax
- ## tree and to discover what kind of nodes must be created to represent
- ## a certain expression/statement.
- ##
- ## For example:
- ##
- ## .. code-block:: nim
- ## dumpTree:
- ## echo "Hello, World!"
- ##
- ## Outputs:
- ##
- ## .. code-block::
- ## StmtList
- ## Command
- ## Ident "echo"
- ## StrLit "Hello, World!"
- ##
- ## Also see ``dumpAstGen`` and ``dumpLisp``.
- macro dumpLisp*(s: untyped): untyped = echo s.lispRepr(indented = true)
- ## Accepts a block of nim code and prints the parsed abstract syntax
- ## tree using the ``lispRepr`` proc. Printing is done *at compile time*.
- ##
- ## You can use this as a tool to explore the Nim's abstract syntax
- ## tree and to discover what kind of nodes must be created to represent
- ## a certain expression/statement.
- ##
- ## For example:
- ##
- ## .. code-block:: nim
- ## dumpLisp:
- ## echo "Hello, World!"
- ##
- ## Outputs:
- ##
- ## .. code-block::
- ## (StmtList
- ## (Command
- ## (Ident "echo")
- ## (StrLit "Hello, World!")))
- ##
- ## Also see ``dumpAstGen`` and ``dumpTree``.
- macro dumpAstGen*(s: untyped): untyped = echo s.astGenRepr
- ## Accepts a block of nim code and prints the parsed abstract syntax
- ## tree using the ``astGenRepr`` proc. Printing is done *at compile time*.
- ##
- ## You can use this as a tool to write macros quicker by writing example
- ## outputs and then copying the snippets into the macro for modification.
- ##
- ## For example:
- ##
- ## .. code-block:: nim
- ## dumpAstGen:
- ## echo "Hello, World!"
- ##
- ## Outputs:
- ##
- ## .. code-block:: nim
- ## nnkStmtList.newTree(
- ## nnkCommand.newTree(
- ## newIdentNode("echo"),
- ## newLit("Hello, World!")
- ## )
- ## )
- ##
- ## Also see ``dumpTree`` and ``dumpLisp``.
- macro dumpTreeImm*(s: untyped): untyped {.deprecated.} = echo s.treeRepr
- ## Deprecated. Use `dumpTree` instead.
- macro dumpLispImm*(s: untyped): untyped {.deprecated.} = echo s.lispRepr
- ## Deprecated. Use `dumpLisp` instead.
- proc newEmptyNode*(): NimNode {.compileTime, noSideEffect.} =
- ## Create a new empty node
- result = newNimNode(nnkEmpty)
- proc newStmtList*(stmts: varargs[NimNode]): NimNode {.compileTime.}=
- ## Create a new statement list
- result = newNimNode(nnkStmtList).add(stmts)
- proc newPar*(exprs: varargs[NimNode]): NimNode {.compileTime.}=
- ## Create a new parentheses-enclosed expression
- newNimNode(nnkPar).add(exprs)
- proc newBlockStmt*(label, body: NimNode): NimNode {.compileTime.} =
- ## Create a new block statement with label
- return newNimNode(nnkBlockStmt).add(label, body)
- proc newBlockStmt*(body: NimNode): NimNode {.compiletime.} =
- ## Create a new block: stmt
- return newNimNode(nnkBlockStmt).add(newEmptyNode(), body)
- proc newVarStmt*(name, value: NimNode): NimNode {.compiletime.} =
- ## Create a new var stmt
- return newNimNode(nnkVarSection).add(
- newNimNode(nnkIdentDefs).add(name, newNimNode(nnkEmpty), value))
- proc newLetStmt*(name, value: NimNode): NimNode {.compiletime.} =
- ## Create a new let stmt
- return newNimNode(nnkLetSection).add(
- newNimNode(nnkIdentDefs).add(name, newNimNode(nnkEmpty), value))
- proc newConstStmt*(name, value: NimNode): NimNode {.compileTime.} =
- ## Create a new const stmt
- newNimNode(nnkConstSection).add(
- newNimNode(nnkConstDef).add(name, newNimNode(nnkEmpty), value))
- proc newAssignment*(lhs, rhs: NimNode): NimNode {.compileTime.} =
- return newNimNode(nnkAsgn).add(lhs, rhs)
- proc newDotExpr*(a, b: NimNode): NimNode {.compileTime.} =
- ## Create new dot expression
- ## a.dot(b) -> `a.b`
- return newNimNode(nnkDotExpr).add(a, b)
- proc newColonExpr*(a, b: NimNode): NimNode {.compileTime.} =
- ## Create new colon expression
- ## newColonExpr(a, b) -> `a: b`
- newNimNode(nnkExprColonExpr).add(a, b)
- proc newIdentDefs*(name, kind: NimNode;
- default = newEmptyNode()): NimNode {.compileTime.} =
- ## Creates a new ``nnkIdentDefs`` node of a specific kind and value.
- ##
- ## ``nnkIdentDefs`` need to have at least three children, but they can have
- ## more: first comes a list of identifiers followed by a type and value
- ## nodes. This helper proc creates a three node subtree, the first subnode
- ## being a single identifier name. Both the ``kind`` node and ``default``
- ## (value) nodes may be empty depending on where the ``nnkIdentDefs``
- ## appears: tuple or object definitions will have an empty ``default`` node,
- ## ``let`` or ``var`` blocks may have an empty ``kind`` node if the
- ## identifier is being assigned a value. Example:
- ##
- ## .. code-block:: nim
- ##
- ## var varSection = newNimNode(nnkVarSection).add(
- ## newIdentDefs(ident("a"), ident("string")),
- ## newIdentDefs(ident("b"), newEmptyNode(), newLit(3)))
- ## # --> var
- ## # a: string
- ## # b = 3
- ##
- ## If you need to create multiple identifiers you need to use the lower level
- ## ``newNimNode``:
- ##
- ## .. code-block:: nim
- ##
- ## result = newNimNode(nnkIdentDefs).add(
- ## ident("a"), ident("b"), ident("c"), ident("string"),
- ## newStrLitNode("Hello"))
- newNimNode(nnkIdentDefs).add(name, kind, default)
- proc newNilLit*(): NimNode {.compileTime.} =
- ## New nil literal shortcut
- result = newNimNode(nnkNilLit)
- proc last*(node: NimNode): NimNode {.compileTime.} = node[node.len-1]
- ## Return the last item in nodes children. Same as `node[^1]`
- const
- RoutineNodes* = {nnkProcDef, nnkFuncDef, nnkMethodDef, nnkDo, nnkLambda,
- nnkIteratorDef, nnkTemplateDef, nnkConverterDef}
- AtomicNodes* = {nnkNone..nnkNilLit}
- CallNodes* = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand,
- nnkCallStrLit, nnkHiddenCallConv}
- proc expectKind*(n: NimNode; k: set[NimNodeKind]) {.compileTime.} =
- ## checks that `n` is of kind `k`. If this is not the case,
- ## compilation aborts with an error message. This is useful for writing
- ## macros that check the AST that is passed to them.
- if n.kind notin k: error("Expected one of " & $k & ", got " & $n.kind, n)
- proc newProc*(name = newEmptyNode();
- params: openArray[NimNode] = [newEmptyNode()];
- body: NimNode = newStmtList();
- procType = nnkProcDef;
- pragmas: NimNode = newEmptyNode()): NimNode {.compileTime.} =
- ## shortcut for creating a new proc
- ##
- ## The ``params`` array must start with the return type of the proc,
- ## followed by a list of IdentDefs which specify the params.
- if procType notin RoutineNodes:
- error("Expected one of " & $RoutineNodes & ", got " & $procType)
- pragmas.expectKind({nnkEmpty, nnkPragma})
- result = newNimNode(procType).add(
- name,
- newEmptyNode(),
- newEmptyNode(),
- newNimNode(nnkFormalParams).add(params),
- pragmas,
- newEmptyNode(),
- body)
- proc newIfStmt*(branches: varargs[tuple[cond, body: NimNode]]):
- NimNode {.compiletime.} =
- ## Constructor for ``if`` statements.
- ##
- ## .. code-block:: nim
- ##
- ## newIfStmt(
- ## (Ident, StmtList),
- ## ...
- ## )
- ##
- result = newNimNode(nnkIfStmt)
- if len(branches) < 1:
- error("If statement must have at least one branch")
- for i in branches:
- result.add(newTree(nnkElifBranch, i.cond, i.body))
- proc newEnum*(name: NimNode, fields: openArray[NimNode],
- public, pure: bool): NimNode {.compileTime.} =
- ## Creates a new enum. `name` must be an ident. Fields are allowed to be
- ## either idents or EnumFieldDef
- ##
- ## .. code-block:: nim
- ##
- ## newEnum(
- ## name = ident("Colors"),
- ## fields = [ident("Blue"), ident("Red")],
- ## public = true, pure = false)
- ##
- ## # type Colors* = Blue Red
- ##
- expectKind name, nnkIdent
- if len(fields) < 1:
- error("Enum must contain at least one field")
- for field in fields:
- expectKind field, {nnkIdent, nnkEnumFieldDef}
- let enumBody = newNimNode(nnkEnumTy).add(newEmptyNode()).add(fields)
- var typeDefArgs = [name, newEmptyNode(), enumBody]
- if public:
- let postNode = newNimNode(nnkPostfix).add(
- newIdentNode("*"), typeDefArgs[0])
- typeDefArgs[0] = postNode
- if pure:
- let pragmaNode = newNimNode(nnkPragmaExpr).add(
- typeDefArgs[0],
- add(newNimNode(nnkPragma), newIdentNode("pure")))
- typeDefArgs[0] = pragmaNode
- let
- typeDef = add(newNimNode(nnkTypeDef), typeDefArgs)
- typeSect = add(newNimNode(nnkTypeSection), typeDef)
- return typeSect
- proc copyChildrenTo*(src, dest: NimNode) {.compileTime.}=
- ## Copy all children from `src` to `dest`
- for i in 0 ..< src.len:
- dest.add src[i].copyNimTree
- template expectRoutine(node: NimNode) =
- expectKind(node, RoutineNodes)
- proc name*(someProc: NimNode): NimNode {.compileTime.} =
- someProc.expectRoutine
- result = someProc[0]
- if result.kind == nnkPostfix:
- if result[1].kind == nnkAccQuoted:
- result = result[1][0]
- else:
- result = result[1]
- elif result.kind == nnkAccQuoted:
- result = result[0]
- proc `name=`*(someProc: NimNode; val: NimNode) {.compileTime.} =
- someProc.expectRoutine
- if someProc[0].kind == nnkPostfix:
- someProc[0][1] = val
- else: someProc[0] = val
- proc params*(someProc: NimNode): NimNode {.compileTime.} =
- someProc.expectRoutine
- result = someProc[3]
- proc `params=`* (someProc: NimNode; params: NimNode) {.compileTime.}=
- someProc.expectRoutine
- expectKind(params, nnkFormalParams)
- someProc[3] = params
- proc pragma*(someProc: NimNode): NimNode {.compileTime.} =
- ## Get the pragma of a proc type
- ## These will be expanded
- someProc.expectRoutine
- result = someProc[4]
- proc `pragma=`*(someProc: NimNode; val: NimNode){.compileTime.}=
- ## Set the pragma of a proc type
- someProc.expectRoutine
- expectKind(val, {nnkEmpty, nnkPragma})
- someProc[4] = val
- proc addPragma*(someProc, pragma: NimNode) {.compileTime.} =
- ## Adds pragma to routine definition
- someProc.expectRoutine
- var pragmaNode = someProc.pragma
- if pragmaNode.isNil or pragmaNode.kind == nnkEmpty:
- pragmaNode = newNimNode(nnkPragma)
- someProc.pragma = pragmaNode
- pragmaNode.add(pragma)
- template badNodeKind(n, f) =
- error("Invalid node kind " & $n.kind & " for macros.`" & $f & "`", n)
- proc body*(someProc: NimNode): NimNode {.compileTime.} =
- case someProc.kind:
- of RoutineNodes:
- return someProc[6]
- of nnkBlockStmt, nnkWhileStmt:
- return someProc[1]
- of nnkForStmt:
- return someProc.last
- else:
- badNodeKind someProc, "body"
- proc `body=`*(someProc: NimNode, val: NimNode) {.compileTime.} =
- case someProc.kind
- of RoutineNodes:
- someProc[6] = val
- of nnkBlockStmt, nnkWhileStmt:
- someProc[1] = val
- of nnkForStmt:
- someProc[len(someProc)-1] = val
- else:
- badNodeKind someProc, "body="
- proc basename*(a: NimNode): NimNode {.compiletime, benign.}
- proc `$`*(node: NimNode): string {.compileTime.} =
- ## Get the string of an identifier node
- case node.kind
- of nnkPostfix:
- result = node.basename.strVal & "*"
- of nnkStrLit..nnkTripleStrLit, nnkCommentStmt, nnkSym, nnkIdent:
- result = node.strVal
- of nnkOpenSymChoice, nnkClosedSymChoice:
- result = $node[0]
- of nnkAccQuoted:
- result = $node[0]
- else:
- badNodeKind node, "$"
- proc ident*(name: string): NimNode {.magic: "StrToIdent", noSideEffect.}
- ## Create a new ident node from a string
- iterator items*(n: NimNode): NimNode {.inline.} =
- ## Iterates over the children of the NimNode ``n``.
- for i in 0 ..< n.len:
- yield n[i]
- iterator pairs*(n: NimNode): (int, NimNode) {.inline.} =
- ## Iterates over the children of the NimNode ``n`` and its indices.
- for i in 0 ..< n.len:
- yield (i, n[i])
- iterator children*(n: NimNode): NimNode {.inline.} =
- ## Iterates over the children of the NimNode ``n``.
- for i in 0 ..< n.len:
- yield n[i]
- template findChild*(n: NimNode; cond: untyped): NimNode {.dirty.} =
- ## Find the first child node matching condition (or nil).
- ##
- ## .. code-block:: nim
- ## var res = findChild(n, it.kind == nnkPostfix and
- ## it.basename.ident == toNimIdent"foo")
- block:
- var res: NimNode
- for it in n.children:
- if cond:
- res = it
- break
- res
- proc insert*(a: NimNode; pos: int; b: NimNode) {.compileTime.} =
- ## Insert node B into A at pos
- if len(a)-1 < pos:
- ## add some empty nodes first
- for i in len(a)-1..pos-2:
- a.add newEmptyNode()
- a.add b
- else:
- ## push the last item onto the list again
- ## and shift each item down to pos up one
- a.add(a[a.len-1])
- for i in countdown(len(a) - 3, pos):
- a[i + 1] = a[i]
- a[pos] = b
- proc basename*(a: NimNode): NimNode =
- ## Pull an identifier from prefix/postfix expressions
- case a.kind
- of nnkIdent: return a
- of nnkPostfix, nnkPrefix: return a[1]
- else:
- error("Do not know how to get basename of (" & treeRepr(a) & ")\n" &
- repr(a), a)
- proc `basename=`*(a: NimNode; val: string) {.compileTime.}=
- case a.kind
- of nnkIdent:
- a.strVal = val
- of nnkPostfix, nnkPrefix:
- a[1] = ident(val)
- else:
- error("Do not know how to get basename of (" & treeRepr(a) & ")\n" &
- repr(a), a)
- proc postfix*(node: NimNode; op: string): NimNode {.compileTime.} =
- newNimNode(nnkPostfix).add(ident(op), node)
- proc prefix*(node: NimNode; op: string): NimNode {.compileTime.} =
- newNimNode(nnkPrefix).add(ident(op), node)
- proc infix*(a: NimNode; op: string;
- b: NimNode): NimNode {.compileTime.} =
- newNimNode(nnkInfix).add(ident(op), a, b)
- proc unpackPostfix*(node: NimNode): tuple[node: NimNode; op: string] {.
- compileTime.} =
- node.expectKind nnkPostfix
- result = (node[1], $node[0])
- proc unpackPrefix*(node: NimNode): tuple[node: NimNode; op: string] {.
- compileTime.} =
- node.expectKind nnkPrefix
- result = (node[1], $node[0])
- proc unpackInfix*(node: NimNode): tuple[left: NimNode; op: string;
- right: NimNode] {.compileTime.} =
- expectKind(node, nnkInfix)
- result = (node[1], $node[0], node[2])
- proc copy*(node: NimNode): NimNode {.compileTime.} =
- ## An alias for copyNimTree().
- return node.copyNimTree()
- when defined(nimVmEqIdent):
- proc eqIdent*(a: string; b: string): bool {.magic: "EqIdent", noSideEffect.}
- ## Style insensitive comparison.
- proc eqIdent*(a: NimNode; b: string): bool {.magic: "EqIdent", noSideEffect.}
- ## Style insensitive comparison.
- ## ``a`` can be an identifier or a symbol.
- proc eqIdent*(a: string; b: NimNode): bool {.magic: "EqIdent", noSideEffect.}
- ## Style insensitive comparison.
- ## ``b`` can be an identifier or a symbol.
- proc eqIdent*(a: NimNode; b: NimNode): bool {.magic: "EqIdent", noSideEffect.}
- ## Style insensitive comparison.
- ## ``a`` and ``b`` can be an identifier or a symbol.
- else:
- # this procedure is optimized for native code, it should not be compiled to nimVM bytecode.
- proc cmpIgnoreStyle(a, b: cstring): int {.noSideEffect.} =
- proc toLower(c: char): char {.inline.} =
- if c in {'A'..'Z'}: result = chr(ord(c) + (ord('a') - ord('A')))
- else: result = c
- var i = 0
- var j = 0
- # first char is case sensitive
- if a[0] != b[0]: return 1
- while true:
- while a[i] == '_': inc(i)
- while b[j] == '_': inc(j) # BUGFIX: typo
- var aa = toLower(a[i])
- var bb = toLower(b[j])
- result = ord(aa) - ord(bb)
- if result != 0 or aa == '\0': break
- inc(i)
- inc(j)
- proc eqIdent*(a, b: string): bool = cmpIgnoreStyle(a, b) == 0
- ## Check if two idents are identical.
- proc eqIdent*(node: NimNode; s: string): bool {.compileTime.} =
- ## Check if node is some identifier node (``nnkIdent``, ``nnkSym``, etc.)
- ## is the same as ``s``. Note that this is the preferred way to check! Most
- ## other ways like ``node.ident`` are much more error-prone, unfortunately.
- case node.kind
- of nnkSym, nnkIdent:
- result = eqIdent(node.strVal, s)
- of nnkOpenSymChoice, nnkClosedSymChoice:
- result = eqIdent($node[0], s)
- else:
- result = false
- proc hasArgOfName*(params: NimNode; name: string): bool {.compiletime.}=
- ## Search nnkFormalParams for an argument.
- expectKind(params, nnkFormalParams)
- for i in 1 ..< params.len:
- template node: untyped = params[i]
- if name.eqIdent( $ node[0]):
- return true
- proc addIdentIfAbsent*(dest: NimNode, ident: string) {.compiletime.} =
- ## Add ident to dest if it is not present. This is intended for use
- ## with pragmas.
- for node in dest.children:
- case node.kind
- of nnkIdent:
- if ident.eqIdent($node): return
- of nnkExprColonExpr:
- if ident.eqIdent($node[0]): return
- else: discard
- dest.add(ident(ident))
- proc boolVal*(n: NimNode): bool {.compileTime, noSideEffect.} =
- if n.kind == nnkIntLit: n.intVal != 0
- else: n == bindSym"true" # hacky solution for now
- macro expandMacros*(body: typed): typed =
- ## Expands one level of macro - useful for debugging.
- ## Can be used to inspect what happens when a macro call is expanded,
- ## without altering its result.
- ##
- ## For instance,
- ##
- ## .. code-block:: nim
- ## import future, macros
- ##
- ## let
- ## x = 10
- ## y = 20
- ## expandMacros:
- ## dump(x + y)
- ##
- ## will actually dump `x + y`, but at the same time will print at
- ## compile time the expansion of the ``dump`` macro, which in this
- ## case is ``debugEcho ["x + y", " = ", x + y]``.
- echo body.toStrLit
- result = body
- proc customPragmaNode(n: NimNode): NimNode =
- expectKind(n, {nnkSym, nnkDotExpr, nnkBracketExpr, nnkTypeOfExpr, nnkCheckedFieldExpr})
- let
- typ = n.getTypeInst()
- if typ.kind == nnkBracketExpr and typ.len > 1 and typ[1].kind == nnkProcTy:
- return typ[1][1]
- elif typ.typeKind == ntyTypeDesc:
- let impl = typ[1].getImpl()
- if impl[0].kind == nnkPragmaExpr:
- return impl[0][1]
- else:
- return impl[0] # handle types which don't have macro at all
- if n.kind == nnkSym: # either an variable or a proc
- let impl = n.getImpl()
- if impl.kind in RoutineNodes:
- return impl.pragma
- elif impl.kind == nnkIdentDefs and impl[0].kind == nnkPragmaExpr:
- return impl[0][1]
- else:
- let timpl = typ.getImpl()
- if timpl.len>0 and timpl[0].len>1:
- return timpl[0][1]
- else:
- return timpl
- if n.kind in {nnkDotExpr, nnkCheckedFieldExpr}:
- let name = $(if n.kind == nnkCheckedFieldExpr: n[0][1] else: n[1])
- let typInst = getTypeInst(if n.kind == nnkCheckedFieldExpr or n[0].kind == nnkHiddenDeref: n[0][0] else: n[0])
- var typDef = getImpl(if typInst.kind == nnkVarTy: typInst[0] else: typInst)
- while typDef != nil:
- typDef.expectKind(nnkTypeDef)
- let typ = typDef[2]
- typ.expectKind({nnkRefTy, nnkPtrTy, nnkObjectTy})
- let isRef = typ.kind in {nnkRefTy, nnkPtrTy}
- if isRef and typ[0].kind in {nnkSym, nnkBracketExpr}: # defines ref type for another object(e.g. X = ref X)
- typDef = getImpl(typ[0])
- else: # object definition, maybe an object directly defined as a ref type
- let
- obj = (if isRef: typ[0] else: typ)
- var identDefsStack = newSeq[NimNode](obj[2].len)
- for i in 0..<identDefsStack.len: identDefsStack[i] = obj[2][i]
- while identDefsStack.len > 0:
- var identDefs = identDefsStack.pop()
- if identDefs.kind == nnkRecCase:
- identDefsStack.add(identDefs[0])
- for i in 1..<identDefs.len:
- let varNode = identDefs[i]
- # if it is and empty branch, skip
- if varNode[0].kind == nnkNilLit: continue
- if varNode[1].kind == nnkIdentDefs:
- identDefsStack.add(varNode[1])
- else: # nnkRecList
- for j in 0 ..< varNode[1].len:
- identDefsStack.add(varNode[1][j])
- else:
- for i in 0 .. identDefs.len - 3:
- let varNode = identDefs[i]
- if varNode.kind == nnkPragmaExpr:
- var varName = varNode[0]
- if varName.kind == nnkPostfix:
- # This is a public field. We are skipping the postfix *
- varName = varName[1]
- if eqIdent($varName, name):
- return varNode[1]
- if obj[1].kind == nnkOfInherit: # explore the parent object
- typDef = getImpl(obj[1][0])
- else:
- typDef = nil
- macro hasCustomPragma*(n: typed, cp: typed{nkSym}): untyped =
- ## Expands to `true` if expression `n` which is expected to be `nnkDotExpr`
- ## (if checking a field), a proc or a type has custom pragma `cp`.
- ##
- ## See also `getCustomPragmaVal`.
- ##
- ## .. code-block:: nim
- ## template myAttr() {.pragma.}
- ## type
- ## MyObj = object
- ## myField {.myAttr.}: int
- ##
- ## proc myProc() {.myAttr.} = discard
- ##
- ## var o: MyObj
- ## assert(o.myField.hasCustomPragma(myAttr))
- ## assert(myProc.hasCustomPragma(myAttr))
- let pragmaNode = customPragmaNode(n)
- for p in pragmaNode:
- if (p.kind == nnkSym and p == cp) or
- (p.kind in nnkPragmaCallKinds and p.len > 0 and p[0].kind == nnkSym and p[0] == cp):
- return newLit(true)
- return newLit(false)
- macro getCustomPragmaVal*(n: typed, cp: typed{nkSym}): untyped =
- ## Expands to value of custom pragma `cp` of expression `n` which is expected
- ## to be `nnkDotExpr`, a proc or a type.
- ##
- ## See also `hasCustomPragma`
- ##
- ## .. code-block:: nim
- ## template serializationKey(key: string) {.pragma.}
- ## type
- ## MyObj {.serializationKey: "mo".} = object
- ## myField {.serializationKey: "mf".}: int
- ## var o: MyObj
- ## assert(o.myField.getCustomPragmaVal(serializationKey) == "mf")
- ## assert(o.getCustomPragmaVal(serializationKey) == "mo")
- ## assert(MyObj.getCustomPragmaVal(serializationKey) == "mo")
- let pragmaNode = customPragmaNode(n)
- for p in pragmaNode:
- if p.kind in nnkPragmaCallKinds and p.len > 0 and p[0].kind == nnkSym and p[0] == cp:
- if p.len == 2:
- result = p[1]
- else:
- let def = p[0].getImpl[3]
- result = newTree(nnkPar)
- for i in 1 ..< def.len:
- let key = def[i][0]
- let val = p[i]
- result.add newTree(nnkExprColonExpr, key, val)
- break
- if result.kind == nnkEmpty:
- error(n.repr & " doesn't have a pragma named " & cp.repr()) # returning an empty node results in most cases in a cryptic error,
- when not defined(booting):
- template emit*(e: static[string]): untyped {.deprecated.} =
- ## accepts a single string argument and treats it as nim code
- ## that should be inserted verbatim in the program
- ## Example:
- ##
- ## .. code-block:: nim
- ## emit("echo " & '"' & "hello world".toUpper & '"')
- ##
- ## Deprecated since version 0.15 since it's so rarely useful.
- macro payload: untyped {.gensym.} =
- result = parseStmt(e)
- payload()
- macro unpackVarargs*(callee: untyped; args: varargs[untyped]): untyped =
- result = newCall(callee)
- for i in 0 ..< args.len:
- result.add args[i]
- proc getProjectPath*(): string = discard
- ## Returns the path to the currently compiling project, not to
- ## be confused with ``system.currentSourcePath`` which returns
- ## the path of the current module.
- when defined(nimMacrosSizealignof):
- proc getSize*(arg: NimNode): int {.magic: "NSizeOf", noSideEffect.} =
- ## Returns the same result as ``system.sizeof`` if the size is
- ## known by the Nim compiler. Returns a negative value if the Nim
- ## compiler does not know the size.
- proc getAlign*(arg: NimNode): int {.magic: "NSizeOf", noSideEffect.} =
- ## Returns the same result as ``system.alignof`` if the alignment
- ## is known by the Nim compiler. It works on ``NimNode`` for use
- ## in macro context. Returns a negative value if the Nim compiler
- ## does not know the alignment.
- proc getOffset*(arg: NimNode): int {.magic: "NSizeOf", noSideEffect.} =
- ## Returns the same result as ``system.offsetof`` if the offset is
- ## known by the Nim compiler. It expects a resolved symbol node
- ## from a field of a type. Therefore it only requires one argument
- ## instead of two. Returns a negative value if the Nim compiler
- ## does not know the offset.
|