123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437 |
- ## Copyright 2020 Alexander Bolz
- ##
- ## Distributed under the Boost Software License, Version 1.0.
- ## (See accompanying file LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt)
- # --------------------------------------------------------------------------------------------------
- ## This file contains an implementation of the Schubfach algorithm as described in
- ##
- ## \[1] Raffaello Giulietti, "The Schubfach way to render doubles",
- ## https://drive.google.com/open?id=1luHhyQF9zKlM8yJ1nebU0OgVYhfC6CBN
- # --------------------------------------------------------------------------------------------------
- import std/private/digitsutils
- when defined(nimPreviewSlimSystem):
- import std/assertions
- template sf_Assert(x: untyped): untyped =
- assert(x)
- # ==================================================================================================
- #
- # ==================================================================================================
- type
- ValueType = float32
- BitsType = uint32
- Single {.bycopy.} = object
- bits: BitsType
- const
- significandSize: int32 = 24
- MaxExponent = 128
- exponentBias: int32 = MaxExponent - 1 + (significandSize - 1)
- maxIeeeExponent: BitsType = BitsType(2 * MaxExponent - 1)
- hiddenBit: BitsType = BitsType(1) shl (significandSize - 1)
- significandMask: BitsType = hiddenBit - 1
- exponentMask: BitsType = maxIeeeExponent shl (significandSize - 1)
- signMask: BitsType = not (not BitsType(0) shr 1)
- proc constructSingle(bits: BitsType): Single =
- result.bits = bits
- proc constructSingle(value: ValueType): Single =
- result.bits = cast[typeof(result.bits)](value)
- proc physicalSignificand(this: Single): BitsType {.noSideEffect.} =
- return this.bits and significandMask
- proc physicalExponent(this: Single): BitsType {.noSideEffect.} =
- return (this.bits and exponentMask) shr (significandSize - 1)
- proc isFinite(this: Single): bool {.noSideEffect.} =
- return (this.bits and exponentMask) != exponentMask
- proc isInf(this: Single): bool {.noSideEffect.} =
- return (this.bits and exponentMask) == exponentMask and
- (this.bits and significandMask) == 0
- proc isNaN(this: Single): bool {.noSideEffect.} =
- return (this.bits and exponentMask) == exponentMask and
- (this.bits and significandMask) != 0
- proc isZero(this: Single): bool {.noSideEffect.} =
- return (this.bits and not signMask) == 0
- proc signBit(this: Single): int {.noSideEffect.} =
- return int((this.bits and signMask) != 0)
- # ==================================================================================================
- ## Returns floor(x / 2^n).
- ##
- ## Technically, right-shift of negative integers is implementation defined...
- ## Should easily be optimized into SAR (or equivalent) instruction.
- proc floorDivPow2(x: int32; n: int32): int32 {.inline.} =
- return x shr n
- ## Returns floor(log_10(2^e))
- ## ```c
- ## static inline int32_t FloorLog10Pow2(int32_t e)
- ## {
- ## SF_ASSERT(e >= -1500);
- ## SF_ASSERT(e <= 1500);
- ## return FloorDivPow2(e * 1262611, 22);
- ## }
- ## ```
- ## Returns floor(log_10(3/4 2^e))
- ## ```c
- ## static inline int32_t FloorLog10ThreeQuartersPow2(int32_t e)
- ## {
- ## SF_ASSERT(e >= -1500);
- ## SF_ASSERT(e <= 1500);
- ## return FloorDivPow2(e * 1262611 - 524031, 22);
- ## }
- ## ```
- ## Returns floor(log_2(10^e))
- proc floorLog2Pow10(e: int32): int32 {.inline.} =
- sf_Assert(e >= -1233)
- sf_Assert(e <= 1233)
- return floorDivPow2(e * 1741647, 19)
- const
- kMin: int32 = -31
- kMax: int32 = 45
- g: array[kMax - kMin + 1, uint64] = [0x81CEB32C4B43FCF5'u64, 0xA2425FF75E14FC32'u64,
- 0xCAD2F7F5359A3B3F'u64, 0xFD87B5F28300CA0E'u64, 0x9E74D1B791E07E49'u64,
- 0xC612062576589DDB'u64, 0xF79687AED3EEC552'u64, 0x9ABE14CD44753B53'u64,
- 0xC16D9A0095928A28'u64, 0xF1C90080BAF72CB2'u64, 0x971DA05074DA7BEF'u64,
- 0xBCE5086492111AEB'u64, 0xEC1E4A7DB69561A6'u64, 0x9392EE8E921D5D08'u64,
- 0xB877AA3236A4B44A'u64, 0xE69594BEC44DE15C'u64, 0x901D7CF73AB0ACDA'u64,
- 0xB424DC35095CD810'u64, 0xE12E13424BB40E14'u64, 0x8CBCCC096F5088CC'u64,
- 0xAFEBFF0BCB24AAFF'u64, 0xDBE6FECEBDEDD5BF'u64, 0x89705F4136B4A598'u64,
- 0xABCC77118461CEFD'u64, 0xD6BF94D5E57A42BD'u64, 0x8637BD05AF6C69B6'u64,
- 0xA7C5AC471B478424'u64, 0xD1B71758E219652C'u64, 0x83126E978D4FDF3C'u64,
- 0xA3D70A3D70A3D70B'u64, 0xCCCCCCCCCCCCCCCD'u64, 0x8000000000000000'u64,
- 0xA000000000000000'u64, 0xC800000000000000'u64, 0xFA00000000000000'u64,
- 0x9C40000000000000'u64, 0xC350000000000000'u64, 0xF424000000000000'u64,
- 0x9896800000000000'u64, 0xBEBC200000000000'u64, 0xEE6B280000000000'u64,
- 0x9502F90000000000'u64, 0xBA43B74000000000'u64, 0xE8D4A51000000000'u64,
- 0x9184E72A00000000'u64, 0xB5E620F480000000'u64, 0xE35FA931A0000000'u64,
- 0x8E1BC9BF04000000'u64, 0xB1A2BC2EC5000000'u64, 0xDE0B6B3A76400000'u64,
- 0x8AC7230489E80000'u64, 0xAD78EBC5AC620000'u64, 0xD8D726B7177A8000'u64,
- 0x878678326EAC9000'u64, 0xA968163F0A57B400'u64, 0xD3C21BCECCEDA100'u64,
- 0x84595161401484A0'u64, 0xA56FA5B99019A5C8'u64, 0xCECB8F27F4200F3A'u64,
- 0x813F3978F8940985'u64, 0xA18F07D736B90BE6'u64, 0xC9F2C9CD04674EDF'u64,
- 0xFC6F7C4045812297'u64, 0x9DC5ADA82B70B59E'u64, 0xC5371912364CE306'u64,
- 0xF684DF56C3E01BC7'u64, 0x9A130B963A6C115D'u64, 0xC097CE7BC90715B4'u64,
- 0xF0BDC21ABB48DB21'u64, 0x96769950B50D88F5'u64, 0xBC143FA4E250EB32'u64,
- 0xEB194F8E1AE525FE'u64, 0x92EFD1B8D0CF37BF'u64, 0xB7ABC627050305AE'u64,
- 0xE596B7B0C643C71A'u64, 0x8F7E32CE7BEA5C70'u64, 0xB35DBF821AE4F38C'u64]
- proc computePow10Single(k: int32): uint64 {.inline.} =
- ## There are unique beta and r such that 10^k = beta 2^r and
- ## 2^63 <= beta < 2^64, namely r = floor(log_2 10^k) - 63 and
- ## beta = 2^-r 10^k.
- ## Let g = ceil(beta), so (g-1) 2^r < 10^k <= g 2^r, with the latter
- ## value being a pretty good overestimate for 10^k.
- ## NB: Since for all the required exponents k, we have g < 2^64,
- ## all constants can be stored in 128-bit integers.
- sf_Assert(k >= kMin)
- sf_Assert(k <= kMax)
- return g[k - kMin]
- proc lo32(x: uint64): uint32 {.inline.} =
- return cast[uint32](x)
- proc hi32(x: uint64): uint32 {.inline.} =
- return cast[uint32](x shr 32)
- when defined(sizeof_Int128):
- proc roundToOdd(g: uint64; cp: uint32): uint32 {.inline.} =
- let p: uint128 = uint128(g) * cp
- let y1: uint32 = lo32(cast[uint64](p shr 64))
- let y0: uint32 = hi32(cast[uint64](p))
- return y1 or uint32(y0 > 1)
- elif defined(vcc) and defined(cpu64):
- proc umul128(x, y: uint64, z: ptr uint64): uint64 {.importc: "_umul128", header: "<intrin.h>".}
- proc roundToOdd(g: uint64; cpHi: uint32): uint32 {.inline.} =
- var p1: uint64 = 0
- var p0: uint64 = umul128(g, cpHi, addr(p1))
- let y1: uint32 = lo32(p1)
- let y0: uint32 = hi32(p0)
- return y1 or uint32(y0 > 1)
- else:
- proc roundToOdd(g: uint64; cp: uint32): uint32 {.inline.} =
- let b01: uint64 = uint64(lo32(g)) * cp
- let b11: uint64 = uint64(hi32(g)) * cp
- let hi: uint64 = b11 + hi32(b01)
- let y1: uint32 = hi32(hi)
- let y0: uint32 = lo32(hi)
- return y1 or uint32(y0 > 1)
- ## Returns whether value is divisible by 2^e2
- proc multipleOfPow2(value: uint32; e2: int32): bool {.inline.} =
- sf_Assert(e2 >= 0)
- sf_Assert(e2 <= 31)
- return (value and ((uint32(1) shl e2) - 1)) == 0
- type
- FloatingDecimal32 {.bycopy.} = object
- digits: uint32 ## num_digits <= 9
- exponent: int32
- proc toDecimal32(ieeeSignificand: uint32; ieeeExponent: uint32): FloatingDecimal32 {.
- inline.} =
- var c: uint32
- var q: int32
- if ieeeExponent != 0:
- c = hiddenBit or ieeeSignificand
- q = cast[int32](ieeeExponent) - exponentBias
- if 0 <= -q and -q < significandSize and multipleOfPow2(c, -q):
- return FloatingDecimal32(digits: c shr -q, exponent: 0'i32)
- else:
- c = ieeeSignificand
- q = 1 - exponentBias
- let isEven: bool = (c mod 2 == 0)
- let lowerBoundaryIsCloser: bool = (ieeeSignificand == 0 and ieeeExponent > 1)
- ## const int32_t qb = q - 2;
- let cbl: uint32 = 4 * c - 2 + uint32(lowerBoundaryIsCloser)
- let cb: uint32 = 4 * c
- let cbr: uint32 = 4 * c + 2
- ## (q * 1262611 ) >> 22 == floor(log_10( 2^q))
- ## (q * 1262611 - 524031) >> 22 == floor(log_10(3/4 2^q))
- sf_Assert(q >= -1500)
- sf_Assert(q <= 1500)
- let k: int32 = floorDivPow2(q * 1262611 - (if lowerBoundaryIsCloser: 524031 else: 0), 22)
- let h: int32 = q + floorLog2Pow10(-k) + 1
- sf_Assert(h >= 1)
- sf_Assert(h <= 4)
- let pow10: uint64 = computePow10Single(-k)
- let vbl: uint32 = roundToOdd(pow10, cbl shl h)
- let vb: uint32 = roundToOdd(pow10, cb shl h)
- let vbr: uint32 = roundToOdd(pow10, cbr shl h)
- let lower: uint32 = vbl + uint32(not isEven)
- let upper: uint32 = vbr - uint32(not isEven)
- ## See Figure 4 in [1].
- ## And the modifications in Figure 6.
- let s: uint32 = vb div 4
- ## NB: 4 * s == vb & ~3 == vb & -4
- if s >= 10:
- let sp: uint32 = s div 10
- ## = vb / 40
- let upInside: bool = lower <= 40 * sp
- let wpInside: bool = 40 * sp + 40 <= upper
- ## if (up_inside || wp_inside) // NB: At most one of u' and w' is in R_v.
- if upInside != wpInside:
- return FloatingDecimal32(digits: sp + uint32(wpInside), exponent: k + 1)
- let uInside: bool = lower <= 4 * s
- let wInside: bool = 4 * s + 4 <= upper
- if uInside != wInside:
- return FloatingDecimal32(digits: s + uint32(wInside), exponent: k)
- let mid: uint32 = 4 * s + 2
- ## = 2(s + t)
- let roundUp: bool = vb > mid or (vb == mid and (s and 1) != 0)
- return FloatingDecimal32(digits: s + uint32(roundUp), exponent: k)
- ## ==================================================================================================
- ## ToChars
- ## ==================================================================================================
- proc printDecimalDigitsBackwards[T: Ordinal](buf: var openArray[char]; pos: T; output: uint32): int {.inline.} =
- var output = output
- var pos = pos
- var tz = 0
- ## number of trailing zeros removed.
- var nd = 0
- ## number of decimal digits processed.
- ## At most 9 digits remaining
- if output >= 10000:
- let q: uint32 = output div 10000
- let r: uint32 = output mod 10000
- output = q
- dec(pos, 4)
- if r != 0:
- let rH: uint32 = r div 100
- let rL: uint32 = r mod 100
- utoa2Digits(buf, pos, rH)
- utoa2Digits(buf, pos + 2, rL)
- tz = trailingZeros2Digits(if rL == 0: rH else: rL) + (if rL == 0: 2 else: 0)
- else:
- tz = 4
- nd = 4
- if output >= 100:
- let q: uint32 = output div 100
- let r: uint32 = output mod 100
- output = q
- dec(pos, 2)
- utoa2Digits(buf, pos, r)
- if tz == nd:
- inc(tz, trailingZeros2Digits(r))
- inc(nd, 2)
- if output >= 100:
- let q2: uint32 = output div 100
- let r2: uint32 = output mod 100
- output = q2
- dec(pos, 2)
- utoa2Digits(buf, pos, r2)
- if tz == nd:
- inc(tz, trailingZeros2Digits(r2))
- inc(nd, 2)
- sf_Assert(output >= 1)
- sf_Assert(output <= 99)
- if output >= 10:
- let q: uint32 = output
- dec(pos, 2)
- utoa2Digits(buf, pos, q)
- if tz == nd:
- inc(tz, trailingZeros2Digits(q))
- else:
- let q: uint32 = output
- sf_Assert(q >= 1)
- sf_Assert(q <= 9)
- dec(pos)
- buf[pos] = chr(uint32('0') + q)
- return tz
- proc decimalLength(v: uint32): int {.inline.} =
- sf_Assert(v >= 1)
- sf_Assert(v <= 999999999'u)
- if v >= 100000000'u:
- return 9
- if v >= 10000000'u:
- return 8
- if v >= 1000000'u:
- return 7
- if v >= 100000'u:
- return 6
- if v >= 10000'u:
- return 5
- if v >= 1000'u:
- return 4
- if v >= 100'u:
- return 3
- if v >= 10'u:
- return 2
- return 1
- proc formatDigits[T: Ordinal](buffer: var openArray[char]; pos: T; digits: uint32; decimalExponent: int;
- forceTrailingDotZero: bool = false): int {.inline.} =
- const
- minFixedDecimalPoint: int32 = -4
- maxFixedDecimalPoint: int32 = 9
- var pos = pos
- assert(minFixedDecimalPoint <= -1, "internal error")
- assert(maxFixedDecimalPoint >= 1, "internal error")
- sf_Assert(digits >= 1)
- sf_Assert(digits <= 999999999'u)
- sf_Assert(decimalExponent >= -99)
- sf_Assert(decimalExponent <= 99)
- var numDigits = decimalLength(digits)
- let decimalPoint = numDigits + decimalExponent
- let useFixed: bool = minFixedDecimalPoint <= decimalPoint and
- decimalPoint <= maxFixedDecimalPoint
- ## Prepare the buffer.
- ## Avoid calling memset/memcpy with variable arguments below...
- for i in 0..<32: buffer[pos+i] = '0'
- assert(minFixedDecimalPoint >= -30, "internal error")
- assert(maxFixedDecimalPoint <= 32, "internal error")
- var decimalDigitsPosition: int
- if useFixed:
- if decimalPoint <= 0:
- ## 0.[000]digits
- decimalDigitsPosition = 2 - decimalPoint
- else:
- ## dig.its
- ## digits[000]
- decimalDigitsPosition = 0
- else:
- ## dE+123 or d.igitsE+123
- decimalDigitsPosition = 1
- var digitsEnd = pos + decimalDigitsPosition + numDigits
- let tz = printDecimalDigitsBackwards(buffer, digitsEnd, digits)
- dec(digitsEnd, tz)
- dec(numDigits, tz)
- ## decimal_exponent += tz; // => decimal_point unchanged.
- if useFixed:
- if decimalPoint <= 0:
- ## 0.[000]digits
- buffer[pos+1] = '.'
- pos = digitsEnd
- elif decimalPoint < numDigits:
- ## dig.its
- for i in countdown(7, 0):
- buffer[i + decimalPoint + 1] = buffer[i + decimalPoint]
- buffer[pos+decimalPoint] = '.'
- pos = digitsEnd + 1
- else:
- ## digits[000]
- inc(pos, decimalPoint)
- if forceTrailingDotZero:
- buffer[pos] = '.'
- buffer[pos+1] = '0'
- inc(pos, 2)
- else:
- buffer[pos] = buffer[pos+1]
- if numDigits == 1:
- ## dE+123
- inc(pos)
- else:
- ## d.igitsE+123
- buffer[pos+1] = '.'
- pos = digitsEnd
- let scientificExponent = decimalPoint - 1
- ## SF_ASSERT(scientific_exponent != 0);
- buffer[pos] = 'e'
- buffer[pos+1] = if scientificExponent < 0: '-' else: '+'
- inc(pos, 2)
- let k: uint32 = cast[uint32](if scientificExponent < 0: -scientificExponent else: scientificExponent)
- if k < 10:
- buffer[pos] = chr(uint32('0') + k)
- inc pos
- else:
- utoa2Digits(buffer, pos, k)
- inc(pos, 2)
- return pos
- proc float32ToChars*(buffer: var openArray[char]; v: float32; forceTrailingDotZero = false): int {.
- inline.} =
- let significand: uint32 = physicalSignificand(constructSingle(v))
- let exponent: uint32 = physicalExponent(constructSingle(v))
- var pos = 0
- if exponent != maxIeeeExponent:
- ## Finite
- buffer[pos] = '-'
- inc(pos, signBit(constructSingle(v)))
- if exponent != 0 or significand != 0:
- ## != 0
- let dec: auto = toDecimal32(significand, exponent)
- return formatDigits(buffer, pos, dec.digits, dec.exponent.int, forceTrailingDotZero)
- else:
- buffer[pos] = '0'
- buffer[pos+1] = '.'
- buffer[pos+2] = '0'
- buffer[pos+3] = ' '
- inc(pos, if forceTrailingDotZero: 3 else: 1)
- return pos
- if significand == 0:
- buffer[pos] = '-'
- inc(pos, signBit(constructSingle(v)))
- buffer[pos] = 'i'
- buffer[pos+1] = 'n'
- buffer[pos+2] = 'f'
- buffer[pos+3] = ' '
- return pos + 3
- else:
- buffer[pos] = 'n'
- buffer[pos+1] = 'a'
- buffer[pos+2] = 'n'
- buffer[pos+3] = ' '
- return pos + 3
|