12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2015 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## *Constructive mathematics is naturally typed.* -- Simon Thompson
- ##
- ## Basic math routines for Nim.
- ##
- ## Note that the trigonometric functions naturally operate on radians.
- ## The helper functions `degToRad<#degToRad,T>`_ and `radToDeg<#radToDeg,T>`_
- ## provide conversion between radians and degrees.
- ##
- ## .. code-block::
- ##
- ## import math
- ## from sequtils import map
- ##
- ## let a = [0.0, PI/6, PI/4, PI/3, PI/2]
- ##
- ## echo a.map(sin)
- ## # @[0.0, 0.499…, 0.707…, 0.866…, 1.0]
- ##
- ## echo a.map(tan)
- ## # @[0.0, 0.577…, 0.999…, 1.732…, 1.633…e+16]
- ##
- ## echo cos(degToRad(180.0))
- ## # -1.0
- ##
- ## echo sqrt(-1.0)
- ## # nan (use `complex` module)
- ##
- ## This module is available for the `JavaScript target
- ## <backends.html#backends-the-javascript-target>`_.
- ##
- ## **See also:**
- ## * `complex module<complex.html>`_ for complex numbers and their
- ## mathematical operations
- ## * `rationals module<rationals.html>`_ for rational numbers and their
- ## mathematical operations
- ## * `fenv module<fenv.html>`_ for handling of floating-point rounding
- ## and exceptions (overflow, zero-divide, etc.)
- ## * `random module<random.html>`_ for fast and tiny random number generator
- ## * `mersenne module<mersenne.html>`_ for Mersenne twister random number generator
- ## * `stats module<stats.html>`_ for statistical analysis
- ## * `strformat module<strformat.html>`_ for formatting floats for print
- ## * `system module<system.html>`_ Some very basic and trivial math operators
- ## are on system directly, to name a few ``shr``, ``shl``, ``xor``, ``clamp``, etc.
- import std/private/since
- {.push debugger: off.} # the user does not want to trace a part
- # of the standard library!
- import bitops, fenv
- proc binom*(n, k: int): int {.noSideEffect.} =
- ## Computes the `binomial coefficient <https://en.wikipedia.org/wiki/Binomial_coefficient>`_.
- runnableExamples:
- doAssert binom(6, 2) == binom(6, 4)
- doAssert binom(6, 2) == 15
- doAssert binom(-6, 2) == 1
- doAssert binom(6, 0) == 1
- if k <= 0: return 1
- if 2*k > n: return binom(n, n-k)
- result = n
- for i in countup(2, k):
- result = (result * (n + 1 - i)) div i
- proc createFactTable[N: static[int]]: array[N, int] =
- result[0] = 1
- for i in 1 ..< N:
- result[i] = result[i - 1] * i
- proc fac*(n: int): int =
- ## Computes the `factorial <https://en.wikipedia.org/wiki/Factorial>`_ of
- ## a non-negative integer ``n``.
- ##
- ## See also:
- ## * `prod proc <#prod,openArray[T]>`_
- runnableExamples:
- doAssert fac(3) == 6
- doAssert fac(4) == 24
- doAssert fac(10) == 3628800
- const factTable =
- when sizeof(int) == 2:
- createFactTable[5]()
- elif sizeof(int) == 4:
- createFactTable[13]()
- else:
- createFactTable[21]()
- assert(n >= 0, $n & " must not be negative.")
- assert(n < factTable.len, $n & " is too large to look up in the table")
- factTable[n]
- {.push checks: off, line_dir: off, stack_trace: off.}
- when defined(Posix) and not defined(genode):
- {.passl: "-lm".}
- const
- PI* = 3.1415926535897932384626433 ## The circle constant PI (Ludolph's number)
- TAU* = 2.0 * PI ## The circle constant TAU (= 2 * PI)
- E* = 2.71828182845904523536028747 ## Euler's number
- MaxFloat64Precision* = 16 ## Maximum number of meaningful digits
- ## after the decimal point for Nim's
- ## ``float64`` type.
- MaxFloat32Precision* = 8 ## Maximum number of meaningful digits
- ## after the decimal point for Nim's
- ## ``float32`` type.
- MaxFloatPrecision* = MaxFloat64Precision ## Maximum number of
- ## meaningful digits
- ## after the decimal point
- ## for Nim's ``float`` type.
- MinFloatNormal* = 2.225073858507201e-308 ## Smallest normal number for Nim's
- ## ``float`` type. (= 2^-1022).
- RadPerDeg = PI / 180.0 ## Number of radians per degree
- type
- FloatClass* = enum ## Describes the class a floating point value belongs to.
- ## This is the type that is returned by
- ## `classify proc <#classify,float>`_.
- fcNormal, ## value is an ordinary nonzero floating point value
- fcSubnormal, ## value is a subnormal (a very small) floating point value
- fcZero, ## value is zero
- fcNegZero, ## value is the negative zero
- fcNan, ## value is Not-A-Number (NAN)
- fcInf, ## value is positive infinity
- fcNegInf ## value is negative infinity
- proc classify*(x: float): FloatClass =
- ## Classifies a floating point value.
- ##
- ## Returns ``x``'s class as specified by `FloatClass enum<#FloatClass>`_.
- runnableExamples:
- doAssert classify(0.3) == fcNormal
- doAssert classify(0.0) == fcZero
- doAssert classify(0.3/0.0) == fcInf
- doAssert classify(-0.3/0.0) == fcNegInf
- doAssert classify(5.0e-324) == fcSubnormal
- # JavaScript and most C compilers have no classify:
- if x == 0.0:
- if 1.0/x == Inf:
- return fcZero
- else:
- return fcNegZero
- if x*0.5 == x:
- if x > 0.0: return fcInf
- else: return fcNegInf
- if x != x: return fcNan
- if abs(x) < MinFloatNormal:
- return fcSubnormal
- return fcNormal
- proc almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {.
- since: (1, 5), inline, noSideEffect.} =
- ## Checks if two float values are almost equal, using
- ## `machine epsilon <https://en.wikipedia.org/wiki/Machine_epsilon>`_.
- ##
- ## `unitsInLastPlace` is the max number of
- ## `units in last place <https://en.wikipedia.org/wiki/Unit_in_the_last_place>`_
- ## difference tolerated when comparing two numbers. The larger the value, the
- ## more error is allowed. A ``0`` value means that two numbers must be exactly the
- ## same to be considered equal.
- ##
- ## The machine epsilon has to be scaled to the magnitude of the values used
- ## and multiplied by the desired precision in ULPs unless the difference is
- ## subnormal.
- ##
- # taken from: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
- runnableExamples:
- doAssert almostEqual(3.141592653589793, 3.1415926535897936)
- doAssert almostEqual(1.6777215e7'f32, 1.6777216e7'f32)
- let diff = abs(x - y)
- result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or
- diff < minimumPositiveValue(T)
- proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
- ## Returns ``true``, if ``x`` is a power of two, ``false`` otherwise.
- ##
- ## Zero and negative numbers are not a power of two.
- ##
- ## See also:
- ## * `nextPowerOfTwo proc<#nextPowerOfTwo,int>`_
- runnableExamples:
- doAssert isPowerOfTwo(16) == true
- doAssert isPowerOfTwo(5) == false
- doAssert isPowerOfTwo(0) == false
- doAssert isPowerOfTwo(-16) == false
- return (x > 0) and ((x and (x - 1)) == 0)
- proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
- ## Returns ``x`` rounded up to the nearest power of two.
- ##
- ## Zero and negative numbers get rounded up to 1.
- ##
- ## See also:
- ## * `isPowerOfTwo proc<#isPowerOfTwo,int>`_
- runnableExamples:
- doAssert nextPowerOfTwo(16) == 16
- doAssert nextPowerOfTwo(5) == 8
- doAssert nextPowerOfTwo(0) == 1
- doAssert nextPowerOfTwo(-16) == 1
- result = x - 1
- when defined(cpu64):
- result = result or (result shr 32)
- when sizeof(int) > 2:
- result = result or (result shr 16)
- when sizeof(int) > 1:
- result = result or (result shr 8)
- result = result or (result shr 4)
- result = result or (result shr 2)
- result = result or (result shr 1)
- result += 1 + ord(x <= 0)
- proc sum*[T](x: openArray[T]): T {.noSideEffect.} =
- ## Computes the sum of the elements in ``x``.
- ##
- ## If ``x`` is empty, 0 is returned.
- ##
- ## See also:
- ## * `prod proc <#prod,openArray[T]>`_
- ## * `cumsum proc <#cumsum,openArray[T]>`_
- ## * `cumsummed proc <#cumsummed,openArray[T]>`_
- runnableExamples:
- doAssert sum([1, 2, 3, 4]) == 10
- doAssert sum([-1.5, 2.7, -0.1]) == 1.1
- for i in items(x): result = result + i
- proc prod*[T](x: openArray[T]): T {.noSideEffect.} =
- ## Computes the product of the elements in ``x``.
- ##
- ## If ``x`` is empty, 1 is returned.
- ##
- ## See also:
- ## * `sum proc <#sum,openArray[T]>`_
- ## * `fac proc <#fac,int>`_
- runnableExamples:
- doAssert prod([1, 2, 3, 4]) == 24
- doAssert prod([-4, 3, 5]) == -60
- result = 1.T
- for i in items(x): result = result * i
- proc cumsummed*[T](x: openArray[T]): seq[T] =
- ## Return cumulative (aka prefix) summation of ``x``.
- ##
- ## See also:
- ## * `sum proc <#sum,openArray[T]>`_
- ## * `cumsum proc <#cumsum,openArray[T]>`_ for the in-place version
- runnableExamples:
- let a = [1, 2, 3, 4]
- doAssert cumsummed(a) == @[1, 3, 6, 10]
- result.setLen(x.len)
- result[0] = x[0]
- for i in 1 ..< x.len: result[i] = result[i-1] + x[i]
- proc cumsum*[T](x: var openArray[T]) =
- ## Transforms ``x`` in-place (must be declared as `var`) into its
- ## cumulative (aka prefix) summation.
- ##
- ## See also:
- ## * `sum proc <#sum,openArray[T]>`_
- ## * `cumsummed proc <#cumsummed,openArray[T]>`_ for a version which
- ## returns cumsummed sequence
- runnableExamples:
- var a = [1, 2, 3, 4]
- cumsum(a)
- doAssert a == @[1, 3, 6, 10]
- for i in 1 ..< x.len: x[i] = x[i-1] + x[i]
- {.push noSideEffect.}
- when not defined(js): # C
- proc sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
- proc sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".}
- ## Computes the square root of ``x``.
- ##
- ## See also:
- ## * `cbrt proc <#cbrt,float64>`_ for cubic root
- ##
- ## .. code-block:: nim
- ## echo sqrt(4.0) ## 2.0
- ## echo sqrt(1.44) ## 1.2
- ## echo sqrt(-4.0) ## nan
- proc cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
- proc cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".}
- ## Computes the cubic root of ``x``.
- ##
- ## See also:
- ## * `sqrt proc <#sqrt,float64>`_ for square root
- ##
- ## .. code-block:: nim
- ## echo cbrt(8.0) ## 2.0
- ## echo cbrt(2.197) ## 1.3
- ## echo cbrt(-27.0) ## -3.0
- proc ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
- proc ln*(x: float64): float64 {.importc: "log", header: "<math.h>".}
- ## Computes the `natural logarithm <https://en.wikipedia.org/wiki/Natural_logarithm>`_
- ## of ``x``.
- ##
- ## See also:
- ## * `log proc <#log,T,T>`_
- ## * `log10 proc <#log10,float64>`_
- ## * `log2 proc <#log2,float64>`_
- ## * `exp proc <#exp,float64>`_
- ##
- ## .. code-block:: nim
- ## echo ln(exp(4.0)) ## 4.0
- ## echo ln(1.0)) ## 0.0
- ## echo ln(0.0) ## -inf
- ## echo ln(-7.0) ## nan
- else: # JS
- proc sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
- proc sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
- proc cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.}
- proc cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.}
- proc ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
- proc ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
- proc log*[T: SomeFloat](x, base: T): T =
- ## Computes the logarithm of ``x`` to base ``base``.
- ##
- ## See also:
- ## * `ln proc <#ln,float64>`_
- ## * `log10 proc <#log10,float64>`_
- ## * `log2 proc <#log2,float64>`_
- ## * `exp proc <#exp,float64>`_
- ##
- ## .. code-block:: nim
- ## echo log(9.0, 3.0) ## 2.0
- ## echo log(32.0, 2.0) ## 5.0
- ## echo log(0.0, 2.0) ## -inf
- ## echo log(-7.0, 4.0) ## nan
- ## echo log(8.0, -2.0) ## nan
- ln(x) / ln(base)
- when not defined(js): # C
- proc log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
- proc log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".}
- ## Computes the common logarithm (base 10) of ``x``.
- ##
- ## See also:
- ## * `ln proc <#ln,float64>`_
- ## * `log proc <#log,T,T>`_
- ## * `log2 proc <#log2,float64>`_
- ## * `exp proc <#exp,float64>`_
- ##
- ## .. code-block:: nim
- ## echo log10(100.0) ## 2.0
- ## echo log10(0.0) ## nan
- ## echo log10(-100.0) ## -inf
- proc exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
- proc exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".}
- ## Computes the exponential function of ``x`` (e^x).
- ##
- ## See also:
- ## * `ln proc <#ln,float64>`_
- ## * `log proc <#log,T,T>`_
- ## * `log10 proc <#log10,float64>`_
- ## * `log2 proc <#log2,float64>`_
- ##
- ## .. code-block:: nim
- ## echo exp(1.0) ## 2.718281828459045
- ## echo ln(exp(4.0)) ## 4.0
- ## echo exp(0.0) ## 1.0
- ## echo exp(-1.0) ## 0.3678794411714423
- proc sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
- proc sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".}
- ## Computes the sine of ``x``.
- ##
- ## See also:
- ## * `cos proc <#cos,float64>`_
- ## * `tan proc <#tan,float64>`_
- ## * `arcsin proc <#arcsin,float64>`_
- ## * `sinh proc <#sinh,float64>`_
- ##
- ## .. code-block:: nim
- ## echo sin(PI / 6) ## 0.4999999999999999
- ## echo sin(degToRad(90.0)) ## 1.0
- proc cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
- proc cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".}
- ## Computes the cosine of ``x``.
- ##
- ## See also:
- ## * `sin proc <#sin,float64>`_
- ## * `tan proc <#tan,float64>`_
- ## * `arccos proc <#arccos,float64>`_
- ## * `cosh proc <#cosh,float64>`_
- ##
- ## .. code-block:: nim
- ## echo cos(2 * PI) ## 1.0
- ## echo cos(degToRad(60.0)) ## 0.5000000000000001
- proc tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
- proc tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".}
- ## Computes the tangent of ``x``.
- ##
- ## See also:
- ## * `sin proc <#sin,float64>`_
- ## * `cos proc <#cos,float64>`_
- ## * `arctan proc <#arctan,float64>`_
- ## * `tanh proc <#tanh,float64>`_
- ##
- ## .. code-block:: nim
- ## echo tan(degToRad(45.0)) ## 0.9999999999999999
- ## echo tan(PI / 4) ## 0.9999999999999999
- proc sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
- proc sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".}
- ## Computes the `hyperbolic sine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
- ##
- ## See also:
- ## * `cosh proc <#cosh,float64>`_
- ## * `tanh proc <#tanh,float64>`_
- ## * `arcsinh proc <#arcsinh,float64>`_
- ## * `sin proc <#sin,float64>`_
- ##
- ## .. code-block:: nim
- ## echo sinh(0.0) ## 0.0
- ## echo sinh(1.0) ## 1.175201193643801
- ## echo sinh(degToRad(90.0)) ## 2.301298902307295
- proc cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
- proc cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".}
- ## Computes the `hyperbolic cosine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
- ##
- ## See also:
- ## * `sinh proc <#sinh,float64>`_
- ## * `tanh proc <#tanh,float64>`_
- ## * `arccosh proc <#arccosh,float64>`_
- ## * `cos proc <#cos,float64>`_
- ##
- ## .. code-block:: nim
- ## echo cosh(0.0) ## 1.0
- ## echo cosh(1.0) ## 1.543080634815244
- ## echo cosh(degToRad(90.0)) ## 2.509178478658057
- proc tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
- proc tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".}
- ## Computes the `hyperbolic tangent <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
- ##
- ## See also:
- ## * `sinh proc <#sinh,float64>`_
- ## * `cosh proc <#cosh,float64>`_
- ## * `arctanh proc <#arctanh,float64>`_
- ## * `tan proc <#tan,float64>`_
- ##
- ## .. code-block:: nim
- ## echo tanh(0.0) ## 0.0
- ## echo tanh(1.0) ## 0.7615941559557649
- ## echo tanh(degToRad(90.0)) ## 0.9171523356672744
- proc arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
- proc arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".}
- ## Computes the arc cosine of ``x``.
- ##
- ## See also:
- ## * `arcsin proc <#arcsin,float64>`_
- ## * `arctan proc <#arctan,float64>`_
- ## * `arctan2 proc <#arctan2,float64,float64>`_
- ## * `cos proc <#cos,float64>`_
- ##
- ## .. code-block:: nim
- ## echo radToDeg(arccos(0.0)) ## 90.0
- ## echo radToDeg(arccos(1.0)) ## 0.0
- proc arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
- proc arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".}
- ## Computes the arc sine of ``x``.
- ##
- ## See also:
- ## * `arccos proc <#arccos,float64>`_
- ## * `arctan proc <#arctan,float64>`_
- ## * `arctan2 proc <#arctan2,float64,float64>`_
- ## * `sin proc <#sin,float64>`_
- ##
- ## .. code-block:: nim
- ## echo radToDeg(arcsin(0.0)) ## 0.0
- ## echo radToDeg(arcsin(1.0)) ## 90.0
- proc arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
- proc arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".}
- ## Calculate the arc tangent of ``x``.
- ##
- ## See also:
- ## * `arcsin proc <#arcsin,float64>`_
- ## * `arccos proc <#arccos,float64>`_
- ## * `arctan2 proc <#arctan2,float64,float64>`_
- ## * `tan proc <#tan,float64>`_
- ##
- ## .. code-block:: nim
- ## echo arctan(1.0) ## 0.7853981633974483
- ## echo radToDeg(arctan(1.0)) ## 45.0
- proc arctan2*(y, x: float32): float32 {.importc: "atan2f",
- header: "<math.h>".}
- proc arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".}
- ## Calculate the arc tangent of ``y`` / ``x``.
- ##
- ## It produces correct results even when the resulting angle is near
- ## pi/2 or -pi/2 (``x`` near 0).
- ##
- ## See also:
- ## * `arcsin proc <#arcsin,float64>`_
- ## * `arccos proc <#arccos,float64>`_
- ## * `arctan proc <#arctan,float64>`_
- ## * `tan proc <#tan,float64>`_
- ##
- ## .. code-block:: nim
- ## echo arctan2(1.0, 0.0) ## 1.570796326794897
- ## echo radToDeg(arctan2(1.0, 0.0)) ## 90.0
- proc arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
- proc arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
- ## Computes the inverse hyperbolic sine of ``x``.
- proc arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
- proc arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
- ## Computes the inverse hyperbolic cosine of ``x``.
- proc arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
- proc arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
- ## Computes the inverse hyperbolic tangent of ``x``.
- else: # JS
- proc log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
- proc log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
- proc log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
- proc log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
- proc exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
- proc exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
- proc sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
- proc cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
- proc tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}
- proc sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
- proc cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
- proc tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}
- proc arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
- proc arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
- proc arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
- proc arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.}
- proc arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
- proc arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
- proc arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
- proc cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
- ## Computes the cotangent of ``x`` (1 / tan(x)).
- proc sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
- ## Computes the secant of ``x`` (1 / cos(x)).
- proc csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
- ## Computes the cosecant of ``x`` (1 / sin(x)).
- proc coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
- ## Computes the hyperbolic cotangent of ``x`` (1 / tanh(x)).
- proc sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
- ## Computes the hyperbolic secant of ``x`` (1 / cosh(x)).
- proc csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
- ## Computes the hyperbolic cosecant of ``x`` (1 / sinh(x)).
- proc arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
- ## Computes the inverse cotangent of ``x``.
- proc arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
- ## Computes the inverse secant of ``x``.
- proc arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
- ## Computes the inverse cosecant of ``x``.
- proc arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
- ## Computes the inverse hyperbolic cotangent of ``x``.
- proc arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
- ## Computes the inverse hyperbolic secant of ``x``.
- proc arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
- ## Computes the inverse hyperbolic cosecant of ``x``.
- const windowsCC89 = defined(windows) and defined(bcc)
- when not defined(js): # C
- proc hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
- proc hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".}
- ## Computes the hypotenuse of a right-angle triangle with ``x`` and
- ## ``y`` as its base and height. Equivalent to ``sqrt(x*x + y*y)``.
- ##
- ## .. code-block:: nim
- ## echo hypot(4.0, 3.0) ## 5.0
- proc pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
- proc pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".}
- ## Computes x to power raised of y.
- ##
- ## To compute power between integers (e.g. 2^6), use `^ proc<#^,T,Natural>`_.
- ##
- ## See also:
- ## * `^ proc<#^,T,Natural>`_
- ## * `sqrt proc <#sqrt,float64>`_
- ## * `cbrt proc <#cbrt,float64>`_
- ##
- ## .. code-block:: nim
- ## echo pow(100, 1.5) ## 1000.0
- ## echo pow(16.0, 0.5) ## 4.0
- # TODO: add C89 version on windows
- when not windowsCC89:
- proc erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
- proc erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
- ## Computes the `error function <https://en.wikipedia.org/wiki/Error_function>`_ for ``x``.
- ##
- ## Note: Not available for JS backend.
- proc erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
- proc erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
- ## Computes the `complementary error function <https://en.wikipedia.org/wiki/Error_function#Complementary_error_function>`_ for ``x``.
- ##
- ## Note: Not available for JS backend.
- proc gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
- proc gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".}
- ## Computes the the `gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ for ``x``.
- ##
- ## Note: Not available for JS backend.
- ##
- ## See also:
- ## * `lgamma proc <#lgamma,float64>`_ for a natural log of gamma function
- ##
- ## .. code-block:: Nim
- ## echo gamma(1.0) # 1.0
- ## echo gamma(4.0) # 6.0
- ## echo gamma(11.0) # 3628800.0
- ## echo gamma(-1.0) # nan
- proc lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
- proc lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".}
- ## Computes the natural log of the gamma function for ``x``.
- ##
- ## Note: Not available for JS backend.
- ##
- ## See also:
- ## * `gamma proc <#gamma,float64>`_ for gamma function
- ##
- ## .. code-block:: Nim
- ## echo lgamma(1.0) # 1.0
- ## echo lgamma(4.0) # 1.791759469228055
- ## echo lgamma(11.0) # 15.10441257307552
- ## echo lgamma(-1.0) # inf
- proc floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
- proc floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".}
- ## Computes the floor function (i.e., the largest integer not greater than ``x``).
- ##
- ## See also:
- ## * `ceil proc <#ceil,float64>`_
- ## * `round proc <#round,float64>`_
- ## * `trunc proc <#trunc,float64>`_
- ##
- ## .. code-block:: nim
- ## echo floor(2.1) ## 2.0
- ## echo floor(2.9) ## 2.0
- ## echo floor(-3.5) ## -4.0
- proc ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
- proc ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".}
- ## Computes the ceiling function (i.e., the smallest integer not smaller
- ## than ``x``).
- ##
- ## See also:
- ## * `floor proc <#floor,float64>`_
- ## * `round proc <#round,float64>`_
- ## * `trunc proc <#trunc,float64>`_
- ##
- ## .. code-block:: nim
- ## echo ceil(2.1) ## 3.0
- ## echo ceil(2.9) ## 3.0
- ## echo ceil(-2.1) ## -2.0
- when windowsCC89:
- # MSVC 2010 don't have trunc/truncf
- # this implementation was inspired by Go-lang Math.Trunc
- proc truncImpl(f: float64): float64 =
- const
- mask: uint64 = 0x7FF
- shift: uint64 = 64 - 12
- bias: uint64 = 0x3FF
- if f < 1:
- if f < 0: return -truncImpl(-f)
- elif f == 0: return f # Return -0 when f == -0
- else: return 0
- var x = cast[uint64](f)
- let e = (x shr shift) and mask - bias
- # Keep the top 12+e bits, the integer part; clear the rest.
- if e < 64-12:
- x = x and (not (1'u64 shl (64'u64-12'u64-e) - 1'u64))
- result = cast[float64](x)
- proc truncImpl(f: float32): float32 =
- const
- mask: uint32 = 0xFF
- shift: uint32 = 32 - 9
- bias: uint32 = 0x7F
- if f < 1:
- if f < 0: return -truncImpl(-f)
- elif f == 0: return f # Return -0 when f == -0
- else: return 0
- var x = cast[uint32](f)
- let e = (x shr shift) and mask - bias
- # Keep the top 9+e bits, the integer part; clear the rest.
- if e < 32-9:
- x = x and (not (1'u32 shl (32'u32-9'u32-e) - 1'u32))
- result = cast[float32](x)
- proc trunc*(x: float64): float64 =
- if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
- result = truncImpl(x)
- proc trunc*(x: float32): float32 =
- if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
- result = truncImpl(x)
- proc round*[T: float32|float64](x: T): T =
- ## Windows compilers prior to MSVC 2012 do not implement 'round',
- ## 'roundl' or 'roundf'.
- result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
- else:
- proc round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
- proc round*(x: float64): float64 {.importc: "round", header: "<math.h>".}
- ## Rounds a float to zero decimal places.
- ##
- ## Used internally by the `round proc <#round,T,int>`_
- ## when the specified number of places is 0.
- ##
- ## See also:
- ## * `round proc <#round,T,int>`_ for rounding to the specific
- ## number of decimal places
- ## * `floor proc <#floor,float64>`_
- ## * `ceil proc <#ceil,float64>`_
- ## * `trunc proc <#trunc,float64>`_
- ##
- ## .. code-block:: nim
- ## echo round(3.4) ## 3.0
- ## echo round(3.5) ## 4.0
- ## echo round(4.5) ## 5.0
- proc trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
- proc trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".}
- ## Truncates ``x`` to the decimal point.
- ##
- ## See also:
- ## * `floor proc <#floor,float64>`_
- ## * `ceil proc <#ceil,float64>`_
- ## * `round proc <#round,float64>`_
- ##
- ## .. code-block:: nim
- ## echo trunc(PI) # 3.0
- ## echo trunc(-1.85) # -1.0
- proc `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
- proc `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".}
- ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
- ##
- ## See also:
- ## * `floorMod proc <#floorMod,T,T>`_ for Python-like (% operator) behavior
- ##
- ## .. code-block:: nim
- ## ( 6.5 mod 2.5) == 1.5
- ## (-6.5 mod 2.5) == -1.5
- ## ( 6.5 mod -2.5) == 1.5
- ## (-6.5 mod -2.5) == -1.5
- else: # JS
- proc hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.}
- proc hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.}
- proc pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.}
- proc pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
- proc floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
- proc floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
- proc ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
- proc ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
- proc round*(x: float): float {.importc: "Math.round", nodecl.}
- proc trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
- proc trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}
- proc `mod`*(x, y: float32): float32 {.importcpp: "# % #".}
- proc `mod`*(x, y: float64): float64 {.importcpp: "# % #".}
- ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
- ##
- ## .. code-block:: nim
- ## ( 6.5 mod 2.5) == 1.5
- ## (-6.5 mod 2.5) == -1.5
- ## ( 6.5 mod -2.5) == 1.5
- ## (-6.5 mod -2.5) == -1.5
- proc round*[T: float32|float64](x: T, places: int): T =
- ## Decimal rounding on a binary floating point number.
- ##
- ## This function is NOT reliable. Floating point numbers cannot hold
- ## non integer decimals precisely. If ``places`` is 0 (or omitted),
- ## round to the nearest integral value following normal mathematical
- ## rounding rules (e.g. ``round(54.5) -> 55.0``). If ``places`` is
- ## greater than 0, round to the given number of decimal places,
- ## e.g. ``round(54.346, 2) -> 54.350000000000001421…``. If ``places`` is negative, round
- ## to the left of the decimal place, e.g. ``round(537.345, -1) ->
- ## 540.0``
- ##
- ## .. code-block:: Nim
- ## echo round(PI, 2) ## 3.14
- ## echo round(PI, 4) ## 3.1416
- if places == 0:
- result = round(x)
- else:
- var mult = pow(10.0, places.T)
- result = round(x*mult)/mult
- proc floorDiv*[T: SomeInteger](x, y: T): T =
- ## Floor division is conceptually defined as ``floor(x / y)``.
- ##
- ## This is different from the `system.div <system.html#div,int,int>`_
- ## operator, which is defined as ``trunc(x / y)``.
- ## That is, ``div`` rounds towards ``0`` and ``floorDiv`` rounds down.
- ##
- ## See also:
- ## * `system.div proc <system.html#div,int,int>`_ for integer division
- ## * `floorMod proc <#floorMod,T,T>`_ for Python-like (% operator) behavior
- ##
- ## .. code-block:: nim
- ## echo floorDiv( 13, 3) # 4
- ## echo floorDiv(-13, 3) # -5
- ## echo floorDiv( 13, -3) # -5
- ## echo floorDiv(-13, -3) # 4
- result = x div y
- let r = x mod y
- if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1
- proc floorMod*[T: SomeNumber](x, y: T): T =
- ## Floor modulus is conceptually defined as ``x - (floorDiv(x, y) * y)``.
- ##
- ## This proc behaves the same as the ``%`` operator in Python.
- ##
- ## See also:
- ## * `mod proc <#mod,float64,float64>`_
- ## * `floorDiv proc <#floorDiv,T,T>`_
- ##
- ## .. code-block:: nim
- ## echo floorMod( 13, 3) # 1
- ## echo floorMod(-13, 3) # 2
- ## echo floorMod( 13, -3) # -2
- ## echo floorMod(-13, -3) # -1
- result = x mod y
- if (result > 0 and y < 0) or (result < 0 and y > 0): result += y
- when not defined(js):
- proc c_frexp*(x: float32, exponent: var int32): float32 {.
- importc: "frexp", header: "<math.h>".}
- proc c_frexp*(x: float64, exponent: var int32): float64 {.
- importc: "frexp", header: "<math.h>".}
- proc frexp*[T, U](x: T, exponent: var U): T =
- ## Split a number into mantissa and exponent.
- ##
- ## ``frexp`` calculates the mantissa m (a float greater than or equal to 0.5
- ## and less than 1) and the integer value n such that ``x`` (the original
- ## float value) equals ``m * 2**n``. frexp stores n in `exponent` and returns
- ## m.
- ##
- runnableExamples:
- var x: int
- doAssert frexp(5.0, x) == 0.625
- doAssert x == 3
- var exp: int32
- result = c_frexp(x, exp)
- exponent = exp
- when windowsCC89:
- # taken from Go-lang Math.Log2
- const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
- template log2Impl[T](x: T): T =
- var exp: int32
- var frac = frexp(x, exp)
- # Make sure exact powers of two give an exact answer.
- # Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1.
- if frac == 0.5: return T(exp - 1)
- log10(frac)*(1/ln2) + T(exp)
- proc log2*(x: float32): float32 = log2Impl(x)
- proc log2*(x: float64): float64 = log2Impl(x)
- ## Log2 returns the binary logarithm of x.
- ## The special cases are the same as for Log.
- else:
- proc log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
- proc log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".}
- ## Computes the binary logarithm (base 2) of ``x``.
- ##
- ## See also:
- ## * `log proc <#log,T,T>`_
- ## * `log10 proc <#log10,float64>`_
- ## * `ln proc <#ln,float64>`_
- ## * `exp proc <#exp,float64>`_
- ##
- ## .. code-block:: Nim
- ## echo log2(8.0) # 3.0
- ## echo log2(1.0) # 0.0
- ## echo log2(0.0) # -inf
- ## echo log2(-2.0) # nan
- else:
- proc frexp*[T: float32|float64](x: T, exponent: var int): T =
- if x == 0.0:
- exponent = 0
- result = 0.0
- elif x < 0.0:
- result = -frexp(-x, exponent)
- else:
- var ex = trunc(log2(x))
- exponent = int(ex)
- result = x / pow(2.0, ex)
- if abs(result) >= 1:
- inc(exponent)
- result = result / 2
- if exponent == 1024 and result == 0.0:
- result = 0.99999999999999988898
- proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
- ## Breaks ``x`` into an integer and a fractional part.
- ##
- ## Returns a tuple containing ``intpart`` and ``floatpart`` representing
- ## the integer part and the fractional part respectively.
- ##
- ## Both parts have the same sign as ``x``. Analogous to the ``modf``
- ## function in C.
- ##
- runnableExamples:
- doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25)
- doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73)
- var
- absolute: T
- absolute = abs(x)
- result.intpart = floor(absolute)
- result.floatpart = absolute - result.intpart
- if x < 0:
- result.intpart = -result.intpart
- result.floatpart = -result.floatpart
- {.pop.}
- proc degToRad*[T: float32|float64](d: T): T {.inline.} =
- ## Convert from degrees to radians.
- ##
- ## See also:
- ## * `radToDeg proc <#radToDeg,T>`_
- ##
- runnableExamples:
- doAssert degToRad(180.0) == 3.141592653589793
- result = T(d) * RadPerDeg
- proc radToDeg*[T: float32|float64](d: T): T {.inline.} =
- ## Convert from radians to degrees.
- ##
- ## See also:
- ## * `degToRad proc <#degToRad,T>`_
- ##
- runnableExamples:
- doAssert radToDeg(2 * PI) == 360.0
- result = T(d) / RadPerDeg
- proc sgn*[T: SomeNumber](x: T): int {.inline.} =
- ## Sign function.
- ##
- ## Returns:
- ## * `-1` for negative numbers and ``NegInf``,
- ## * `1` for positive numbers and ``Inf``,
- ## * `0` for positive zero, negative zero and ``NaN``
- ##
- runnableExamples:
- doAssert sgn(5) == 1
- doAssert sgn(0) == 0
- doAssert sgn(-4.1) == -1
- ord(T(0) < x) - ord(x < T(0))
- {.pop.}
- {.pop.}
- proc `^`*[T: SomeNumber](x: T, y: Natural): T =
- ## Computes ``x`` to the power ``y``.
- ##
- ## Exponent ``y`` must be non-negative, use
- ## `pow proc <#pow,float64,float64>`_ for negative exponents.
- ##
- ## See also:
- ## * `pow proc <#pow,float64,float64>`_ for negative exponent or
- ## floats
- ## * `sqrt proc <#sqrt,float64>`_
- ## * `cbrt proc <#cbrt,float64>`_
- ##
- runnableExamples:
- assert -3.0^0 == 1.0
- assert -3^1 == -3
- assert -3^2 == 9
- assert -3.0^3 == -27.0
- assert -3.0^4 == 81.0
- case y
- of 0: result = 1
- of 1: result = x
- of 2: result = x * x
- of 3: result = x * x * x
- else:
- var (x, y) = (x, y)
- result = 1
- while true:
- if (y and 1) != 0:
- result *= x
- y = y shr 1
- if y == 0:
- break
- x *= x
- proc gcd*[T](x, y: T): T =
- ## Computes the greatest common (positive) divisor of ``x`` and ``y``.
- ##
- ## Note that for floats, the result cannot always be interpreted as
- ## "greatest decimal `z` such that ``z*N == x and z*M == y``
- ## where N and M are positive integers."
- ##
- ## See also:
- ## * `gcd proc <#gcd,SomeInteger,SomeInteger>`_ for integer version
- ## * `lcm proc <#lcm,T,T>`_
- runnableExamples:
- doAssert gcd(13.5, 9.0) == 4.5
- var (x, y) = (x, y)
- while y != 0:
- x = x mod y
- swap x, y
- abs x
- proc gcd*(x, y: SomeInteger): SomeInteger =
- ## Computes the greatest common (positive) divisor of ``x`` and ``y``,
- ## using binary GCD (aka Stein's) algorithm.
- ##
- ## See also:
- ## * `gcd proc <#gcd,T,T>`_ for floats version
- ## * `lcm proc <#lcm,T,T>`_
- runnableExamples:
- doAssert gcd(12, 8) == 4
- doAssert gcd(17, 63) == 1
- when x is SomeSignedInt:
- var x = abs(x)
- else:
- var x = x
- when y is SomeSignedInt:
- var y = abs(y)
- else:
- var y = y
- if x == 0:
- return y
- if y == 0:
- return x
- let shift = countTrailingZeroBits(x or y)
- y = y shr countTrailingZeroBits(y)
- while x != 0:
- x = x shr countTrailingZeroBits(x)
- if y > x:
- swap y, x
- x -= y
- y shl shift
- proc gcd*[T](x: openArray[T]): T {.since: (1, 1).} =
- ## Computes the greatest common (positive) divisor of the elements of ``x``.
- ##
- ## See also:
- ## * `gcd proc <#gcd,T,T>`_ for integer version
- runnableExamples:
- doAssert gcd(@[13.5, 9.0]) == 4.5
- result = x[0]
- var i = 1
- while i < x.len:
- result = gcd(result, x[i])
- inc(i)
- proc lcm*[T](x, y: T): T =
- ## Computes the least common multiple of ``x`` and ``y``.
- ##
- ## See also:
- ## * `gcd proc <#gcd,T,T>`_
- runnableExamples:
- doAssert lcm(24, 30) == 120
- doAssert lcm(13, 39) == 39
- x div gcd(x, y) * y
- proc lcm*[T](x: openArray[T]): T {.since: (1, 1).} =
- ## Computes the least common multiple of the elements of ``x``.
- ##
- ## See also:
- ## * `gcd proc <#gcd,T,T>`_ for integer version
- runnableExamples:
- doAssert lcm(@[24, 30]) == 120
- result = x[0]
- var i = 1
- while i < x.len:
- result = lcm(result, x[i])
- inc(i)
- when isMainModule and not defined(js) and not windowsCC89:
- # Check for no side effect annotation
- proc mySqrt(num: float): float {.noSideEffect.} =
- return sqrt(num)
- # check gamma function
- assert(gamma(5.0) == 24.0) # 4!
- assert(lgamma(1.0) == 0.0) # ln(1.0) == 0.0
- assert(erf(6.0) > erf(5.0))
- assert(erfc(6.0) < erfc(5.0))
- when isMainModule:
- # Function for approximate comparison of floats
- proc `==~`(x, y: float): bool = (abs(x-y) < 1e-9)
- block: # prod
- doAssert prod([1, 2, 3, 4]) == 24
- doAssert prod([1.5, 3.4]) == 5.1
- let x: seq[float] = @[]
- doAssert prod(x) == 1.0
- block: # round() tests
- # Round to 0 decimal places
- doAssert round(54.652) ==~ 55.0
- doAssert round(54.352) ==~ 54.0
- doAssert round(-54.652) ==~ -55.0
- doAssert round(-54.352) ==~ -54.0
- doAssert round(0.0) ==~ 0.0
- block: # splitDecimal() tests
- doAssert splitDecimal(54.674).intpart ==~ 54.0
- doAssert splitDecimal(54.674).floatpart ==~ 0.674
- doAssert splitDecimal(-693.4356).intpart ==~ -693.0
- doAssert splitDecimal(-693.4356).floatpart ==~ -0.4356
- doAssert splitDecimal(0.0).intpart ==~ 0.0
- doAssert splitDecimal(0.0).floatpart ==~ 0.0
- block: # trunc tests for vcc
- doAssert(trunc(-1.1) == -1)
- doAssert(trunc(1.1) == 1)
- doAssert(trunc(-0.1) == -0)
- doAssert(trunc(0.1) == 0)
- #special case
- doAssert(classify(trunc(1e1000000)) == fcInf)
- doAssert(classify(trunc(-1e1000000)) == fcNegInf)
- doAssert(classify(trunc(0.0/0.0)) == fcNan)
- doAssert(classify(trunc(0.0)) == fcZero)
- #trick the compiler to produce signed zero
- let
- f_neg_one = -1.0
- f_zero = 0.0
- f_nan = f_zero / f_zero
- doAssert(classify(trunc(f_neg_one*f_zero)) == fcNegZero)
- doAssert(trunc(-1.1'f32) == -1)
- doAssert(trunc(1.1'f32) == 1)
- doAssert(trunc(-0.1'f32) == -0)
- doAssert(trunc(0.1'f32) == 0)
- doAssert(classify(trunc(1e1000000'f32)) == fcInf)
- doAssert(classify(trunc(-1e1000000'f32)) == fcNegInf)
- doAssert(classify(trunc(f_nan.float32)) == fcNan)
- doAssert(classify(trunc(0.0'f32)) == fcZero)
- block: # sgn() tests
- assert sgn(1'i8) == 1
- assert sgn(1'i16) == 1
- assert sgn(1'i32) == 1
- assert sgn(1'i64) == 1
- assert sgn(1'u8) == 1
- assert sgn(1'u16) == 1
- assert sgn(1'u32) == 1
- assert sgn(1'u64) == 1
- assert sgn(-12342.8844'f32) == -1
- assert sgn(123.9834'f64) == 1
- assert sgn(0'i32) == 0
- assert sgn(0'f32) == 0
- assert sgn(NegInf) == -1
- assert sgn(Inf) == 1
- assert sgn(NaN) == 0
- block: # fac() tests
- try:
- discard fac(-1)
- except AssertionDefect:
- discard
- doAssert fac(0) == 1
- doAssert fac(1) == 1
- doAssert fac(2) == 2
- doAssert fac(3) == 6
- doAssert fac(4) == 24
- block: # floorMod/floorDiv
- doAssert floorDiv(8, 3) == 2
- doAssert floorMod(8, 3) == 2
- doAssert floorDiv(8, -3) == -3
- doAssert floorMod(8, -3) == -1
- doAssert floorDiv(-8, 3) == -3
- doAssert floorMod(-8, 3) == 1
- doAssert floorDiv(-8, -3) == 2
- doAssert floorMod(-8, -3) == -2
- doAssert floorMod(8.0, -3.0) ==~ -1.0
- doAssert floorMod(-8.5, 3.0) ==~ 0.5
- block: # log
- doAssert log(4.0, 3.0) ==~ ln(4.0) / ln(3.0)
- doAssert log2(8.0'f64) == 3.0'f64
- doAssert log2(4.0'f64) == 2.0'f64
- doAssert log2(2.0'f64) == 1.0'f64
- doAssert log2(1.0'f64) == 0.0'f64
- doAssert classify(log2(0.0'f64)) == fcNegInf
- doAssert log2(8.0'f32) == 3.0'f32
- doAssert log2(4.0'f32) == 2.0'f32
- doAssert log2(2.0'f32) == 1.0'f32
- doAssert log2(1.0'f32) == 0.0'f32
- doAssert classify(log2(0.0'f32)) == fcNegInf
|