123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2016 Yuriy Glukhov
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- ##[
- The `heapqueue` module implements a
- `heap data structure<https://en.wikipedia.org/wiki/Heap_(data_structure)>`_
- that can be used as a
- `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_.
- Heaps are arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]` for
- all `k`, counting elements from 0. The interesting property of a heap is that
- `a[0]` is always its smallest element.
- Basic usage
- -----------
- .. code-block:: Nim
- import heapqueue
- var heap = initHeapQueue[int]()
- heap.push(8)
- heap.push(2)
- heap.push(5)
- # The first element is the lowest element
- assert heap[0] == 2
- # Remove and return the lowest element
- assert heap.pop() == 2
- # The lowest element remaining is 5
- assert heap[0] == 5
- Usage with custom object
- ------------------------
- To use a `HeapQueue` with a custom object, the `<` operator must be
- implemented.
- .. code-block:: Nim
- import heapqueue
- type Job = object
- priority: int
- proc `<`(a, b: Job): bool = a.priority < b.priority
- var jobs = initHeapQueue[Job]()
- jobs.push(Job(priority: 1))
- jobs.push(Job(priority: 2))
- assert jobs[0].priority == 1
- ]##
- type HeapQueue*[T] = object
- ## A heap queue, commonly known as a priority queue.
- data: seq[T]
- proc initHeapQueue*[T](): HeapQueue[T] =
- ## Create a new empty heap.
- discard
- proc len*[T](heap: HeapQueue[T]): int {.inline.} =
- ## Return the number of elements of `heap`.
- heap.data.len
- proc `[]`*[T](heap: HeapQueue[T], i: Natural): T {.inline.} =
- ## Access the i-th element of `heap`.
- heap.data[i]
- proc heapCmp[T](x, y: T): bool {.inline.} =
- return (x < y)
- proc siftdown[T](heap: var HeapQueue[T], startpos, p: int) =
- ## 'heap' is a heap at all indices >= startpos, except possibly for pos. pos
- ## is the index of a leaf with a possibly out-of-order value. Restore the
- ## heap invariant.
- var pos = p
- var newitem = heap[pos]
- # Follow the path to the root, moving parents down until finding a place
- # newitem fits.
- while pos > startpos:
- let parentpos = (pos - 1) shr 1
- let parent = heap[parentpos]
- if heapCmp(newitem, parent):
- heap.data[pos] = parent
- pos = parentpos
- else:
- break
- heap.data[pos] = newitem
- proc siftup[T](heap: var HeapQueue[T], p: int) =
- let endpos = len(heap)
- var pos = p
- let startpos = pos
- let newitem = heap[pos]
- # Bubble up the smaller child until hitting a leaf.
- var childpos = 2*pos + 1 # leftmost child position
- while childpos < endpos:
- # Set childpos to index of smaller child.
- let rightpos = childpos + 1
- if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
- childpos = rightpos
- # Move the smaller child up.
- heap.data[pos] = heap[childpos]
- pos = childpos
- childpos = 2*pos + 1
- # The leaf at pos is empty now. Put newitem there, and bubble it up
- # to its final resting place (by sifting its parents down).
- heap.data[pos] = newitem
- siftdown(heap, startpos, pos)
- proc push*[T](heap: var HeapQueue[T], item: T) =
- ## Push `item` onto heap, maintaining the heap invariant.
- heap.data.add(item)
- siftdown(heap, 0, len(heap)-1)
- proc pop*[T](heap: var HeapQueue[T]): T =
- ## Pop and return the smallest item from `heap`,
- ## maintaining the heap invariant.
- let lastelt = heap.data.pop()
- if heap.len > 0:
- result = heap[0]
- heap.data[0] = lastelt
- siftup(heap, 0)
- else:
- result = lastelt
- proc del*[T](heap: var HeapQueue[T], index: Natural) =
- ## Removes the element at `index` from `heap`, maintaining the heap invariant.
- swap(heap.data[^1], heap.data[index])
- let newLen = heap.len - 1
- heap.data.setLen(newLen)
- if index < newLen:
- heap.siftup(index)
- proc replace*[T](heap: var HeapQueue[T], item: T): T =
- ## Pop and return the current smallest value, and add the new item.
- ## This is more efficient than pop() followed by push(), and can be
- ## more appropriate when using a fixed-size heap. Note that the value
- ## returned may be larger than item! That constrains reasonable uses of
- ## this routine unless written as part of a conditional replacement:
- ##
- ## .. code-block:: nim
- ## if item > heap[0]:
- ## item = replace(heap, item)
- result = heap[0]
- heap.data[0] = item
- siftup(heap, 0)
- proc pushpop*[T](heap: var HeapQueue[T], item: T): T =
- ## Fast version of a push followed by a pop.
- if heap.len > 0 and heapCmp(heap[0], item):
- swap(item, heap[0])
- siftup(heap, 0)
- return item
- proc clear*[T](heap: var HeapQueue[T]) =
- ## Remove all elements from `heap`, making it empty.
- runnableExamples:
- var heap = initHeapQueue[int]()
- heap.push(1)
- heap.clear()
- assert heap.len == 0
- heap.data.setLen(0)
- proc `$`*[T](heap: HeapQueue[T]): string =
- ## Turn a heap into its string representation.
- runnableExamples:
- var heap = initHeapQueue[int]()
- heap.push(1)
- heap.push(2)
- assert $heap == "[1, 2]"
- result = "["
- for x in heap.data:
- if result.len > 1: result.add(", ")
- result.addQuoted(x)
- result.add("]")
- proc newHeapQueue*[T](): HeapQueue[T] {.deprecated:
- "Deprecated since v0.20.0: use 'initHeapQueue' instead.".} =
- initHeapQueue[T]()
- proc newHeapQueue*[T](heap: var HeapQueue[T]) {.deprecated:
- "Deprecated since v0.20.0: use 'clear' instead.".} =
- heap.clear()
- when isMainModule:
- proc toSortedSeq[T](h: HeapQueue[T]): seq[T] =
- var tmp = h
- result = @[]
- while tmp.len > 0:
- result.add(pop(tmp))
- block: # Simple sanity test
- var heap = initHeapQueue[int]()
- let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
- for item in data:
- push(heap, item)
- doAssert(heap[0] == 0)
- doAssert(heap.toSortedSeq == @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
- block: # Test del
- var heap = initHeapQueue[int]()
- let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
- for item in data: push(heap, item)
- heap.del(0)
- doAssert(heap[0] == 1)
- heap.del(heap.data.find(7))
- doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 5, 6, 8, 9])
- heap.del(heap.data.find(5))
- doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 6, 8, 9])
- heap.del(heap.data.find(6))
- doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 8, 9])
- heap.del(heap.data.find(2))
- doAssert(heap.toSortedSeq == @[1, 3, 4, 8, 9])
- block: # Test del last
- var heap = initHeapQueue[int]()
- let data = [1, 2, 3]
- for item in data: push(heap, item)
- heap.del(2)
- doAssert(heap.toSortedSeq == @[1, 2])
- heap.del(1)
- doAssert(heap.toSortedSeq == @[1])
- heap.del(0)
- doAssert(heap.toSortedSeq == @[])
|