123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2017 Nim Authors
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## This module implements a series of low level methods for bit manipulation.
- ## By default, this module use compiler intrinsics where possible to improve performance
- ## on supported compilers: ``GCC``, ``LLVM_GCC``, ``CLANG``, ``VCC``, ``ICC``.
- ##
- ## The module will fallback to pure nim procs incase the backend is not supported.
- ## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics.
- ##
- ## This module is also compatible with other backends: ``Javascript``, ``Nimscript``
- ## as well as the ``compiletime VM``.
- ##
- ## As a result of using optimized function/intrinsics some functions can return
- ## undefined results if the input is invalid. You can use the flag `noUndefinedBitOpts`
- ## to force predictable behaviour for all input, causing a small performance hit.
- ##
- ## At this time only `fastLog2`, `firstSetBit, `countLeadingZeroBits`, `countTrailingZeroBits`
- ## may return undefined and/or platform dependent value if given invalid input.
- proc bitnot*[T: SomeInteger](x: T): T {.magic: "BitnotI", noSideEffect.}
- ## Computes the `bitwise complement` of the integer `x`.
- proc bitand*[T: SomeInteger](x, y: T): T {.magic: "BitandI", noSideEffect.}
- ## Computes the `bitwise and` of numbers `x` and `y`.
- proc bitor*[T: SomeInteger](x, y: T): T {.magic: "BitorI", noSideEffect.}
- ## Computes the `bitwise or` of numbers `x` and `y`.
- proc bitxor*[T: SomeInteger](x, y: T): T {.magic: "BitxorI", noSideEffect.}
- ## Computes the `bitwise xor` of numbers `x` and `y`.
- const useBuiltins = not defined(noIntrinsicsBitOpts)
- const noUndefined = defined(noUndefinedBitOpts)
- const useGCC_builtins = (defined(gcc) or defined(llvm_gcc) or
- defined(clang)) and useBuiltins
- const useICC_builtins = defined(icc) and useBuiltins
- const useVCC_builtins = defined(vcc) and useBuiltins
- const arch64 = sizeof(int) == 8
- template toUnsigned(x: int8): uint8 = cast[uint8](x)
- template toUnsigned(x: int16): uint16 = cast[uint16](x)
- template toUnsigned(x: int32): uint32 = cast[uint32](x)
- template toUnsigned(x: int64): uint64 = cast[uint64](x)
- template toUnsigned(x: int): uint = cast[uint](x)
- template forwardImpl(impl, arg) {.dirty.} =
- when sizeof(x) <= 4:
- when x is SomeSignedInt:
- impl(cast[uint32](x.int32))
- else:
- impl(x.uint32)
- else:
- when x is SomeSignedInt:
- impl(cast[uint64](x.int64))
- else:
- impl(x.uint64)
- when defined(nimHasalignOf):
- import macros
- type BitsRange*[T] = range[0..sizeof(T)*8-1]
- ## Returns a range with all bit positions for type ``T``
- proc setMask*[T: SomeInteger](v: var T, mask: T) {.inline.} =
- ## Returns ``v``, with all the ``1`` bits from ``mask`` set to 1
- v = v or mask
- proc clearMask*[T: SomeInteger](v: var T, mask: T) {.inline.} =
- ## Returns ``v``, with all the ``1`` bits from ``mask`` set to 0
- v = v and not mask
- proc flipMask*[T: SomeInteger](v: var T, mask: T) {.inline.} =
- ## Returns ``v``, with all the ``1`` bits from ``mask`` flipped
- v = v xor mask
- proc setBit*[T: SomeInteger](v: var T, bit: BitsRange[T]) {.inline.} =
- ## Returns ``v``, with the bit at position ``bit`` set to 1
- v.setMask(1.T shl bit)
- proc clearBit*[T: SomeInteger](v: var T, bit: BitsRange[T]) {.inline.} =
- ## Returns ``v``, with the bit at position ``bit`` set to 0
- v.clearMask(1.T shl bit)
- proc flipBit*[T: SomeInteger](v: var T, bit: BitsRange[T]) {.inline.} =
- ## Returns ``v``, with the bit at position ``bit`` flipped
- v.flipMask(1.T shl bit)
- macro setBits*(v: typed, bits: varargs[typed]): untyped =
- ## Returns ``v``, with the bits at positions ``bits`` set to 1
- bits.expectKind(nnkBracket)
- result = newStmtList()
- for bit in bits:
- result.add newCall("setBit", v, bit)
- macro clearBits*(v: typed, bits: varargs[typed]): untyped =
- ## Returns ``v``, with the bits at positions ``bits`` set to 0
- bits.expectKind(nnkBracket)
- result = newStmtList()
- for bit in bits:
- result.add newCall("clearBit", v, bit)
- macro flipBits*(v: typed, bits: varargs[typed]): untyped =
- ## Returns ``v``, with the bits at positions ``bits`` set to 0
- bits.expectKind(nnkBracket)
- result = newStmtList()
- for bit in bits:
- result.add newCall("flipBit", v, bit)
- proc testBit*[T: SomeInteger](v: T, bit: BitsRange[T]): bool {.inline.} =
- ## Returns true if the bit in ``v`` at positions ``bit`` is set to 1
- let mask = 1.T shl bit
- return (v and mask) == mask
- # #### Pure Nim version ####
- proc firstSetBitNim(x: uint32): int {.inline, noSideEffect.} =
- ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
- # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
- const lookup: array[32, uint8] = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15,
- 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
- var v = x.uint32
- var k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v))
- result = 1 + lookup[uint32((v and k) * 0x077CB531'u32) shr 27].int
- proc firstSetBitNim(x: uint64): int {.inline, noSideEffect.} =
- ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
- # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
- var v = uint64(x)
- var k = uint32(v and 0xFFFFFFFF'u32)
- if k == 0:
- k = uint32(v shr 32'u32) and 0xFFFFFFFF'u32
- result = 32
- result += firstSetBitNim(k)
- proc fastlog2Nim(x: uint32): int {.inline, noSideEffect.} =
- ## Quickly find the log base 2 of a 32-bit or less integer.
- # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
- # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
- const lookup: array[32, uint8] = [0'u8, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18,
- 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31]
- var v = x.uint32
- v = v or v shr 1 # first round down to one less than a power of 2
- v = v or v shr 2
- v = v or v shr 4
- v = v or v shr 8
- v = v or v shr 16
- result = lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int
- proc fastlog2Nim(x: uint64): int {.inline, noSideEffect.} =
- ## Quickly find the log base 2 of a 64-bit integer.
- # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
- # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
- const lookup: array[64, uint8] = [0'u8, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54,
- 33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62,
- 57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31,
- 35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5, 63]
- var v = x.uint64
- v = v or v shr 1 # first round down to one less than a power of 2
- v = v or v shr 2
- v = v or v shr 4
- v = v or v shr 8
- v = v or v shr 16
- v = v or v shr 32
- result = lookup[(v * 0x03F6EAF2CD271461'u64) shr 58].int
- # sets.nim cannot import bitops, but bitops can use include
- # system/sets to eliminate code duplication. sets.nim defines
- # countBits32 and countBits64.
- include system/sets
- template countSetBitsNim(n: uint32): int = countBits32(n)
- template countSetBitsNim(n: uint64): int = countBits64(n)
- template parityImpl[T](value: T): int =
- # formula id from: https://graphics.stanford.edu/%7Eseander/bithacks.html#ParityParallel
- var v = value
- when sizeof(T) == 8:
- v = v xor (v shr 32)
- when sizeof(T) >= 4:
- v = v xor (v shr 16)
- when sizeof(T) >= 2:
- v = v xor (v shr 8)
- v = v xor (v shr 4)
- v = v and 0xf
- ((0x6996'u shr v) and 1).int
- when useGCC_builtins:
- # Returns the number of set 1-bits in value.
- proc builtin_popcount(x: cuint): cint {.importc: "__builtin_popcount", cdecl.}
- proc builtin_popcountll(x: culonglong): cint {.
- importc: "__builtin_popcountll", cdecl.}
- # Returns the bit parity in value
- proc builtin_parity(x: cuint): cint {.importc: "__builtin_parity", cdecl.}
- proc builtin_parityll(x: culonglong): cint {.importc: "__builtin_parityll", cdecl.}
- # Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero.
- proc builtin_ffs(x: cint): cint {.importc: "__builtin_ffs", cdecl.}
- proc builtin_ffsll(x: clonglong): cint {.importc: "__builtin_ffsll", cdecl.}
- # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
- proc builtin_clz(x: cuint): cint {.importc: "__builtin_clz", cdecl.}
- proc builtin_clzll(x: culonglong): cint {.importc: "__builtin_clzll", cdecl.}
- # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
- proc builtin_ctz(x: cuint): cint {.importc: "__builtin_ctz", cdecl.}
- proc builtin_ctzll(x: culonglong): cint {.importc: "__builtin_ctzll", cdecl.}
- elif useVCC_builtins:
- # Counts the number of one bits (population count) in a 16-, 32-, or 64-byte unsigned integer.
- proc builtin_popcnt16(a2: uint16): uint16 {.
- importc: "__popcnt16"header: "<intrin.h>", noSideEffect.}
- proc builtin_popcnt32(a2: uint32): uint32 {.
- importc: "__popcnt"header: "<intrin.h>", noSideEffect.}
- proc builtin_popcnt64(a2: uint64): uint64 {.
- importc: "__popcnt64"header: "<intrin.h>", noSideEffect.}
- # Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1).
- proc bitScanReverse(index: ptr culong, mask: culong): cuchar {.
- importc: "_BitScanReverse", header: "<intrin.h>", noSideEffect.}
- proc bitScanReverse64(index: ptr culong, mask: uint64): cuchar {.
- importc: "_BitScanReverse64", header: "<intrin.h>", noSideEffect.}
- # Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1).
- proc bitScanForward(index: ptr culong, mask: culong): cuchar {.
- importc: "_BitScanForward", header: "<intrin.h>", noSideEffect.}
- proc bitScanForward64(index: ptr culong, mask: uint64): cuchar {.
- importc: "_BitScanForward64", header: "<intrin.h>", noSideEffect.}
- template vcc_scan_impl(fnc: untyped; v: untyped): int =
- var index: culong
- discard fnc(index.addr, v)
- index.int
- elif useICC_builtins:
- # Intel compiler intrinsics: http://fulla.fnal.gov/intel/compiler_c/main_cls/intref_cls/common/intref_allia_misc.htm
- # see also: https://software.intel.com/en-us/node/523362
- # Count the number of bits set to 1 in an integer a, and return that count in dst.
- proc builtin_popcnt32(a: cint): cint {.
- importc: "_popcnt"header: "<immintrin.h>", noSideEffect.}
- proc builtin_popcnt64(a: uint64): cint {.
- importc: "_popcnt64"header: "<immintrin.h>", noSideEffect.}
- # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
- proc bitScanForward(p: ptr uint32, b: uint32): cuchar {.
- importc: "_BitScanForward", header: "<immintrin.h>", noSideEffect.}
- proc bitScanForward64(p: ptr uint32, b: uint64): cuchar {.
- importc: "_BitScanForward64", header: "<immintrin.h>", noSideEffect.}
- # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
- proc bitScanReverse(p: ptr uint32, b: uint32): cuchar {.
- importc: "_BitScanReverse", header: "<immintrin.h>", noSideEffect.}
- proc bitScanReverse64(p: ptr uint32, b: uint64): cuchar {.
- importc: "_BitScanReverse64", header: "<immintrin.h>", noSideEffect.}
- template icc_scan_impl(fnc: untyped; v: untyped): int =
- var index: uint32
- discard fnc(index.addr, v)
- index.int
- proc countSetBits*(x: SomeInteger): int {.inline, noSideEffect.} =
- ## Counts the set bits in integer. (also called `Hamming weight`:idx:.)
- # TODO: figure out if ICC support _popcnt32/_popcnt64 on platform without POPCNT.
- # like GCC and MSVC
- when x is SomeSignedInt:
- let x = x.toUnsigned
- when nimvm:
- result = forwardImpl(countSetBitsNim, x)
- else:
- when useGCC_builtins:
- when sizeof(x) <= 4: result = builtin_popcount(x.cuint).int
- else: result = builtin_popcountll(x.culonglong).int
- elif useVCC_builtins:
- when sizeof(x) <= 2: result = builtin_popcnt16(x.uint16).int
- elif sizeof(x) <= 4: result = builtin_popcnt32(x.uint32).int
- elif arch64: result = builtin_popcnt64(x.uint64).int
- else: result = builtin_popcnt32((x.uint64 and 0xFFFFFFFF'u64).uint32).int +
- builtin_popcnt32((x.uint64 shr 32'u64).uint32).int
- elif useICC_builtins:
- when sizeof(x) <= 4: result = builtin_popcnt32(x.cint).int
- elif arch64: result = builtin_popcnt64(x.uint64).int
- else: result = builtin_popcnt32((x.uint64 and 0xFFFFFFFF'u64).cint).int +
- builtin_popcnt32((x.uint64 shr 32'u64).cint).int
- else:
- when sizeof(x) <= 4: result = countSetBitsNim(x.uint32)
- else: result = countSetBitsNim(x.uint64)
- proc popcount*(x: SomeInteger): int {.inline, noSideEffect.} =
- ## Alias for for countSetBits (Hamming weight.)
- result = countSetBits(x)
- proc parityBits*(x: SomeInteger): int {.inline, noSideEffect.} =
- ## Calculate the bit parity in integer. If number of 1-bit
- ## is odd parity is 1, otherwise 0.
- # Can be used a base if creating ASM version.
- # https://stackoverflow.com/questions/21617970/how-to-check-if-value-has-even-parity-of-bits-or-odd
- when x is SomeSignedInt:
- let x = x.toUnsigned
- when nimvm:
- result = forwardImpl(parityImpl, x)
- else:
- when useGCC_builtins:
- when sizeof(x) <= 4: result = builtin_parity(x.uint32).int
- else: result = builtin_parityll(x.uint64).int
- else:
- when sizeof(x) <= 4: result = parityImpl(x.uint32)
- else: result = parityImpl(x.uint64)
- proc firstSetBit*(x: SomeInteger): int {.inline, noSideEffect.} =
- ## Returns the 1-based index of the least significant set bit of x.
- ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0,
- ## otherwise result is undefined.
- # GCC builtin 'builtin_ffs' already handle zero input.
- when x is SomeSignedInt:
- let x = x.toUnsigned
- when nimvm:
- when noUndefined:
- if x == 0:
- return 0
- result = forwardImpl(firstSetBitNim, x)
- else:
- when noUndefined and not useGCC_builtins:
- if x == 0:
- return 0
- when useGCC_builtins:
- when sizeof(x) <= 4: result = builtin_ffs(cast[cint](x.cuint)).int
- else: result = builtin_ffsll(cast[clonglong](x.culonglong)).int
- elif useVCC_builtins:
- when sizeof(x) <= 4:
- result = 1 + vcc_scan_impl(bitScanForward, x.culong)
- elif arch64:
- result = 1 + vcc_scan_impl(bitScanForward64, x.uint64)
- else:
- result = firstSetBitNim(x.uint64)
- elif useICC_builtins:
- when sizeof(x) <= 4:
- result = 1 + icc_scan_impl(bitScanForward, x.uint32)
- elif arch64:
- result = 1 + icc_scan_impl(bitScanForward64, x.uint64)
- else:
- result = firstSetBitNim(x.uint64)
- else:
- when sizeof(x) <= 4: result = firstSetBitNim(x.uint32)
- else: result = firstSetBitNim(x.uint64)
- proc fastLog2*(x: SomeInteger): int {.inline, noSideEffect.} =
- ## Quickly find the log base 2 of an integer.
- ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is -1,
- ## otherwise result is undefined.
- when x is SomeSignedInt:
- let x = x.toUnsigned
- when noUndefined:
- if x == 0:
- return -1
- when nimvm:
- result = forwardImpl(fastlog2Nim, x)
- else:
- when useGCC_builtins:
- when sizeof(x) <= 4: result = 31 - builtin_clz(x.uint32).int
- else: result = 63 - builtin_clzll(x.uint64).int
- elif useVCC_builtins:
- when sizeof(x) <= 4:
- result = vcc_scan_impl(bitScanReverse, x.culong)
- elif arch64:
- result = vcc_scan_impl(bitScanReverse64, x.uint64)
- else:
- result = fastlog2Nim(x.uint64)
- elif useICC_builtins:
- when sizeof(x) <= 4:
- result = icc_scan_impl(bitScanReverse, x.uint32)
- elif arch64:
- result = icc_scan_impl(bitScanReverse64, x.uint64)
- else:
- result = fastlog2Nim(x.uint64)
- else:
- when sizeof(x) <= 4: result = fastlog2Nim(x.uint32)
- else: result = fastlog2Nim(x.uint64)
- proc countLeadingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} =
- ## Returns the number of leading zero bits in integer.
- ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0,
- ## otherwise result is undefined.
- when x is SomeSignedInt:
- let x = x.toUnsigned
- when noUndefined:
- if x == 0:
- return 0
- when nimvm:
- result = sizeof(x)*8 - 1 - forwardImpl(fastlog2Nim, x)
- else:
- when useGCC_builtins:
- when sizeof(x) <= 4: result = builtin_clz(x.uint32).int - (32 - sizeof(x)*8)
- else: result = builtin_clzll(x.uint64).int
- else:
- when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint32)
- else: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint64)
- proc countTrailingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} =
- ## Returns the number of trailing zeros in integer.
- ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0,
- ## otherwise result is undefined.
- when x is SomeSignedInt:
- let x = x.toUnsigned
- when noUndefined:
- if x == 0:
- return 0
- when nimvm:
- result = firstSetBit(x) - 1
- else:
- when useGCC_builtins:
- when sizeof(x) <= 4: result = builtin_ctz(x.uint32).int
- else: result = builtin_ctzll(x.uint64).int
- else:
- result = firstSetBit(x) - 1
- proc rotateLeftBits*(value: uint8;
- amount: range[0..8]): uint8 {.inline, noSideEffect.} =
- ## Left-rotate bits in a 8-bits value.
- # using this form instead of the one below should handle any value
- # out of range as well as negative values.
- # result = (value shl amount) or (value shr (8 - amount))
- # taken from: https://en.wikipedia.org/wiki/Circular_shift#Implementing_circular_shifts
- let amount = amount and 7
- result = (value shl amount) or (value shr ( (-amount) and 7))
- proc rotateLeftBits*(value: uint16;
- amount: range[0..16]): uint16 {.inline, noSideEffect.} =
- ## Left-rotate bits in a 16-bits value.
- let amount = amount and 15
- result = (value shl amount) or (value shr ( (-amount) and 15))
- proc rotateLeftBits*(value: uint32;
- amount: range[0..32]): uint32 {.inline, noSideEffect.} =
- ## Left-rotate bits in a 32-bits value.
- let amount = amount and 31
- result = (value shl amount) or (value shr ( (-amount) and 31))
- proc rotateLeftBits*(value: uint64;
- amount: range[0..64]): uint64 {.inline, noSideEffect.} =
- ## Left-rotate bits in a 64-bits value.
- let amount = amount and 63
- result = (value shl amount) or (value shr ( (-amount) and 63))
- proc rotateRightBits*(value: uint8;
- amount: range[0..8]): uint8 {.inline, noSideEffect.} =
- ## Right-rotate bits in a 8-bits value.
- let amount = amount and 7
- result = (value shr amount) or (value shl ( (-amount) and 7))
- proc rotateRightBits*(value: uint16;
- amount: range[0..16]): uint16 {.inline, noSideEffect.} =
- ## Right-rotate bits in a 16-bits value.
- let amount = amount and 15
- result = (value shr amount) or (value shl ( (-amount) and 15))
- proc rotateRightBits*(value: uint32;
- amount: range[0..32]): uint32 {.inline, noSideEffect.} =
- ## Right-rotate bits in a 32-bits value.
- let amount = amount and 31
- result = (value shr amount) or (value shl ( (-amount) and 31))
- proc rotateRightBits*(value: uint64;
- amount: range[0..64]): uint64 {.inline, noSideEffect.} =
- ## Right-rotate bits in a 64-bits value.
- let amount = amount and 63
- result = (value shr amount) or (value shl ( (-amount) and 63))
- proc repeatBits[T: SomeUnsignedInt](x: SomeUnsignedInt; retType: type[T]): T {.
- noSideEffect.} =
- result = x
- var i = 1
- while i != (sizeof(T) div sizeof(x)):
- result = (result shl (sizeof(x)*8*i)) or result
- i *= 2
- proc reverseBits*[T: SomeUnsignedInt](x: T): T {.noSideEffect.} =
- ## Return the bit reversal of x.
- runnableExamples:
- doAssert reverseBits(0b10100100'u8) == 0b00100101'u8
- doAssert reverseBits(0xdd'u8) == 0xbb'u8
- doAssert reverseBits(0xddbb'u16) == 0xddbb'u16
- doAssert reverseBits(0xdeadbeef'u32) == 0xf77db57b'u32
- template repeat(x: SomeUnsignedInt): T = repeatBits(x, T)
- result = x
- result =
- ((repeat(0x55u8) and result) shl 1) or
- ((repeat(0xaau8) and result) shr 1)
- result =
- ((repeat(0x33u8) and result) shl 2) or
- ((repeat(0xccu8) and result) shr 2)
- when sizeof(T) == 1:
- result = (result shl 4) or (result shr 4)
- when sizeof(T) >= 2:
- result =
- ((repeat(0x0fu8) and result) shl 4) or
- ((repeat(0xf0u8) and result) shr 4)
- when sizeof(T) == 2:
- result = (result shl 8) or (result shr 8)
- when sizeof(T) >= 4:
- result =
- ((repeat(0x00ffu16) and result) shl 8) or
- ((repeat(0xff00u16) and result) shr 8)
- when sizeof(T) == 4:
- result = (result shl 16) or (result shr 16)
- when sizeof(T) == 8:
- result =
- ((repeat(0x0000ffffu32) and result) shl 16) or
- ((repeat(0xffff0000u32) and result) shr 16)
- result = (result shl 32) or (result shr 32)
|