12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2012 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## Implementation of:
- ## * `singly linked lists <#SinglyLinkedList>`_
- ## * `doubly linked lists <#DoublyLinkedList>`_
- ## * `singly linked rings <#SinglyLinkedRing>`_ (circular lists)
- ## * `doubly linked rings <#DoublyLinkedRing>`_ (circular lists)
- ##
- ## # Basic Usage
- ## Because it makes no sense to do otherwise, the `next` and `prev` pointers
- ## are not hidden from you and can be manipulated directly for efficiency.
- ##
- ## ## Lists
- runnableExamples:
- var list = initDoublyLinkedList[int]()
- let
- a = newDoublyLinkedNode[int](3)
- b = newDoublyLinkedNode[int](7)
- c = newDoublyLinkedNode[int](9)
- list.add(a)
- list.add(b)
- list.prepend(c)
- assert a.next == b
- assert a.prev == c
- assert c.next == a
- assert c.next.next == b
- assert c.prev == nil
- assert b.next == nil
- ## ## Rings
- runnableExamples:
- var ring = initSinglyLinkedRing[int]()
- let
- a = newSinglyLinkedNode[int](3)
- b = newSinglyLinkedNode[int](7)
- c = newSinglyLinkedNode[int](9)
- ring.add(a)
- ring.add(b)
- ring.prepend(c)
- assert c.next == a
- assert a.next == b
- assert c.next.next == b
- assert b.next == c
- assert c.next.next.next == c
- ## # See also
- ## * `deques module <deques.html>`_ for double-ended queues
- import std/private/since
- when defined(nimPreviewSlimSystem):
- import std/assertions
- type
- DoublyLinkedNodeObj*[T] = object
- ## A node of a doubly linked list.
- ##
- ## It consists of a `value` field, and pointers to `next` and `prev`.
- next*: DoublyLinkedNode[T]
- prev* {.cursor.}: DoublyLinkedNode[T]
- value*: T
- DoublyLinkedNode*[T] = ref DoublyLinkedNodeObj[T]
- SinglyLinkedNodeObj*[T] = object
- ## A node of a singly linked list.
- ##
- ## It consists of a `value` field, and a pointer to `next`.
- next*: SinglyLinkedNode[T]
- value*: T
- SinglyLinkedNode*[T] = ref SinglyLinkedNodeObj[T]
- SinglyLinkedList*[T] = object
- ## A singly linked list.
- head*: SinglyLinkedNode[T]
- tail* {.cursor.}: SinglyLinkedNode[T]
- DoublyLinkedList*[T] = object
- ## A doubly linked list.
- head*: DoublyLinkedNode[T]
- tail* {.cursor.}: DoublyLinkedNode[T]
- SinglyLinkedRing*[T] = object
- ## A singly linked ring.
- head*: SinglyLinkedNode[T]
- tail* {.cursor.}: SinglyLinkedNode[T]
- DoublyLinkedRing*[T] = object
- ## A doubly linked ring.
- head*: DoublyLinkedNode[T]
- SomeLinkedList*[T] = SinglyLinkedList[T] | DoublyLinkedList[T]
- SomeLinkedRing*[T] = SinglyLinkedRing[T] | DoublyLinkedRing[T]
- SomeLinkedCollection*[T] = SomeLinkedList[T] | SomeLinkedRing[T]
- SomeLinkedNode*[T] = SinglyLinkedNode[T] | DoublyLinkedNode[T]
- proc initSinglyLinkedList*[T](): SinglyLinkedList[T] =
- ## Creates a new singly linked list that is empty.
- ##
- ## Singly linked lists are initialized by default, so it is not necessary to
- ## call this function explicitly.
- runnableExamples:
- let a = initSinglyLinkedList[int]()
- discard
- proc initDoublyLinkedList*[T](): DoublyLinkedList[T] =
- ## Creates a new doubly linked list that is empty.
- ##
- ## Doubly linked lists are initialized by default, so it is not necessary to
- ## call this function explicitly.
- runnableExamples:
- let a = initDoublyLinkedList[int]()
- discard
- proc initSinglyLinkedRing*[T](): SinglyLinkedRing[T] =
- ## Creates a new singly linked ring that is empty.
- ##
- ## Singly linked rings are initialized by default, so it is not necessary to
- ## call this function explicitly.
- runnableExamples:
- let a = initSinglyLinkedRing[int]()
- discard
- proc initDoublyLinkedRing*[T](): DoublyLinkedRing[T] =
- ## Creates a new doubly linked ring that is empty.
- ##
- ## Doubly linked rings are initialized by default, so it is not necessary to
- ## call this function explicitly.
- runnableExamples:
- let a = initDoublyLinkedRing[int]()
- discard
- proc newDoublyLinkedNode*[T](value: T): DoublyLinkedNode[T] =
- ## Creates a new doubly linked node with the given `value`.
- runnableExamples:
- let n = newDoublyLinkedNode[int](5)
- assert n.value == 5
- new(result)
- result.value = value
- proc newSinglyLinkedNode*[T](value: T): SinglyLinkedNode[T] =
- ## Creates a new singly linked node with the given `value`.
- runnableExamples:
- let n = newSinglyLinkedNode[int](5)
- assert n.value == 5
- new(result)
- result.value = value
- template itemsListImpl() {.dirty.} =
- var it {.cursor.} = L.head
- while it != nil:
- yield it.value
- it = it.next
- template itemsRingImpl() {.dirty.} =
- var it {.cursor.} = L.head
- if it != nil:
- while true:
- yield it.value
- it = it.next
- if it == L.head: break
- iterator items*[T](L: SomeLinkedList[T]): T =
- ## Yields every value of `L`.
- ##
- ## **See also:**
- ## * `mitems iterator <#mitems.i,SomeLinkedList[T]>`_
- ## * `nodes iterator <#nodes.i,SomeLinkedList[T]>`_
- runnableExamples:
- from std/sugar import collect
- from std/sequtils import toSeq
- let a = collect(initSinglyLinkedList):
- for i in 1..3: 10 * i
- assert toSeq(items(a)) == toSeq(a)
- assert toSeq(a) == @[10, 20, 30]
- itemsListImpl()
- iterator items*[T](L: SomeLinkedRing[T]): T =
- ## Yields every value of `L`.
- ##
- ## **See also:**
- ## * `mitems iterator <#mitems.i,SomeLinkedRing[T]>`_
- ## * `nodes iterator <#nodes.i,SomeLinkedRing[T]>`_
- runnableExamples:
- from std/sugar import collect
- from std/sequtils import toSeq
- let a = collect(initSinglyLinkedRing):
- for i in 1..3: 10 * i
- assert toSeq(items(a)) == toSeq(a)
- assert toSeq(a) == @[10, 20, 30]
- itemsRingImpl()
- iterator mitems*[T](L: var SomeLinkedList[T]): var T =
- ## Yields every value of `L` so that you can modify it.
- ##
- ## **See also:**
- ## * `items iterator <#items.i,SomeLinkedList[T]>`_
- ## * `nodes iterator <#nodes.i,SomeLinkedList[T]>`_
- runnableExamples:
- var a = initSinglyLinkedList[int]()
- for i in 1..5:
- a.add(10 * i)
- assert $a == "[10, 20, 30, 40, 50]"
- for x in mitems(a):
- x = 5 * x - 1
- assert $a == "[49, 99, 149, 199, 249]"
- itemsListImpl()
- iterator mitems*[T](L: var SomeLinkedRing[T]): var T =
- ## Yields every value of `L` so that you can modify it.
- ##
- ## **See also:**
- ## * `items iterator <#items.i,SomeLinkedRing[T]>`_
- ## * `nodes iterator <#nodes.i,SomeLinkedRing[T]>`_
- runnableExamples:
- var a = initSinglyLinkedRing[int]()
- for i in 1..5:
- a.add(10 * i)
- assert $a == "[10, 20, 30, 40, 50]"
- for x in mitems(a):
- x = 5 * x - 1
- assert $a == "[49, 99, 149, 199, 249]"
- itemsRingImpl()
- iterator nodes*[T](L: SomeLinkedList[T]): SomeLinkedNode[T] =
- ## Iterates over every node of `x`. Removing the current node from the
- ## list during traversal is supported.
- ##
- ## **See also:**
- ## * `items iterator <#items.i,SomeLinkedList[T]>`_
- ## * `mitems iterator <#mitems.i,SomeLinkedList[T]>`_
- runnableExamples:
- var a = initDoublyLinkedList[int]()
- for i in 1..5:
- a.add(10 * i)
- assert $a == "[10, 20, 30, 40, 50]"
- for x in nodes(a):
- if x.value == 30:
- a.remove(x)
- else:
- x.value = 5 * x.value - 1
- assert $a == "[49, 99, 199, 249]"
- var it {.cursor.} = L.head
- while it != nil:
- let nxt = it.next
- yield it
- it = nxt
- iterator nodes*[T](L: SomeLinkedRing[T]): SomeLinkedNode[T] =
- ## Iterates over every node of `x`. Removing the current node from the
- ## list during traversal is supported.
- ##
- ## **See also:**
- ## * `items iterator <#items.i,SomeLinkedRing[T]>`_
- ## * `mitems iterator <#mitems.i,SomeLinkedRing[T]>`_
- runnableExamples:
- var a = initDoublyLinkedRing[int]()
- for i in 1..5:
- a.add(10 * i)
- assert $a == "[10, 20, 30, 40, 50]"
- for x in nodes(a):
- if x.value == 30:
- a.remove(x)
- else:
- x.value = 5 * x.value - 1
- assert $a == "[49, 99, 199, 249]"
- var it {.cursor.} = L.head
- if it != nil:
- while true:
- let nxt = it.next
- yield it
- it = nxt
- if it == L.head: break
- proc `$`*[T](L: SomeLinkedCollection[T]): string =
- ## Turns a list into its string representation for logging and printing.
- runnableExamples:
- let a = [1, 2, 3, 4].toSinglyLinkedList
- assert $a == "[1, 2, 3, 4]"
- result = "["
- for x in nodes(L):
- if result.len > 1: result.add(", ")
- result.addQuoted(x.value)
- result.add("]")
- proc find*[T](L: SomeLinkedCollection[T], value: T): SomeLinkedNode[T] =
- ## Searches in the list for a value. Returns `nil` if the value does not
- ## exist.
- ##
- ## **See also:**
- ## * `contains proc <#contains,SomeLinkedCollection[T],T>`_
- runnableExamples:
- let a = [9, 8].toSinglyLinkedList
- assert a.find(9).value == 9
- assert a.find(1) == nil
- for x in nodes(L):
- if x.value == value: return x
- proc contains*[T](L: SomeLinkedCollection[T], value: T): bool {.inline.} =
- ## Searches in the list for a value. Returns `false` if the value does not
- ## exist, `true` otherwise. This allows the usage of the `in` and `notin`
- ## operators.
- ##
- ## **See also:**
- ## * `find proc <#find,SomeLinkedCollection[T],T>`_
- runnableExamples:
- let a = [9, 8].toSinglyLinkedList
- assert a.contains(9)
- assert 8 in a
- assert(not a.contains(1))
- assert 2 notin a
- result = find(L, value) != nil
- proc prepend*[T: SomeLinkedList](a: var T, b: T) {.since: (1, 5, 1).} =
- ## Prepends a shallow copy of `b` to the beginning of `a`.
- ##
- ## **See also:**
- ## * `prependMoved proc <#prependMoved,T,T>`_
- ## for moving the second list instead of copying
- runnableExamples:
- from std/sequtils import toSeq
- var a = [4, 5].toSinglyLinkedList
- let b = [1, 2, 3].toSinglyLinkedList
- a.prepend(b)
- assert a.toSeq == [1, 2, 3, 4, 5]
- assert b.toSeq == [1, 2, 3]
- a.prepend(a)
- assert a.toSeq == [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
- var tmp = b.copy
- tmp.addMoved(a)
- a = tmp
- proc prependMoved*[T: SomeLinkedList](a, b: var T) {.since: (1, 5, 1).} =
- ## Moves `b` before the head of `a`. Efficiency: O(1).
- ## Note that `b` becomes empty after the operation unless it has the same address as `a`.
- ## Self-prepending results in a cycle.
- ##
- ## **See also:**
- ## * `prepend proc <#prepend,T,T>`_
- ## for prepending a copy of a list
- runnableExamples:
- import std/[sequtils, enumerate, sugar]
- var
- a = [4, 5].toSinglyLinkedList
- b = [1, 2, 3].toSinglyLinkedList
- c = [0, 1].toSinglyLinkedList
- a.prependMoved(b)
- assert a.toSeq == [1, 2, 3, 4, 5]
- assert b.toSeq == []
- c.prependMoved(c)
- let s = collect:
- for i, ci in enumerate(c):
- if i == 6: break
- ci
- assert s == [0, 1, 0, 1, 0, 1]
- b.addMoved(a)
- swap a, b
- proc add*[T](L: var SinglyLinkedList[T], n: SinglyLinkedNode[T]) {.inline.} =
- ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value
- runnableExamples:
- var a = initSinglyLinkedList[int]()
- let n = newSinglyLinkedNode[int](9)
- a.add(n)
- assert a.contains(9)
- n.next = nil
- if L.tail != nil:
- assert(L.tail.next == nil)
- L.tail.next = n
- L.tail = n
- if L.head == nil: L.head = n
- proc add*[T](L: var SinglyLinkedList[T], value: T) {.inline.} =
- ## Appends (adds to the end) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value
- runnableExamples:
- var a = initSinglyLinkedList[int]()
- a.add(9)
- a.add(8)
- assert a.contains(9)
- add(L, newSinglyLinkedNode(value))
- proc prepend*[T](L: var SinglyLinkedList[T],
- n: SinglyLinkedNode[T]) {.inline.} =
- ## Prepends (adds to the beginning) a node to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value
- runnableExamples:
- var a = initSinglyLinkedList[int]()
- let n = newSinglyLinkedNode[int](9)
- a.prepend(n)
- assert a.contains(9)
- n.next = L.head
- L.head = n
- if L.tail == nil: L.tail = n
- proc prepend*[T](L: var SinglyLinkedList[T], value: T) {.inline.} =
- ## Prepends (adds to the beginning) a node to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
- ## for prepending a node
- runnableExamples:
- var a = initSinglyLinkedList[int]()
- a.prepend(9)
- a.prepend(8)
- assert a.contains(9)
- prepend(L, newSinglyLinkedNode(value))
- func copy*[T](a: SinglyLinkedList[T]): SinglyLinkedList[T] {.since: (1, 5, 1).} =
- ## Creates a shallow copy of `a`.
- runnableExamples:
- from std/sequtils import toSeq
- type Foo = ref object
- x: int
- var
- f = Foo(x: 1)
- a = [f].toSinglyLinkedList
- let b = a.copy
- a.add([f].toSinglyLinkedList)
- assert a.toSeq == [f, f]
- assert b.toSeq == [f] # b isn't modified...
- f.x = 42
- assert a.head.value.x == 42
- assert b.head.value.x == 42 # ... but the elements are not deep copied
- let c = [1, 2, 3].toSinglyLinkedList
- assert $c == $c.copy
- result = initSinglyLinkedList[T]()
- for x in a.items:
- result.add(x)
- proc addMoved*[T](a, b: var SinglyLinkedList[T]) {.since: (1, 5, 1).} =
- ## Moves `b` to the end of `a`. Efficiency: O(1).
- ## Note that `b` becomes empty after the operation unless it has the same address as `a`.
- ## Self-adding results in a cycle.
- ##
- ## **See also:**
- ## * `add proc <#add,T,T>`_ for adding a copy of a list
- runnableExamples:
- import std/[sequtils, enumerate, sugar]
- var
- a = [1, 2, 3].toSinglyLinkedList
- b = [4, 5].toSinglyLinkedList
- c = [0, 1].toSinglyLinkedList
- a.addMoved(b)
- assert a.toSeq == [1, 2, 3, 4, 5]
- assert b.toSeq == []
- c.addMoved(c)
- let s = collect:
- for i, ci in enumerate(c):
- if i == 6: break
- ci
- assert s == [0, 1, 0, 1, 0, 1]
- if b.head != nil:
- if a.head == nil:
- a.head = b.head
- else:
- a.tail.next = b.head
- a.tail = b.tail
- if a.addr != b.addr:
- b.head = nil
- b.tail = nil
- proc add*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) =
- ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value
- ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedList[int]()
- let n = newDoublyLinkedNode[int](9)
- a.add(n)
- assert a.contains(9)
- n.next = nil
- n.prev = L.tail
- if L.tail != nil:
- assert(L.tail.next == nil)
- L.tail.next = n
- L.tail = n
- if L.head == nil: L.head = n
- proc add*[T](L: var DoublyLinkedList[T], value: T) =
- ## Appends (adds to the end) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for appending a node
- ## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value
- ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedList[int]()
- a.add(9)
- a.add(8)
- assert a.contains(9)
- add(L, newDoublyLinkedNode(value))
- proc prepend*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) =
- ## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value
- ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedList[int]()
- let n = newDoublyLinkedNode[int](9)
- a.prepend(n)
- assert a.contains(9)
- n.prev = nil
- n.next = L.head
- if L.head != nil:
- assert(L.head.prev == nil)
- L.head.prev = n
- L.head = n
- if L.tail == nil: L.tail = n
- proc prepend*[T](L: var DoublyLinkedList[T], value: T) =
- ## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for prepending a node
- ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedList[int]()
- a.prepend(9)
- a.prepend(8)
- assert a.contains(9)
- prepend(L, newDoublyLinkedNode(value))
- func copy*[T](a: DoublyLinkedList[T]): DoublyLinkedList[T] {.since: (1, 5, 1).} =
- ## Creates a shallow copy of `a`.
- runnableExamples:
- from std/sequtils import toSeq
- type Foo = ref object
- x: int
- var
- f = Foo(x: 1)
- a = [f].toDoublyLinkedList
- let b = a.copy
- a.add([f].toDoublyLinkedList)
- assert a.toSeq == [f, f]
- assert b.toSeq == [f] # b isn't modified...
- f.x = 42
- assert a.head.value.x == 42
- assert b.head.value.x == 42 # ... but the elements are not deep copied
- let c = [1, 2, 3].toDoublyLinkedList
- assert $c == $c.copy
- result = initDoublyLinkedList[T]()
- for x in a.items:
- result.add(x)
- proc addMoved*[T](a, b: var DoublyLinkedList[T]) {.since: (1, 5, 1).} =
- ## Moves `b` to the end of `a`. Efficiency: O(1).
- ## Note that `b` becomes empty after the operation unless it has the same address as `a`.
- ## Self-adding results in a cycle.
- ##
- ## **See also:**
- ## * `add proc <#add,T,T>`_
- ## for adding a copy of a list
- runnableExamples:
- import std/[sequtils, enumerate, sugar]
- var
- a = [1, 2, 3].toDoublyLinkedList
- b = [4, 5].toDoublyLinkedList
- c = [0, 1].toDoublyLinkedList
- a.addMoved(b)
- assert a.toSeq == [1, 2, 3, 4, 5]
- assert b.toSeq == []
- c.addMoved(c)
- let s = collect:
- for i, ci in enumerate(c):
- if i == 6: break
- ci
- assert s == [0, 1, 0, 1, 0, 1]
- if b.head != nil:
- if a.head == nil:
- a.head = b.head
- else:
- b.head.prev = a.tail
- a.tail.next = b.head
- a.tail = b.tail
- if a.addr != b.addr:
- b.head = nil
- b.tail = nil
- proc add*[T: SomeLinkedList](a: var T, b: T) {.since: (1, 5, 1).} =
- ## Appends a shallow copy of `b` to the end of `a`.
- ##
- ## **See also:**
- ## * `addMoved proc <#addMoved,SinglyLinkedList[T],SinglyLinkedList[T]>`_
- ## * `addMoved proc <#addMoved,DoublyLinkedList[T],DoublyLinkedList[T]>`_
- ## for moving the second list instead of copying
- runnableExamples:
- from std/sequtils import toSeq
- var a = [1, 2, 3].toSinglyLinkedList
- let b = [4, 5].toSinglyLinkedList
- a.add(b)
- assert a.toSeq == [1, 2, 3, 4, 5]
- assert b.toSeq == [4, 5]
- a.add(a)
- assert a.toSeq == [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
- var tmp = b.copy
- a.addMoved(tmp)
- proc remove*[T](L: var SinglyLinkedList[T], n: SinglyLinkedNode[T]): bool {.discardable.} =
- ## Removes a node `n` from `L`.
- ## Returns `true` if `n` was found in `L`.
- ## Efficiency: O(n); the list is traversed until `n` is found.
- ## Attempting to remove an element not contained in the list is a no-op.
- ## When the list is cyclic, the cycle is preserved after removal.
- runnableExamples:
- import std/[sequtils, enumerate, sugar]
- var a = [0, 1, 2].toSinglyLinkedList
- let n = a.head.next
- assert n.value == 1
- assert a.remove(n) == true
- assert a.toSeq == [0, 2]
- assert a.remove(n) == false
- assert a.toSeq == [0, 2]
- a.addMoved(a) # cycle: [0, 2, 0, 2, ...]
- a.remove(a.head)
- let s = collect:
- for i, ai in enumerate(a):
- if i == 4: break
- ai
- assert s == [2, 2, 2, 2]
- if n == L.head:
- L.head = n.next
- if L.tail.next == n:
- L.tail.next = L.head # restore cycle
- else:
- var prev {.cursor.} = L.head
- while prev.next != n and prev.next != nil:
- prev = prev.next
- if prev.next == nil:
- return false
- prev.next = n.next
- if L.tail == n:
- L.tail = prev # update tail if we removed the last node
- true
- proc remove*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) =
- ## Removes a node `n` from `L`. Efficiency: O(1).
- ## This function assumes, for the sake of efficiency, that `n` is contained in `L`,
- ## otherwise the effects are undefined.
- ## When the list is cyclic, the cycle is preserved after removal.
- runnableExamples:
- import std/[sequtils, enumerate, sugar]
- var a = [0, 1, 2].toSinglyLinkedList
- let n = a.head.next
- assert n.value == 1
- a.remove(n)
- assert a.toSeq == [0, 2]
- a.remove(n)
- assert a.toSeq == [0, 2]
- a.addMoved(a) # cycle: [0, 2, 0, 2, ...]
- a.remove(a.head)
- let s = collect:
- for i, ai in enumerate(a):
- if i == 4: break
- ai
- assert s == [2, 2, 2, 2]
- if n == L.tail: L.tail = n.prev
- if n == L.head: L.head = n.next
- if n.next != nil: n.next.prev = n.prev
- if n.prev != nil: n.prev.next = n.next
- proc add*[T](L: var SinglyLinkedRing[T], n: SinglyLinkedNode[T]) =
- ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value
- runnableExamples:
- var a = initSinglyLinkedRing[int]()
- let n = newSinglyLinkedNode[int](9)
- a.add(n)
- assert a.contains(9)
- if L.head != nil:
- n.next = L.head
- assert(L.tail != nil)
- L.tail.next = n
- else:
- n.next = n
- L.head = n
- L.tail = n
- proc add*[T](L: var SinglyLinkedRing[T], value: T) =
- ## Appends (adds to the end) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
- ## for appending a node
- ## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value
- runnableExamples:
- var a = initSinglyLinkedRing[int]()
- a.add(9)
- a.add(8)
- assert a.contains(9)
- add(L, newSinglyLinkedNode(value))
- proc prepend*[T](L: var SinglyLinkedRing[T], n: SinglyLinkedNode[T]) =
- ## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value
- runnableExamples:
- var a = initSinglyLinkedRing[int]()
- let n = newSinglyLinkedNode[int](9)
- a.prepend(n)
- assert a.contains(9)
- if L.head != nil:
- n.next = L.head
- assert(L.tail != nil)
- L.tail.next = n
- else:
- n.next = n
- L.tail = n
- L.head = n
- proc prepend*[T](L: var SinglyLinkedRing[T], value: T) =
- ## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
- ## for prepending a node
- runnableExamples:
- var a = initSinglyLinkedRing[int]()
- a.prepend(9)
- a.prepend(8)
- assert a.contains(9)
- prepend(L, newSinglyLinkedNode(value))
- proc add*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) =
- ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value
- ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedRing[int]()
- let n = newDoublyLinkedNode[int](9)
- a.add(n)
- assert a.contains(9)
- if L.head != nil:
- n.next = L.head
- n.prev = L.head.prev
- L.head.prev.next = n
- L.head.prev = n
- else:
- n.prev = n
- n.next = n
- L.head = n
- proc add*[T](L: var DoublyLinkedRing[T], value: T) =
- ## Appends (adds to the end) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for appending a node
- ## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value
- ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedRing[int]()
- a.add(9)
- a.add(8)
- assert a.contains(9)
- add(L, newDoublyLinkedNode(value))
- proc prepend*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) =
- ## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value
- ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedRing[int]()
- let n = newDoublyLinkedNode[int](9)
- a.prepend(n)
- assert a.contains(9)
- if L.head != nil:
- n.next = L.head
- n.prev = L.head.prev
- L.head.prev.next = n
- L.head.prev = n
- else:
- n.prev = n
- n.next = n
- L.head = n
- proc prepend*[T](L: var DoublyLinkedRing[T], value: T) =
- ## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for prepending a node
- ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedRing[int]()
- a.prepend(9)
- a.prepend(8)
- assert a.contains(9)
- prepend(L, newDoublyLinkedNode(value))
- proc remove*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) =
- ## Removes `n` from `L`. Efficiency: O(1).
- ## This function assumes, for the sake of efficiency, that `n` is contained in `L`,
- ## otherwise the effects are undefined.
- runnableExamples:
- var a = initDoublyLinkedRing[int]()
- let n = newDoublyLinkedNode[int](5)
- a.add(n)
- assert 5 in a
- a.remove(n)
- assert 5 notin a
- n.next.prev = n.prev
- n.prev.next = n.next
- if n == L.head:
- let p = L.head.prev
- if p == L.head:
- # only one element left:
- L.head = nil
- else:
- L.head = p
- proc append*[T](a: var (SinglyLinkedList[T] | SinglyLinkedRing[T]),
- b: SinglyLinkedList[T] | SinglyLinkedNode[T] | T) =
- ## Alias for `a.add(b)`.
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
- ## * `add proc <#add,SinglyLinkedList[T],T>`_
- ## * `add proc <#add,T,T>`_
- a.add(b)
- proc append*[T](a: var (DoublyLinkedList[T] | DoublyLinkedRing[T]),
- b: DoublyLinkedList[T] | DoublyLinkedNode[T] | T) =
- ## Alias for `a.add(b)`.
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## * `add proc <#add,DoublyLinkedList[T],T>`_
- ## * `add proc <#add,T,T>`_
- a.add(b)
- proc appendMoved*[T: SomeLinkedList](a, b: var T) {.since: (1, 5, 1).} =
- ## Alias for `a.addMoved(b)`.
- ##
- ## **See also:**
- ## * `addMoved proc <#addMoved,SinglyLinkedList[T],SinglyLinkedList[T]>`_
- ## * `addMoved proc <#addMoved,DoublyLinkedList[T],DoublyLinkedList[T]>`_
- a.addMoved(b)
- func toSinglyLinkedList*[T](elems: openArray[T]): SinglyLinkedList[T] {.since: (1, 5, 1).} =
- ## Creates a new `SinglyLinkedList` from the members of `elems`.
- runnableExamples:
- from std/sequtils import toSeq
- let a = [1, 2, 3, 4, 5].toSinglyLinkedList
- assert a.toSeq == [1, 2, 3, 4, 5]
- result = initSinglyLinkedList[T]()
- for elem in elems.items:
- result.add(elem)
- func toSinglyLinkedRing*[T](elems: openArray[T]): SinglyLinkedRing[T] =
- ## Creates a new `SinglyLinkedRing` from the members of `elems`.
- runnableExamples:
- from std/sequtils import toSeq
- let a = [1, 2, 3, 4, 5].toSinglyLinkedRing
- assert a.toSeq == [1, 2, 3, 4, 5]
- result = initSinglyLinkedRing[T]()
- for elem in elems.items:
- result.add(elem)
- func toDoublyLinkedList*[T](elems: openArray[T]): DoublyLinkedList[T] {.since: (1, 5, 1).} =
- ## Creates a new `DoublyLinkedList` from the members of `elems`.
- runnableExamples:
- from std/sequtils import toSeq
- let a = [1, 2, 3, 4, 5].toDoublyLinkedList
- assert a.toSeq == [1, 2, 3, 4, 5]
- result = initDoublyLinkedList[T]()
- for elem in elems.items:
- result.add(elem)
- func toDoublyLinkedRing*[T](elems: openArray[T]): DoublyLinkedRing[T] =
- ## Creates a new `DoublyLinkedRing` from the members of `elems`.
- runnableExamples:
- from std/sequtils import toSeq
- let a = [1, 2, 3, 4, 5].toDoublyLinkedRing
- assert a.toSeq == [1, 2, 3, 4, 5]
- result = initDoublyLinkedRing[T]()
- for elem in elems.items:
- result.add(elem)
|