123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2016 Yuriy Glukhov
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- ## The `heapqueue` module implements a
- ## `binary heap data structure<https://en.wikipedia.org/wiki/Binary_heap>`_
- ## that can be used as a `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_.
- ## They are represented as arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]`
- ## for all indices `k` (counting elements from 0). The interesting property of a heap is that
- ## `a[0]` is always its smallest element.
- ##
- ## Basic usage
- ## -----------
- ##
- runnableExamples:
- var heap = [8, 2].toHeapQueue
- heap.push(5)
- # the first element is the lowest element
- assert heap[0] == 2
- # remove and return the lowest element
- assert heap.pop() == 2
- # the lowest element remaining is 5
- assert heap[0] == 5
- ## Usage with custom objects
- ## -------------------------
- ## To use a `HeapQueue` with a custom object, the `<` operator must be
- ## implemented.
- runnableExamples:
- type Job = object
- priority: int
- proc `<`(a, b: Job): bool = a.priority < b.priority
- var jobs = initHeapQueue[Job]()
- jobs.push(Job(priority: 1))
- jobs.push(Job(priority: 2))
- assert jobs[0].priority == 1
- import std/private/since
- when defined(nimPreviewSlimSystem):
- import std/assertions
- type HeapQueue*[T] = object
- ## A heap queue, commonly known as a priority queue.
- data: seq[T]
- proc initHeapQueue*[T](): HeapQueue[T] =
- ## Creates a new empty heap.
- ##
- ## Heaps are initialized by default, so it is not necessary to call
- ## this function explicitly.
- ##
- ## **See also:**
- ## * `toHeapQueue proc <#toHeapQueue,openArray[T]>`_
- result = default(HeapQueue[T])
- proc len*[T](heap: HeapQueue[T]): int {.inline.} =
- ## Returns the number of elements of `heap`.
- runnableExamples:
- let heap = [9, 5, 8].toHeapQueue
- assert heap.len == 3
- heap.data.len
- proc `[]`*[T](heap: HeapQueue[T], i: Natural): lent T {.inline.} =
- ## Accesses the i-th element of `heap`.
- heap.data[i]
- iterator items*[T](heap: HeapQueue[T]): lent T {.inline, since: (2, 1, 1).} =
- ## Iterates over each item of `heap`.
- let L = len(heap)
- for i in 0 .. high(heap.data):
- yield heap.data[i]
- assert(len(heap) == L, "the length of the HeapQueue changed while iterating over it")
- proc heapCmp[T](x, y: T): bool {.inline.} = x < y
- proc siftup[T](heap: var HeapQueue[T], startpos, p: int) =
- ## `heap` is a heap at all indices >= `startpos`, except possibly for `p`. `p`
- ## is the index of a leaf with a possibly out-of-order value. Restores the
- ## heap invariant.
- var pos = p
- let newitem = heap[pos]
- # Follow the path to the root, moving parents down until finding a place
- # newitem fits.
- while pos > startpos:
- let parentpos = (pos - 1) shr 1
- let parent = heap[parentpos]
- if heapCmp(newitem, parent):
- heap.data[pos] = parent
- pos = parentpos
- else:
- break
- heap.data[pos] = newitem
- proc siftdownToBottom[T](heap: var HeapQueue[T], p: int) =
- # This is faster when the element should be close to the bottom.
- let endpos = len(heap)
- var pos = p
- let startpos = pos
- let newitem = heap[pos]
- # Bubble up the smaller child until hitting a leaf.
- var childpos = 2 * pos + 1 # leftmost child position
- while childpos < endpos:
- # Set childpos to index of smaller child.
- let rightpos = childpos + 1
- if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
- childpos = rightpos
- # Move the smaller child up.
- heap.data[pos] = heap[childpos]
- pos = childpos
- childpos = 2 * pos + 1
- # The leaf at pos is empty now. Put newitem there, and bubble it up
- # to its final resting place (by sifting its parents down).
- heap.data[pos] = newitem
- siftup(heap, startpos, pos)
- proc siftdown[T](heap: var HeapQueue[T], p: int) =
- let endpos = len(heap)
- var pos = p
- let newitem = heap[pos]
- var childpos = 2 * pos + 1
- while childpos < endpos:
- let rightpos = childpos + 1
- if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
- childpos = rightpos
- if not heapCmp(heap[childpos], newitem):
- break
- heap.data[pos] = heap[childpos]
- pos = childpos
- childpos = 2 * pos + 1
- heap.data[pos] = newitem
- proc push*[T](heap: var HeapQueue[T], item: sink T) =
- ## Pushes `item` onto `heap`, maintaining the heap invariant.
- heap.data.add(item)
- siftup(heap, 0, len(heap) - 1)
- proc toHeapQueue*[T](x: openArray[T]): HeapQueue[T] {.since: (1, 3).} =
- ## Creates a new HeapQueue that contains the elements of `x`.
- ##
- ## **See also:**
- ## * `initHeapQueue proc <#initHeapQueue>`_
- runnableExamples:
- var heap = [9, 5, 8].toHeapQueue
- assert heap.pop() == 5
- assert heap[0] == 8
- # see https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap
- result.data = @x
- for i in countdown(x.len div 2 - 1, 0):
- siftdown(result, i)
- proc pop*[T](heap: var HeapQueue[T]): T =
- ## Pops and returns the smallest item from `heap`,
- ## maintaining the heap invariant.
- runnableExamples:
- var heap = [9, 5, 8].toHeapQueue
- assert heap.pop() == 5
- let lastelt = heap.data.pop()
- if heap.len > 0:
- result = heap[0]
- heap.data[0] = lastelt
- siftdownToBottom(heap, 0)
- else:
- result = lastelt
- proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} =
- ## Linear scan to find the index of the item `x` or -1 if not found.
- runnableExamples:
- let heap = [9, 5, 8].toHeapQueue
- assert heap.find(5) == 0
- assert heap.find(9) == 1
- assert heap.find(777) == -1
- result = -1
- for i in 0 ..< heap.len:
- if heap[i] == x: return i
- proc contains*[T](heap: HeapQueue[T], x: T): bool {.since: (2, 1, 1).} =
- ## Returns true if `x` is in `heap` or false if not found. This is a shortcut
- ## for `find(heap, x) >= 0`.
- result = find(heap, x) >= 0
- proc del*[T](heap: var HeapQueue[T], index: Natural) =
- ## Removes the element at `index` from `heap`, maintaining the heap invariant.
- runnableExamples:
- var heap = [9, 5, 8].toHeapQueue
- heap.del(1)
- assert heap[0] == 5
- assert heap[1] == 8
- swap(heap.data[^1], heap.data[index])
- let newLen = heap.len - 1
- heap.data.setLen(newLen)
- if index < newLen:
- siftdownToBottom(heap, index)
- proc replace*[T](heap: var HeapQueue[T], item: sink T): T =
- ## Pops and returns the current smallest value, and add the new item.
- ## This is more efficient than `pop()` followed by `push()`, and can be
- ## more appropriate when using a fixed-size heap. Note that the value
- ## returned may be larger than `item`! That constrains reasonable uses of
- ## this routine unless written as part of a conditional replacement.
- ##
- ## **See also:**
- ## * `pushpop proc <#pushpop,HeapQueue[T],sinkT>`_
- runnableExamples:
- var heap = [5, 12].toHeapQueue
- assert heap.replace(6) == 5
- assert heap.len == 2
- assert heap[0] == 6
- assert heap.replace(4) == 6
- result = heap[0]
- heap.data[0] = item
- siftdown(heap, 0)
- proc pushpop*[T](heap: var HeapQueue[T], item: sink T): T =
- ## Fast version of a `push()` followed by a `pop()`.
- ##
- ## **See also:**
- ## * `replace proc <#replace,HeapQueue[T],sinkT>`_
- runnableExamples:
- var heap = [5, 12].toHeapQueue
- assert heap.pushpop(6) == 5
- assert heap.len == 2
- assert heap[0] == 6
- assert heap.pushpop(4) == 4
- result = item
- if heap.len > 0 and heapCmp(heap.data[0], result):
- swap(result, heap.data[0])
- siftdown(heap, 0)
- proc clear*[T](heap: var HeapQueue[T]) =
- ## Removes all elements from `heap`, making it empty.
- runnableExamples:
- var heap = [9, 5, 8].toHeapQueue
- heap.clear()
- assert heap.len == 0
- heap.data.setLen(0)
- proc `$`*[T](heap: HeapQueue[T]): string =
- ## Turns a heap into its string representation.
- runnableExamples:
- let heap = [1, 2].toHeapQueue
- assert $heap == "[1, 2]"
- result = "["
- for x in heap.data:
- if result.len > 1: result.add(", ")
- result.addQuoted(x)
- result.add("]")
|