123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2012 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## An implementation of a `deque`:idx: (double-ended queue).
- ## The underlying implementation uses a `seq`.
- ##
- ## .. note:: None of the procs that get an individual value from the deque should be used
- ## on an empty deque.
- ##
- ## If compiled with the `boundChecks` option, those procs will raise an `IndexDefect`
- ## on such access. This should not be relied upon, as `-d:danger` or `--checks:off` will
- ## disable those checks and then the procs may return garbage or crash the program.
- ##
- ## As such, a check to see if the deque is empty is needed before any
- ## access, unless your program logic guarantees it indirectly.
- runnableExamples:
- var a = [10, 20, 30, 40].toDeque
- doAssertRaises(IndexDefect, echo a[4])
- a.addLast(50)
- assert $a == "[10, 20, 30, 40, 50]"
- assert a.peekFirst == 10
- assert a.peekLast == 50
- assert len(a) == 5
- assert a.popFirst == 10
- assert a.popLast == 50
- assert len(a) == 3
- a.addFirst(11)
- a.addFirst(22)
- a.addFirst(33)
- assert $a == "[33, 22, 11, 20, 30, 40]"
- a.shrink(fromFirst = 1, fromLast = 2)
- assert $a == "[22, 11, 20]"
- ## See also
- ## ========
- ## * `lists module <lists.html>`_ for singly and doubly linked lists and rings
- import std/private/since
- import std/[assertions, hashes, math]
- type
- Deque*[T] = object
- ## A double-ended queue backed with a ringed `seq` buffer.
- ##
- ## To initialize an empty deque,
- ## use the `initDeque proc <#initDeque,int>`_.
- data: seq[T]
- # `head` and `tail` are masked only when accessing an element of `data`
- # so that `tail - head == data.len` when the deque is full.
- # They are uint so that incrementing/decrementing them doesn't cause
- # over/underflow. You can get a number of items with `tail - head`
- # even if `tail` or `head` is wraps around and `tail < head`, because
- # `tail - head == (uint.high + 1 + tail) - head` when `tail < head`.
- head, tail: uint
- const
- defaultInitialSize* = 4
- template initImpl(result: typed, initialSize: int) =
- let correctSize = nextPowerOfTwo(initialSize)
- newSeq(result.data, correctSize)
- template checkIfInitialized(deq: typed) =
- if deq.data.len == 0:
- initImpl(deq, defaultInitialSize)
- func mask[T](deq: Deque[T]): uint {.inline.} =
- uint(deq.data.len) - 1
- proc initDeque*[T](initialSize: int = defaultInitialSize): Deque[T] =
- ## Creates a new empty deque.
- ##
- ## Optionally, the initial capacity can be reserved via `initialSize`
- ## as a performance optimization
- ## (default: `defaultInitialSize <#defaultInitialSize>`_).
- ## The length of a newly created deque will still be 0.
- ##
- ## **See also:**
- ## * `toDeque proc <#toDeque,openArray[T]>`_
- result.initImpl(initialSize)
- func len*[T](deq: Deque[T]): int {.inline.} =
- ## Returns the number of elements of `deq`.
- int(deq.tail - deq.head)
- template emptyCheck(deq) =
- # Bounds check for the regular deque access.
- when compileOption("boundChecks"):
- if unlikely(deq.len < 1):
- raise newException(IndexDefect, "Empty deque.")
- template xBoundsCheck(deq, i) =
- # Bounds check for the array like accesses.
- when compileOption("boundChecks"): # `-d:danger` or `--checks:off` should disable this.
- if unlikely(i >= deq.len): # x < deq.low is taken care by the Natural parameter
- raise newException(IndexDefect,
- "Out of bounds: " & $i & " > " & $(deq.len - 1))
- if unlikely(i < 0): # when used with BackwardsIndex
- raise newException(IndexDefect,
- "Out of bounds: " & $i & " < 0")
- proc `[]`*[T](deq: Deque[T], i: Natural): lent T {.inline.} =
- ## Accesses the `i`-th element of `deq`.
- runnableExamples:
- let a = [10, 20, 30, 40, 50].toDeque
- assert a[0] == 10
- assert a[3] == 40
- doAssertRaises(IndexDefect, echo a[8])
- xBoundsCheck(deq, i)
- return deq.data[(deq.head + i.uint) and deq.mask]
- proc `[]`*[T](deq: var Deque[T], i: Natural): var T {.inline.} =
- ## Accesses the `i`-th element of `deq` and returns a mutable
- ## reference to it.
- runnableExamples:
- var a = [10, 20, 30, 40, 50].toDeque
- inc(a[0])
- assert a[0] == 11
- xBoundsCheck(deq, i)
- return deq.data[(deq.head + i.uint) and deq.mask]
- proc `[]=`*[T](deq: var Deque[T], i: Natural, val: sink T) {.inline.} =
- ## Sets the `i`-th element of `deq` to `val`.
- runnableExamples:
- var a = [10, 20, 30, 40, 50].toDeque
- a[0] = 99
- a[3] = 66
- assert $a == "[99, 20, 30, 66, 50]"
- checkIfInitialized(deq)
- xBoundsCheck(deq, i)
- deq.data[(deq.head + i.uint) and deq.mask] = val
- proc `[]`*[T](deq: Deque[T], i: BackwardsIndex): lent T {.inline.} =
- ## Accesses the backwards indexed `i`-th element.
- ##
- ## `deq[^1]` is the last element.
- runnableExamples:
- let a = [10, 20, 30, 40, 50].toDeque
- assert a[^1] == 50
- assert a[^4] == 20
- doAssertRaises(IndexDefect, echo a[^9])
- xBoundsCheck(deq, deq.len - int(i))
- return deq[deq.len - int(i)]
- proc `[]`*[T](deq: var Deque[T], i: BackwardsIndex): var T {.inline.} =
- ## Accesses the backwards indexed `i`-th element and returns a mutable
- ## reference to it.
- ##
- ## `deq[^1]` is the last element.
- runnableExamples:
- var a = [10, 20, 30, 40, 50].toDeque
- inc(a[^1])
- assert a[^1] == 51
- xBoundsCheck(deq, deq.len - int(i))
- return deq[deq.len - int(i)]
- proc `[]=`*[T](deq: var Deque[T], i: BackwardsIndex, x: sink T) {.inline.} =
- ## Sets the backwards indexed `i`-th element of `deq` to `x`.
- ##
- ## `deq[^1]` is the last element.
- runnableExamples:
- var a = [10, 20, 30, 40, 50].toDeque
- a[^1] = 99
- a[^3] = 77
- assert $a == "[10, 20, 77, 40, 99]"
- checkIfInitialized(deq)
- xBoundsCheck(deq, deq.len - int(i))
- deq[deq.len - int(i)] = x
- iterator items*[T](deq: Deque[T]): lent T =
- ## Yields every element of `deq`.
- ##
- ## **See also:**
- ## * `mitems iterator <#mitems.i,Deque[T]>`_
- runnableExamples:
- from std/sequtils import toSeq
- let a = [10, 20, 30, 40, 50].toDeque
- assert toSeq(a.items) == @[10, 20, 30, 40, 50]
- for c in 0 ..< deq.len:
- yield deq.data[(deq.head + c.uint) and deq.mask]
- iterator mitems*[T](deq: var Deque[T]): var T =
- ## Yields every element of `deq`, which can be modified.
- ##
- ## **See also:**
- ## * `items iterator <#items.i,Deque[T]>`_
- runnableExamples:
- var a = [10, 20, 30, 40, 50].toDeque
- assert $a == "[10, 20, 30, 40, 50]"
- for x in mitems(a):
- x = 5 * x - 1
- assert $a == "[49, 99, 149, 199, 249]"
- for c in 0 ..< deq.len:
- yield deq.data[(deq.head + c.uint) and deq.mask]
- iterator pairs*[T](deq: Deque[T]): tuple[key: int, val: T] =
- ## Yields every `(position, value)`-pair of `deq`.
- runnableExamples:
- from std/sequtils import toSeq
- let a = [10, 20, 30].toDeque
- assert toSeq(a.pairs) == @[(0, 10), (1, 20), (2, 30)]
- for c in 0 ..< deq.len:
- yield (c, deq.data[(deq.head + c.uint) and deq.mask])
- proc contains*[T](deq: Deque[T], item: T): bool {.inline.} =
- ## Returns true if `item` is in `deq` or false if not found.
- ##
- ## Usually used via the `in` operator.
- ## It is the equivalent of `deq.find(item) >= 0`.
- runnableExamples:
- let q = [7, 9].toDeque
- assert 7 in q
- assert q.contains(7)
- assert 8 notin q
- for e in deq:
- if e == item: return true
- return false
- proc expandIfNeeded[T](deq: var Deque[T]) =
- checkIfInitialized(deq)
- let cap = deq.data.len
- assert deq.len <= cap
- if unlikely(deq.len == cap):
- var n = newSeq[T](cap * 2)
- var i = 0
- for x in mitems(deq):
- when nimvm: n[i] = x # workaround for VM bug
- else: n[i] = move(x)
- inc i
- deq.data = move(n)
- deq.tail = cap.uint
- deq.head = 0
- proc addFirst*[T](deq: var Deque[T], item: sink T) =
- ## Adds an `item` to the beginning of `deq`.
- ##
- ## **See also:**
- ## * `addLast proc <#addLast,Deque[T],sinkT>`_
- runnableExamples:
- var a = initDeque[int]()
- for i in 1 .. 5:
- a.addFirst(10 * i)
- assert $a == "[50, 40, 30, 20, 10]"
- expandIfNeeded(deq)
- dec deq.head
- deq.data[deq.head and deq.mask] = item
- proc addLast*[T](deq: var Deque[T], item: sink T) =
- ## Adds an `item` to the end of `deq`.
- ##
- ## **See also:**
- ## * `addFirst proc <#addFirst,Deque[T],sinkT>`_
- runnableExamples:
- var a = initDeque[int]()
- for i in 1 .. 5:
- a.addLast(10 * i)
- assert $a == "[10, 20, 30, 40, 50]"
- expandIfNeeded(deq)
- deq.data[deq.tail and deq.mask] = item
- inc deq.tail
- proc toDeque*[T](x: openArray[T]): Deque[T] {.since: (1, 3).} =
- ## Creates a new deque that contains the elements of `x` (in the same order).
- ##
- ## **See also:**
- ## * `initDeque proc <#initDeque,int>`_
- runnableExamples:
- let a = toDeque([7, 8, 9])
- assert len(a) == 3
- assert $a == "[7, 8, 9]"
- result.initImpl(x.len)
- for item in items(x):
- result.addLast(item)
- proc peekFirst*[T](deq: Deque[T]): lent T {.inline.} =
- ## Returns the first element of `deq`, but does not remove it from the deque.
- ##
- ## **See also:**
- ## * `peekFirst proc <#peekFirst,Deque[T]_2>`_ which returns a mutable reference
- ## * `peekLast proc <#peekLast,Deque[T]>`_
- runnableExamples:
- let a = [10, 20, 30, 40, 50].toDeque
- assert $a == "[10, 20, 30, 40, 50]"
- assert a.peekFirst == 10
- assert len(a) == 5
- emptyCheck(deq)
- result = deq.data[deq.head and deq.mask]
- proc peekLast*[T](deq: Deque[T]): lent T {.inline.} =
- ## Returns the last element of `deq`, but does not remove it from the deque.
- ##
- ## **See also:**
- ## * `peekLast proc <#peekLast,Deque[T]_2>`_ which returns a mutable reference
- ## * `peekFirst proc <#peekFirst,Deque[T]>`_
- runnableExamples:
- let a = [10, 20, 30, 40, 50].toDeque
- assert $a == "[10, 20, 30, 40, 50]"
- assert a.peekLast == 50
- assert len(a) == 5
- emptyCheck(deq)
- result = deq.data[(deq.tail - 1) and deq.mask]
- proc peekFirst*[T](deq: var Deque[T]): var T {.inline, since: (1, 3).} =
- ## Returns a mutable reference to the first element of `deq`,
- ## but does not remove it from the deque.
- ##
- ## **See also:**
- ## * `peekFirst proc <#peekFirst,Deque[T]>`_
- ## * `peekLast proc <#peekLast,Deque[T]_2>`_
- runnableExamples:
- var a = [10, 20, 30, 40, 50].toDeque
- a.peekFirst() = 99
- assert $a == "[99, 20, 30, 40, 50]"
- emptyCheck(deq)
- result = deq.data[deq.head and deq.mask]
- proc peekLast*[T](deq: var Deque[T]): var T {.inline, since: (1, 3).} =
- ## Returns a mutable reference to the last element of `deq`,
- ## but does not remove it from the deque.
- ##
- ## **See also:**
- ## * `peekFirst proc <#peekFirst,Deque[T]_2>`_
- ## * `peekLast proc <#peekLast,Deque[T]>`_
- runnableExamples:
- var a = [10, 20, 30, 40, 50].toDeque
- a.peekLast() = 99
- assert $a == "[10, 20, 30, 40, 99]"
- emptyCheck(deq)
- result = deq.data[(deq.tail - 1) and deq.mask]
- template destroy(x: untyped) =
- reset(x)
- proc popFirst*[T](deq: var Deque[T]): T {.inline, discardable.} =
- ## Removes and returns the first element of the `deq`.
- ##
- ## See also:
- ## * `popLast proc <#popLast,Deque[T]>`_
- ## * `shrink proc <#shrink,Deque[T],int,int>`_
- runnableExamples:
- var a = [10, 20, 30, 40, 50].toDeque
- assert $a == "[10, 20, 30, 40, 50]"
- assert a.popFirst == 10
- assert $a == "[20, 30, 40, 50]"
- emptyCheck(deq)
- result = move deq.data[deq.head and deq.mask]
- inc deq.head
- proc popLast*[T](deq: var Deque[T]): T {.inline, discardable.} =
- ## Removes and returns the last element of the `deq`.
- ##
- ## **See also:**
- ## * `popFirst proc <#popFirst,Deque[T]>`_
- ## * `shrink proc <#shrink,Deque[T],int,int>`_
- runnableExamples:
- var a = [10, 20, 30, 40, 50].toDeque
- assert $a == "[10, 20, 30, 40, 50]"
- assert a.popLast == 50
- assert $a == "[10, 20, 30, 40]"
- emptyCheck(deq)
- dec deq.tail
- result = move deq.data[deq.tail and deq.mask]
- proc clear*[T](deq: var Deque[T]) {.inline.} =
- ## Resets the deque so that it is empty.
- ##
- ## **See also:**
- ## * `shrink proc <#shrink,Deque[T],int,int>`_
- runnableExamples:
- var a = [10, 20, 30, 40, 50].toDeque
- assert $a == "[10, 20, 30, 40, 50]"
- clear(a)
- assert len(a) == 0
- for el in mitems(deq): destroy(el)
- deq.tail = deq.head
- proc shrink*[T](deq: var Deque[T], fromFirst = 0, fromLast = 0) =
- ## Removes `fromFirst` elements from the front of the deque and
- ## `fromLast` elements from the back.
- ##
- ## If the supplied number of elements exceeds the total number of elements
- ## in the deque, the deque will remain empty.
- ##
- ## **See also:**
- ## * `clear proc <#clear,Deque[T]>`_
- ## * `popFirst proc <#popFirst,Deque[T]>`_
- ## * `popLast proc <#popLast,Deque[T]>`_
- runnableExamples:
- var a = [10, 20, 30, 40, 50].toDeque
- assert $a == "[10, 20, 30, 40, 50]"
- a.shrink(fromFirst = 2, fromLast = 1)
- assert $a == "[30, 40]"
- if fromFirst + fromLast > deq.len:
- clear(deq)
- return
- for i in 0 ..< fromFirst:
- destroy(deq.data[deq.head and deq.mask])
- inc deq.head
- for i in 0 ..< fromLast:
- destroy(deq.data[(deq.tail - 1) and deq.mask])
- dec deq.tail
- proc `$`*[T](deq: Deque[T]): string =
- ## Turns a deque into its string representation.
- runnableExamples:
- let a = [10, 20, 30].toDeque
- assert $a == "[10, 20, 30]"
- result = "["
- for x in deq:
- if result.len > 1: result.add(", ")
- result.addQuoted(x)
- result.add("]")
- func `==`*[T](deq1, deq2: Deque[T]): bool =
- ## The `==` operator for Deque.
- ## Returns `true` if both deques contains the same values in the same order.
- runnableExamples:
- var a, b = initDeque[int]()
- a.addFirst(2)
- a.addFirst(1)
- b.addLast(1)
- b.addLast(2)
- doAssert a == b
- if deq1.len != deq2.len:
- return false
- for i in 0 ..< deq1.len:
- if deq1.data[(deq1.head + i.uint) and deq1.mask] != deq2.data[(deq2.head + i.uint) and deq2.mask]:
- return false
- true
- func hash*[T](deq: Deque[T]): Hash =
- ## Hashing of Deque.
- var h: Hash = 0
- for x in deq:
- h = h !& hash(x)
- !$h
|