Relax NG XML

Relax NG XML

Table of Contents

[1= = o PP PPPPPT 1
L PIE ACR e 2
Who Should Read ThiS BOOK?cccuuuiiiiiiieieii et 2

Who Should Not Read ThisS BOOK?cccuuuiiiiiiiiieiiii e 2
Organization of thiS DOOKccouuiiiiiiiiiii e 2
ACKNOWIEAGMENTS ...t 4
Powered DY WIKIMLouii e 4

By the way, why isit called REIaX NG?ccoviviiiiiiiic e 5

[USEE GUIE ...ttt ettt ettt e et e ettt e e e en e e e enaans 6
2. Chapter 1: Relax NG 1N ParSpeCtiVeoiiiiiieeiiii e 7
XML IS @D0OUL QIVEISITY ..oevveiieeiii et 7

XML is about the independence of documents over applications................c.oceeeen. 7
There is more than one aspect in validationc.oooeiiiiiiiiiinc e, 7
Relax NG is the best tool to validate the structure of XML documents..................... 8
Unexpected uses of REIGX NGcoouuiiiiiii e 8
Relax NG as @ PIVOL FOINMMELciiiieeieii e 9

Why should anyone use any other schema [anguage?oceevviviiiiiinneiiiiineeeenen, 9

3. Chapter 2: SIMple 1S BEAULITUIcvvieiiieii e 10
XML INFOSBL ettt e e 10
Different types of sChema langUagescoouvurieiiiiiiieiii e 10

A SIMPIE BXAMPIES .. 11

A strong mathematical backgroundoiiiiiiiiiiiiii e 12

And a strong experimental DaSIScc.uuiiiiiiiieii e 13
Patterns and ONlY PALtEINSciieiiee e 13

4. Chapter 3: First SChemauiiii e 14
GELEING SEAEAceeeee ettt 14

OUN FIFSE PALEEINIS ...t e e eeans 14
O > e 15
SAMDULE/> oo 15
SEIBMENL/> et e e e e et e e e e e aaeee 16
SOPLONAIIS L. 17
SONEOIMOTES> ... 18
SZEFOOIMOTES> ..t 19

Complete SChEMA e 19
Constraining NUMber of OCCUIMTENCESccvvviiiiiiiie e 20

Russian doll SChemasccouuiiiiii e 21

5. Chapter 4: NON XML SYNEBXeiiiiiiiiiiie ettt eeens 24
GELEING SEAEAceeeee ettt 24

Our first COMPACE PAIEEINSiiiiit et e e e 24

XL e 24

BIEMOULE ... 24

BIOMENT .o 25

OPLIONAL <.t 26

(01015 @ 111/ Lo £ PP 28
ZENOOIMOIE ...ttt 28

FUIT SCNEMAL ... 28
XML OF COMPBCE? ..ttt et e 29

6. Chapter 5: Flattening Our First SChemal............uiviiiiiiei e 32
Why do we need flat SChemas?coouviiiiiiii e 32
Defining NAamMed PAtEINScoeeeiieiiii et 34
Referencing named PaLternScoeevuieiiiie e 35
Grammar and Start ElEMENTSiiiiii e 36

Al TOGEINES .o 37

NON TESIMCHIONS ...ttt et e et e e eees 44
RECUISIVE MOUEIS ...ttt e e e e e eees 44

Relax NG XML

Escaping named patterns identifiers in the compact syntaxccooevvviveiinnennnnn. 45
7. Chapter 6: MOre PatternSc..uiiiiieii e e e e e e e e e e 47
I Lo L0100 1 =1 [47
Theinterl @ave Patternoiv i 48
The ChOi CE PatErN ... e 49
Pattern COMPOSITIONSiiviiii e e e e e e et e ea e eeas 50
The lack of order in a schema may be a source of information in instances.............. 52
Text and empty patterns, whitespaces and mixed CONtentS............ccoevevvvieeeinennnnn. 52
Why isit calledi nt er| eave instead of "unorderedGroup"?.........ccoeeevvevvnnnnnn. 55
Ordered mixed CoONtent MOUEISuieiiiiiieii e 58
Principal restriction related toi Nt erl eavec.oocoiveiiiiiiiiiii e, 60
[ESS T I o (= o 62
8. Chapter 7: Constraining TEXt ValUESoviuiiiiiiieiii e e e 63
VBIUBS .ot 63
CO-OCCUITENCE CONSITAINES ... eeevvteeeeiti e eeeiiseeeeai e e eeet s e e e et s e e eeteaeeeenan e aeeennns 63
g 1U 41 = Lo PP 67
Whitespaces and Native datalyPEScvvuieiiiieii e e 68
Beware of string datatypes in attributeSooveiiiiiiii i, 70
Rule of thumb about String datatyPesvevviieiiii e 71
Using different typesin eaCh Valuec.oooviiiiiiii i 71
(e [0 o] P 71
LISt ittt ettt ettt et a e 72
Dl VEISUS TEXL ...t ettt e e e e e e eas 74
9. Chapter 8: Datatype Librariesooeeuiiiiice e 76
W3C XML Schematype libraryc..ooviiiiiiiiii e 76
I L0 = 1Y 0= 76
THE FACEES oeveie e 85
DTD Compatibilitycooeniiiiicie e 89
Which library should WE USE?uuiiiiiiiiii i 92
Native types versus W3C XML Schema datatypes.......ccocevvvevvnieiiineeinnnnnnn. 92
DTD versus W3C XML Schema datatypesoevvvneeiiieeiiieeiiieeiiieeeineens 92
10. Using Regular Expressions to Specify Simple DatatypeScoovvvvevieeiiiieeiieeiinenns 95
The SWiSS Army KNIfe ... 95
The Simplest Possible Pattern facetSccoveviiiiiii i, 95
(@0 7101 1 1Y, oo PP 97
MOFE ATOMIS ... e et e e e e e e e e e e ees 98
SPECial CharaCterSivve i e e e e e e 98
LAY/ Lo (o= o TP 98
CharaCter ClaSSES ..ovvvniiiiii et et e e 99
Oring and GrOUDING «...vuueerueeitieeeiie e e e e e e e e e eat e e et e e e e et e e aaneeeens 104
COMIMON PELEEIMNS ... e et e e e eenes 104
S 10l DL =) 1 104
NUMENC and FlOat TYPES ..vueiiieiii e e e e e 106
D 1] 1= PP 107
11. Chapter 10: Creating Building BIOCKScocvviiiiiiiiiii e 109
EXternal FEfErenCESuuiiiiii i 109
With Russian doll SChemasoovvviiiiiii e 109
With flat SCheMESoiiiiiiee e 111
Embedded grammarscccouiiiiii i 114
Reference to a pattern in the parent grammarcccooeeviieiiiiieiin e, 116
[V K= o T aTo lo =g 04 F=T £ 123
Merging without redefinitionccooieiiii i 123
Merging and replacing definitionsccooeviieii i, 127
Combining definNitioNScc.iiiiiiii e 133
Why can't we combine definitions by group?..........cccooiiiiiiiiiiiiiiineeis 137
A real world example: XHTML 2.0iiiiiiicc e e 137
(@1 97 0] o131 143
A POSSIBIE USE CASE ...vviiiicii e 143

Relax NG XML

D21 oo =SSP 144

TEXE TOOIS ..ot 148

A O g0 = g B T o T s 150
A ten minutes guide to XML NaMESPACESevviiiiiieiiiieie e e e e 150
The two challenges of NAMESPACESvvvvniiiiiieiii e 154
NameSPace AECIArAtiONSocvveeiii e e e e aaaas 154
Using default NAMESPACESccvuiiiii e ieceie e e e e e e e e e e 154
USING PrEFIXES ..ovniiiiiieii i e e e e e e eaen 156
Accepting "foreign NAMESPACES"civviiiiiie e e e e eaaes 160
Constructing our Wildcardccoviiiiiiiii e 160
USINg OUr WIlACAIrduieiiiiii e e 162
Where should we allow foreign NOdeS?coovvvviiiiiiiiiiieiie e 164

A couple of trapSto avoidc.uiviiiiiii e 164
Adding foreign nodes through combinationc..ccoeveiieeiiieviineeis 165
Namespaces and building blocks, chameleon designcccocveveiiiiiiniiinecennn, 167
BaCk 10 XHTML 2.0 .ouuiiiiiiiieeeii e e 167
Applicability to our [ibraryc.cooeeiiiiiii 169
GO0 OF EVIl7? ..t e 174

13. Chapter 12: Writing Extensible Schemascccccovvviiiiii i, 176
EXtENSIDIE SCNEMES ..vuiiiiiii i 176
FIXEO FESUIT ..ot e e 176

Free fOrMALooeii e 187

What about restricting existing schemas?cccooeviiiiiiiincen e, 191

The case for Open SChEMASco.uiiiii e e e 192
MOI€ NAME ClASSESiiviiiiee it 192
EXtensible AN OPENT ...covn e 195
14. Chapter 13: AnNotating SChEMASccvviiiiiieeii e e 198
Common principles for annotating Relax NG schemasccocceveviiviiiiineiine, 198
Annotation using the XML SYNtaXxccooveiiiiiiiiieiiiiieiieee e 198
Annotations using the COMPaCct SYNEAXoveiveeiiiieiiiieeie e 199
Annotating Groups of DEfiNItioNSccccviveiiiieiiii e 206
Alternatives and Workaroundsoooovvviiiiiiiiiiieiiii e 207
(Dol 104 1= g1 = [o TP 211
COMIMENTS ...ttt e e e e e e e e e e e e e ees 212
Relax NG DTD Compatibility COmMMENESc.uvvvvnieiiiiieiiieciiiiecieeeiiees 213
XHTML ANNOLALIONS .vviieiiiiieee e e e e e 216
DOCBOOK ANNOLALIONScevvvueeiiiiseeeeiiseeeeti s e e eeii s e e eeai e e eeae e eeereaeeees 217
Dublin Core ANNOLALIONSoevieiieeeiii e et e e et e e e eeeai e eens 218

SV G ANNOLALIONS ...ttt e et e et e e et e e eete e eeene 219
RDDL ANNOLALIONS ...vtueeiiiiiee et e et e et e et e e et e e e eeaen e e e eeaeaeeees 221
Annotation for apPliCalioNSoiiuiiiii i 223
ANNOtations fOr Pre-ProCESSINGvvvveeerieriieeeie e e e e e e e e e e e e e 223
ANNOLAtioNS FOr CONVEISIONiiiiiiieeiiii et e e e e 224
ANNOLAtioNS fOr EXLENSIONuuiiiiii e 227

15. Chapter 14: Generating Relax NG SChEMaScccviiiiiiiiiiicii e, 233
Examplotron: the instance document isitsown schema.............cccoceeiviiiieeennn, 233
Ten minutes guide to EXamplotronccocevieiiiieiiiiiceeee e, 233

USE SCENAINOS ..evvvnieeiiiiie et e e ettt e e e ettt e e e ettt e e e e et e e e e et e e e e et e e e eaan s 240
Literate ProgramimMingieiuuieiuiieeiie e e e e e e e e e e e e et e e et e eean e eees 240
OUL Of thE BOX oevviieee e 241
Adding bells and whistles for RDDLcccccoveviiiiiiiniciieeeeeeeee e, 247
UM L et a e aae 249
SPrEAdSNEELS ... i 254
16. Chapter 15: Simplification And RESIIICHONScccuveiiiieiiiieiie e, 259
SIMPLTICAION ..oiie i e 259
Whitespace and attribute normalization and inheritance................c..ccovne. 261
Retrieval of external SChemasooovviiiiiiiiniee e 264
Name classes NOrMAIZAIONovviiiiiieei e e 268

Relax NG XML

Pattern NOrmMaliZationiieiiiiiiie e 269

First set Of CONSITAINTS ...vuuiieiiiee e 271
(=000 0T T 001 0[PP PRPRPTPR 271
Schema flatteningcooviiiii i 274

FiNal ClEANUDP .vvieic e 276
RESITCHIONS ...t e e e e e e e e 278
Constraints on the attribULESoceviiiiiiii e, 278
CONSIFAINES ON TISES 1.vviieeiiii et e e e e e e e eene 283
Constraints on eXcept PaternScccveviiiiiiiiiei e 284
Constraints on St art Patterns.ocouvieiiiieiiii e 284
Constraints on content MOAEISoovvvveiiiiiiiiiiee e 284
LimitationS On i Nt erl @aVe. ..oiiiiiii i 285

17. Chapter 16: Determinism and Datatype ASSIGNMENtovvvnieiiiieeiiieriiieeeieeeinas 287
What are we talking aboUL?ciiuiiiiiiie e 287
Ambiguity Versus determiniSmcouveiiiieiiiiieii e e e 287
Different types of ambigUItIEScc.ceiiiiiiiiiiiii e, 288

The downsides of ambiguous and non deterministic content models..................... 297
INSEANCE ANNOLALTIONSieeeevii et et e et e e e eaa e eees 297
Compatibility with W3C XML Schema..........cccoeeviiiiiiiiiciecc e, 298
Some ideas to make disambiguation EaSIENc..cvevivieiiiiiiiie e, 300
Generalized eXCept Patterncooviiiiii i 300
Explicit disambiguation rUIESccoeuniiiiiieiie e, 301
Accepting ambigUILYoeviiiii 301

[11. Short refErenCe QUIAERcive e e e e e e e e e aeas 302
18. ElementS referenCe QUIEccuuiiiiiciiie e e e e e 303
BLOMENES .eeee e 303
19. Compact syntax referenCe QUIEcovuiiiiiieii e e e 369
F g1 070 (8o [o RSP 369
EBNF production quiCK refEreNCEuuviiiiiiii i 370
20. Datatype REFEreNCE GUITEccuuiiiiieii e e e e 429
DS o 101711 P 430
XSA:DASEBABINGIYcvveiciiieee e 432
XSA:DOOIEAN ... 433
DS o W 0,7/ (TP 434
DG o o - 1= S PSP 435
DG o o = 1= 11 11 PSP 437
XSA:AECIMEL ... 439
DG o o (o]0 o = RS UPPRTPPIN 440
DG o Mo 0= 0] o E PP 441
XSAENTITIES ..ot e e e e e e 443
DG o =\ I P 444
DG o i o PP 445
DS o W0 | DT 446
XSAIGMONEN L. 47
DS o W0 1Y o011 0| I - Y P 448
DS o W0 = | 449
XSA:GY EAMONEN .oeii i 450
PGS o W 1121 07 Y P 451
DS o 1 5 P 452
XSAUDREF ...t 454
XSAUDREFRS ... 456
DL o T | S 458
DS o W 1011=o (= S 459
DS o W = a0 U7 o L= 460
DS o W 0] o TP 461
DG o B N\ 0 PP 462
XSAINCINGITIE L.t e et e e e e e e aa s 463
DS W A1C 0Tz A= 101 =10 L= 464

Vi

Relax NG XML

DS o W N 1Y 1 N 465
XSENMTOKENS oo e et e e e e e e e e e e e e e e aaeaneees 466
XSA:NONNEGAIVEINMEEOETiiiiieii e e e e e aans 467
XSA:NONPOSIIVEINEEOETuiiiiiiiiiee e e e e e aeaas 468
XSANOrMAIZEASIIING .. cvviiii e e e e eaeas 469
DS o W N[2 17N I P 470
PGS o W L0 LAV g1 (= o = G S 472
DS o W@ NN =0 T T 473
DG 0 K= 0 AP 474
DS o =1 1 0o PN 475
DG o 1] 1 11 TP 476
DG o H 10 o TSP 477
DS o WU T 1= o (2] (- 478
DS o WU 1= T 1= o g PN 479
s o WU 1T 1= o o) o o [N 480
XSA:UNSIGNEASNONT ...t e e e e e e e e e e e 481
L1105 482
Y Y o] o 1= 10 [=S 487
21, APPENCIX Az DSDL .uuuiiiiecciiie et a e e e 488
What's the Problem?couii e 488
A multi part Standardooiiiiiei 488
A @ Y VT Y 488

Part 2: Regular-grammar-based Validationccooeeeiiiiiiiiinciinees 488

Part 3: Rule-based Validationcooveiiiiiiiiiiiiii e 489

Part 4: Selection of Validation Candidatescooevvviiiiiiiiiinieiiiiinieeenn, 490

L RS T DT - 1Y/ o ST 490

Part 6: Path-based Integrity CONStraintScc.ooeeviiiiiiiieiiie e 490

Part 7: Character Repertoire Validationcccceveviiiiiiiiieiiecceeeeeeee, 490

Part 8: Declarative Document ArchiteCturesccuveveeviviinieiiiiineeeiiinnnn, 491

Part 9: Namespace and Datatype-aware DTDScc.ovvvvviieiiiieiiiieciieeeeenen, 491

Part 10: Validation Managementceevuieiiiieeiiiieiiiieeiieeeaeeeeieeanes 491
What DSDL should Bring YOUccceuniiiiiiiiiie e e e 492

vii

List of Figures

N O {011 B o= 1 = o T T PSPPSR 11
3.2, XSO-TUI-PEELEIN ... et e e 11
R A 0o T o= 1= 1 [PPSR PPPPTI 12
g T (155 = e (o PP 22
ST B (1 4| BT ole o o BT SPPPTT 30
B.0. 2NAITIES ...ttt e e e e et e e ea e ea e an e aaas 33
L 0= 1= o S 35
6.3, ING-TUIT-PAITEIN oottt ettt et et e e e e e eneas 43
S O | - TSP UP PP PPPPTT 184
T = oo = | PP 185
R 16 T 1S (== Y PP 190
13.4. first-interl@aVE-CONTAINES iiieei et e eeees 191
T R 1] (= =1 | PP 244
15,2, TIEEIAIE-CPE . eeve ettt ettt ettt ettt et 246
T 1] (= (S o (o | PP 248
L5.4, OVEITAD .oeneeeee e 250
I5.5. OVEITADZ ..o e 251
L5.6. BIGOUIMI ...ttt ettt ettt e ettt et e et e et e 252
ST o o R PRSP SPPPTT 255

viii

List of Tables

10.1. Specia characters
10.2. Unicode character
10.3. Unicode character

(01 S5 =T
DIOCKS e

Part |. Preface

Preface

Chapter 1. Preface

The "X" in XML stands for "eXtensible" and XML by itself is so extensible that | can invent new
elements and attributes as | write my XML documents. The main limit of this extensibility is that |
need to keep track of these elements and attributes and that | often need to convey to the applications
what | intend to accept in my documents. Thisis needed for validation purposes and also to automate
some of the most time consuming --and boring-- programming tasks. And thisiswhere XML schema
languages cometo play.

XML Schema languages are a nice idea... as long as they don't add to XML a weight so heavy that
XML becomes uneXtensible and, unfortunately, that's what was likely to happen before Relax NG.
XML Schema, the dominant XML Schemalanguage, had become so overloaded that it's both difficult
to learn, difficult to extend and that its expressive power istoo limited to describe all the possibilities
offered by XML. Even though we can expect that many applications will accept this overweight, a
lightweight and simpler aternative was needed for those of uswho want to preserve all the extensibilty
of afree style XML.

That'swhat Relax NG isredly:

e aXML schemalanguage

« focused on validating the structure of XML documents
* lightweight enough to be easy to learn, read and write

» powerful enough to describe virtually any vocabulary which is based on well formed XML and
conform to namespacesin XML.

There are a couple of reasons why Relax NG is so much easier than W3C XML Schema and both
contribute to make it also more reliable and safer to use: Relax NG has a very sound mathematical
ground and it has been kept focussed on doing perfectly well a single thing --validating the structure
of XML documents. Relax NG won't do the coffee for you, but if you need a schema language easy
to use and which won't block you in alabyrinth of obscure limitations this is the language you should
be using. Furthermore, an excellent open source tool is available which will convert your Relax NG
schemas into other languages including W3C XML Schema.

Who Should Read This Book?

Read this book if you want to:

» Create Relax NG schemas.Status: Need to be updated after afirst set of reviews.
» Understand existing Relax NG schemas.

 Discover that XML schema languages can be simple.

To understand this book, you should already have a basic understanding of the structure of XML
documents but do not need to know any other XML schemalanguage.

Who Should Not Read This Book?

Do not read thisbook if youwill only be using existing Relax NG schemasto validate XML documents.

Organization of this book

e Chapter 1: Relax NG In Perspective - This chapter gives more perspective on the many aspects of
XML validation, what is a schema language and what makes Relax NG really unique.

Preface

Chapter 2: Simple Is Beautiful - This chapter introduces the background of Relax NG itself and
insists on the notion of patt er n which is the elementary building brick on which the whole
language is built.

Chapter 3: First Schema - Following the structure of the instance document used all over this book
this chapter builds, step by step, afirst complete Relax NG schema using the XML syntax.

Chapter 4: Non XML Syntax - The XML syntax issimple, natural and reads almost asplain English
but isalso verbose. In this chapter we see the aternative compact (non XML) syntax. In the rest of
this book, each example will present both the XML and the compact syntaxes so that you can either
focus on one of them or learn both of them in parallel.

Chapter 5: Flattening Our First Schema - Our first schema had been following the structure of our
instance document in what is called a "Russian doll" design. In this chapter we show how named
patterns can be used to limit the depth of a schema, provide re-usability or mimic aDTD.

Chapter 6: More Patterns - Up to now, we have only seen ordered sequences of elementsand in this
chapter we introduce new compositors to define alternatives and unordered (interleaved) content
models.

Chapter 7: Constraining Text Values - In this chapter we introduce the generic mechanism used to
constrain text values and the two Relax NG built-in datatypes (namely string and token).

Chapter 8: Datatype Libraries - In this chapter we see how external datatype libraries may be
plugged into Relax NG schemas and spend some type exploring the two datatype librarieswhich are
most frequently used: the W3C XML Schema datatype library and the DTD compatibility datatype
library.

Chapter 9: W3C XML Schema Regular Expressions - One of the most powerful facet which can
be used to add constraints on the W3C XML Schema datatype library isthe pat t er n facet which
relies on its own flavor of regular expressions presented in this chapter.

Chapter 10: Creating Building Blocks - Now that we have now all the building blocks, we seein
this chapter how we can reuse and redefine them in "grammars' which can be merged.

Chapter 11: Namespaces - We explain briefly what XML namespaces are and discover in this
chapter how straightforward is their support in RELAX NG.

Chapter 12: Writing Extensible Schemas - This chapter covers both the extensibility of the schemas
themselves and the extensibility of the class of instance documents described by a schema (in other
words, its openness).

Chapter 13: Annotating Schemas - Documentation may be targeted to human users but also to
other applications and we cover both aspectsin this chapter showing for instance how Schematron
rules may be embedded in Relax NG schemas, and covering other annotations systems such as Bob
DuCharme's schema document pipeline proposal and my own xvif.

Chapter 14: Generating Relax NG schemas - This chapter explores different sources from
which Relax NG can be generated, such as instance documents (Examplotron), UML diagrams,
spreadsheets and litterate programming.

Chapter 15: Simplification And Restrictions - This chapter goesinto the details of the simplification
of Relax NG documents described as a normative part of the Relax NG specification which
understanding is needed to understand some few obscure limitations.

Chapter 16: Determinism and Datatype Assignment - One of the strengths of Relax NG isto allow
non deterministic schemas. While this is extremely convenient for validation purposes, thisis an
issue for assigning datatypes to the nodes of the instance documents (a controversial feature out of
the scope of Relax NG but used by some applications). This chapter presents the concepts of schema
determinism and ambiguity and their impacts on the different ways to use Relax NG schemas.

Preface

» Chapter 17: Relax NG Elements - This chapter isashort reference guide describing all the elements
of the XML syntax with their description, synopsis and example.

» Chapter 18: Non XML Syntax Reference - This chapter isashort reference guide describing all the
elements of the compact syntax with their description, synopsis and example.

» Chapter 19: W3C XML Schema Datatypes - This chapter is a short reference guide to W3C XML
Schema datatypes often used as an external datatype library in Relax NG schemas.

» Chapter 20: Glossary - This chapter is a glossary providing a short explanation of the terms used
al over the book.

» Appendix A: DSDL - This appendix presentsthe |SO DSDL project which doesinclude Relax NG
asits part 2.

Acknowledgments

| would like to thank the Relax NG OASIS Technical Committee for having provided the subject of
this book which would obviously never have been possible without their work and especially Murata
Makoto, James Clark and John Cowan for the timely and higly accurate answers they have provided
to my many questions.

My own implementation of Relax NG has proven to be most useful in gaining a deep understanding
of the language and | would also like to thank Uche Ogbuji who has been my Python mentor during
this project and again James Clark for the detailed instructions of how Relax NG can be implemented
using the very nice so called "derivative algorithm".

Thisbook istheresult of acollaborativework and | thank all the people having contributing comments
and annotations, including the tech reviewers, David Eisenberg, John Cowan and Dave Pawson who
have extended their comments well beyond the scope of simple tech reviews and have significantly
improved its level of quality. This collaborative work would never have started without my editor,
Simon St.Laurent who has believed in this book since before its beginning and just made it happen.

Finally, | need to thank my wife and children for their patience and moral support while | was busy
writing this book. Unlike | had done in the preface of my previous book | won't dare to promise
that they will recover their hushand and father now that this book is over fearing that a new other
challenging project might swallow mein a near future!

Powered by WikiML

Most if this book has been edited in a WikiWikiWeb powered by PhpWiki, a PHP implementation of
the concept of WikiWikiWeb invented by Ward Cunningham in 1995 and famous for the simplicity
of its text based markup. The WikiWikiWeb pages have been converted to XHTML pages using the
parser developed by the WikiML project and these pages have been transformed through XSLT into
DocBook for production at O'Reilly.

Thisis probably one of thefirst attemptsto leverage on something as simpleto use asaWikiWikiWeb
to produce something as complex as a whole book markuped as DocBook and | have been surprised
by the smoothness of the whole process.

To learn more about these subjects:

* http://c2.com/cgi-bin/wiki WikiWikiWeb (WikiWikiWeb)
* http://phpwiki.sourceforge.net/ (PhpWiki)

* http://wikiml.org/ (WikiML)

* http://mwww.w3.0org/TR/xdlt (XSLT)

Preface

« http://www.oasi s-open.org/docbook (DocBook)

By the way, why is it called Relax NG?

Relax standsfor "Regular Language description for XML" and of course, it'salso ajokefromitsauthor,
Murata M akoto who used to advertise hislanguage as. "Tired of complicated specifications? Y ou just
RELAX !". Despite its humourous name, Relax has been avery serious candidate asa XML schema
language and it has been published as an | SO/IEC Technical Report in 2001 under thetitle: "I SO/IEC
DTR 22250-1, Document Description and Processing L anguages -- Regular Language Description for
XML (RELAX) -- Part 1: RELAX Core".

Relax has then been merged with TREX (Tree Regular Expressions for XML), another XML schema
language proposed by James Clark in 2001 under the name Relax NG (NG standing for "New
Generation") the wish of both Murata Makoto and James Clark being that users of Relax and TREX
gradually migrate to Relax NG.

Part Il. User Guide

The user's guide is a tutorial showing all the features of RELAX NG through a gentle progression and many
examples.

Chapter 2. Chapter 1: Relax NG In
Perspective

XML is about diversity

| have heard people jest that XML was standing for "eX cellent Marketing Language” and | often felt
that, unfortunately, this had become a very accurate definition. Nevertheless, the official meaning of
the XML is"eXtensible Markup Language" and thisoneis still more accurate!

XML is not extensible in the sense that the XML specifications themselves would be extensible
and many experts think that both the XML recommendation itself and the pile of XML related
specifications have already become legacy and are very hard if not impossible to update and extend.

XML is extensiblein the sense that it lets you define your own sets of elements and attributes which
can express virtually any hierarchical structure. And it's not only accurate but real: the extensibility
of XML is been used, some would even say overused, and we've lost the count of the different sets of
XML elements and attributes (let's call them XML vocabularies) used by different peoplefor different
applications. And, of course, al of these vocabularies need to be validated which means that there is
aneed for validation tools easy to adapt to each of these vocabularies.

XML is about the independence of
documents over applications

| have also heard many people elaborate on the tight relationship or parallel between XML and object
orientation; saying that XML is the same paradigm for data than object orientation for programs
and that XML is a perfect serialization format for object systems. That's not untrue, but we can also
see XML as anti-object oriented, or maybe post object oriented, because it's reintroducing a clean
separation between data and program which is the complete opposite of the basic object oriented
principle which says that objects encapsul ate both data and treatments.

In the XML world, XML documents live their own lives independently of programs: they can be
edited, read, displayed and transformed using generic tools independent of any application and it's
vitally important that they can also be validated independently of any application.

It'snot only important that XML documents can be validated independently of any application because
XML documents themselves have become independent of applications but it's also difficult because
of the extensibility of XML. The diversity of the XML vocabulary is virtualy infinite. It's one of the
main assets of XML and that's something we certainly do not want to limit with the tools used to
validate XML documents. It's also difficult because of the diversity of what we can call "validation”.

There is more than one aspect in validation

Vdidation can be about checking the structure of XML documents, it can be about checking the content
of each text node and attribute independently of each other (that's often called datatyping), it can be
about checking constraints between nodes, it can be about checking constraints between nodes and
external information such as lookup tables or links, it can be about checking "business rules’ and it
can be anything else such as spell checking.

Vadlidation is key to improve the level of quality of our XML based information systems and that's
something which appears to be most needed. | have recently followed two presentations about two
independent projects in very different domains and both came out with an alarming ratio of one out
of ten real world XML document containing errors. With such a high proportion, validation is not

Chapter 1: Relax NG In Perspective

only useful but indispensable! Can you imagine afund transfer system where 10% of the transactions
would contain errors?

Relax NG is the best tool to validate the
structure of XML documents

Relax NG won't solve thisissue al by itself: it's not designed to solve the whole issue. Relax NG is
designed to be the best tool available to solve two pieces of the problem and validate the structure of
XML document by itself and provide a plug to datatype libraries which validate the content of text
nodes and attributes. It's also designed to be used as a part of the |SO DSDL framework which hasthe
vocation to deal with the issue of validation at large (see Appendix A: DSDL for more information
about DSDL).

This strong focus is what makes Relax NG so different from its main rival, W3C XML Schema. One
of the reasons of the complexity of W3C XML Schemais that it includes many features which have
been kept out of the perimeter of Relax NG. W3C XML Schema doesn't only care about validating
the structure of XML documents, but also to validate the content of text nodes and attributes and
the integrity between keys and references. Furthermore, W3C XML Schema doesn't only care about
validation but also attempts to be a modeling language for XML document which can classify the
elements and attributes of XML documents, identify their semantic and may be used to perform
automatic binding between XML documents and objects. All these goals may be fair, but there is
alwaysarisk to loose focuswhen trying to solve too many different problemswith asingle technology.

On the contrary, focus has always been kept on XML structure validation and no compromise has
been made to any other feature during the development of the Relax NG specification and the result
isthat Relax NG can pretend to be the logical successor of XML DTDs and the best tool available to
validate the structure of XML documents. Relax NG is powerful and its expressive power is such that
virtually any XML vocabulary may be described with Relax NG which isn't the case of W3C XML
Schemanot even of DTDs. Maybe still more important for people having to write schemas, Relax NG
is aso very simple: because it doesn't try to model XML documents, validate too many things and
brew coffee, the syntax isintuitive, it has been kept simple and isn't cluttered by limitations complex
to learn and difficult to remember.

Unexpected uses of Relax NG

This focus doesn't mean that Relax NG is a niche language meant to stay limited to its original
goa. Relax NG may well follow the path of XSLT (also developed by James Clark): XSLT which
devel opment has been focused on document transformation has become the Swissarmy knife of XML
developers and its unpredictable success shows that it's being used for much more than what had been
originally forcasted.

The same will likely happen with Relax NG and | can give a couple of examples.

The other day, | had to write a converter for aflat non XML format into XML. The structure of the
resulting document was described by anon Relax NG schema and after various attempts to find hacks
to map the 400 different information items of this flat structure into as many elements and attributes,
| have found that the easiest way was through a Relax NG Schema. | have transformed the schema
of the XML vocabulary into a Relax NG schema as simple as possible. A trivial program (written in
Python in that case but any other language could have been used) can just walk through this structure
while parsing the flat document and dispatch the information items where they belong. Thiswas made
easy by the uncluttered simplicity of the syntax of Relax NG and it would have taken me much more
time with any other schema language.

The second example is taken from Relax NG itself. As we will discover in "Chapter 4: Non XML
Syntax", anon XML compact syntax is available for Relax NG and in its specification this syntax is
described by an EBNF grammar. Knowing James Clark, | was sure he hadn't written it by hand but

Chapter 1: Relax NG In Perspective

had generated it from XML and when | have written the reference guide for this syntax ("Chapter 18:
Non XML Syntax Reference"), | have asked him to send me the source of this grammar as XML.
| was expecting a format such as the DocBook EBNF module and guess what | received? A Relax
NG schema of course! The syntax of Relax NG is flexible enough to describe the productions of an
EBNF grammar and Chapter 18: Non XML Syntax Reference is generated from this schema. It'sonly
a summary and the semantics and restrictions of Relax NG are not fully respected, but Relax NG is
still anice way to describe this EBNF.

Relax NG as a pivot format

These two examples are a little bit extreme, and more to the point Relax NG appears to be the
perfect pivot format for XML schemarelated task. The first time | started to think of Relax NG as a
pivot format was attending the presentation about the Sun multi-schemavalidator (MSV) by Kohsuke
Kawaguchi at XML 2001. During his talk, Kohsuke Kawaguchi explained that the grammar based
different schema languages supported by MSV (DTDs, Relax NG, Relax and W3C XML Schema)
were translated into a common data model by the validator and that the validation algorithm relied
on this data model. After histalk, | asked him what was this common data model and he answered
that it was Relax NG. Thisisthe proof that the expressive power of Relax NG is such that 99% of the
constraints which can be described with other schema languages can be described with Relax NG.

This advantage could be amajor drawback: if the expressive power of Relax NG is so much important
than the expressive power of other languages, that could mean that a schema written with Relax NG
would beimpossible to trandate into other languages. This issue happens to be more theoretical than
practical and even if when you know both Relax NG and W3C XML Schemayou can imagine Relax
NG that cannot be translated into W3C XML Schema, this doesn't happen often in real life schemas
and when this happen, you can always ponder the need to express such a schema against your need to
be able to publish aW3C XML Schema schema. And the reason why | can be fairly confident when
| say that most Relax NG schemas can be trandlated into other schema languagesis that | have seen
it! James Clark has developed Trang, a magic tool that takes a Relax NG schema and convertsit into
W3C XML Schemaor aDTD.

Simpler towrite by hand, Relax NG isalso simpler to generate and that's something important too since
a growing number of applications, especially but not only those having huge schemas with hundreds
of elements and attributes tend to generate their schemas from logical models with a higher level of
abstraction rather than create them from scratch by hand. Whether you are using UML asyour design
tool, a simple spreadsheet like the OASIS UBL project or sample documents like my examplotron, it
is easier to derive a Relax NG schema from this model than any other schema language.

Why should anyone use any other schema
language”?

Having convertersto and from other schemalanguage, easier to write, easier to generate, easier to use
by applications, why would anyone even consider using any other schema language as its main pivot
schema language? Asfar as validation only is concerned, | can really not see any good reason.

The only areawhere Relax NG is till alittle bit behind is for data type assignment and data binding.
Datatype assignment appears to be getting increasingly important for a whole set of applications;
for instance, many new features of the XPath 2.0, XSLT 2.0 and XQuery 1.0 family of future W3C
recommendations. Because data type assignment was out of the scope of Relax NG itself, Relax NG
is very permissive about "non deterministic’ schemas which could lead to non deterministic type
assignment and this is something to keep in mind when writing Relax NG schemas which will be
transformed into W3C XML Schema schemas. | will present the latest updates on this subject in
"Chapter 16: Determinism and Datatype Assignment”.

Chapter 3. Chapter 2: Simple Is
Beautiful

The exploration of a foreign country or language deserves some preliminary explanations on its
particularities to save lot of time and trouble and avoid lots of misunderstandings. Relax NG doesn't
escape this rule so we'd better try to highlight its profound differences with other XML schema
languages.

XML Infoset

One of the few things that all the XML schema languages have in common is that they define
constraints to apply to alogical view on the XML documents (called the XML Infoset) rather than to
the document which you can read as atext file. Thisis how they differentiate from other techniques
such as regular expressions which you might used at the level of XML documents considered as text
files.

This may be a surprised if you're not familiar with the concept, but in XML, what you see is not
what you get and when you write "<book id="00836217462' available="true'/>" XML applications do
not see the string "'<book id="b0836217462" available="true/>". Most of them do not even see a"tag"
named book but they all see an el enrent named book with itstwo attributesi d and avai | abl e
and the vast majority of them do not care about the way you've written this element in atext document
nor even if you have ever written it in aext document: what they really care about isthe element book
and its two attributes.

The set of the information considered significant in a XML document -such as our element book
and its two attributes- is what is called the XML Infoset and it has been published as a W3C
Recommendation. ThisInfoset defines an abstract model of XML documentswhich has a hierarchical
structure and is described in terms generic and neutral enough to be acceptable for specifications with
different backgrounds and goals such as X Path or the DOM.

The different schema languages work at the level of the XML Infoset and their main goal is to let
us define constraints on a subset of the XML Infoset. Because they work at that level, they can't be
used to express constraints on things which do not belong to the XML Infoset, such as the order of
the attributes or the number of spaces between them. In addition, most of them won't let you define
constraints on XML comments or Processing Instructions nor on the use of entities.

Different types of schema languages

That being said, the different XML schema languages have chosen different ways of defining those
constraints:

* The constraints may be expressed asrules, like it's the case with Schematron: you give sets of rules
such as "the element named book must have an attribute named id and this attribute must match
thisand thisrule, ...".

» They may be expressed as athorough description of each element and attribute like DTDsand W3C
XML Schemaand say: "it'san element, named book and it hastwo attributesnamed id and available
which look like this and this'.

* They may be expressed as "patterns’ similar in their principle to regular expressions adapted to
match XML infosets rather than text documents and we will cover this third way of defining
congtraints in detail over this book since it's the way that has been chosen by Relax NG.

The first XML schema language ever used was the DTD. Of course DTDs cover more than schema
features and include the definition of internal and external entities, but their schema features focus
on describing elements: each element must be described and for each element, a list of nodes must
be defined listing whether text nodes are allowed, the list of allowed child elements and the list of

10

Chapter 2: Simple Is Beautiful

its attributes. Pieces of content model may be defined, by using special entity types (the parameter
entities) which work like akind of macro-processing.

W3C XML Schema has extended this principle and defines several kind of "components" allowing
to manipulate not only elements, but also attributes, datatypes which are containers describing the
content of elements or attributes and even groups of elements and groups of attributes. The approach
istill very focused on elements and attributes and which are clearly differentiated.

Relax NG, onthe contrary isbased the generic concept of pat t er n whichismore or less symmetrical
to the X Path concept of "node set": in first approximation, apattern could be defined as the description
of aset of valid nodesets.

The difference may be difficult to perceive, but when we define an element withaDTD or W3C XML
Schema, we try to give a description of the element itself while when we define the same element
with Relax NG, we define a pattern which will be checked against elements like aregular expression
to see if they match. The difference is dim, but the later option gives us a much wider flexibility to
write, maintain and combine schemas.

A simple example:

Let'stake afirst look at the example which we will using throughout this book and look at thisbook
element with its two attributes and four different sub-elements:

Figure 3.1. full-pattern

<book id="b08356217452" available="trus">
<isbn>0836217462</isbn>
<title xml:lang="en">=Beaing a Dog Is a Full-Time Job</title>

- <author id="CMS5"></author>

- zcharacter id="PP"></character:

- <character id="Snoopy"></character>

- <character id="Schroeder"></character:

- zcharacter id="Lucy"'></character>

</book>

WithaDTD andto alesser attempt with W3C XML Schema, we are pretty much stuck to definelists of
attributes and el ements and cannot mix and combinethemtogether. W3C XML Schemahasintroduced
the concept of t ype which is an abstract object that has no match in the XML documents and is
the description of the content of an element or an attribute, but still, types can't be freely combined
together. This means that we can split the description of this elementsinto blocks such as:

Figure 3.2. xsd-full-pattern

<bookjid="b0836217462'[available="true"t
<Isbn=>0836217462</iIsbn>

<title xml:lang="en">Beaing a Dog Is a Full-Time Job</title>
<author id="CM5"></author>

<character 1d="FPP ></character>

<character id="Snoopy"></character>

-l=character id="Schroeder"></character>

-lecharacter id="Lucy'"></character:

</book>

11

Chapter 2: Simple Is Beautiful

Relax NG patterns on the contrary can freely mix different type of nodes (el ements, text and attributes)
and if we have aneed for this, Relax NG is flexible enough to split the definition of the book element
into afirst pattern composed of thei d attribute, thei sbn,tit| e, aut hor andfirst char act er
element and a second one composed of the avai | abl e attribute and the other char act er
elements:

Figure 3.3. rng-full-pattern

<book|id="b0836217462 lavailable="true">
<isbn>0836217462</isbn>

<title xml:lang="en"=Being a Dog Is a Full-Time Jobh</title
<author id="CMS"></author>

<character id="PP'"></character>

<character id="Snoopy"></character>

<character id="Schroeder"></character:

<character id="Lucy"></character>
</book>

This flexibility is not only useful for combining complex patterns but also a source of simplicity for
the designers of Relax NG schemas who do not need to learn along list of limitations which must be
checked when they write and combine their schemas.

This generic concept of patternsis powerful enough to replace the specialized containers of the DTD
and W3C XML Schema. Relax NG has no need (and no notion) of reusable element, attribute or type
definition: to reuse an element or attribute, this element or attribute is embedded in a pattern where it
will be left alone; to reuse atype, a pattern is created to contain the content definition. These patterns
are the reusable building blocks of Relax NG. They can be named, reused and even redefined at will,
combined through operators to group them or provide alternatives between them.

The benefit of having non specialized patterns is an increased flexibility: this is well known in the
construction industry where reusing a small number of generic parts provides more flexibility and
a higher number of possible combinations than using more specific pieces and this is true for XML
schema languages too...

A strong mathematical background

This notion of patterns is both new an ancient. New in the way it has been applied to XML in Relax
first and now in Relax NG and ancient since it is the adaptation to XML of techniques and theories
developed for Regular Expressionsin the 60s and the name "Relax" stands for REgular L Anguage for
XML. It relies on a strong mathematical theory and on works done by Murata Makoto to adapt the
mathematical concept of "hedges' to XML.

When Murata Makoto has kindly pointed me to his work to answer my first questions, | have been
horrified to see that all the maths | had learned at school seemed to have left me and that | couldn't
understand the first word of it and | can insure you that you won't need to understand the maths behind
Relax NG to useit and shouldn't worry about this. Onthe contrary, it'svery comforting to know that the
schema language you are using has such a background and it's a guarantee that its design is flawless.

The Relax NG specification is based on this mathematical background and the Relax NG patterns are
defined as logical operations performed on sets of XML structures. This gives to the specification a
formalism which removes any possibility of ambiguity for itsinterpretation and thisis most important
for insuring the interoperability of the different implementations of Relax NG.

12

Chapter 2: Simple Is Beautiful

And a strong experimental basis

This strong mathematical background doesn't mean that everything need to be reinvented for Relax
NG implementers. On the contrary, the so-called "derivative algorithm” used by James Clark in his
processor named Jing has been inspired by worksdonein 64 on the "derivation™ of regular expressions
and simply recursively removes from the patterns the nodes found in the instance documents: the
document isvalid if the patterns |eft after the last node are al optional.

Murata Makoto on his side, has adapted the ancient and well know algorithm of finite state machines
to cope with the level of non determinism accepted by Relax NG and has developed a Relax NG
validator lightweight enough to be used in a mobile phone.

Beside the fact that it is implementable with well known and documented a gorithm, devel opers of
Relax NG processors also appreciate the the simplicity of this underlying model and this should also
guarantee a strong interoperability between implementation which is unfortunately not the case with
more complex schema languages.

Patterns and only patterns

In the history of science, strong theories based on simple and basic particles have proven to have an
almost infinite potential and can be used as a foundation for the most complex applications. There
is no doubt that Relax NG is, in its domain, one of these applications both easy to explain, easy to
implement and generic and flexible enough to meet the most stringent requirements.

We will present the Relax NG patterns throughout this book but can't leave this chapter before we
give alist of some of them.

The three basic patterns match the three types of XML nodes in the scope of Relax NG (which do not
pay attention to XML Processing Instructions and comments):

» Text nodes --which can be specialized into dat a which can carry "datatypes’ and split into list
items.

» Elements
» Attributes.

These patterns can be combined into ordered or non ordered groups and into choices defining
alternatives between several patterns. Their cardinality, i.e. the number of time that can appear in
instance documents, can aso be controlled using cardinality patterns and, finally, a whole set of
features are provided to build reusable libraries of patterns. Similar to patterns, name classes define
set of element and attribute names that can be used to open a schema and control where elements and
attributes with unknown names may be included in the instance documents.

Some of these features have been defined to facilitate the work of writing Relax NG schemas and
are not basic "atomic" patterns. To avoid to overloading and omplicating the basic model with
these "cosmetic" features, the Relax NG specification describes a "simplification algorithm™ applied
internally by Relax NG processors to transform a full schema into a simple form with fewer and
simpler patterns. This algorithm is presented in "Chapter 15: Simplification And Restrictions”.

13

Chapter 4. Chapter 3: First Schema
Getting started

Throughout the book, we will be using variations of the same document describing alibrary:

<?xm version="1.0"?>
<library>
<book id="b0836217462" avail abl e="true">
<i sbn>0836217462</i sbn>
<title xm:lang="en">Being a Dog Is a Full-Tine Job</title>
<aut hor id="CM5">
<nane>Charl es M Schul z</ nane>
<bor n>1922- 11- 26</ bor n>
<di ed>2000- 02- 12</ di ed>
</ aut hor >
<character id="PP">
<nane>Pepper m nt Patty</nane>
<bor n>1966- 08- 22</ bor n>
<qualification>bold, brash and tonmboyi sh</qualification>
</ character>
<charact er id="Snoopy">
<nane>Snoopy</ nane>
<bor n>1950- 10- 04</ bor n>
<qualification>extroverted beagl e</qualification>
</ character>
<charact er id="Schroeder">
<nane>Schr oeder </ name>
<bor n>1951- 05- 30</ bor n>
<qual i fication>brought classical nmusic to the Peanuts strip</qualification>
</ character>zeroOr More
<character id="Lucy">
<nane>Lucy</ nane>
<bor n>1952- 03- 03</ bor n>
<qualification>bossy, crabby and sel fish</qualification>
</ character>
</ book>
</library>

Our first patterns

In plain English, we could describe this document as being:

* ali brary element composed of one of more

» book elements having

* idandavai | abl e attributes and

* ani sbn element composed of text

» atitl e element with axml:lang attribute and atext node

» oneor moreaut hor elementswith

14

Chapter 3: First Schema

* ani d attribute

* anane eement

» anoptiona bor n element

» anoptiona di ed element

» zeroor morechar act er elementswith
e ani d attribute

* anane element

» anoptiona bor n element

e aqualification element.

The good news -and what makes Relax NG so easy to learn- is that in its simplest flavor,it's pretty
much a XML formalization of this statement with simple matching rules:

* "library element" tranglates into <element name=l i br ar y>...</element>
 "id attribute" transglates into "<attribute name="id"/>

» "one or more" becomes: <oneOrMore>...</oneOrMore>

 "zero or more" becomes: <zeroOrMore>...</zeroOrMore>

o text is <text/>

» opti onal is: <optional>...</optional>

We've seen in "Chapter 2: Simple Is Beautiful" that almost everything is a pattern for Relax NG and
each of these Relax NG elements are patterns. Let's now spend some time to introduce each of them.

<text/>

This pattern is the simplest we can think of and simply matches atext node. More exactly, it matches
zero or text nodes and we'll see in "Chapter 6: More Patterns' that the t ext it makes adifferencein
the context of mixed content models (i.e. to define elements which may have both sub elements and
text nodes) but until then we can think of it as matching atext node.

By extension the t ext pattern also matches any attribute value even if attribute values are not
considered as nodes by the XML infoset.

The XML expression for t ext patternsisjust:

<text/>

<attribute/>

Asexpected, theat t r i but e pattern matches attributes. The name of these attributes are defined in
the nane attribute of theat t r i but e pattern and the content of these attributesis defined asachild
element of theat t r i but e pattern (don't worry, that's easier to write and read than to explain!).

15

Chapter 3: First Schema

To definethei d attribute, we could thus write:

<attribute name="id">
<text/>
</attribute>

This would read as: "an attribute named id with a text value". Since any attribute can have a value
and that the t ext pattern isn't restrictive in this case, it has been made optional and this definition
is strictly equivalent to the following one:

<attribute nanme="id"/>

The last thing we need to mention about this pattern isthat even if in most of the cases the name of the
attributes are defined by the nane attribute or the at t r i but e pattern, it is also possible to define
sets of possible namesfor an attribute. Thisfeature will be explained in detail in " Chapter 12: Writing
Extensible Schemas'.

<element/>

Justastheat t r i but e pattern matchesattributes, theel enent pattern matches elements. To define
the nanme element, we will write:

<el enent nanme="name" >
<text/>
</ el enent >

As mentioned for the at t ri but e pattern, it is also possible to replace the nane attribute of the
el ement patter by aset of namesasexplainedin detail in"Chapter 12: Writing Extensible Schemas”.
Not all elements accept text nodes and for that reason, thet ext patternisn't implicit within elements.
In fact there is no implicit content for elements and the content of each element must be explicitly
described even when the element is aways empty.
Thefact that at ext pattern matches zero or more text nodes means that this definition of the nane
element would match empty elements such as:

<name/ >
aswell as more traditional names such as:

<nane>Charl es M Schul z</ nane>

We will seein "Chapter 7: Constraining Text Values' how we can add additional restrictions to text
nodes to avoid empty elements and in "Chapter 8: Datatype Libraries' how to use the datatypes from
W3C XML Schemato add more specific restrictions such as being avalid date.

Attributes can be added within elements and to definethet i t | e element we will write:

16

Chapter 3: First Schema

<el enment nane="title">
<attribute name="xm :1ang"/>
<text/>

</ el enent >

We will see the support of namespaces in "Chapter 11: Namespaces' but we can already note how
straightforward it is. Here we had to define an attribute (xml:lang) from the XML namespace and
we've just added the description of this attribute straight away in out schema. In the case of the XML
namespace which is considered as predeclared in any XML document conform to the Namespaces
in XML recommendation and implicitly assign the "xml:" prefix to "http://www.w3.0rg/XML/1998/
namespace”, we do not need to declare the namespace. In the general case, we would have needed to
declare the namespaces using mechanisms described in "Chapter 11: Namespaces'.

Notethat Relax NG is clever enough to know that attributes are always located in the start tag of XML
elements and that their order isnot considered as significant. Thismeansthat theat t r i but e pattern
may be located anywhere in the definition of elements and that it would have made no difference if
we had written:

<el erent nanme="title">
<text/>
<attribute name="xm:|lang"/>
</ el enent >

In addition to text nodes and attributes, elements can also include sub elements and we could define
the aut hor element as:

<el enent nane="aut hor">
<attri bute nanme="id"/>
<el enent nane="nane" >
<text/>

</ el enent >

<el enent nane="born" >
<text/>

</ el enent >

<el enent nane="di ed" >
<text/>

</ el enent >

</ el enent >

That's not exactly what we want, though since the bor n and di ed elements should have been made
optional. To do so, we need to introduce a new pattern;

<optional/>

Theopt i onal patternjust makesits content optional. To specify that thebor n and di ed elements
are optional, we will write:

<opti onal >
<el ement nanme="born">
<text/>
</ el enent >
</ opti onal >

17

Chapter 3: First Schema

<opti onal >
<el enment nane="di ed" >
<text/>
</ el enent >
</ opti onal >

Note that thisis different from

<opti onal >
<el emrent nane="born">
<text/>
</ el enent >
<el emrent nane="di ed" >
<text/>
</ el enent >
</ opti onal >

And also different from

<opti onal >
<el erent nane="born">
<text/>
</ el enent >
<opti onal >
<el erent nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ opti onal >

In thefirst case, each element isembedded in itsown opt i onal pattern. The two elements are thus
independently optional and | can include both of them, none of them or one of them in valid instance
documents. In the second case, both elements are embedded in the same opt i onal pattern and we
can only include either none of them or both of them in instance documents. In the third case, a first
optional pattern includes the bor n element and an optional di ed element meaning that we can find
either both of them or none of them in an instance document or the bor n element only but that we
forbid thedi ed element if the bor n element isn't there.

None of the combinationsis"right" or "wrong", they are just different pattern combinations allowing
different element combinations in the instance documents and corresponding to different use cases.
What's nice with Relax NG isthat there are so few restrictions that almost any combination to which
you can think of is allowed. To be honest | must admit that there are some few restrictions and they
will be covered in "Chapter 15: Simplification And Restrictions".

<oneOrMore/>

TheoneOr Mor e pattern specifiesthat its content may appear one or more time. The use casefor this
pattern in our exampleis to define that a book must have one or mote authors:

<oneOr Mor e>
<el enent nanme="aut hor">
<attri bute nanme="id"/>

18

Chapter 3: First Schema

<el enent nane="nane" >
<text/>
</ el enent >
<el enment nane="born" >
<text/>
</ el enent >
<opti onal >
<el enment nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ el enent >
</ oneOr Mor e>

<zeroOrMore/>

The last pattern needed in our exampleiszer oOr Mor e and you'll have guessed that it tells that its
content may appear zero or more time like for our char act er elements:

<zer oOr Mor e>
<el emrent nanme="character">
<attribute name="id"/>
<el emrent nane="nane" >
<text/>
</ el enent >
<opti onal >
<el emrent nane="born">
<text/>
</ el enent >
</ opti onal >
<el ement nane="qualification">
<text/>
</ el enent >
</ el enent >
</ zer oOr Nor e>

Complete schema

We have now in hand all the patterns needed to write a full schema expressing all we've said for this

example:
<?xm version = '1.0" encoding = 'utf-8 ?>
<el enent xm ns="http://relaxng.org/ ns/structure/1.0" nanme="library">

<oneOr Mor e>
<el emrent nane="book" >

<attribute nanme="id"/>

<attribute nane="avail abl e"/>

<el emrent nane="isbn">
<text/>

</ el enent >

<el emrent nanme="title">
<attribute name="xn:|ang"/>
<text/>

19

Chapter 3: First Schema

</ el enent >
<oneOr Mor e>
<el enment nane="aut hor">
<attri bute nanme="id"/>
<el enment nane="nane" >
<text/>
</ el enent >
<opti onal >
<el enment nane="born" >
<text/>
</ el enent >
</ opti onal >
<opti onal >
<el enment nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ el enent >
</ oneOr Mor e>
<zer oOr Mor e>
<el enment nane="character">
<attri bute nanme="id"/>
<el enent nane="nane" >
<text/>
</ el enent >
<opti onal >
<el enent nane="born">
<text/>
</ el enent >
</ opti onal >
<el enent nanme="qualification">
<text/>
</ el enent >
</ el enent >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >

Constraining number of occurrences

Those of you familiar with W3C XML Schema will probably have noted that the control over the
number of occurrences is specified ala DTD and doesn't have the fine granularity of W3C XML
Schema's minOccursand maxOccurs. Relax NG has been designed in thisway because thesefour cases
(exactly once which is the default, optional, zero or more and one or more) are the most common and
also becauseif applications need afiner granularity, they can createit using thesefour basic occurrence
congtraints. If for instance, we needed to define that each book's description should include between
two and six characters, we could write it as two mandatory characters followed by four optional ones
and write:

<l-- 1 -->
<el ement nanme="character">
<attribute nanme="id"/>
<el ement nane="nane" >
<text/>
</ el enent >

20

Chapter 3: First Schema

<opti onal >
<el enent nane="born" >
<text/>
</ el enent >
</ opti onal >
<el enent nanme="qualification">
<text/>
</ el enent >
</ el enent >
<l-- 2 -->
<el enment nane="character">
R A
</ el enent >
<l-- 3 -->
<opti onal >
<el enment nane="character">
R R
</ el enent >
</ el enent >
</ opti onal >
<l-- 4 -->
<opti onal >
<el enment nane="character">
R A
</ el enent >
</ opti onal >
<l-- 5 -->
<opti onal >
<el enment nane="character">
R A
</ el enent >
</ opti onal >
<l-- 6 -->
<opti onal >
<el enment nane="character">
R A
</ el enent >
</ opti onal >

Thisiscertainly verbose but we will see how we can define and reuse patterns to reduce the verbosity.

Russian doll schemas

Let'slook side by side at the schema and the instance document:

21

Chapter 3: First Schema

Figure4.1. russian-doll

- <element name="library"=
- <gneOrMore>
- <glement name="bool">
<attribute name="1d"/>
<attribute name="avalable"/>
+ <element name="13bn"></element>=
- <glement name="title">
<attribute name="xmllang"/>
<text/>
</element>
- <gneOrMore>
- <element name="author">
<attribute name="1d"/=
+ <element name="name"></element>
- <pptional>
+ <element name="bom"></element>
</optional=
- <pptional>
+ <element name="died"></element=
</optional=
</element>
<foneOrMore>
- <zeroOrMore>
- <plement name="character"=
<attribute name="1d"/>
+ <element name="name"></element>
- <pptional>
+ <element name="bom"></element>
</optional>

+ <element name="qualification"></element=>

</element>
</zeroOrMore>
</element>
<foneOr©More>
</element>

- <library=>
- <hook 1d=
<15hn=>
<title x
- <autho:
<nar
<hor
<die
</authc
- <chara
<nar
<hor
<qua
</chars:
+ <chara
+ <chara
+ <chara
</book=>
</library=

22

Chapter 3: First Schema

We see that even though information have been added in the schema to describe the content of the
text nodes and the number of occurrences, the schema keeps the same hierarchical structure than the
instance document.

This type of schemain which the different definitions are embedded in each other (the definition of
thel i brary element physically contains the definition of the "author element” which physically
contains the definition of the nanme element) are often called "Russian doll schemas'. Wewill seein™
Chapter 5: Flattening Our First Schema' how Russian doll schemas may be broken into independent
patterns combined together to reproduce the structure of the instance document. Beforethis, we'll have
alook in nxet chapter, "Chapter 4: Non XML Syntax" to an aternative, equivalent, compact and non
XML syntax for Relax NG.

23

Chapter 5. Chapter 4: Non XML
Syntax

Getting started

Although the schema shown in the previous chapter was simple, its XML representation was rather
verbose. Thisis not surprising nor even uncommon for XML vocabularies. In fact it even conforms
quite well to the basic principles of XML, a Recommendation whose design goals state that "XML
documents should be human-legible and reasonably clear” but also "Tersenessin XML markup is of
minimal importance". Our schema is a good example of a document which is "human-legible and
reasonably clear" and... verbose!

The principal goa of the XML syntax is to be a serialization of Relax NG schemas which is easily
processable by computers using a standard XML toolkit and James Clark has introduced a second
syntax, strictly equivalent to the XML syntax, which is both more concise and easier for humans
to read and write. Relax NG processors are free to support this "compact” syntax or not; if a Relax
NG processor doesn't users can use existing trandators to translate the XML syntax to and from the
compact syntax. Since these two forms are strictly equivalent, there is no loss of information during
trangl ation and even comments and the annotationswhich will be presented in " Chapter 13: Annotating
Schemas" are preserved in the process. Thisis, of course, not true of the "syntactical details' of XML
such as entity expansion or Processing I nstructions which are lost when the XML syntax istranslated
into compact but this is a limitation of the XML processing architecture rather than a limitation of
Relax NG itself.

The compact syntax has been published as official OASIS Relax NG committee specification but not
yes submitted as to the 1SO.

WEe'll seethat this syntax isastrange mix between concepts borrowed from the definition of structures
in programming languages, some notations from XML DTDs and the Relax NG patterns which, of
course, we'll find there: element and attribute patterns look like Java declarations with their curly
brackets preceded by areserved word (el enent or at tri but e) which istheir Relax NG pattern
name. On the other hand, optional, one or more and zero or more are represented by DTD qualifier
suffixes (? for optional, "+" for one or more and * for zero or more). But don't worry, the result is
incredibly good and intuitive and you'll find this syntax both simple and familiar before the end of
this book!

Our first compact patterns

text

Let's see how our first patterns translate into the compact syntax.

Thiswasthe simplest pattern in the XML syntax and thisis still the simplest with the compact syntax!
Thet ext patternisjust...t ext:

t ext

In this definition, theword t ext identifies the text pattern.

And of course, since both syntaxes are equivalent, all we've said about "<text/>" istruefor t ext .

attribute

For the compact syntax, theat t r i but e pattern borrows Java's curly brackets:

24

Chapter 4: Non XML Syntax

attribute id { text }

In this definition, the first word at t ri but e identifies the at t ri but e pattern, the second one
avai | abl e isthe name of the attribute (we will see in "Chapter 12: Writing Extensible Schemas"
how this could be extended to define sets of names) and the curly brackets"{...}" delimit the definition
of the content of the attribute.

Since empty curly brackets "{}" would have looked weird and would have kind of imply enpt y
attributes rather than attributes containing a text value, the convention of the XML syntax making a
t ext pattern an implicit content for attributes has not been carried on to the compact syntax. The

definition of the content of attributesisthus mandatory and must be explicitly made when you're using
the compact syntax. In other word,

<attribute name="id"/>
trandlates into:

attribute id { text }
and

attribute id { }

isjust asyntax error for the compact syntax.

The compact syntax is position sensitive and words such ast ext and attri but e are reserved
words only when they appear in first position. In practice, thisis very convenient when we need to
define attributes (or elements) which name are reserved words. For instance, | could define attributes
namedt ext orevenattri but e without any precaution such as:

attribute text { text }
attribute attribute { text }

Because the compact syntax is position sensitive, it wouldn't be confused by the fact that | have used
reserved words as attribute names. This would be the same for the el enent pattern which we'll see
in the next section.

Element

You'll have already guessed that the definition of the name element would be:
el ement name { text }

To add an attribute to our elements we need a delimiter between the different content within asingle
element. We'll ssemoredelimitersand their meaning in " Chapter 6: More Patterns" and for the moment

well use a comma (",") as delimiter between content and this will have the same effect than what
we've seen with the XML syntax:

25

Chapter 4: Non XML Syntax

element title {
attribute xm:lang { text },
t ext

White spaces (i.e. spaces, tabulations, linefeedsand carriage return) are not significant for the compact
syntax and this could have been written:

element title {attribute xm:lang { text }, text}

As with programming languages, many people tend to prefer to split definitions so that there is only
one per line and tend to consider the first form as more readable but a Relax NG processor won't get
confused and will treat both as equivalent.

We can add more content and write our author element as:

el ement aut hor {
attribute id { text },
el ement name { text },
el ement born { text },
el ement died { text }

Again, al what we've said about the properties of theel enent patterninthe XML syntax istruefor
the compact syntax: these are just two equivalent syntaxes for the same pattern.

To meet our requirements, we need to introduce the opt i onal pattern
optional

Here iswhere DTDs have been asked to contribute! The optional pattern isformalized as atrailing ?
added after a definition. To define that the attributei d is optional we would write;

attribute id { text }?
and to define that the bor n element is optional we write:

el ement born { text }?

Note that this qualifier (?) must be added after the definition of the pattern but before the delimiter.
The definition of our author element would thus be:

el ement aut hor {
attribute id { text },
el ement name { text },
el ement born { text }?,
el ement died { text }?

26

Chapter 4: Non XML Syntax

In"Chapter 3: First Schema', we had mentioned that other combinations could be described using the
opt i onal pattern as a container. In the compact syntax, the opt i onal pattern is a qualifier and
we need a container to define the same combinations. This container are the parenthesis "(...)". They
are neutral in that their effect depends on the delimiter used within the parenthesis and on the optional

qualifier following them. The definition of our author could be written:

el enent aut hor {(
attribute id { text
el ement name { text
el ement born { text
el ement died { text

)}

e i et o
N)<

or

el ement aut hor {
(attribute id { text })
(el ement name { text }),
(el ement born { text })?,
(element died { text }?

}

wi t hout changing its neaning at all. They are nore useful

<opti onal >
<el emrent nane="born">
<text/>
</ el enent >
<el emrent nane="di ed" >
<text/>
</ el enent >
</ opti onal >

would trandlate as:
(elenment born { text }, elenent died { text })?
While

<optional >
<el emrent nane="born">
<text/>
</ el enent >

(and actually even ri

27

Chapter 4: Non XML Syntax

<opti onal >
<el enent nane="di ed">
<text/>
</ el ement >
</ opti onal >
</ opti onal >

Would trandlate as:

(elenment born { text }, elenment died { text }?)?

oneOrMore

The oneOrMore pattern is also aqualifier and, in the DTD traditionitisa"+":

el ement aut hor ({
attribute id { text },
el ement name { text },
el ement born { text }?,
element died { text }?
}+
zeroOrMore

Last but not least, thezer oOr Mor e patternisthe* quaifier:

el ement character {
attribute id { text },
el ement name { text },
el ement born { text }?,
el ement qualification { text }

}*
Full schema

el ement library {
el ement book {
attribute id { text },
attribute available { text },
el ement isbn { text },
element title {
attribute xm:lang { text },
t ext
1
el enent aut hor {
attribute id { text },
el enent nanme { text },
el ement born { text }?,

28

Chapter 4: Non XML Syntax

element died { text }?
H,
el ement character ({
attribute id { text },
el ement name { text },
el ement born { text }?,
el ement qualification { text }
}*
}+

In the following chapters, for each example we will give both the XML and the compact syntax and
we will have plenty of opportunities to get familiarized with both.

Note that there should be no confusion between the smple form of a Relax NG schema described
in "Chapter 15: Simplification And Restrictions" and the compact syntax. These two notions are
orthogonal and work at different level: the simple formisthe result of simplifications internally done
by Relax NG processors on the data model resulting from the parsing of a Relax NG "full" document;
the compact syntax is another way to represent or serialize a Relax NG "full" document. The data
model s resulting from the parsing of aRelax NG full schema are thusthe same if the schema has been
written using the XML or the compact syntax and it will simplified into the same simple schema.

XML or compact?

Let'stake alook at both syntaxes side by side:

29

Chapter 4: Non XML Syntax

Figure 5.1. xml-comp

LB TIRS

IL-AIm e
N

Aapmns=— l

F-Ine l
TR S !
D —

H:mns
1AL =

There are two things which we immediately notice:
e The compact syntax is much more... compact.

e The XML syntax is... XML and plays fine with generic XML tools (here aweb browser) while the
compact syntax isn't XML and must be used with other tools (here the text editor VIM with a plug-
in to highlight Relax NG's compact syntax).

30

Chapter 4: Non XML Syntax

These two findings summarize pretty well why they are both needed. The compact syntax is nice to
work with and you'll probably find it soon more pleasant to edit your schemas and document your
vocabularies. On the other hand, the XML syntax is wonderful if you want to either generate Relax
NG schemas as we will see in "Chapter 14: Generating Relax NG schemas' or generate anything
out of your Relax NG schemas using XML tools which will be covered in "Chapter 13: Annotating
Schemas'. And the fact that they can be translated without information loss is a guarantee that we
can use both.

31

Chapter 6. Chapter 5: Flattening Our
First Schema

Why do we need flat schemas?

If we look at the structure of our first schema, we see that it follows the structure of the instance
document. The effort involved in writing this first schema has been pretty much limited to inserting
el enent ,attri but eandt ext elementsinthe schemaeachtimewe've seen an element, attribute
or text node in the instance document! This flavor of our schema can almost be seen as some kind of
XML seriaization of the XML infoset (i.e. of the information available in the document) and could be
easily automated. Actualy, it has been automated and thisis the principle behind Examplotron which
will be described in "Chapter 14: Generating Relax NG schemas''.

However, there are a couple of downsides for modeling documents with this style of "Russian doll"
schemas: first they are not modular and get difficult to read and maintain when documents are complex
and second they cannot represent recursive models.

The lack of modularity can be seen even for a document as simple as our first example: we have a
nane element which is used with the same model both within the char act er and the aut hor
elements. In our first schemawe need to give the definition of what a name isin both contexts:

32

Chapter 5: Flattening
Our First Schema

Figure 6.1. 2names

- <element name="library"=
- <oneOrMore>
- <glement name="bool">
<attribute name="1d"/>
<attribute name="avalabls"/>
+ <element name="isbn"></element>
+ <element name="ttle"></element=
- <gneOrMore>
- <glement name="author"=
<attribute name="1d"/>
<element name="name"> |/
<text/>
</element>
+ <optional></optional>
+ <optional></optional>
</element>
<foneOr©More>
- <geroOrMore>
- <element name="character"=
<attribute name="1d"/>
-|<element name="name">
<text/> |
</element>
+ <optional></optional>
+ <element name="qualification"></element=>
</element>
</zeroOrMore>
</element>
<foneOr©More>
</element>

One might think that this is not a big deal, but that's not completely true. The additional verbosity
here is low because the definition of the nane element is simple, but the principle would have been
the same if the definition had been longer. As with any redundancy this makes the maintenance of
the schema more error prone: if | need to update the definition of the name element, | need to update

it twice. The rules of common sense used in any programming language do apply to XML schema
languages as well!

33

Chapter 5: Flattening
Our First Schema

An other rule which can be borrowed from programming languages is about modeling recursive
models, i.e. models such as XHTML inwhich thedi v elements may be embedded within other di v
elements without any restriction in the number of levels. To be able to model such recursive models,
itisclear that | can't just copy the definition of thedi v element again and again and that | need away
to define and reference the content model of thedi v element recursively. In the course of this chapter
we will give different examples covering both modularity and recursive models.

Defining named patterns

For Relax NG, the answer to these issuesis of course through patterns (haven't we learned that Relax
NG is about patterns and patterns only?) which can hold aname and be referenced through this name.

In the XML syntax, the definition of named patterns is done through def i ne elements. To define a
named pattern containing our name element we would thus write:

<defi ne name="nane- el enent ">
<el emrent nane="nane" >
<text/>
</ el enent >
</ defi ne>

The compact syntax uses a construction similar to a programming language format and the same
definition would be written as:

nane- el ement = el enent nane {text}

We are not limited to embedding a single element (or attribute definition in a named pattern and
we could note that a common group composed of ani d attribute, a nanme element and an optional
bor n element are present in the same order and with the same definition in both the aut hor and
the "character element":

Chapter 5: Flattening
Our First Schema

Figure 6.2. named2

element library f§
element book §

attribute id { text I,

attribute available { text 3,

element ishn { text I,

element title £

attribute xml:lang { text 3,
text

E

element. author §
attribute 1d { text I,
element. name { text 3,
element born { text i7|
element died { text 7
i+,
element character {
attribute id { text I,
element name { text 3 ,[_
element born { text }7,
element gualification { text 3

3ok

I+

3

<defi ne name="common-content">
<attribute name="id"/>
<el emrent nane="nane" >
<text/>
</ el enent >
<opti onal >
<el erent nane="born">
<text/>
</ el enent >
</ opti onal >
</ defi ne>

or:

conmon-cont ent =
attribute id {
el ement name { text },
el enent born {

Referencing named patterns

Defining a named pattern has been easy but referencing it is still simpler!

Using the XML syntax, references are done using ar ef element, for instance to define the aut hor
element using areferenceto nane- el enent :

35

Chapter 5: Flattening
Our First Schema

<el enment nane="aut hor">
<attri bute nanme="id"/>
<ref nanme="nane-el enent"/>
<opti onal >
<el enment nane="born" >
<text/>
</ el enent >
</ opti onal >
<opti onal >
<el enment nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ el enent >

To reference a named pattern in the compact syntax, you just name it:

el enent aut hor {
attribute id { text },
name- el enent ,
el enent born { text }7?,
elenent died { text }?

The same would be applied to referencing the "common-content” named pattern:

<el enment nane="aut hor">
<ref nanme="common-content"/>
<opti onal >
<el enent nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ el enent >

Or:

el ement aut hor ({
conmon- cont ent,
element died { text }?

}

Grammar and start elements

In our first example, the Russian doll style that we had adopted was such that the definition of the
root element (i.e. in our case the library element) could be used as a container for the whole schema.
When we define named patterns, Relax NG requires that we define them globally. Thus we will need
a container to contain at least the definition of the root element of the instance document and the
definitions of the named patterns. This container is what Relax NG callsagr ammar and it uses, of
course, agr anmar element. When we use a grammar element, Relax NG requires that we declare

36

Chapter 5: Flattening
Our First Schema

explicitly which will be the root element (or elements since we will seelater on how to define choices
between patterns) and this is done using a st art element. The top level structure of the schema
defining a pattern nane- el enent would thus be:

<grammar xm ns="http://relaxng.org/ns/structure/1. 0">
<start>
<el ement nane="Ilibrary">
Y A
</ el enent >
</start>
<defi ne nanme="name-el ement ">
Y A
</ define>
</ grammar >

Or, using the compact syntax:

grammar {
name-elenent = .../...
start =
el ement library {
S A
}
}

All together

We have seen the different bits and pieces needed to define and reference patterns and it's time to put
them all together and see a complete schema using them. The first exercise we can do is to define a
"DTD like" Relax NG schema which defines each of the elementsin its own named pattern.

The full schema could be:
<?xml version="1.0" encoding="UTF-8"?>

<granmmar xm ns="http://rel axng.org/ns/structure/1.0">

<start>
<ref nane="elenent-library"/>
</start>

<define nane="el ement-library">
<el ement nane="Ilibrary">
<oneOr Mor e>
<ref nane="el enent - book"/ >
</ oneOr Mor e>
</ el enent >
</ defi ne>

<defi ne nane="el enent - book" >
<el enent nane="book" >
<attri bute nanme="id"/>

37

Chapter 5: Flattening
Our First Schema

<attri bute nane="avail able"/>
<ref nanme="el enent-isbn"/>
<ref nanme="elenent-title"/>
<oneOr Mor e>

<ref nanme="el enent - aut hor"/ >
</ oneOr Mor e>
<zer oOr Mor e>

<ref nanme="el enent-character"/>
</ zer oOr Nor e>

</ el enent >
</ defi ne>

<defi ne nane="el enent -i shn" >
<el enent nane="isbn">
<text/>
</ el enent >
</ defi ne>

<define nanme="elenent-title">
<el enment nane="title">
<attribute name="xm :|ang"/>
<text/>
</ el enent >
</ defi ne>

<defi ne nane="el enent - aut hor" >
<el enment nane="aut hor">
<attri bute nane="id"/>
<ref nanme="el enent - nane"/ >
<optional >
<ref nanme="el enent-born"/>
</ opti onal >
<optional >
<ref nanme="el enent-di ed"/>
</ opti onal >
</ el enent >
</ defi ne>

<defi ne nanme="el enent - nane" >
<el ement nane="nane" >
<text/>
</ el enent >
</ defi ne>

<defi ne nanme="el enent - bor n" >
<el ement nane="born">
<text/>
</ el enent >
</ defi ne>

<defi ne nane="el enent - di ed" >
<el enent nane="di ed" >
<text/>

38

Chapter 5: Flattening
Our First Schema

</ el enent >
</ defi ne>

<defi ne nanme="el enent-character">
<el emrent nane="character">
<attribute nanme="id"/>
<ref nane="el enent - nane"/ >
<opti onal >
<ref nane="el enent-born"/>
</ opti onal >
<ref nane="el enent-qualification"/>
</ el enent >
</ defi ne>

<define nane="el ement -qualification">
<el ement nane="qualification">
<text/>
</ el enent >
</ define>

</ gr ammar >
Or:

gr ammar {

start = elenent-library

elenent-library = elenment library {el enent-book +}

el ement - book = el ement book {
attribute id { text },
attribute available { text },
el ement -i sbn,
element-title,
el ement - aut hor +,
el ement -character*

el ement-isbn = elenment isbn { text }

elenent-title = elenent title {
attribute xm:lang { text },
t ext

}

el ement - aut hor = el enent aut hor {
attribute id { text },
el enent - nane,
el enent - born?,
el enent - di ed?

39

Chapter 5: Flattening
Our First Schema

el ement nanme { text }

el emrent - nane

el enent - born el enent born { text }

el ement-died = elenment died { text }

el ement - character = el enent character {
attribute id { text },
el emrent - nane,
el erent - bor n?,
el ement-qualification

}

el ement-qualification = element qualification { text }

}

This"DTD style" is pretty common and has the advantage to facilitate finding the definition of each
element in the schema. Another popular style is to define the content of each element as a pattern:

<?xm version="1.0" encodi ng="UTF-8"?>
<grammar xm ns="http://rel axng.org/ns/structure/1.0">

<start>
<el enent name="Ilibrary">
<ref nane="library-content"/>
</ el emrent >
</start>
<define nane="library-content">

<oneOr Mor e>
<el emrent nane="book" >
<ref nane="book-content"/>
</ el enent >
</ oneOr Mor e>
</ defi ne>

<defi ne nanme="book-content">

<attribute nanme="id"/>
<attribute nane="avail able"/>
<el ement nane="isbn">

<ref nane="isbn-content"/>
</ el enent >
<el emrent nanme="title">

<ref nane="title-content"/>
</ el enent >
<oneOr Mor e>

<el emrent nane="aut hor ">

<ref nane="aut hor-content"/>

40

Chapter 5: Flattening
Our First Schema

</ el enent >

</ oneOr Mor e>

<zer oOr Mor e>
<el enment nane="character">

<ref name="character-content"/>

</ el enent >

</ zer oOr Nor e>

</ defi ne>

<defi ne nane="i sbn-content">
<text/>
</ defi ne>

<defi ne nane="nane-content">
<text/>
</ defi ne>

<def i ne nane="born-content">
<text/>
</ defi ne>

<defi ne nane="di ed-content">
<text/>
</ defi ne>

<define name="qualification-content">
<text/>
</ defi ne>

<define nanme="title-content">
<attribute name="xm :|ang"/>
<text/>

</ defi ne>

<defi ne name="aut hor-content">
<attribute name="id"/>
<el emrent nane="nane" >
<ref nane="nane-content"/>
</ el enent >
<opti onal >
<el emrent nane="born">
<ref nane="born-content"/>
</ el enent >
</ opti onal >
<opti onal >
<el emrent nane="di ed" >
<ref nane="di ed-content"/>
</ el enent >
</ opti onal >
</ defi ne>

<defi ne nane="character-content">

41

Chapter 5: Flattening
Our First Schema

<attri bute nanme="id"/>
<el enent nane="nane" >
<ref nanme="nane-content"/>
</ el enent >
<opti onal >
<el enment nane="born" >
<ref nanme="born-content"/>
</ el enent >
</ opti onal >
<el enent nanme="qualification">
<ref nane="qualification"/>
</ el enent >
</ defi ne>

</ gr ammar >
Or:

gramar {

start = elenent library {library-content}

library-content =
el ement book { book-content } +

book-content =
attribute id { text },
attribute available { text },
el ement isbn { isbn-content },
element title { title-content },
el ement aut hor { author-content }+,
el ement character { character-content

i sbn-content = text

nane- cont ent t ext

bor n- cont ent t ext
di ed-content = text

gual i fication-content = text

title-content =
attribute xm:lang { text },
t ext

aut hor-content =
attribute id { text },

42

Chapter 5: Flattening
Our First Schema

el ement name { nane-content },
el ement born { born-content }?,
el ement died { died-content }?

character-content =
attribute id { text },
el enent nanme { nane-content },
el enent born { born-content }?,
el enent qualification { qualification }

}

Note that we will see in "Chapter 12: Writing Extensible Schemas' that the style (Russian doll, DTD
like or content oriented like this schema) has an impact on the extensibility of your schemas and the
last option we've seen isthe most extensible.

We could also revisit the "bizarre patterns’ mentioned "Chapter 2: Simple Is Beautiful":

Figure 6.3. rng-full-pattern

<book[id="b0836217462"lavailable="true">
<isbn=>0836217462</isbn>

<title xml:lang="en"=Being a Dog Is a Full-Time Job</title
<author id="CMS5"></author>

<character id="PP"></character>

<character id="Snoopy"></character>

<character id="Schroeder"></character>

<character id="Lucy"></character>

</book>

When we think about it, this case is not so uncommon. Let's say for instance that we have a first
pattern named "book-basic" withthei d attributeand thei sbn,ti t | e oneor moreaut hor andan
optional char act er element and a second pattern to extend the first one named "book-extended"
with theavai | abl e attribute and zero or more char act er elements. Well, yes that may happen
if the the team in charge of defining the "book-basic" pattern has been short visioned and has thought
that one character was enough for a book!

Updating the "DTD like" flavor of our schemais just a matter of splitting the definition of the book
element:

<defi ne nanme="el enent - book" >
<el emrent nane="book" >
<ref nane="book-basic"/>
<ref nane="book- extended"/>
</ el enent >
</ defi ne>

<defi ne nanme="book- basi c">
<attribute nanme="id"/>
<ref nane="el enent-isbn"/>
<ref nane="elenent-title"/>
<oneOr Mor e>
<ref nane="el enent - aut hor"/ >

43

Chapter 5: Flattening
Our First Schema

</ oneOr Mor e>
<opti onal >
<ref nanme="el enent-character"/>
</ opti onal >
</ defi ne>

<defi ne nane="book- ext ended" >
<attri bute nane="avail able"/>
<zer oOr Mor e>
<ref nanme="el enent-character"/>
</ zer oOr Nor e>
</ defi ne>

Or:

el ement - book = el ement book {
book- basi c,
book- ext ended

}

book-basic =
attribute id { text },
el enent -i shn,
elenent-title,
el ement - aut hor +,
el ement - character?

book- ext ended =
attribute available { text },
el ement -character*

Non restrictions

One of the nice features of Relax NG is that some of the restrictions which add a lot of complexity
in other schema languages are non-restrictions for Relax NG; we've seen at least two of them in this
chapter. Thefirst oneisthe ability to define attributeswherever you want in your patterns. Thisdoesn't
make a big difference when you define the content model of each elements straightforwardly like in
our first schema, but this makes a huge difference when we start to combine patterns as we've done
with our bizarre model. Without this non-restriction, it would have been impossible to define one
attribute in the pattern "book-start” and a second one in the pattern "book-end".

The other non-restriction found in the chapter isthe fact that Relax NG pays no attention to the pattern
used to match anode of theinstance document when thereis several possibilities. Again, inour bizarre
pattern, if we have a document with a book having only one author, there is no way to tell if this
author matchesthe optional aut hor element of the pattern "book-start" or the zero or more aut hor
elements of the pattern "book-author”. Thiswould be considered as an ambiguity intolerable for other
schemalanguages. In thiscase, Relax NG considersthat even though thereisan ambiguity, sincethere
is at least one interpretation of the schema for which the document is valid then the document should
be considered asvalid. Wewill learn more about these ambiguities and their consequences on the uses
which can be done of the schemasin "Chapter 16: Determinism and Datatype Assignment”.

Recursive models

Asmentioned in theintroduction of thischapter, named patternsare the only way to represent recursive
models. We haven't seen yet al the building blocks needed to definea XHTML di v element, but we

44

Chapter 5: Flattening
Our First Schema

can take asimpler example. If our library is divided into categories, each of them having atitle, zero
or more embedded categories and zero or more books, we could write (assuming that named patterns
have been defined for the book element:

<defi ne name="cat egory">
<el enent nane="cat egory" >
<el enment nane="title">
<text/>
</ el enent >
<zer oOr Mor e>
<ref nane="category"/>
</ zer oOr Nor e>
<zer oOr Mor e>
<ref nane="book"/>
</ zer oOr Nor e>
</ el enent >
</ defi ne>

Or:

category = el enent category{
element title{text},
category *,
book*

}

Note that in this case, the recursive reference to the "category” named pattern must be optional since
otherwise the document would have to have an infinite depth!

Escaping named patterns identifiers in the
compact syntax

In thelast chapter "Chapter 4: Non XML Syntax" we have introduced the compact syntax and noticed
that any reserved word could be used as element and attribute names. That's no longer the case for the
identifiers of named patterns since they appear at the same position than the keywords.

If we had the funny idea to define a named pattern named t ext , st art or el ement for instance,
the identifier of this named pattern could be confused with this keyword and in this case we need to
escape the identifier by aleading "/". For instance to define (and by extension to make a reference)
to anamed pattern named st ar t , we would write:

gr amar {
start = \start

\start = elenment start { text }

45

Chapter 5: Flattening
Our First Schema

And inthe XML syntax, thiswould trand ate as:

<?xm version="1.0" encodi ng="UTF-8""?>
<granmmar xm ns="http://rel axng.org/ ns/structure/1.0">
<start>
<ref nane="start"/>
</start>
<defi ne name="start">
<el erent nanme="start">
<text/>
</ el enent >
</ defi ne>
</ grammar >

46

Chapter 7. Chapter 6: More Patterns

So far, we have only described ordered groups of elements and text nodes and we will now see other
patterns describing choices and unordered sequences. Although this class of patterns have no special
name in the Relax NG specification, we will call them "compositors' in this book by analogy with
the compositors defined by W3C XML Schema and because this name is accurate to describe these
patterns which are used to compose complex patterns out of the basic patterns matching actual nodes
in the document such asel errent , at t ri but e andt ext . One of the key differentiators between
these compositors and patterns matching nodes is that compositors are syntactical elements which
have no existence out of a schemaand wewill insist on this aspect sinceit is easy to forget it when we
focus on a schema and kind of forget the instance document and this may lead to unexpected errors.

The group pattern

When we have written, to define our char act er element:

<el enment nane="character">
<attri bute nanme="id"/>
<el enent nane="nane" >
<text/>
</ el enent >
<el enent nane="born" >
<text/>
</ el enent >
<el enent nanme="qualification">
<text/>
</ el enent >
</ el enent >

we have not specified how the different nodes composing the char act er element needed to be
composed and Relax NG has implied that we have been using a gr oup compositor. This gr oup
compositor which isimplied in the XML syntax is visible in the compact syntax where it is marked
by the commas (",") used between the patterns:

el ement character ({

attribute id {text},

el ement name {text},

el ement born {text},

el ement qualification {text}}

When using the XML syntax, the gr oup compositor may be explicitly specified and the above
definition is strictly equivalent to:

<el emrent nanme="character">
<gr oup>
<attribute nanme="id"/>
<el ement nane="nane" >
<text/>
</ el enent >
<el ement nanme="born">
<text/>
</ el enent >

47

Chapter 6: More Patterns

<el enent nanme="qualification">
<text/>
</ el ement >
</ group>
</ el ement >

Becausetheorder of attributesis considered asnot significant per XML 1.0, the semantic of thegr oup
compositor is dlightly less straightforward than it appears and this compositor means something such
as. "check that the patterns included in this compositor appear in the specified order except for
attributes which may appear in any order in the start tag independently of the location where they are
found in the patterns.”

A last thing to keep in mind about gr oup compositorsis that as we have said about compositorsin
genera there is no such thing as a "group of nodes' in an instance document and that the notion of
gr oup is a pattern which belongs only to our schema. One of the consequences of this statement is
that there is no hard border to isolate nodes within a group from nodes out of the group and we will
see in the section named "Why is it called "interleave” instead of "unorderedGroup? that in certain
conditions nodes matching patterns defined outside of a group can be "inserted" in the group.

Thei nter| eave pattern

The second compositor, named i nt er | eave, describes a set of unordered patterns, i.e. a set of
patterns which will be validated if they match the content of the instance documents in any order.
As far as validation is concerned, this behavior is similar to the validation of attributesin agr oup
compositor up to the point that the algorithms to validate attributes within groups is the same than
the algorithm to validate any node ini nt er | eave compositors. Thisis, of course, for validation
purposesonly andusingi nt er | eave patternsdo not imply that the order of elementsand text nodes
intheinstance document will not be reported to the application but only that they are allowed to appear
in any order.

To specify that char act er elements may accept children elements in any order, we just need to
replace our explicit or implicit group pattern by ani nt er | eave pattern:

<el emrent nanme="character">
<interl eave>
<attribute name="id"/>
<el emrent nane="nane" >
<text/>
</ el enent >
<el emrent nane="born">
<text/>
</ el enent >
<el ement nane="qualification">
<text/>
</ el enent >
</interl eave>
</ el enent >

In the compact syntax, i nt er | eave patterns are marked using a ampersand ("&") character as a
separator instead of the comma (,") which isthe mark of ordered groups:

el ement character {
attribute id {text}&
el ement name {text}&

48

Chapter 6: More Patterns

el ement born {text}&
el ement qualification {text}}

These two equivalent schemas will validate char act er elements with children elements in any
order, such as:

<character id="PP">

<name>Pepper ni nt Patty</ nanme>

<bor n>1966- 08- 22</ bor n>

<qual i fication>bold, brash and tonboyi sh</qualification>
</ character >

<charact er id="Snoopy">

<bor n>1950- 10- 04</ bor n>

<qualification>extroverted beagl e</qualification>
<nanme>Snhoopy</ nane>
</ character >
<character id="Schroeder">

<qual i fication>brought classical nmusic to the Peanuts strip</qualification>
<name>Schr oeder </ nane>

<bor n>1951- 05- 30</ bor n>
</ character >

Although i nt er | eave looks straightforward at this level of description, we will see more of its
complete behavior and restrictions in the last sections of this chapter. Y ou can skip them if they ook
too complex for now but you should remember to come back and revisit them if youri nt er | eave
patterns show unexpected results or error messages!

The choi ce pattern

Let's say that we want to add some flexibility to the nane element and still accept:
<nane>Lucy</ nane>
but also:

<nane>
<first>Charl es</first>
<m ddl e>Mc/ m dd| e>
<l ast >Schul z</| ast >

</ nane>

and:

<nane>
<first>Peppermnt</first>
<l ast >Patty</| ast >

</ name>

To expressthis, we will useachoi ce pattern which will accept either atext node or agroup of three
elements (one of them being optional):

49

Chapter 6: More Patterns

<el enent nane="nane" >
<choi ce>
<text/>
<gr oup>
<el enent nanme="first"><text/></el enent >
<opti onal >
<el enent nanme="m ddl e" ><t ext/ ></ el enent >
</ opti onal >
<el enent nane="l| ast " ><t ext/ ></ el enent >
</ group>
</ choi ce>
</ el enent >

The compact syntax uses alogical or character ("[") to mark choices:

el enent nane {
text] (
el enent first{text},
el enent m ddl e{text}?,
el enent |ast{text}

)}

Note that we had to use parenthesis "(..)" to mark the boundary of the gr oup pattern which is one
of the two alternatives of our choi ce pattern.

Pattern compositions

In the preceding example we have combined a choice with a group. This process can be general
generalized and there is virtually no restriction nor limit in the way compositors can be combined. As
an example, let's say we want now in our character element to allow either anane element or thethree
elements "first-name”, "middle-name" (optional) and "last-name" in any relative order but before the
born andqual i fi cati on elements. That's no problem with Relax NG and we can just write:

<el emrent nanme="character">
<attribute name="id"/>
<choi ce>
<el emrent nanme="nane" ><t ext/ ></ el enent >
<interl eave>
<el enment nanme="first-name" ><t ext/></el enent >
<opti onal >
<el emrent nanme="ni ddl e- nane" ><t ext/ ></ el enent >
</ opti onal >
<el ement nane="| ast - nane" ><t ext / ></ el enent >
</interl eave>
</ choi ce>
<el enent nanme="bor n" ><t ext/ ></ el enent >
<el ement nane="qualification"><text/></el enent>
</ el enent >

or, with the compact syntax:

50

Chapter 6: More Patterns

el ement character ({
attribute id {text},
(

el enent nane {text}]|

(

el ement first-nanme {text}&

el ement m ddl e-nane {text} ? &
el ement | ast-nanme {text}

)
)

Note that we have added two levels of parenthesis here. This was needed because for the compact
syntax, operators are used to determine the nature of compositors (gr oup, i nterl eave or
choi ce). They cannot be mixed at the same level and we need to use these parenthesisto explicitly
mark where each compositor starts and ends.

These schemas will validate character elements such as:

<character id="PP">

<first-nanme>Pepperm nt</first-nane>

<| ast - name>Pat t y</| ast - nanme>

<bor n>1966- 08- 22</ bor n>

<qualification>bold, brash and tonmboyi sh</qualification>
</ char act er >

<character id="PpP2">

<l ast - nane>Pat t y</ | ast - nane>

<first-name>Pepperm nt</first-nane>

<bor n>1966- 08- 22</ bor n>

<qualification>bold, brash and tonboyi sh</qualification>
</ character>

<char act er id="Snoopy">

<nanme>Snoopy</ nane>

<bor n>1950- 10- 04</ bor n>

<qual i fication>extroverted beagl e</qualification>
</ character>

<charact er id="Snoopy2">
<first-name>Snoopy</first-nane>

<m ddl e- nane>t he</ m ddl e- nane>

<| ast - nane>Dog</ | ast - nane>

<bor n>1950- 10- 04</ bor n>
<qualification>extroverted beagl e</qualification>
</ character>

or

51

Chapter 6: More Patterns

<char act er id="Snoopy3">

<m ddl e- name>t he</ m ddl e- nane>

<| ast - name>Dog</ | ast - nane>
<first-nane>Snoopy</first-nane>

<bor n>1950- 10- 04</ bor n>

<qual i fication>extroverted beagl e</qualification>
</ character>

Theflexibility and freedom with which patterns can be combined and thelack of restrictionsassociated
with these combinations is one of the main assets of Relax NG and a major differentiator with other
XML schema languages.

The lack of order in a schema may be a
source of information in instances

Before we move on to text patterns and mixed contents, let's think again on the i nt er | eave
pattern. As we have aready noted, the fact that these content models are often called "unordered”
is misleading since although no ordered is required by the schema, the nodes will be ordered in the
instance documents and the order in which they will appear in the document may be considered as
significant by the applications. Going back to our example with the names, any application managing
names probably needsto know what's my first name and what's my last name and with little additional
effort they can get theinformation whether the first name comesbefore or after thelast nameinaXML
document. The most user friendly of these applications may also want to know whether | prefer to be
called with my first or last name first. Should we add an information item to carry this information
when we can just rely on the order of these elements in the instance document?

In other words, defining a content using i nt er | eave patterns shouldn't be seen as a "degradation”
of aschemato makethelife of document authors easier. Incidentally it does maketheir life easier and
there is no reason to add arbitrary restrictions when there are not needed by the application but that's
not the point | want to make here. The point | want to make here is that a content model defined with
i nt er| eave patterns allow more combinations than those using gr oup patterns and that they can
be used to bring more information.

The downside with i nt er | eave patterns is that the freedom with which they can be used is
unfortunately specific to Relax NG and if you need to insure that it will also be possible to model your
vocabulary with a more rigid schema language such as W3C XML Schema, you will often have to
restrict the usage of i nt er | eave patternsin your Relax NG schemas.

Text and empty patterns, whitespaces and
mixed contents

So far, we have only used t ext patterns within gr oup patterns and we've missed an important
"detail" about this pattern which doesn't mean as one could have expected "a text node" but rather
"zero or more text nodes" and this deserves some explanations. First, the reason why t ext patterns
accept zero text nodesis linked to the policy adopted by Relax NG regarding whitespaces. Generally
speaking, whitespace processing is somewhat fuzzy in XML and Relax NG has attempted to find athe
"least surprising” policy to meet most common usages. We will see more whitespace processing when
we will cover datatypes where they become significant, but right now, let's say that Relax NG doesn't
make any difference between empty strings, no string at all, astring containing only whitespacesbefore
or after an element node and in alesser extend asingletext child element containing only whitespaces.

For instance, in the following snippet:

52

Chapter 6: More Patterns

<foo atl1l="" at2=" ">
<bar/ >
<bar ></ bar >
<bar >
<baz/ >
<baz/ >
</ bar >
<bar >
</ bar >

</ foo>

Relax NG considersthat the values of at1 and at2, the content of thefirst and second bar elements, the
text between thethird bar start tag and thefirst "baz" element, the text between the two "baz" element
and even the text within the last bar element is not significant and that they should be matching both
t ext and enpt y patterns. Even though thisis not obvious to explain and understand, that rule has
been created to meet the most common practicesin XML and you would probably never have noticed
itif I had not insisted on it. Its two visible consequences for the patterns which we've seen so far are:

e Since t ext patterns match any text node they must match strings which are either empty or
containing only whitespaces and since there is no difference between empty strings and no string,

t ext patterns match "zero strings' i.e. they are aways optional.

e Since enpt y patterns match "zero strings' and since there is no difference between no string and
empty strings or strings containing only whitespaces, enpt y patterns match also strings either

empty or containing only whitespaces.

In other words, the snippet shown above would match both content models where all the occurrences
mentioned aredescribed ast ext or enpt y patterns. And if we add therule-aready used alot but not
yet explicated- that says that you don't need to explicitly express enpt y patterns between elements,

these two schemas would both validate this instance document:

<el enent xm ns="http://rel axng. org/ ns/structure/1.0"
<attribute nanme="at 1"><text/></attri bute>
<attribute nanme="at2"><text/></attri bute>
<oneOr Mor e>
<el emrent nane="bar">
<choi ce>
<text/>
<oneOr Mor e>
<el ement nane="baz" ><t ext/ ></ el enent >
</ oneOr Mor e>
</ choi ce>
</ el enent >
</ oneOr Mor e>
</ el enent >

or

<el enent xm ns="http://rel axng. org/ ns/structure/1.0"
<attribute nane="at 1"><enpty/></attribute>
<attribute nane="at2"><enpty/></attribute>
<oneOr Mor e>
<el enent nanme="bar" >
<choi ce>
<enpty/ >

nane="foo0" >

name="f oo0" >

53

Chapter 6: More Patterns

<oneOr Mor e>
<el ement nane="baz"><enpty/ ></ el emrent >
</ oneOr Mor e>
</ choi ce>
</ el enent >
</ oneOr Mor e>
</ el enent >

After having seen why text patterns had to be optional, we need to see why it's useful for them to
match multiple instances. The first point to note is that when at ext pattern is used with agr oup
or choi ce pattern this doesn't make any difference since text nodes are merged when they are
contiguous or separated by infoset items not checked by Relax NG such as comments or Processing
Instructions (PIs). Withinagr oup or achoi ce, thereisthus no difference between a pattern which
would match one or one or more text nodes. The only place where it can make a difference is thus
within i nt er | eave compositors and that's the reason why this specificity has been introduced.
Document oriented applications including XHTML provide numerous examples of so called mixed
content elements which accept text end embedded elementsin any order and in this caseit would have
no sense to limit the number of text nodes.

To introduce such a content model, let's say we want to extendthet i t | e element to include zero or
more linksusing "a" elements with hr ef attributes, such as:

<title xm:lang="en">Being a

Dog</ a>

Is a Full-Time

Job</ a>
</title>

The content of thenew t i t | e element can be described asani nt er | eave pattern allowing zero
or more"a" elements and zero or more text nodes and the fact that thet ext pattern matches zero or
more text nodes will avoid us to specify its cardinality and we will just write:

<el emrent nanme="title">
<interleave>
<attribute name="xnl:|ang"/>
<zer oOr Mor e>
<el emrent nane="a">
<attribute nanme="href"/>
<text/>
</ el enent >
</ zer oOr Nor e>
<text/>
</interl eave>
</ el enent >

or, using the compact syntax:

element title {

attribute xm:lang {text}&

element a {attribute href {text}, text}*&
t ext

Chapter 6: More Patterns

Considering that this was still too verbose for something quite common, Relax NG has introduced
a specific compositor named i xed which has the same meaning than "interleave including a text
pattern” and these schemas are strictly equivalent to:

<el emrent nanme="title">
<m xed>
<attribute name="xnm:|ang"/>
<zer oOr Mor e>
<el emrent nane="a">
<attribute nanme="href"/>
<text/>
</ el enent >
</ zer oOr Mor e>
</ m xed>
</ el enent >

Theni xed compositorismarked usingami xed keyword in the compact syntax and would bewritten
as.

element title {
m xed {
attribute xm:lang {text}&
element a {attribute href {text}, text} *
}
}

Why is it called i nt er | eave instead of
"unorderedGroup"?

If i nterl eave was only about defining unordered groups why would it be called i nt er | eave
and not "unorderedGroup" or something similar? As you'll have guessed, there is something else
hidden behind this name and interleave is not only adefinition of unordered groups, but a definition of
unordered groups which let their child nodes intermix within subgroups even when these groups are
ordered groups. Don't worry, this concept is simpler than it looks when we try to give a semi-formal
definition and an example will make it easy to grasp!

This behavior of ordered groups immersed in an unordered may be surprising and we can try areal
world metaphor to illustrate it. If we imagine that the leaf nodes of a XML document are like a bunch
of tourists visiting a museum, we can define the unordered sets of all the tourists visiting and ordered
groups of tourists following their guides. There are different ways to immerse ordered groups within
the unordered set of the museum visitors and to mix ordered groupstogether and the interleave pattern
describes one specific way to do thisimmersion: when the museum isan interleave pattern, the ordered
groupsonly preservetherelative order of their membersand not only allow individual touriststo insert
themselves within a group but also two groupstoi nt er | eave their members.

To come back to XML and Relax NG, let's take the following schema:

<el enent xm ns="http://rel axng.org/ ns/structure/1.0" nanme="nuseuni >
<interl eave>

<el enent name="i ndi vi dual " ><enpt y/ ></ el enent >

<gr oup>

<el enent name="gr oup- nenber 1" ><enpt y/ ></ el enent >

55

Chapter 6: More Patterns

<el enent name="gr oup- menber 2" ><enpt y/ ></ el enment >
</ group>
</interl eave>
</ el ement >

or, using the compact syntax:

el enent nmuseum {
el ement individual {enmpty} &
(
el ement group-nenberl {enpty},
el ement group-nenber2 {enpty}
)
}

Element "individual" isanindividual visiting the museum and el ements " group-member1" and " group-
member2" are in a group. Because i nt er | eave patterns are non ordered groups, the following
instance documents are valid:

<nmuseunp
<i ndi vi dual / >
<gr oup- nenber 1/ >
<gr oup- nenber 2/ >
</ museune

and

<museunv
<gr oup- nenber 1/ >
<gr oup- nenber 2/ >
<i ndi vi dual / >
</ museune

These documents are instances where the element "individual" which matches the first pattern in the
interleave pattern (i.e. the element pattern) is either before or after the elements "group-member1"
and "group-member2" which match the gr oup pattern which is the second sub-pattern of the
i nterl eave pattern. And, because the i nt er | eave pattern alows that the nodes matching its
sub-pattern are mixed, the schema al so validate this third combination:

<museun®
<gr oup- nenber 1/ >
<i ndi vi dual / >
<gr oup- nenber 2/ >
</ museune

On the other hand, all the combinations where the relative order between group members would not
be respected would be invalid. A example of such invalid combinationsis:

<museunv
<gr oup- nenber 2/ >

56

Chapter 6: More Patterns

<i ndi vi dual / >
<gr oup- nenber 1/ >
</ museunw

Interleave can also be used to "mix" two groups of patterns and in this case the relative order of the
element of each group is maintained but the groups may elements of different groups may appear in
any order and the groups may be "interleaved". For instance, the following schema:

<el enent xm ns="http://rel axng. org/ ns/structure/1.0" name="nuseuni >
<interl eave>
<gr oup>
<el enent name="groupl. nenber 1" ><enpt y/ ></ el enent >
<el enent name="groupl. nenber 2" ><enpt y/ ></ el enent >
</ group>
<gr oup>
<el enent name="group2. nenber 1" ><enpt y/ ></ el enent >
<el enent name="group2. nenber 2" ><enpt y/ ></ el enent >
</ group>
</interl eave>
</ el emrent >

or, using the compact syntax:

el ement nuseuni
(
el enent groupl. menberl {enpty},
el enent groupl. menber2 {enpty}
) & (
el enent group2. menber1l {enpty},
el enent group2. menber 2 {enpty}

)
}

will validate documents such as:

<nmuseuns
<groupl. menber 1/ >
<groupl. menber 2/ >
<group2. menber 1/ >
<group2. menber 2/ >
</ museune

and

<museunv
<gr oup2. nenber 1/ >
<gr oup2. nenber 2/ >
<groupl. nenber 1/ >
<gr oupl. nenber 2/ >
</ museune

57

Chapter 6: More Patterns

where the groups are kept separated but al so:

<museunv
<gr oupl. nenber 1/ >
<gr oup2. nenber 1/ >
<gr oup2. nenber 2/ >
<gr oupl. nenber 2/ >
</ museune

or

<museunv
<groupl. nenber 1/ >
<group2. nenber 1/ >
<groupl. nenber 2/ >
<group2. nenber 2/ >
</ museune

where the groups are interleaved.

Ordered mixed content models

We have seen that an pattern interleaved with a group is alowed to appear anywhere between the
patterns of the group and this feature may be used with atext pattern to define ordered mixed content
model swhere the text nodes may appear anywhere but the order of the elementsisfixed. These content
models are quite uncommon in XML and a use case could be a data oriented vocabulary such as our
library in which optional text could be inserted to provide more user friendly document such as:

<character id="Lucy">
<nanme>Lucy</ name> made her first apparition in a Peanuts strip on
<bor n>1952- 03- 03</ born>, and the | east we can say about her is that she is
<qual i fication>bossy, crabby and sel fish</qualification>.

</ character>

If we want to fix the order of the children elements, we can just embed a gr oup pattern inside a
m xed pattern:

<el enent nane="character">

<m xed>
<attribute nanme="id"/>
<gr oup>
<el emrent nane="nane" >
<text/>

</ el enent >
<el ement nane="born">
<text/>
</ el enent >
<el enent nanme="qualification">
<text/>
</ el enent >
</ group>

58

Chapter 6: More Patterns

</ m xed>
</ el enent >

Per the definition of the "mixed pattern”, thisis equivalent to:

<el enment nane="character">
<interl eave>
<attri bute nane="id"/>
<text/>
<gr oup>
<el enent nane="nane" >
<text/>
</ el enent >
<el enent nane="born" >
<text/>
</ el enent >
<el ement nane="qualification">
<text/>
</ el enent >
</ group>
</interl eave>
</ el enent >

Thet ext pattern matches text nodes before, after or between the elements of the group but aswe've
seen with our museum example in the previous section, the order of the elements in the group will

be enforced. The compact syntax will use m xed keyword with commas (",") between sub-patterns
to expressthis:

el ement character {
m xed {
attribute id {text},
el ement nanme {text},
el ement born {text},
el ement qualification {text}

}
}

We have aready seen that the compact syntax m xed keyword can be used using ampersands ("&")
and commas (",") to define unordered and ordered mixed patterns and to be exhaustive, we must
mention that or ("|") can also be used to interleave text nodesin choi ce patterns:

el ement foo{
m xed {
(
el enent inl.1 {enpty},
el enent inl.2 {emty}
) |
element in2.1 {enpty}&
el enent in2.2 {emty}
)
}
}

59

Chapter 6: More Patterns

This pattern is interleaving text nodes into either agroup of inl.1 and inl1.2 elements or an interleave
pattern of elementsin2.1 and in2.2. In the first case because of the semantic of gr oup patterns the
order between elementsisfixed whilein the second onethe order doesn't matter. Mixed choice contents
do not constitute new content models and are equivalent to choices of mixed content models: we could
rewrite this schema as:

el ement foo{
(
m xed{
element inl.1 {enpty},
el ement inl.2 {enmpty}
}
) |«
m xed{
element in2.1 {enpty}&
el ement in2.2 {enmpty}
}
)
}
}

Principal restriction related to i nt er | eave

We will see the different restrictions of Relax NG in "Chapter 15: Simplification And Restrictions”,
but we need to mention the principal restriction related to thei nt er | eave compositor which will
probably bite you at some point if you combine mixed content models.

Let'ssay wewant to extend our ti t | e element to allow not only links ("a" elements) but also bold
characters marked by ab element:

<title xm:lang="en">Being a

Dog</ a>

Is a Ful I - Ti me</ b>

Job</ a>
</title>

Because text may appear beforethe"a" elements, between "a" and b and after theb element, we might
be tempted to write the following schema:

<el emrent nanme="title">
<interleave>
<attribute name="xn:|ang"/>
<text/>
<zer oOr Mor e>
<el erent nane="a">
<attribute nanme="href"/>
<text/>
</ el enent >
</ zer oOr Nor e>
<text/>
<zer oOr Mor e>
<el emrent nane="b">
<text/>

60

Chapter 6: More Patterns

</ el enent >
</ zer oOr Nor e>
<text/>
</interl eave>
</ el enent >

or:

elenent title {
attribute xm:lang {text}

& text

& element a {attribute href {text}, text} *
& text

& element b {text} *

& text

Running jing against this schemawill raise the following error:

Error at URL "file:/home/vdv/xm schenat a- cvs/ books/ r el axng/ exanpl es/ Rnghor ePa
line nunber 1, columm nunber 2: both operands of "interleave" contain "text"

This is because there can be only one t ext patternin each i nt er | eave pattern. We have seen
that t ext patterns match zero or more text nodes, and in this case, the remedy is simple enough; the
schema must be rewritten to:

<el erent nanme="title">
<interl eave>
<attribute name="xm:lang"/>
<text/>
<zer oOr Mor e>
<el erent nanme="a">
<attribute name="href"/>
<text/>
</ el enent >
</ zer oOr Nor e>
<zer oOr Mor e>
<el emrent nanme="bh">
<text/>
</ el enent >
</ zer oOr Nor e>
</interl eave>
</ el enent >

Or:

element title {
attribute xm:lang {text}
& text
& element a {attribute href {text}, text} *
& element b {text} *

61

Chapter 6: More Patterns

This new schemais perfectly valid and it does what we meant to do with our invalid schema

On this simple example, the diagnostic has been very simple but in practice the situation is usually
more complex with conflicting t ext patterns belonging to different sub patterns of i nt er | eave
or mi xed. When using pattern libraries (as shown in "Chapter 10: Creating Building Blocks"), the
conflictingt ext patternswill often belong to different Relax NG grammars, making it still tougher to
pinpoint wherethe problemis. To makeit still worsethe error messages from the Relax NG processors
are often quite cryptic, telling you that you have conflictingt ext patternsini nt er | eave without
saying where they come from and, unfortunately, you'll have to figure out by yourself.

The reason behind this restriction is to optimize Relax NG implementations using the derivative
method described by James Clark. Instead of processing each text node when processing mixed content
models these implementations can just memorize the fact that this is mixed content and ignore each
text node. To do so, the implementation needs to be able to quickly find if a content model is mixed
or not and that's where the restriction does make a difference in term of programming complexity and
execution speed.

Missing pattern

Wehaveseenthat thei nt er | eave pattern associatestwo different features and isboth an unordered
group and something which alters the way sub-groups can be combined together. These two features
are not totally independent since mixing child nodes only have a meaning when the order of the sub-
groupsis not maintained but they are not totally dependent either and in theory it would be possible to
define a pattern with ameaning of "unordered group" which would not have the effect of interleaving
child nodes and would keep groups unaltered.

If this pattern doesn't exist in Relax NG, thisis not only to keep the language as simple as possible but
also because athoughit isbuilt ontop of an abstract mathematical model, Relax NG isalso built ontop
of the experience of itsauthorswho have wanted to focus on general usages and best practi cesamongst
the XML community and we must say that the lack of a"unordered group with no interleaving” hasn't
been reported as alimitation with real world applications so far.

62

Chapter 8. Chapter 7: Constraining
Text Values

A good deal of the simplicity of Relax NG comes from a careful definition of its scope and a focus
on the validation of the structure of XML documents instead of the values placed within its nodes,
however, even without using external libraries which will the subject of our next chapter (" Chapter 8:
Datatype libraries"), Relax NG includes a simple and efficient support for values, enumerations, lists

and whitespace processing which we will study in this chapter.

Values

The elementary pattern on which enumerations are built isval ue. The syntax and semantics of the
val ue pattern is straightforward: the pattern will only be matched if the value found in the instance
document matchesthe value specifiedintheval ue pattern. Out of the scope of an enumeration which
we will seein the next section, val ue patterns can be used to check fixed values such as version
identifiers of XML vocabularies. If we wanted a highly specialized vocabulary to describe the book
with the ISBN number "0836217462" and only this one, we could replace the t ext pattern by a

val ue pattern and write:

<el enent nanme="isbn">
<val ue>0836217462</ val ue>
</ el ement >

or, with the compact syntax:

el enent isbn {"0836217462"}

and the schemawill validate abook with al SBN number equal to "0836217462" and refuse any other

ISBN number.

Co-occurrence constraints

A more common usage of val ue patterns, still out of the scope of an enumeration, is to define so-
called "co-occurrence constraints' where the value of a node (often an attribute) changes the content
model of another node (often an element). In our library, we have both theaut hor and char act er
elements have aclose semantic. We may want to group them astwo variations over a"person” element

differentiated by at ype attribute and write:

<person id="CM5" type="author">
<name>Char | es M Schul z</ nane>
<born>1922-11- 26</ bor n>
<di ed>2000- 02- 12</ di ed>
</ per son>

and

<person id="PP" type="character">

<nanme>Pepper ni nt Patty</ nane>

<bor n>1966- 08- 22</ bor n>

<qualification>bold, brash and tonboyi sh</qualification>

63

Chapter 7: Constraining Text Values

</ per son>

However, in thiskind of schemas, it is often required to validate that the content models are different
according to the value of the t ype attribute and this can be done using val ue patterns. If we still
want that all the authors precede the characters, we can just update the definitions of the elements
describing authors and characters and keep them in sequence in the definition of the book element:

<el ement nane="book" >
<attribute nanme="id"/>
<attribute nane="avail abl e"/>
<el ement nane="isbn">
<text/>
</ el enent >
<el emrent nanme="title">
<attribute name="xnl:|ang"/>
<text/>
</ el enent >
<zer oOr Mor e>
<el enent name="person">
<attribute nanme="type">
<val ue>aut hor </ val ue>
</attribute>
<attribute nanme="id"/>
<el ement nane="nane" >
<text/>
</ el enent >
<el ement nane="born">
<text/>
</ el enent >
<opti onal >
<el ement nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ el enent >
</ zer oOr Mor e>
<zer oOr Mor e>
<el enent nanme="person">
<attribute nanme="type">
<val ue>char act er </ val ue>
</attribute>
<attribute nanme="id"/>
<el emrent nane="nane" >
<text/>
</ el enent >
<el ement nane="born">
<text/>
</ el enent >
<el enent name="qualification">
<text/>
</ el enent >
</ el enent >
</ zer oOr Mor e>
</ el enent >

Or, using the compact syntax:

Chapter 7: Constraining Text Values

el ement book {
attribute id {text},
attribute avail able {text},
el ement isbn {text},
element title {attribute xm :lang {text}, text},
el ement person {
attribute id {text},
attribute type {"author"},
el ement name {text},
el ement born {text},
el ement died {text}?}*,
el ement person {
attribute id {text},
attribute type {"character"},
el ement name {text},
el ement born {text},
el ement qualification {text}}*

We will see the main restrictions of W3C XML Schema which are non restrictions for Relax NG in
"Chapter 16: Determinism and Datatype Assignment”, but we need to mention here that this schema
and schemas expressing co-occurrence constraints in general cannot be expressed with W3C XML
Schema since they are not "deterministic”. To be totally accurate, | have shown in my book "XML
Schema" that some of them can be expressed in W3C XML Schemausing "xs:key" asatricky hack, but
thisdoesn't work for the general case and thisisn't something easy to implement in aschematranslator.

However, if wearenow using asingle"person” element, thisis probably to devel op theinteroperability
between these elements and we may prefer allow to mix the definitions of characters and authors and
express this part of the schema as zero or more "person” elements having two possible definitions
such as:

<el ement nane="book" >
<attribute nanme="id"/>
<attribute nane="avail abl e"/>
<el ement nane="isbn">
<text/>
</ el enent >
<el emrent nanme="title">
<attribute name="xnl:|ang"/>
<text/>
</ el enent >
<zer oOr Mor e>
<el enent nanme="person">
<choi ce>
<gr oup>
<attribute nane="type">
<val ue>aut hor </ val ue>
</attribute>
<attribute nanme="id"/>
<el ement nane="nane" >
<text/>
</ el enent >
<el ement nane="born">
<text/>
</ el enent >
<opti onal >

65

Chapter 7: Constraining Text Values

<el enment nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ group>
<gr oup>
<attribute name="type">
<val ue>char act er </ val ue>
</attribute>
<attri bute nanme="id"/>
<el enent nane="nane" >
<text/>
</ el enent >
<el enent nane="born" >
<text/>
</ el enent >
<el enent nanme="qualification">
<text/>
</ el enent >
</ group>
</ choi ce>
</ el enent >
</ zer oOr Nor e>
</ el enent >

Or:

el ement person ({

(
attribute id {text},
attribute type {"author"},
el enent nanme {text},
el enent born {text},
el ement died {text}?

) |
attribute id {text},
attribute type {"character"},
el enent nanme {text},
el enent born {text},
el enent qualification {text}

)}

Now that we have brought closer the definitions of the two contents for the "person” element, we see
that an attribute and the two first sub-elements are common and can be "factorized". The definition
of the "person" element can thus be simplified as:

<el enent name="person">
<attribute nanme="id"/>
<el emrent nane="nane" >
<text/>

</ el enent >

<el ement nanme="born">
<text/>

</ el enent >

<choi ce>

66

Chapter 7: Constraining Text Values

<gr oup>
<attribute name="type">
<val ue>aut hor </ val ue>
</attribute>
<opti onal >
<el enment nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ group>
<gr oup>
<attribute name="type">
<val ue>char act er </ val ue>
</attribute>
<el enent nanme="qualification">
<text/>
</ el enent >
</ group>
</ choi ce>
</ el enent >

or:

el ement person {
attribute id {text},
el ement nanme {text},
el ement born {text},
((
attribute type {"author"},
el ement died {text}?
) |«
attribute type {"character"},
el ement qualification {text}

))
}

In the compact syntax first, note that we have had to use a double parenthesis to express our choice.
This is because the operators used at any level must be homogeneous (you can't mix ",", "|" and "&"
at a same level since it would be ambiguous). The other thing to note is that if we have been able
to "factorize" the i d attribute and the name and born elements and keep the t ype attribute and its
two possible values in the choice, this is because we have been able to group the elements which are
different with the attribute used to do the distinction between content model s and this has been possible
not only because the example had been carefully prepared for this but also because of the semantic of
impliciti nt er | eave giventotheat t ri but e patterns which lets us locate the attribute either in
or out of the choice. Finally, we should note that this factorization is just a syntactical variation and
that even when such simplification isimpossible the co-occurrence constraint may still be expressed
even though it would have been more verbose.

Enumerations

Wehavein hand all the el ements needed to define enumerations: what isan enumeration if not achoice
between several values? Enumerations are thiswritten in Relax NG through choices of values. A good
candidate for an enumeration in our library isthe avai | abl e attribute which could be defined as:

67

Chapter 7: Constraining Text Values

<attri bute nane="avail abl e">
<choi ce>
<val ue>avai | abl e</ val ue>
<val ue>checked out </val ue>
<val ue>on hol d</ val ue>

</ choi ce>

</attribute>

or:
attribute available {"avail able"|"checked out"|"on hol d"}

As expected, this definition will validate values such asavai | abl e, "checked out" and "on hold",
but also and this might be more unexpected , values such as" available ", "checked out " or even" on
hold " with multiple spaces, tabs or CRs between "on" and "hold" and we will see the reason of this
behavior -and how to change it if needed- in the next section.

Whitespaces and native datatypes

We useto say that Relax NG doesn't natively support datatypes and, strictly speaking, thisassertionis
not totally accurate: Relax NG doesinclude anativetype system but thistypelibrary isextremely weak
and consists of only two datatypes (token and string) which only differ by the whitespace processing
applied before the validation. The whole Relax NG datatype system can be seen as the ability to add
validating transformations to text nodes. These transformations transform text nodes into canonical
formats (ie a formats where all the different formats for a same value are converted into a single
normalized or "canonical" format) and eventually detect format errors. The two native datatypes do
not detect format errors (their formats are broad enough to allow any value) but still transform text
nodesin their canonical forms and this makes a difference for enumerations.

Enumerations are thus the first place, before next chapter where we will see more complete datatype
libraries, where we will see datatypes at work and thisis simply done by adding at ype attribute in
val ue patterns.

Up to now, we haven't specified any datatype when we've written val ue elements and by default,
Relax NG consider that they have the default typet oken of the built-in library. The transformation
performed on text values per this datatypeisafull whitespaces normalization similar to the one which
is performed by the X Path "normalize-space()" function: all the sequences of one or more whitespaces
-ie characters #x20 (space) #x9 (tab), #xA (linefeed) and #xD (carriage return)- are replaced by a
single space and the leading and trailing space is then trimmed.

If we come back on previous examples, writing:

<attri bute nane="avail abl e">
<choi ce>
<val ue>avai | abl e</ val ue>
<val ue>checked out </ val ue>
<val ue>on hol d</ val ue>

</ choi ce>

</attribute>

or:

attribute available {"avail abl e"|"checked out"|"on hol d"}

68

Chapter 7: Constraining Text Values

has been using the default type value (token) and was equivalent to the following:

<attribute nanme="avail abl e">

<choi ce>
<val ue type="t oken">avai l abl e</ val ue>
<val ue type="t oken">checked out </val ue>
<val ue type="t oken">on hol d</val ue>

</ choi ce>

</attribute>

or:

attribute avail able {token "avail abl e"|token "checked out"|token "on hol d"}

When the t oken datatype is used, the string normalization is applied on the value defined in the
schema and to the value found in the instance document and the comparison is done on the result of
the normalization, which explains why we have seen that "on hold" was matching " on hold " with
spaces or tabulations added before, between and after the words.

To suppressthisnormalization, we can use the second builtin datatype (" string™) which doesn't perform
any transformation on the values and write:

<attribute name="avail abl e">

<choi ce>
<val ue type="string">avail abl e</val ue>
<val ue type="string">checked out</val ue>
<val ue type="string">on hol d</val ue>

</ choi ce>

</attribute>

or:

attribute available {string "available"|string "checked out"|string "on hold"}

With this new definition, the value of our attribute must match exactly the value specified in the
schema, iethe stringsavai | abl e, "checked out" and "on hold".

Note that the native t oken and "string" datatypes have the same definition than the W3C XML
Schemat oken and "string" datatypes with the difference than, as we will see in the next chapter
"Chapter 8: Datatype Libraries’, the additional restrictions which can be applied through par am
attributes to W3C XML Schema datatypes are not available with the native datatypes.

Also not that the name of thet oken datatype, borrowed to W3C XML Schemais highly confusing.
In the general meaning in our IT jargon, atoken is a piece of string between two delimiters, i.e. what
wewould call a"word" in plain English. Thet oken datatypeisnot aword, otherwise"on" and "hold"
would be valid tokens but "on hold" wouldn't be one. The t oken datatype is more a "tokenized"
datatype, in the sense that it's a string made ready to be easily cut into token because non significant
whitespaces have been removed. This confusion is dangerous sinceit'sleading many peopleinto using
the "string" datatype when what they really need ist oken (we will see in a next section that using
the "string" datatype should be reserved to very specific cases).

69

Chapter 7: Constraining Text Values

Beware of string datatypes in attributes

Thefact that no whitespace normalization is performed when the builtin "string" datatype is used may
lead to some surprises when we define attributes since the XML parsers must remove the line feeds
and carriage returns which they find there and since the value is defined as a text node in the Relax
NG which will not be submitted to the same treatment.

This behavior may be confusing in "both ways" and our previous schema defining that the attribute
must match "on hold" will always match an attribute where the space between "on™" and "hold" will
have been replaced by aline feed such asin:

<book i d="b0836217462" avail abl e="on
hol d" >

Thisis rather normal since any XML parser must send an attribute's value "on hold" in this case and
no schemalanguagewill changethis. Thereverseisalso possible and if we had written our schemaas:

<attribute nanme="avail abl e">

<choi ce>
<val ue type="string">avail abl e</ val ue>
<val ue type="string">checked out</val ue>
<val ue type="string">on

hol d</ val ue>

</ choi ce>

</attribute>

The compact syntax doesn't allow new lineswithin quotes and to translate thisinto the compact syntax,
we need to introduce a couple of new features to show two different possibilities to include new lines
invalues.

Thefirst one is borrowed from Python and if instead of using simple () or double (") quotes, you use
three simple (") or three double (") quotes, you can include pretty much everything in your values
including new lines:

attribute available {string "available"|string "checked out"|string on
hol dllllll}

or:
attribute available {string "available"|string "checked out"|string '''on

hol d' ' '}

The second way is through escaping the new line character using the syntax "\x{ A}" (where "A" is
the Unicode value of new line in hexadecimal):

attribute available {string "available"|string "on hold"|string "on\x{A}hol d"}

This pattern defines that the attribute could contain a value with aline feed, ie something which can
only happen in XML if the newline in the attribute is explicitly specified through is numeric value,
such asin:

70

Chapter 7: Constraining Text Values

<book i d="b0836217462" avai l abl e="who
 knows?" >

Rule of thumb about string datatypes

That's amazing when you think about all the complex applications that have been made possible by
SGML and XML, but something apparently as simple as whitespace processing has consistently been
anightmare for users and programmers.

The "string" datatype will expose you to all the issues related to whitespace handling: a wide class
of users and applications will make their best to either remove or add whitespaces in your documents
and your document will become invalid.

The t oken datatype will keep you much less exposed to this nightmare and that's the reason why
Relax NG has chosen it asits default datatype but that's true for W3C XML Schema datatype too: you
shouldn't use the "string" datatype unless you have a good reason to do so.

Examples of good reasons to use the "string" datatype include all the variety of program listings in
which you want to preserve whitespaces.

Using different types in each value

In our previous schema, we have have been obliged to define the type for each val ue pattern:
attribute available {string "available"|string "checked out"|string "on hol d"}

Thisisboth verbose and very powerful and thereisno restriction forbidding to use different datatypes
in the different alternatives of an enumeration. While this would be confusing with our two builtin
typesto accept avai | abl e asat oken and "checked out" asa"string", thiswill become something
more useful in the next chapter when we will have more datatypes at hand and could specify for
instance that we want to accept either t r ue as aboolean or "on hold" as atoken.

Exclusions

What if, instead of giving alist of values which are alowed, | want to give alist of values which
are forbidden? The except pattern has been designed for this purpose, and to exclude the value
"0836217462" from the possible ISBN numbers, we would write:

<el erent nane="isbn">

<data type="token">
<except >
<val ue>0836217462</ val ue>
</ except >

</ dat a>

</ el enent >

Or, using the compact syntax:

el ement isbn {token - "0836217462"}

71

Chapter 7: Constraining Text Values

Although this looks simple, we must note that the type can be defined at two different levels here: it
must bedefinedinthedat a pattern and may bedefinedintheval ue pattern and thesetwo definitions
have a different meaning. The type attached to the dat a pattern defines a validation performed on
the text node and the type attached to the val ue pattern defines how the value should be interpreted
and which whitespace processing should be performed.

In our example, both typesaret oken and values such as" 0836217462 " would be excluded as well
as "0836217462". The two datatypes could aso be different such asin:

<attribute nanme="avail abl e">
<data type="token">
<except >
<choi ce>
<val ue type="string">avail abl e</ val ue>
<val ue type="string">checked out </val ue>
<val ue type="string">on hol d</val ue>
</ choi ce>
</ except >
</ dat a>
</attribute>

Or, using the compact syntax:
attribute available {token -(string "available"|string "checked out"|string "o

And in this case, the first control would be done on the datatype t oken and the comparison would
use the datatype "string".

Lists

Relax NG supportsthe description of text nodeswhich arelists of whitespace separated valuesthrough
thel i st pattern whichispretty non typical inthat it can be seen asthe only pattern which transforms
the structure of the document at validation time by splitting text values into lists of tokens (t oken
being used here in the meaning of words, not in the meaning of thet oken datatype). The benefit of
doing soisthat withinal i st pattern, al the pattern constraining data values may be used combined
with the compositors which will let us constrain the combination of these tokens.

Funny enough, if we use al i st pattern without defining a cardinality, we may not get what we
expect. An attribute defined as:

<attribute nanme="see-al so">
<list>
<data type="token"/>
</list>
</attribute>

or, using the compact syntax:
attribute see-also {list {token}}

Would not match a list of tokens (such as see-als0="0345442695 0449220230 0449214044
0061075647 0061075612") but a list of exactly one token (such as see-also="0345442695"). Thisis

72

Chapter 7: Constraining Text Values

becausethel i st pattern splitsthe text valueinto alist of token and thislist isthen evaluated against
the patterns which are included withinthel i st pattern. If we want alist of any number of "tokens",
we must thususe azer oOr Mor e pattern to expressit:

<attribute nane="see-al so">
<list>
<zer oOr Mor e>
<data type="token"/>
</ zer oOr Mor e>
</list>
</attribute>

Or, using the compact syntax:

attribute see-also {list {token*}}

Thiswould consider the"see-also" attribute asalist of tokensand wouldn't add any constraint (thiswill
of course be different when we will have more datatypes) but we could have used other compositors
inthel i st pattern exactly as we have used them in other contexts. To express that we want a list
with between 1 to 4 tokens, we could say:

<attribute name="see-al so">

<list>
<data type="token"/>
<optional >
<data type="token"/>
</ opti onal >
<optional >
<data type="token"/>
</ opti onal >
<optional >
<data type="token"/>
</ opti onal >

</list>

</attribute>

Or, using the compact syntax:

attribute see-also {list {token, token?, token?, token?}}

That's verbose but we have already seen that we had no other possibilities to define number of
occurrences with RelaxNG...

We could also constraint the values of these tokens, for instance through an enumeration:

<attribute nane="see-al so">
<list>
<oneOr Mor e>
<choi ce>
<val ue>0836217462</ val ue>
<val ue>0345442695</ val ue>

73

Chapter 7: Constraining Text Values

<val ue>0449220230</ val ue>
<val ue>0449214044</ val ue>
<val ue>0061075647</ val ue>
</ choi ce>
</ oneOr Mor e>
</list>
</attribute>

Or:
attribute see-also {list {("0836217462"|"0345442695"|"0449220230"|" 044921404

A last point to note is that this mechanism gives us the ability to define different constraints for the
different members of alist. To illustrate this feature, we need to take another example. Let's say that
we want to give the dimension of abook by giving its three dimensions and a unit, such as;

<book i d="b0836217462" avail abl e="true" di nensions="0.38 8.99 8.50 i nches">
In this case, we can define the "dimensions' attribute as:

<attribute nane="di nensi ons">
<list>
<data type="token"/>
<data type="token"/>
<data type="token"/>
<choi ce>
<val ue>i nches</ val ue>
<val ue>cnx/ val ue>
<val ue>nmx/ val ue>
</ choi ce>
</list>
</attribute>

Or:

attribute dinensions {list {token, token, token, ("inches"|"cm'|"mm")}}

Data versus text

In the previous chapter (Chapter 6: More patterns) we have spend a lot of time to give a detailed
description of thet ext pattern and of its behavior withini nt er | eave patterns. There is another
pattern to describe and attach datatypes to text nodes and even though this pattern will become useful
with the introduction of the datatype libraries in next chapter, we can describe its core features right
now to be exhaustive on the subject of text nodes.

This pattern isthe dat a pattern. The data pattern acceptsat ype attribute (like we have seen for the
val ue pattern) and checks that the value is valid per this type. Since our two builtin types accept
any value, the dat a pattern with builtin typesis almost equivalent to at ext pattern... Almost only
becausethedat a pattern doesnot mean likethet ext pattern"zero or moretext nodes" but "onetext
node" and also because the dat a pattern has been designed to represent data and that it is forbidden

74

Chapter 7: Constraining Text Values

in mixed content models since the authors of the Relax NG specification have considered that this
isabad practice.

This restriction apply to all the patterns matching a single text node (ie, dat a, val ue and | i st)
which can never be associated with patterns sibling matching elements (ie elements which could have
add the same parent element in the same instance document). In practice, this means that we won't be
ableto use adat a pattern describe content models such as:

<pri ce><currency>USD</ currency>20</pri ce>

or

<price>20<currency>Eur o</ currency></price>

These content model s have been considered bad practice by the authors of the Relax NG specification
who advise to reformulate them as:

<price>
<anount >20</ anmount >
<currency>USD</ currency>
</ price>

or

<price currency="USD'>20</pri ce>

Thisisthe second time (thefirst one being when we've seen that thereisno "unordered non interleaved"
pattern in the previous chapter) that we see Relax NG giving a priority to good practices over the
ability to describe all the combinations possible per the XML recommendation. This second case is
actually increasing the complexity of the implementations of Relax NG processors which must check
that dat a patterns are not included directly or not within mixed content models while the support
of data in mixed content models would have been implied by the general algorithms without any
additional complexity. The only benefit for Relax NG processors is that they can skip whitespaces
occurring between two elements since they cannot match adat a element which isforbidden between
two elements but this benefit seems really minimal compared to the possibilities which are lost by
thisrestriction.

This restriction appears to come from a strict distinction between data oriented and document
oriented applications of XML, mixed contents having been considered to belong to document oriented
applications which shouldn't need datatypes and datatypes to belong to data oriented applications
which shouldn't need mixed contents!

75

Chapter 9. Chapter 8: Datatype
Libraries

In the previous chapter, we have seen the basics of the dat a pattern used with the highly restricted
built-in datatype library.

The extreme simplicity of this built-in type library -limited to the two datatypes "string" and t oken-
should not be seen as a limitation of Relax NG but rather as a fundamental design decision that
validating the structure and the content of XML documents are different issues that are better solved
by different tools working in close cooperation.

The Relax NG strategy is thus to rely on external pluggable libraries for the validation of the content
of the text nodes and attributes.

There is no limit to the potential variety of external type libraries which could be implemented and
used by a Relax NG schema and the designers of Relax NG think that thereis probably room for both
generic type libraries and application specific types libraries meeting the needs of a specific domain
such as mathematics, physics or business.

It is also possible to implement language specific type libraries and my Python implementation of
Relax NG supports a native Python types library which maps the built in types and alow to define
restrictions using the Python syntax.

That being said, the it is expected that most of the users will use generic XML type libraries ranging
from a library emulating the datatypes from the DTDs to an ISO/DSDL type library not yet defined
through the W3C XML Schema datatype library and in this chapter we'll introduce the two of them
which are already available, i.e. the W3C XML Schemaand DTD compatibility type libraries.

W3C XML Schema type library

W3C XML Schema so called simple types are a part that's taking several chaptersin my book about
W3C XML Schema, but I'll try to give a brief overview here so that you can use their most basic
features within Relax NG schemas. Y ou will find their definition in " Chapter 19: W3C XML Schema
Datatypes' and you are of coursewel cometo read the chapters4, 5, 6 and 16 of my W3C XML Schema
book to get a deeper understanding of their behavior!

The W3C XML Schema datatypes which can be used in a Relax NG schema are the so-called
"predefined" W3C XML Schema types, i.e. those which are defined in the W3C XML Schema
recommendation as opposed to "user defined types' which are derived from the predefined types
using the W3C XML Schema language and can't be used from a Relax NG schema. We will see
that restrictions (called "facets' in the terminology of W3C XML Schema) can be applied to these
datatypes using the Relax NG par ampattern.

Since we are able to defined named patternsin Relax NG, it meansthat even though thereis no access
to "user defined W3C XML Schemasimple types’, we will have a possibility to define "user defined
Relax NG patterns consisting of a predefined W3C XML Schematype and a set of facets'. This might
be a bit confusing right now but it will become clearer with examples and | just wanted to draw
your attention to the fact that Relax NG is just borrowing the most basic part of W3C XML Schema
datatypes without borrowing its syntax and derivation methods.

The datatypes

The W3C XML Schema predefined datatypes are divided into "primitive" and "derived" types.
Primitive types are basic types which do not share a common semantic and behave differently while
each of the derived type could have been derived from a primitive type using the W3C XML Schema

76

Chapter 8: Datatype Libraries

derivation features, shares the semantic of this primitive type and are provided for the convenience of
the users since it is expected that it will be commonly used.

The other notion which needs to be introduced before we start is the notion of lexical and value
spaces: the lexical spaceisthe string asit appearsin the XML document after an eventual whitespace
normalization while the value space is the matching value interpreted by the datatype library. The
distinction is important since all the facets save one (the pat t er n facet which will be covered in
depth in next chapter: "Chapter 9: W3C XML Schema Regular Expressions') are acting on the value
space. For instance, the two text nodes 1 and "01" will be considered as different if the datatypeis a
token and identical if the datatype is an integer.

In this section, we will give abrief presentation of the datatypes classified by their primary types.

String datatypes

The string datatypes are:

« "string" : This is the only datatype for which no whitespace normalization is done. There is no
restriction on the lexical or value spaces of this datatype which is identical to the "string" Relax
NG built-in type with the exception that restriction can be applied through par ampatterns on the
W3C XML Schema string type.

* "normalizedString" : An intermediate whitescape processing is done to this datatypes: the
occurrences of whitespaces (is#x9 (tabs), #xA (linefeed) and #x20 (space) are replaced by the same
number of spaces (#x20) but no space collapsing or trimming is performed. Like for the "string"
datatype, thereis no restriction on the lexical or value spaces of this datatype.

» t oken : Thisdatatypeis similar to the built-in token datatype: whitespaces are normalized, i.e. al
the sequences of whitespaces are replaced by a single space and the leading and trailing spaces are
removed. Thisis -with the two previous one- the third and last datatype which has no constraint
on its value and lexical spaces. We must also note that al the datatypes except "string" and
"normalizedString” follow the same normalization rules asthet oken datatype.

 "language" : This was created to accept all the language codes standardized by RFC 1766. Some
valid values for this datatype are en, en-US, fr, or fr-FR.

* "NMTOKEN" : This corresponds to the XML 1.0 "Nmtoken" (Name token) production, which
is a single token (a set of characters without spaces) composed of characters alowed in XML
name. Some valid values for this datatype are " Snoopy", "CMS', "1950-10-04", or "0836217462".
Invalid values include "brought classical music to the Peanuts strip” (spaces are forbidden) or
"bold,brash" (commas are forbidden).

* "NMTOKENS": Thelexical and value spaces of "NMTOKENS" is the whitespace separated lists
of "NMTOKEN".

* "Name" : Thisis similar to "NMTOKEN" with the additional restriction that the values must start
with a letter or the characters ":" or - . This datatype conforms to the XML 1.0 definition of a
"Name." Somevalid valuesfor thisdatatype are" Snoopy", "CMS", or "-1950-10-04-10:00". Invalid
values include "0836217462" ("Name" cannot start with a number) or "bold,brash" (commas are
forbidden). This datatype should not be used for names that may be "qualified" by a namespace
prefix, since we will see another datatype ("QName") that has a specific semantic for these values.

» "NCName" : Thisis the "noncolonized name" defined by Namespacesin XML1.0, i.e, a"Name"
without any colons (":"). As such, this datatype is probably the predefined datatype that is closest
to the notion of anane in most of the programming languages, even though some characters such
as- or "." may till beaproblem in many cases. Some valid values for this datatype are " Snoopy",
"CMS', "-1950-10-04-10-00", or "1950-10-04". Invalid values include "-1950-10-04:10-00" or
"bold:brash” (colons are forbidden).

e | D: Thelexical space of | Dis the same than the lexical space of "NCName". As defined by the
W3C XML Schema recommendation, there is one constraint added to its value space which is that

77

Chapter 8: Datatype Libraries

there must not be any duplicate values in a document. Relax NG doesn't alow datatype libraries
to perform this type of checks. Thisisajob for the "DTD compatibility feature" as we will see at
the end of this chapter and its specification asks to Relax NG processors supporting this feature to
enforce ID uniquenessfor W3C XML Schema ID datatypes. Other implementationswill just check
itslexical space asa"NCName".

» "IDREF" : Thelexical space of "IDREF" is the same than the lexical space of "NCName". Asfor
I D, W3C XML Schema addsthe constraint that it must match an 1D defined in the same document,
and Relax NG makes this behavior optional for Relax NG processors supporting the W3C XML
Schema type library without supporting the DTD compatibility feature.

» "IDREFS" : Thelexical space of "IDREFS" isthe whitespace separated lists of "NCName". Asfor
| Dand "IDREF", W3C XML Schema adds the constraint that each of the values must match an ID
defined in the same document, and Relax NG makes this behavior optional for Relax NG processors
supporting the W3C XML Schematype library without supporting the DTD compatibility feature.

» "ENTITY": Thelexical space of "ENTITY" isthe same than the lexical space of "NCName". Also
provided for compatibility with XML 1.0 DTDs, an "ENTITY" value and must match an unparsed
entity definedinaDTD.

» "ENTITIES" : The lexical and value spaces of "ENTITIES' is the whitespace separated lists of
"ENTITY".

URIs

Strictly speaking, "anyURI", the only representant of this family isn't considered as a string since its
value can be different from itslexical representation to compensate the differences of format between
XML and URIs as specified in the RFCs 2396 and 2732. These RFCs are not very friendly toward
non-ASCII characters and require many character escaping that are not necessary in XML.

As an example of this transformation, the href attribute of an XHTML link written as:

Wor | d/ Fr an� ai s
</ a>

would be converted to the value:

http://dnoz. org/ Wor | d/ Fr an%C3%A7ai s/

in the value space.

Also note that the "anyURI" datatype doesn't pay any attention to xml:base attributes that may have
been defined in the document.

Qualified names

Uptoknow, we have only briefly mentioned XML namespaces and wewill introducethemin " Chapter
11: Namespaces' but we need to use some of their concepts right now. If you're not familiar with
namespaces, you should probably be safe to skip this section: you can be quite sure that you don't
need qualified names and even if you are a XML namespace guru, | wouldn't recommend you to use
them which | consider a bad practice!

What we're talking about here is different to using qualified names for element and attribute
names. Using qualified names for element and attribute names is required by the recommendation

78

Chapter 8: Datatype Libraries

"Namespaces in XML 1.0" and there isn't much debate left on the subject. Here, we are speaking
of using qualified names in element or attribute values which is much more controversial since it's
creating a dependency between the markup and its content.

Because of this dependency, you cannot consider a qualified name as string datatypes since its prefix
isonly a shortcut to the associated namespace URI. The value space of a qualified named is thus not
what we see but atuple composed of the associated namespace URI (replacing the prefix) and itslocal
part (i.e. what is after the prefix and the colon).

For instance, if the"xs" prefix has been associated with the namespace URI "http://www.w3.0rg/2001/
XMLSchema', a qualified name (QName) "xsd:language” would thus have a value which is the
tuple{"http://www.w3.0rg/2001L/XML Schema, "language"} and can be considered equal toaQName
"foo:language” if the prefix "foo" has been associated with "http://www.w3.0rg/2001/X ML Schema'"
or even "language" if "http://www.w3.0rg/2001/XMLSchema’ has been defined as the default
namespace.

There are two QName datatypes considered as equivaent for Relax NG:

» "QName" : thisis the "usual" QName datatype where the lexical space is the set of "colonized"
names consisting of a prefix and alocal names separated by a colon (":") and the value space isthe
set of tuples { namespace URI, local name} as explained above. Note that a prefix must be defined
through a namespace declaration in the scope of the location where it is used to be considered as
valid.

* "NOTATION" : for W3C XML Schema, a"NOTATION" is a QName declared as a notation in a
schemaW3C XML Schema. Since Relax NG has no equivalent syntax to declare notations, a Relax
NG processor treatsthe "NOTATION" as a synonym to "QName".

Binary string-encoded datatypes

XML 1.0isunableto hold binary content, which must be string-encoded before it can be included in
a XML document. W3C XML Schema has defined two primary datatypes to support two encodings,
one that are commonly used (base64) and one which is newer (hexBinary). These encodings may be
used to include any binary content, including text formats whose content may be incompatible with
the XML markup. Other binary text encodings may also be used (such as uuX X code, Quote Printable,
BinHex, aencode, or base85, to name afew), but their value would not be recognized by W3C XML
Schema.

» "hexBinary": This defines a simple way to code binary content as a character string by
translating the value of each binary octet into two hexadecimal digits. This encoding is
different from the encoding method called BinHex (introduced by Apple, described by RFC
1741, and includes a mechanism to compress repetitive characters). A UTF-8 XML header
such as: <?xml version="1.0" encoding="UTF-8"?> that is encoded as hexBinary would be:
"' 3f3c6d78206c657673726f693d6e3122302e20226€656f 6369646 766223054552d4622383€3f".

» "base64Binary": This matches the encoding known as "base64" and is
described in RFC 2045. It maps groups of 6 bits into an array of
64 printable characters. The same header encoded as base64Binary would be:
"PD94bWwgdmVyc2lvbj0iM SAwliBIbmNvZGluZz0iVVRGLTgiPz4NCg==". The W3C XML
Schema Recommendation missed the fact that RFC 2045 requests aline break every 76 characters.
This should be clarified in an errata. The consequence of these line breaks being thought of as
optional by W3C XML Schema, is that the lexical and value spaces of "base64Binary" cannot be
considered identical.

Numeric datatypes

The numeric datatypes are built on top of four primitive datatypes:. "decimal” for all the decimal types
(including the integer datatypes, considered decimals without a fractional part), "double”" and "float"
for single and double precision floats, and bool ean for Booleans.

79

Chapter 8: Datatype Libraries

Thefirst family of numeric datatypes is derived from the primitive type "decimal":

» "decimal": This datatype represents the decimal numbers. The number of digits can be arbitrarily
long (the datatype doesn't impose any restriction), but obviously, since a XML document has an
arbitrary but finite length, the number of digits of the lexical representation of a "decimal" value
needsto befinite. Although the number of digitsisnot limited, wewill seein the next section (facets)
how the author of a schema can derive user-defined datatypes with a limited number of digits if
needed. Leading and trailing zeros are not significant and may be trimmed. The decimal separator
isawaysadot ("."); aleading sign ("+" or -) may be specified and any characters other than the
10 digits (including whitespaces) are forbidden. Allowed values for decimal include "123.456",
"+1234.456", "-.456" or "-456".

* i nt eger :Thisinteger datatype is a subset of "decimal", representing numbers which don't have
any fractional digitsinitslexical or value spaces. The charactersthat are accepted are reduced to 10
digitsand an optional leading sign. Likeits base datatype, i nt eger doesn't impose any limitation
on the number of digits, and leading zeros are not significant. Note that the decimal separator is
forbidden even if the decimal humbers are omitted or zeros.

» "nonPositivelnteger": The W3C has thought that negative statements would be clearer for
developers here and "nonPositivelnteger” are the i nt eger which are negative or null (because
zero is neither positive for negative).

* "negativelnteger": i nt eger which are strictly negative.
» "nonNegativelnteger": positive or null i nt eger .
» "positivelnteger": strictly positivei nt eger .

» "long": integer between -9223372036854775808 and 9223372036854775807, i.e., the values that
can be stored in a 64-bit word.

» "int": integer between -2147483648 and 2147483647 (32 hits).
 "short": integer between -32768 and 32767 (16 bits).
» "byte": integer between -128 and 127 (8 hits).

 "unsignedLong": unsigned integers between 0 and 18446744073709551615, i.e., the values that
can be stored in a 64-bit word.

» "unsignedint": unsigned integers between 0 and 4294967295 (32 hits).
 "unsignedShort": unsigned integers between 0 and 65535 (16 hits).
* "unsignedByte": unsigned integers between 0 and 255 (8 hits).

The second family is made of the "float" and "double" datatypes which represent |IEEE simple (32
bits) and double (64 bits) precision floating-point types. These store the valuesin the form of mantissa
and an exponent of a power of 2 (m x 2e), allowing alarge scale of humbers in a storage that has a
fixed length. Fortunately, the lexical space doesn't require that we use powers of 2 (in fact, it doesn't
accept powers of 2), but instead lets us use atraditional scientific notation with integer powers of 10.
Since the value spaces (powers of 2) don't exactly match the values from the lexical space (powers of
10), the recommendation specifiesthat the closest valueistaken. The consequence of this approximate
matching is that float datatypes are the domain of approximation; most of the float values can't be
considered exact, and are approximate.

These datatypes accept severa "special" values. positive zero (0), negative zero (-0) (which is less
than positive 0 but greater than any negative value), infinity (INF) (which is greater than any value),
negative infinity (-INF) (which islessthan any float, and "not a number" (NaN).

80

Chapter 8: Datatype Libraries

The last member isbool ean, a primitive datatype that can take the valuest r ue and f al se (or 1
and 0 considered as equivalent).

Date and time formats

This is probably the most controversial piece of W3C XML Schema datatypes. In order to meet the
requirements of the "dates on the web", the W3C XML Schema Working Group has attempted to
define a value space for a subset of the 1SO 8601 date formats which is a syntactical specification of
how dates should be exchanged on the web.

Theresultisoverly complex and yet fail sto satisfy the experts of date and time representations, doesn't
support any other calendar system than Gregorian and has no support for localization.

One of the most fuzzy aspects of these datatypes is that many of them (such as "dateTime" which
well introduce in amoment) accept both values with and without timezones introducing for the same
datatypes two classes of values which can be compared only partialy.

Let's take a closer look to this important distinction before we present the detail of these datatypes...
Two "dateTime" with atimezone can be compared without any hesitation. W3C XML Schema states
that a "dateTime" without a timezone has an undetermined timezone but that you can still compare
two such "dateTime". Things get fuzzy when you want to compare a"dateTime" with atimezone and
a"dateTime" without: all you know about the "dateTime" without having an undetermined timezone
isthat in can be in an interval from 14 hours before UTC to 14 hours after UTC and you can never
conclude that the two "dateTime" are equal and can only say that one is before the other when they
are different enough.

Why 14 hours? No, that's not a typo! National regulations have some level of flexibility with the
timezones used in their countries and can vary from their geographical timezone. This variation
does even often change with the date in the year with many countries having winter and summer
times. As a result of that, the worse case when the W3C has published the W3C XML Schema
recommendation was not between -12 and +12 hours from UTC but between -13 and +12 hours. And
since the W3C doesn't expect that national authorities would ask them the permission if they wanted
to enlarge this interval, they have taken a security margin and written this -14/+14 hours interval in
their recommendation.

Since fuzziness isn't what computers like best, it's probably a very good practice to use exclusively
"dateTime" with timezones!

All that being said, the date, time and related datatypes defined by W3C XML Schema are:

» "dateTime": This datatype is defined as representing a "specific instant of time." This is a subset
of what SO 8601 calls a "moment of time." Its lexical value follows the format "CCYY-MM-
DDThh:mm:ss," in which all the fields must be present and may optionally be preceded by a sign
and leading figures, if needed, and followed by fractional digits for the seconds and a time zone.
The time zone may be specified using the letter "Z," which identifies UTC, or by the difference of
timewith UTC. Aswe've seen, avalue such as"2001-10-26T21:32:52" which are defined without a
timezone can't be compared to "2001-10-26T21:32:52+02:00" or "2001-10-26T19:32:52Z" which
have a timezone and the two latest values are considered as equal since they identify the same
moment.

» "date": This datatype has the same lexical space than the date part of "dateTime" with an optional
timezone and isrepresenting aperiod one day in itstime zone, "independent of how many hoursthis
day has." The consequence of this definition isthat two dates defined in a different time zone cannot
be equal except if they designate the same interval (2001-10-26+12:00 and 2001-10-25-12:00, for
instance). Another consequenceisthat, likewith "dateTime", the order relation between a date with
atime zone and a date without atime zoneis partial.

« "gYearMonth": ("g" for Gregorian) is a Gregorian calendar month ie a period of one calendar
month in its timezone and its format is the format of "date" without the day part: "2001-10",
"2001-10+02:00" or "2001-10Z" for instance.

81

Chapter 8: Datatype Libraries

"gYear" isaGregorian calendar year, ieaperiod of onecalendar year initstimezoneanditsformatis
the format of "gY earMonth" without its month part: "2001", "2001+02:00" or "2001Z" for instance
(note that these three values identify three different periods and are not considered equal).

"time": The lexica space of "time" is identical to the time part of "dateTime". The semantic of
"time" represents a point in time that recurs every day; the meaning of "01:20:15" is "the point in
time recurring each day at 01:20:15 am." Like "date" and "dateTime", "time" accepts an optional
time zone definition. The same issue arises when comparing times with and without time zones
such as21:32:52", "21:32:52+02:00" and "19:32:52Z7".

"gDay": The lexical space of "gDay" is "---DD" with an optiona time zone specification and it
representsarecurring period of oneday in the specified time zone occurring each Gregorian calendar
month. "---01" represents for instance the first day of each month with an undetermined timezone.
Dates are pinned down depending of the number of days of each month and in February for instance,
"--31Z" would occur on February 28th (or 29th for leap years).

"gMonthDay" : The lexical space of "gMonthDay" is "--MM-DD" with an optional time zone
specification and it represents a recurring period of one day in the specified time zone occurring
each Gregorian calendar year. The Christmas day in UK would, for instance, be "--12-257".

"gMonth": Thelexical space of "gMonth" should have been "--MM" with an optional timezone, but
atypo in the W3C XML Schema recommendation as specified it as "--MM--" which you can still
find in some tools even though an erratum has fixed it back to "--MM" and it represents arecurring
period of a calendar month in its timezone. The months of January in Paris would for instance be
represented as "--01+01:00".

"duration": Thelexical space of "duration” is"PnY nMnDTnHNMnS", each part (except the leading
"P") being optional and a significant amount of complexity comes from the fact that you can mix
quantities expressed as months (which have a variable number of days) with quantities expressed
asdayssuch asfor instance"P1Y 2M8DT123S" which means aduration of 1 year, 2 months, 8 days
and 123 seconds. We will not enter into the detail of the algorithms here, but this leads to a partial
order relation between durations which do not facilitate the facets and processing of these datatypes
when they use all the parts together.

Examples

After that long and dense enumeration of types, let's see how we could add W3C XML Schema
datatypesin our first schema... The most natural choices seem to be:

id attributes: the semantic of the | D datatypeisn't captured when it isused with Relax NG, wewon't
useitin our schemasinceit would be mideading and wewill use"NMTOKEN" for theid attributes.

xml:lang: the natural candidate for xml:lang is "language".
available: we can use abool ean for this attribute.

born and died: "date" seem the right choice since we have been lucky enough to have 1SO 8601
dates in our instance documents.

other text content elements: we have no reason here to preserve whitespaces in these el ements and
will uset oken datatypesfor all of them.

Our first schema could thus be rewritten (note the declaration of the datatype library) as.

<el enent xm ns="http://relaxng.org/ ns/structure/1.0" nanme="library"
dat at ypeLi brary="htt p: //ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >
<oneOr Mor e>
<el ement nane="book" >
<attribute name="id">

82

Chapter 8: Datatype Libraries

<data type="NMIOKEN'/ >
</attribute>
<attri bute nane="avail abl e">
<data type="bool ean"/ >
</attribute>
<el enent nane="isbn">
<data type="NMIOKEN'/ >
</ el enent >
<el enment nane="title">
<attribute name="xmnl :1ang">
<data type="I| anguage"/>
</attribute>
<data type="token"/>
</ el enent >
<zer oOr Mor e>
<el enment nane="aut hor">
<attri bute nane="id">
<data type="NMIOKEN'/ >
</attribute>
<el enent nane="nane" >
<data type="token"/>
</ el enent >
<el enent nane="born">
<data type="date"/>
</ el enent >
<opti onal >
<el enent nane="di ed" >
<data type="date"/>
</ el enent >
</ opti onal >
</ el enent >
</ zer oOr Nor e>
<zer oOr Mor e>
<el enment nane="character">
<attri bute nane="id">
<data type="NMIOKEN'/ >
</attribute>
<el enent nane="nane" >
<data type="token"/>
</ el enent >
<el enment nane="born" >
<data type="date"/>
</ el enent >
<el enent nanme="qualification">
<data type="token"/>
</ el enent >
</ el enent >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >

or:

element library {
el ement book {

83

Chapter 8: Datatype Libraries

attribute id {xsd: NMTOKEN}
attribute avail abl e {xsd: bool ean},
el ement isbn {xsd: NMTOKEN}
element title {attribute xm :lang {xsd:|anguage}, xsd:token},
el ement aut hor {
attribute id {xsd: NMTOKEN}
el ement nanme {xsd:token},
el ement born {xsd: date},
el ement di ed {xsd:date}?}*,
el ement character ({
attribute id {xsd: NMTOKEN}
el ement nanme {xsd:token},
el ement born {xsd: date},
el ement qualification {xsd:token}}*
} o+
}

Note that the W3C XML Schema datatype library has a special privilege to have its prefix built in to
the compact syntax: | have used the "xsd" prefix without needing to declare any datatype library! We
will see later on that thisisn't the case for the DTD compatibility type library.

We have noticed in the previous chapter that the datatypes declarationsare kind of transienttoadat a
pattern and are not inherited by its child patterns. Let's illustrate this now that we have a richer set
of datatypes at hand.

In the schema which we've just written, we have defined the avai | abl e attribute as abool ean
but in our instance documents, we have only used one of the two syntaxes for a boolean (t r ue or
f al se) and not used the other equivalent one (0 or 1). We may want to exclude this second syntax
for boolean (for instance if our applications haven't been designed to support it). In this case, we can
just exclude these two values:

<attri bute nane="avail abl e">
<data type="bool ean">
<except >
<val ue>0</ val ue>
<val ue>1</val ue>
</ except >
</ dat a>
</attribute>

or:

attribute avail able {xsd: boolean - ("0"|"1")}

Seems rather natural, but why is this working? When you think about it, it's working because Relax
NG forgetsthat the type of the attributeisbool ean as soon as we've |eft the dat a pattern and does
use the default type (Relax NG builtint oken type) to test that the value is neither O nor 1. If Relax
NG did not forget the type of the attribute, the schema would have removed the entire lexical space
of bool ean and would have been impossible to meet since 0 and f al se are equivalent (and 1 and
t r ue too).

We have seen asituation wherewerely on thefact that thetypesusedinthedat a andval ue patterns
are different. There are also situations where we would like them to be the same and, then, we need
to repeat the type attribute. If our applications are designed to accept both formats for the available

84

Chapter 8: Datatype Libraries

attributes and if we need to test that the books are available, we would prefer to use the same type for
both patterns and in this case we can write:

<attribute name="avail abl e">
<data type="bool ean">
<except >
<val ue type="hool ean" >f al se</val ue>
</ except >
</ dat a>
</attribute>

or
attribute avail abl e {xsd: bool ean - (xsd: bool ean "fal se")},

Wenow rely onthedatatypebool ean to excludeboth 0 andf al se which areequivalent. Of course,
in the case of booleans, the number of possible values is limited and we could have simplified our
schemato:

<attribute name="avail abl e">
<val ue type="bool ean">true</val ue>
</attribute>

or
attribute avail abl e {xsd: bool ean "true"}

but this wouldn't have made the point | wanted to make which isalso valid for other datatypes!

The facets

Therestrictionsthat auser can apply on a predefined W3C XML Schemadatatypes, known as "facets"
in the W3C XML Schema recommendation can be applied in a Relax NG schema through a pattern
named par amdirectly included within dat a patterns before the optional except pattern which we
already know. These par ampatterns have a name attribute which is the name of the facet and their
text content is the value of the facet. When several par ampatterns are included, all the constraints
must be matched (in other words, the result is a logical "and" of al the conditions) and a same facet
can't be repeated twice except for the facet named pat t er n.

Yes | know, this is confusing but the vocabularies used by Relax NG and W3C XML Schema are
different. What Relax NG calls par amis called "facet" by W3C XML Schema and what's called
apattern by Relax NG should not be confused with the facet named pat t er n by W3C XML
Schema... Also note that we have seen previoudly that what Relax NG calls whitespace normalization
is not the same than whitespace processing applied on the W3C XML Schema "normalizedSpace"
datatype.

The different facets defined by W3C XML Schema are:
» "whiteSpace": this somewhat controversial facet cannot be used in Relax NG.

e "enumeration": this facet cannot be used in Relax NG since equivalent to Relax NG own
enumerations which should be used instead.

85

Chapter 8: Datatype Libraries

e pattern: thisisthe only facet working in the lexical space, all the other facets working in the
value space only. This facet checks if the data matches aregular expression. This facet is covered
in the next chapter "Chapter 9: W3C XML Schema Regular Expressions’. For the moment, let's
just say that it is a superset of Perl regular expressions (anchored to the beginning and the end of
the values to match) and that it does not support the POSIX style character classes defined in Perl,
includes a few XML goodies, supports all the Unicode classes and blocks and defines a special
construct to define "differences" between character classes.

» "length": this facet is available only for string, binary and list datatypes. For string (and string
like) type, this defines the number of Unicode characters, for binary (i.e. "hexBinary" and
"base64Binary") datatypes it defines a number of bytes and for list datatypes ("entities’, "idrefs"
and "NMTOKENS") it defines the number of tokensin thelist.

» "maxLength": same meaning and restrictions than "length" but defines a maximum length.
* "minLength": same meaning and restrictions than "length" but defines a minimum length.

» "maxExclusive": applies only to decimal, integer (and derived), float and double and &l the date
time and duration datatypes and defines a maximum value that cannot be reached. Note that, for
date times and duration datatypes, the relation of order between two values is partial and that the
result cannot always be determined.

* "minExclusive': same restriction than "maxExclusive" and defines a minimum value that cannot
be reached.

* "maxinclusive": same restriction than "maxExclusive" and defines a maximum value that can be
reached.

* "mininclusive": same restriction than "maxExclusive" and defines a minimum value that can be
reached.

 "totalDigits": appliesto decimal, integer and derived typesto define the maximum number of digits
(after and before the decimal point). As all the facets (except pat t er n) this facet works on the
value space, and "000001.10000000" for instance would be considered as only having 2 digits.

» "fractionDigits": applies to decimal to define the maximum number of fractional digits (i.e. after
and the decimal point). Asall the facets (except pat t er n) thisfacet works on the value space, and
"000001.10000000" for instance would be considered as only having 1 fractiona digit.

Again, after this enumeration of facets, let's see how we could use some of our new knowledge to
improve the schema of our library:

» xml:lang: we might want to ignore the regional differences and accept only two character codes
using the "length" facet.

* ishn: there would be much more to check on isbn number but we may want to useapatternto
check that it's composed of 9 digitsterminated by a character which iseither adigit or the character
X.

 born and died: assuming that our library isonly interested in recent books we could check that they
belong to the twentieth or twenty-first centuries (in other words between 1900 and 2099). We might
also want to check that our dates do not specify a timezone since we've seen that comparing dates
with and without timezone is fuzzy and that the instance documents which we've seen up to now
have no timezones.

« and the maximum length of the other text data could be constrained using a "maxLength" facet.

The corresponding schemawould be;

<el ement xm ns="http://relaxng. org/ns/structure/1.0"
name="11i brary" datatypeLi brary="http://ww. w3. org/ 2001/ XM_Schema- dat at ypes" >
<oneOr Mor e>

86

Chapter 8: Datatype Libraries

<el enent nanme="book" >
<attribute name="id">
<data type="NMIOKEN' >
<par am nanme="nmaxLengt h" >16</ par an>
</ dat a>
</attribute>
<attribute name="avail abl e">
<data type="bool ean"/ >
</attribute>
<el enent nane="isbn">
<data type="NMIOKEN' >
<par am nanme="pattern">[0- 9] {9}[0- 9x] </ par anp
</ dat a>
</ el ement >
<el enent name="title">
<attribute name="xmnl :1ang">
<data type="I| anguage" >
<par am nanme="1| engt h" >2</ par an
</ dat a>
</attribute>
<data type="token">
<par am nanme="maxLengt h" >255</ par anp
</ dat a>
</ el ement >
<zer oO Mor e>
<el enent name="aut hor" >
<attribute name="id">
<data type="NMIOKEN' >
<par am nanme="maxLengt h" >16</ par an>
</ dat a>
</attribute>
<el enent nane="nane">
<data type="token">
<par am nanme="maxLengt h" >255</ par anp
</ dat a>
</ el ement >
<el enent nane="born">
<data type="date">
<par am nane="m nl ncl usi ve">1900- 01- 01</ par an®
<par am nane="max| ncl usi ve">2099- 12- 31</ par anp
<param nane="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</paranr
</ dat a>
</ el ement >
<opti onal >
<el enent nane="di ed">
<data type="date">
<par am nane="m nl ncl usi ve">1900- 01- 01</ par an®
<par am nane="max| ncl usi ve" >2099- 12- 31</ par an®
<param nane="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</paran
</ dat a>
</ el ement >
</ opti onal >
</ el ement >
</ zer oOr Mor e>
<zer oO Mor e>
<el enent nanme="character">
<attribute name="id">
<data type="NMIOKEN' >

87

Chapter 8: Datatype Libraries

<par am nanme="maxLengt h" >16</ par an>
</ dat a>

</attribute>

<el ement nane="nane" >
<data type="token">
<par am nanme="maxLengt h" >255</ par anp
</ dat a>

</ el ement >

<el ement nane="born">
<data type="date">
<par am nane="m nl ncl usi ve">1900- 01- 01</ par an®
<par am nane="max| ncl usi ve" >2099- 12- 31</ par an®
<param nane="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</paranr
</ dat a>

</ el ement >

<el enent nanme="qualification">
<data type="token">
<par am nanme="maxLengt h" >255</ par anp
</ dat a>

</ el ement >

</ el ement >

</ zer oOr Mor e>
</ el ement >
</ oneOr Mor e>
</ el ement >

or:

element library {
el ement book {
attribute id {xsd: NMTOKEN {maxLength = "16"}},
attribute avail abl e {xsd: bool ean "true"},
el ement isbn {xsd: NMTOKEN {pattern = "[0-9]{9}[0-9x]"}},
element title {
attribute xm:lang {xsd:|anguage {length="2"}},
xsd: t oken {maxLengt h="255"}
}
el ement aut hor {
attribute id {xsd: NMTOKEN {maxLength = "16"}},
el ement name {xsd:token {nmaxLength = "255"}},
el ement born {xsd:date {
m nl ncl usi ve = "1900-01-01"
max| ncl usi ve = "2099-12- 31"
pattern = "[0-9]{4}-[0-9]1{2}-[0-9]{2}"
s
el enent died {xsd:date {
m nl ncl usi ve = "1900-01-01"
max| ncl usi ve = "2099-12- 31"
pattern = "[0-9]{4}-[0-9]1{2}-[0-9]{2}"
17
el ement character ({
attribute id {xsd: NMTOKEN {maxLength = "16"}},
el ement name {xsd:token {nmaxLength = "255"}},
el ement born {xsd:date {
m nl ncl usi ve = "1900-01-01"
max| ncl usi ve = "2099-12- 31"

88

Chapter 8: Datatype Libraries

pattern = "[0-9]{4}-[0-9]1{2}-[0-9]{2}"
s
el ement qualification {xsd:token {maxLength = "255"}}}*
} o+
}

Note the usage of the regular expressions in the pat t er n facets. The set of facets of W3C XML
Schemaisn't extremely rich and the pat t er n facet acts as a Swiss army knife helping you to do all
the tricky tasks that other facets can't do!

Also note that facets are restrictions which are added to the restrictions of the lexical space and that
you cannot extend the lexical space of a datatype.

DTD Compatibility

DTD Compatibility isboth alibrary which checksthelexical spacesof its| D, "IDREF" and"IRDEFS"
datatypes and a feature, i.e. arestriction added to the normal Relax NG processing, which enforces
DTDlike rules on the schema and on the instance document. This package is designed to facilitate the
transition from DTDsto Relax NG by emulating the attribute types| D, "IDREF" and "IDREFS'. The
DTD compatibility feature checksthat | Dvalues are unique within adocument and that "IDREF" and
"IDREFS" are references or whitespace separated lists of referencesto | D values actually defined in
the document. It also checks rules on the schemaitself such as the fact that these datatypes are used
only in attributes. Unlike their W3C XML Schema counterpart, these datatypes have no facets.

That's pretty much all we have to know about this library and we can use it straight away to define
thei d attributesin our library:

<el enent xm ns="http://relaxng.org/ ns/structure/1.0" nane="library" datatypeLi!
<oneOr Mor e>
<el ement nane="book" >
<attribute name="id">
<dat a dat atypeLi brary="http://rel axng. org/ ns/conpatibility/datatypes/1.0" f
</attribute>
<attribute nanme="avail abl e">
<data type="bool ean"/ >
</attribute>
<el ement nane="isbn">
<data type="NMIOKEN' >
<par am nane="pattern">[0-9]{9}[0- 9x] </ par an®
</ dat a>
</ el emrent >
<el ement nane="title">
<attribute name="xnl:I|ang">
<data type="I| anguage" >
<par am nane="1| engt h" >2</ par an®
</ dat a>
</attribute>
<data type="token">
<par am nane="nmaxLengt h" >255</ par an®
</ dat a>
</ el emrent >
<zer oOr Mor e>
<el ement nanme="aut hor">
<attribute name="id">
<dat a dat atypeLi brary="http://rel axng. org/ ns/conpatibility/datatypes/1.0
</attribute>

89

Chapter 8: Datatype Libraries

<el ement nane="nane" >
<data type="token">
<par am nanme="maxLengt h" >255</ par anp
</ dat a>
</ el ement >
<el ement nane="born">
<data type="date">
<par am nane="m nl ncl usi ve">1900- 01- 01</ par an®
<par am nane="max| ncl usi ve" >2099- 12- 31</ par anp
<param nane="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</paranr
</ dat a>
</ el ement >
<opti onal >
<el ement nane="di ed">
<data type="date">
<par am nane="m nl ncl usi ve">1900- 01- 01</ par an®
<par am nane="max| ncl usi ve" >2099- 12- 31</ par an®
<param nane="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</paranr
</ dat a>
</ el ement >
</ opti onal >
</ el ement >
</ zer oOr Mor e>
<zer oOr Mor e>
<el ement nane="character">
<attribute name="id">
<dat a dat at ypeLi brary="http://rel axng. org/ ns/conpatibility/datatypes/1.0
</attribute>
<el ement nane="nane" >
<data type="token">
<par am nanme="maxLengt h" >255</ par anp
</ dat a>
</ el ement >
<el ement nane="born">
<data type="date">
<par am nane="m nl ncl usi ve">1900- 01- 01</ par an®
<par am nane="max| ncl usi ve" >2099- 12- 31</ par an®
<param nane="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</paranr
</ dat a>
</ el ement >
<el enent nanme="qualification">
<data type="token">
<par am nanme="maxLengt h" >255</ par anp
</ dat a>
</ el ement >
</ el ement >
</ zer oOr Mor e>
</ el ement >
</ oneOr Mor e>
</ el ement >

or:

dat at ypes dtd="http://rel axng. org/ ns/conpatibility/datatypes/1.0"
element library {
el ement book {

90

Chapter 8: Datatype Libraries

}

attribute id {dtd: D},
attribute avail abl e {xsd: bool ean "true"},
el ement isbn {xsd: NMTOKEN {pattern = "[0-9]{9}[0-9x]"}},
element title {
attribute xm:lang {xsd:|anguage {length="2"}},
xsd: t oken {maxLengt h="255"}
}
el ement aut hor {
attribute id {dtd: D},
el ement name {xsd:token {nmaxLength = "255"}},
el ement born {xsd:date {
m nl ncl usi ve = "1900-01-01"
max| ncl usi ve = "2099-12- 31"
pattern = "[0-9]{4}-[0-9]1{2}-[0-9]{2}"
s
el enent died {xsd:date {
m nl ncl usi ve = "1900-01-01"
max| ncl usi ve = "2099-12- 31"
pattern = "[0-9]{4}-[0-9]1{2}-[0-9]{2}"
17
el ement character ({
attribute id {dtd: D},
el ement name {xsd:token {nmaxLength = "255"}},
el ement born {xsd:date {
m nl ncl usi ve = "1900-01-01"
max| ncl usi ve = "2099-12- 31"
pattern = "[0-9]{4}-[0-9]1{2}-[0-9]{2}"
s

el ement qualification {xsd:token {maxLength = "255"}}}*

} o+

As dready mentioned, the DTD compatibility feature has been designed to provide compatibility
with the features of the DTD and that includes emulating some of their restrictions. We have aready
mentioned the fact that these datatypes can only be used in attributes, not in elements and we need to
mention another limitation which can be more insidious and have bitten renowned experts trying to
do things such as write Relax NG schemas for XHTML.

This rule might be called the "consistent attribute definition rule": since a DTD won't allow you to
give two different definition of the content of an element, Relax NG does enforce the fact that if an
attribute i d isdefined as | D, "IDREF" or "IDREFS' in an element bar somewhere in a Relax NG
schema, all the definitions of the same attribute under the same element must use the same type.

The simplest schemas which don't meet that and thus are not correct with respect to the DTD
compatibility feature are schemas containing multiple declarations of the same element and attribute
with different types, such asin:

<?xm version="1.0" encodi ng="UTF-8"7?>
<el enent name="foo" xm ns="http://rel axng.org/ ns/structure/1.0"

dat at ypeLi brary="http://rel axng. org/ ns/conpatibility/datatypes/1.0">
<el emrent nane="bar">

<attribute nanme="id">

<data type="I1D"/>

</attribute>
</ el enent >
<zer oOr Mor e>

<el emrent nane="bar">

91

Chapter 8: Datatype Libraries

<attri bute nane="id">
<data type="token" datatypelLibrary=""/>
</attribute>
</ el enent >
</ zer oOr Nor e>
</ el enent >

or:

dat at ypes dtd="http://rel axng. org/ ns/conpatibility/datatypes/1.0"

el enrent foo {
el enent bar {
attribute id { dtd:ID}
}l
el enent bar {
attribute id { token }

} *

Here, we have two definitions of bar with i d attributes having competing types and, since one of
these typesisadtd:ID type, thisis forbidden.

A tougher to detect and tougher to fix situation is when one of these competing definitions involves
patterns allowing name classes to allow the inclusion of any elements such as we will seein "Chapter
12: Writing Extensible Schemas”. Therestriction appliesevenin this case and the situation can become
really nasty.

Which library should we use?

All the Relax NG implementations must support the native datatype library and many of them also
support the DTD compatibility datatypes library and the W3C XML Schema datatypes library. That
meansthat if wewant to defineat oken or "string" datatype wewill often have the choice between the
nativelibrary and W3C XML Schemadatatypesand if we are defining | D, "IDREF" or "IDREFS" we
will often have the choice between the DTD compatibility library and W3C XML Schema datatypes.

That makes a lot of choices to do and in this section welll try to give some general rules to do your
choice.

Native types versus W3C XML Schema datatypes

The criteria to choose between native or W3C XML Schema datatypesto define "string” and t oken
typesissimple: if you need facets then use W3C XML Schema datatypes. If not use native datatypes:
your schemawill be more portable since the Relax NG processors are not obliged to support the W3C
XML Schematypelibrary.

DTD versus W3C XML Schema datatypes

When you need to define a datatype covered by both DTD and W3C XML Schema, i.e. | D, "IDREF"
or "IDREFS', the same rule of thumb can be followed: if you are using the DTD compatibility library
your schema should be slightly more portable but you will loose the facets.

92

Chapter 8: Datatype Libraries

The other factor to take into account is that the rules applied if you are using the DTD compatibility
feature are strict and consistent over different implementations while if you are using the W3C XML
Schematype library, a processor should apply these samerulesif and only if it also supportsthe DTD
datatype library: processors which only support W3C XML Schema datatypes are only supposed to
check the lexical space of these datatypes.

In practice, that means that you can use | D, "IDREF" or "IDREFS" datatypes from the W3C XML
Schema library but then it is safer to debug your schema using and implementation supporting both
the DTD and the W3C XML Schematype libraries.

If you design a Relax NG schema using W3C XML Schemas| D, "IDREF" and "IDREFS" and test
it with an implementation which supports only W3C XML Schema datatypes you will have a laxed
control over both the instance documents and the schema --the rules of the DTD compatibility will not
be enforced. When you will use the same schema and instance documents with aRelax NG processor
supporting both the DTD and W3C XML Schema datatypes you will then get a stricter control; the
instance documents and even the schema which were previously valid may suddenly become invalid
or incorrect because of this stricter control.

A simple example of schema which is correct for Relax NG implementations supporting W3C
XML Schema datatypes without supporting the DTD compatibility layer but doesn't meet the DTD
compatibility featurefor Relax NG implementations supporting bothisaschemadefining | D elements:

<?xm version="1.0" encodi ng="UTF-8"7?>
<el enent name="foo" xm ns="http://rel axng.org/ ns/structure/1.0"
dat at ypeLi brary="htt p: //ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >
<zer oOr Mor e>
<el enent nanme="bar" >
<el enent name="id">
<data type="I1D"/>
</ el emrent >
</ el emrent >
</ zer oOr Mor e>
</ el emrent >

or:

el ement foo {
el enent bar {
elenent id { xsd:ID}
} *
}

Other exampl esinclude schemaswhich are not respecting therule by which the definitions of attributes
holding these datatypes must be consistent over the schema.

The reason for this behavior is that although | have often been speaking of "DTD compatibility
datatype library" for clarity all over this chapter, DTD compatibility is more than a datatype library.
Per the Relax NG formal specification, adatatype library must be decoupled from the validation of the
structure of the document and the context passed to the datatype library is restricted to the namespace
declarations available under the node being validated. This context itself is an exception required to
process qualified names. The datatype library has thus not enough information to do the tests requires
to support the DTD compatibility: it doesn't even know if the data to validate has been found in an
element or an attribute. This part of the DTD compatibility is thus afeature and not a datatype library
as defined per Relax NG.

When we use a datatype from the datatype library "http://relaxng.org/ns/compatibility/datatypes/1.0"
we are then doing two different things:

93

Chapter 8: Datatype Libraries

 use adatatype library which will restrict the lexical space of our dat a and val ue patterns

* trigger afeature requesting to vaidate that the | D are unique, and that the"IDREF" and "IDREFS"
arereferring to ids and lists of ids.

AppliedtotheW3C XML Schemadatatypelibrary, thistranslates as: trigger the D DTD compatibility
feature when available if these datatypes are used.

94

Chapter 10. Using Regular
Expressions to Specify Simple
Datatypes

Among the different facets avail able to restrict the lexical space of simple datatypes, the most flexible
(and also the one that we will often use as a last resort when all the other facets are unable to express
the restriction on a user-defined datatype) is based on regular expressions.

Note

Thereisaterminology clash between Relax NG's patterns and the " pattern” facet of W3C
XML Schema. To limit the risk of confusion we will refer to the facet as the "pattern
facet" or "regular expression”.

The Swiss Army Knife

The pattern facet (and regular expressions in generd) is like a Swiss army knife when constraining
simple datatypes. It is highly flexible, can compensate for many of the limitations of the other facets,
and are often used to define user datatypes on various formats such as ISBN numbers, telephone
numbers, or custom date formats. However, like a Swiss army knife, it has its own limitation.

Cutting atree with a Swissarmy knifeislong, tiring, and dangerous. Writing regular expressions may
also become long, tiring, and dangerous when the number of combinations grows. One should try to
keep them as simple as possible.

A Swissarmy knife cannot change lead into gold, and no facet can change the primary type of asimple
datatype. A string datatype restricted to match a custom date format will still retain the properties of
astring and will never acquire the facets of a datetime datatype. This means that there is no effective
way to express |localized date formats.

The Simplest Possible Pattern facets

In their simplest form, pattern facets may be used as enumerations applied to the lexical space rather
than on the value space.

If, for instance, we have a byte value that can only take the values"1," "5," or "15," the classical way
to define such adatatype is to use the Relax NG's choi ce pattern:

<choi ce>
<val ue type="hyte">1</val ue>
<val ue type="hyte">5</val ue>
<val ue type="byte">15</val ue>
</ choi ce>

or:

el emrent foo {

xsd: byte "1"
| xsd:byte "5"
| xsd:byte "15"

95

Using Regular Expressions
to Specify Simple Datatypes

}

Thisisthe "normal" way of defining this datatype if it matches the lexical space and the value space
of an xsd: byt e. It gives the flexibility to accept the instance documents with values such as "1,"
"5," and "15," but also "01" or "0000005."

Asfar asvalidation only is concerned, if we wanted to remove the variations with leading zeros, we
could just use another datatype such ast oken instead of xsd: byt e inour choi ce pattern:

<choi ce>
<val ue type="t oken">1</val ue>
<val ue type="t oken">5</val ue>
<val ue type="t oken">15</val ue>
</ choi ce>

or:

xsd: t oken "1"
| xsd:token "5"
| xsd:token "15"

However, we might have good reasons to use axsd: byt e, for instance if we are interested in type
annotation and want that a Relax NG processor supporting type annotation reports the datatype as
xsd: byt e and not xsd: t oken.

One of the particul arities of the pattern facet isit must be the only facet constraining the lexical space.

If we have an application that is disturbed by leading zeros, we can use pattern facets instead of
enumerations to define our datatype:

<data type="byte">
<par am nane="pattern">1| 5| 15</ par an»
</ dat a>

or:

xsd: byte {pattern = "1|5| 15"}
Here, we are still using the xsd: byt e datatype with its semantic, but its lexical space is how

constrained to accept only "1, "5," and "15," leaving out any variation that has the same value but
adifferent lexical representation.

Tip

This is an important difference from Perl regular expressions, on which W3C XML
Schema pattern facets are built. A Perl expression such as/ 15/ matches any string
containing "15," whilethe W3C XML Schema pattern facet matchesonly the string equal
to "15." The Perl expression equivalent to this pattern facet isthus/ 2 15%/ .

This example has been carefully chosen to avoid using any of the meta characters used within pattern
facets, whichare: ".", "\", "2, "*" " v P (!,)", "M, and T We will see the meaning of these
characters later in this chapter; for the moment, we just need to know that each of these characters
needs to be "escaped" by aleading "\" to be used as aliteral. For instance, to define asimilar datatype
for adecimal when lexical spaceislimitedto "1" and "1.5," we write:

96

Using Regular Expressions
to Specify Simple Datatypes

<data type="deci mal ">
<par am nane="pattern">1| 1\. 5</ paranp
</ dat a>

Or:

xsd: deci mal {pattern = "1| 1\.5"}

A common source of errorsisthat "normal" characters should not be escaped: we will see later that a
leading "\" changes their meaning (for instance, "\P" matches all the Unicode punctuation characters
and not the character "P").

Quantifying

Despite an apparent similarity, the pattern facet interpretsitsvaluein avery different way thanval ue
does. val ue readsthe value asalexical representation, and convertsit to the corresponding value for
its base datatype, while pattern facet reads the value as a set of conditions to apply on lexical values.
When we write:

pattern="15"

we specify three conditions (first character equals "1," second character equals "5," and the string
must finish after this). Each of the matching conditions (such asfirst character equals 1" and second
character equals"5") is called apiece. Thisisjust the smplest form to specify piece.

Each piece in a pattern facet is composed of an atom identifying a character, or a set of characters,
and an optional quantifier. Characters (except special charactersthat must be escaped) are the simplest
form of atoms. In our example, we have omitted the quantifiers. Quantifiers may be defined using two
different syntaxes: either a specia character (* for O or more, + for one or more, and ? for O or 1)
or anumeric range within curly braces ({ n} for exactly ntimes, { n, n} for between n and m times,
or{n,} for nor moretimes).

Using these quantifiers, we can merge our three pattern facets into one:

<data type="bhyte">
<par am nane="pattern">1?5?</ par anp
</ dat a>

Or:

xsd: byte {pattern = "1?5?"}

This new pattern facet means there must be zero or one character ("1") followed by zero or one
character ("5"). This is not exactly the same meaning as our three previous pattern facets since the
empty string "" is now accepted by the pattern facet. However, since the empty string doesn't belong
to the lexical space of our base type (xsd: byt e), the new datatype has the same lexical space as
the previous one.

We could also use quantifiersto limit the number of leading zeros--for instance, the following pattern
facet limits the number of leading zerosto up to 2:

<data type="byte">
<par am nane="pattern">0{0, 2} 1?5?</ par an®
</ dat a>

97

Using Regular Expressions
to Specify Simple Datatypes

Or:

xsd: byte {pattern = "0{0, 2} 1?5?"}

More Atoms

By this point, we have seen the simplest atoms that can be used in a pattern facet; "1," "5," and "\."
are atomsthat exactly match a character. The other atoms that can be used in pattern facets are special
characters, awildcard that matches any character, or predefined and user-defined character classes.

Special Characters

Table 6-1 shows the list of atoms that match a single character, exactly like the characters we have
already seen, but also correspond to characters that must be escaped or (for the first three characters
on thelist) that are just provided for convenience.

Table 10.1. Special characters

\n New line (can also be written as"
-- since
we arein a XML document).
\r Carriage return (can also be written as "
--).

\t Tabulation (can also be written as " & #x09; --)

\\ Character "\"

\| Character "|"

\. Character "."

\- Character "-"

\n Character "M

\? Character "7

* Character "*"

\+ Character "+"

\ Character "{"

\} Character "}"

\(Character "("

\) Character ")"

\[Character "["

\] Character "]"

Wildcard

The character "." has a special meaning: it's a wildcard atom that matches any XML valid character
except newlines and carriage returns. Aswith any atom, "." may be followed by an optional quantifier
and ".*" is a common construct to match zero or more occurrences of any character. To illustrate the
usage of ".*" (and the fact that pattern facet is a Swiss army knife), a pattern facet may be used to
define the integers that are multiples of 10:

<define name="nmultipl ex> Ten" >
<data type="integer">

98

Using Regular Expressions

to Specify Simple Datatypes
<par am nanme="pattern">. *0</ paranp
</ dat a>
</ define>
Or:
mul ti pl e Ten = xsd:integer {pattern = ".*0"}

Character Classes

W3C XML Schemahas adopted the"classical" Perl and Unicode character classes (but not the POSI X -
style character classes also available in Perl).

Classical Perl character classes

W3C XML Schema supports the classical Perl character classes plus a couple of additions to
match XM L-specific productions. Each of these classes are designated by a single letter; the classes
designated by the upper- and lowercase versions of the same letter are complementary:

\'s Spaces. Matches the XML whitespaces (space #x20, tabulation #x09, line feed #x0A, and
carriage return #x0D).

\'S Charactersthat are not spaces.
\'d Digits("0" to"9" but also digitsin other alphabets).
\ D Charactersthat are not digits.

\'w Extended "word" characters (any Unicode character not defined as "punctuation", "separator,"”
and "other"). This conformsto the Perl definition, assuming UTF8 support has been switched on.

\' W Nonword characters.

\i XML 1.0initial name characters (i.e., al the "letters* plus "-"). Thisis a W3C XML Schema
extension over Perl regular expressions.

\'| Charactersthat may not be used asa XML initial name character.

\' ¢ XML 1.0 name characters (initial name characters, digits, ".", ":", "-", and the characters defined
by Unicode as"combining” or "extender"). ThisisaW3C XML Schemaextension to Perl regular
expressions.

\ C Charactersthat may not be used ina XML 1.0 name.

These character classes may be used with an optiona quantifier like any other atom. The last pattern
facet that we saw:

mul ti pl e Ten = xsd:integer {pattern = ".*0"}

constrains the lexical space to be a string of characters ending with a zero. Knowing that the base
type is a xsd: i nt eger, this is good enough for our purposes, but if the base type had been a
xsd: deci mal (or xsd: stri ng), we could be more restrictive and write:

mul ti pl e Ten = xsd:integer {pattern = "-?21d*0"}

This checks that the characters before the trailing zero are digits with an optional leading - (we will
see later on in Section 6.5.2.2 how to specify an optional leading - or +).

99

Using Regular Expressions
to Specify Simple Datatypes

Unicode character classes

Patterns support character classes matching both Unicode categories and blocks. Categories and
blocks are two complementary classification systems: categories classify the characters by their usage
independently to their localization (letters, uppercase, digit, punctuation, etc.), while blocks classify
charactersby their localization independently of their usage (L atin, Arabic, Hebrew, Tibetan, and even
Gothic or musical symbols).

The syntax \ p{ Nane} is similar for blocks and categories; the prefix | s is added to the name of
categoriesto makethedistinction. Thesyntax \ P{ Nane} isalso availableto select the charactersthat
do not match ablock or category. A list of Unicode blocks and categoriesis given in the specification.
Table 6-2 shows the Unicode character classes and Table 6-3 shows the Unicode character blocks.

Table 10.2. Unicode character classes

Unicode Character Class Includes

C Other characters (non-letters, non symbols, non-
numbers, non-separators)

Cc Control characters

Cf Format characters

Cn Unassigned code points

Co Private use characters

L Letters

LI Lowercase letters

Lm Modifier letters

Lo Other letters

Lt Titlecase |etters

Lu Uppercase letters

M All Marks

Mc Spacing combining marks

Me Enclosing marks

Mn Non-spacing marks

N Numbers

Nd Decimal digits

NI Number letters

No Other numbers

P Punctuation

Pc Connector punctuation

Pd Dashes

Pe Closing punctuation

Pf Final quotes (may behave like Ps or Pe)

Pi Initial quotes (may behave like Ps or Pe)

Po Other forms of punctuation

Ps Opening punctuation

S Symbols

Sc Currency symbols

Sk

Modifier symbols

100

Using Regular Expressions

to Specify Simple Datatypes
Unicode Character Class Includes
Sm Mathematical symbols
So Other symbols
Z Separators
Zl Line breaks
Zp Paragraph breaks
Zs Spaces

Table 10.3. Unicode char acter blocks

AlphabeticPresentationForms | Arabic ArabicPresentationForms-A
ArabicPresentationForms-B Armenian Arrows

BasicLatin Bengali BlockElements

Bopomofo BopomofoExtended BoxDrawing
BraillePatterns ByzantineM usical Symbols Cherokee

CJIKCompatibility

CJIK CompatibilityForms

CJIK Compatibilityldeographs

CJK Compeatibilityl deographsSupadi<igatli cal sSSupplement CJK Symbol sandPunctuation
CJKUnifiedldeographs CJKUnifiedldeographsExtensi on&JK Unifiedl deographsExtension
CombiningDiacriticalMarks CombiningHalfMarks CombiningMarksforSymbols
ControlPictures CurrencySymbols Cyrillic

Deseret Devanagari Dingbats
EnclosedAlphanumerics EnclosedCJK L ettersandMonths | Ethiopic

General Punctuation GeometricShapes Georgian

Gothic Greek GreekExtended

Gujarati Gurmukhi HalfwidthandFullwidthForms
Hangul CompatibilityJamo Hangul Jamo Hangul Syllables

Hebrew

HighPrivateUseSurrogates

HighSurrogates

Hiragana | deographicDescriptionCharacter$PA Extensions

Kanbun KangxiRadicals Kannada

Katakana Khmer Lao

L atin-1Supplement L atinExtended-A L atinExtendedAdditional
L atinExtended-B L etterlikeSymbols LowSurrogates
Malayalam M athematical Al phanumericSymbiel sthematical Operators
MiscellaneousSymbols MiscellaneousT echnical Mongolian

Musical Symbols Myanmar NumberForms

Ogham Olditalic Optical CharacterRecognition
Oriya PrivateUse PrivateUse

PrivateUse Runic Sinhala
SmallFormVariants SpacingModifierL etters Specials

Specials SuperscriptsandSubscripts Syriac

Tags Tamil Telugu

Thaana Thai Tibetan
UnifiedCanadianAborigina SyllabiRadicals YiSyllables

101

B

Using Regular Expressions
to Specify Simple Datatypes

We will see in the next section that W3C XML Schema has introduced an extension to Regular
Expressions to specify intersections and that this extension can be used to define the intersection
between a block and a category in asingle pattern facet.

Note

Although Unicode blocks seem to be agreat ideato restrict text to use a set of characters
which you know that you'll be able to print, display, read or store in a database, they
have not been designed for this purpose and one must be careful when using them. Here
iswhat John Cowan who is has always fascinated me by his knowledge of Unicode and
its more obscure al phabets writes about this topic:

The five Latin blocks mentioned by John are BasicLatin, Latin-1Supplement,
LatinExtended-A, LatinExtendedAdditional and LatinExtended-B.

User-defined character classes

These classes are lists of characters between square brackets that accept - signs to define ranges and
aleading " to negate the whole list--for instance:

[azertyuiop]

to define the list of letters on the first row of a French keyboard,
[a-2]

to specify al the characters between "a"' and "z",

["a-2]

for all the characters that are not between "a" and "z," but also
[-"M\]

to define the characters”-," "A," and "\," or

[-+]

to specify adecimal sign.

These exampl es are enough to see that what's between these square brackets follows a specific syntax
and semantic. Like the regular expression's main syntax, we have a list of atoms, but instead of
matching each atom against a character of the instance string, we define alogical space. Between the
atoms and the character class is the set of characters matching any of the atoms found between the
brackets.

We see also two special characters that have a different meaning depending on their location! The
character - , which is arange delimiter when it is between a and z, is a normal character when it is
just after the opening bracket or just before the closing bracket ([+-] and [- +] are, therefore, both
legal). On the contrary, ~, which is a negator when it appears at the beginning of a class, loses this
special meaning to become a normal character later in the class definition.

Note

Even though this is specified as valid by the W3C XML Schema recommendation, it is
not supported by all the regular expression engines used by Relax NG processors. The
current version of Jing (as | write these lines) do not support [+-] nor [- 4] anditis
wiser to escape the character - and writeeither [+\ -] or[\-+].

102

Using Regular Expressions
to Specify Simple Datatypes

Another frequent confusion is about the support of the escape format #xXX (such as
in #x2D. Because this format is used in the W3C XML Schema recommendation to
describe characters by their Unicode value, some people have thought that it could be
used in regular expressions which is not meant to be the case. If you want to define
characters by their Unicode values, you should instead use numeric entities (such as
- if you are using the XML syntax or the syntax for escaping characters in
the compact syntax \ x{ 2D} . Note that in both cases, this will be replaced by the
corresponding character at parse time and that the regular expression engine will seethe
actual character instead of the escape sequence.

We also notice that characters may or must be escaped: "\\" is used to match the character "\". In fact,
in a class definition, all the escape sequences that we have seen as atoms can be used. Even though
some of the special characters lose their special meaning inside square brackets, they can aways be
escaped. So, the following:

[-"M\]

can also be written as:

[V-\™M]

or as.

[V -]

since the location of the characters doesn't matter any longer when they are escaped.

Within square brackets, the character "\" also keeps its meaning of a reference to a Perl or Unicode
class. Thefollowing:

[Vd\ p{Lu}]
isaset of decimal digits (Perl class\ d) and uppercase letters (Unicode category "Lu").

Mathematicians have found that three basic operations are needed to manipulate sets and that these
operations can be chosen from alarger set of operations. In our square brackets, we already saw two of
these operations: union (the square bracket isan implicit union of itsatoms) and complement (aleading
A realizes the complement of the set defined in the square bracket). W3C XML Schema extended the
syntax of the Perl regular expressions to introduce a third operation: the difference between sets. The
syntax follows:

[setl-[set2]]

Itsmeaning is all the charactersin set 1 that do not belongto set 2, whereset 1 and set 2 can use
all the syntactic tricks that we have seen up to now.

This operator can be used to perform intersections of character classes (the intersection between two
sets A and B is the difference between A and the complement of B), and we can now define a class
fortheBasi cLatin Letters as

[\p{lsBasicLatin}-["\ p{L}]]
Or, using the\ P construct, which is also a complement, we can define the class as:
[\p{lsBasicLatin}-[\P{L}]]

The corresponding definition would be:

<defi ne nane="Basi cLati nLetters">

103

Using Regular Expressions
to Specify Simple Datatypes

<data type="token">
<param nane="pattern">[\p{lsBasicLatin}-[\P{L}]]*</paranp
</ dat a>
</ define>

Or:

Basi cLatinLetters = xsd:token {pattern = "[\p{lsBasicLatin}-[\P{L}]]*"}
Oring and Grouping

We have already used a"or" in our first example pattern facet when we have written "1|5|15" to say
that we wanted to allow either "1", "5" or "15".

These "ors" are especialy interesting when used in conjunction with groups. Groups are complete
regular expressions, which are, themselves, considered atoms and can be used with an optional
quantifier to form more complete (and complex) regular expressions. Groups are enclosed by brackets
("(" and ")"). To define a commarseparated list of "1," "5," or "15," ignoring whitespaces between
values and commas, the following pattern facet could be used:

<define name="nyLi st Of Byt es" >
<data type="token">
<param nane="pattern">(1| 5|15 (*, *(1|5|15))*</paranp
</ dat a>
</ defi ne>

Or:

nyLi st Of Bytes = xsd:token {pattern = "(1|5/15)(*, *(1|5|15))*"}

Note how we have relied on the whitespace processing of the base datatype (xsd: t oken collapses
the whitespaces). We have not tested leading and trailing whitespaces that are trimmed and we have
only tested single occurrences of spaces with the following atom:

run back " * " run back

before and after the comma.

Common Patterns

After thisoverview of the syntax used by pattern facets, let's see some common pattern facetsthat you
may have to use (or adapt) in your schemas or just consider as examples.

String Datatypes

Regular expressions treat information in its textual form. This makes them an excellent mechanism
for constraining strings.

Unicode blocks

Unicodeis a great asset of XML; however, there are few applications able to process and display all
the characters of the Unicode set correctly and still fewer users ableto read them! If you need to check
that your string datatypes belong to one (or more) Unicode blocks, you can use these pattern facets:

104

Using Regular Expressions
to Specify Simple Datatypes

<defi ne name="Basi cLati nToken">
<data type="token">
<par am nane="pattern">\p{l sBasi cLati n}*</paranp
</ dat a>
</ defi ne>

<defi ne nane="Latin-1Token">
<data type="token">
<param nane="pattern">[\p{lsBasi cLatin}\p{lsLatin-1Suppl enent}]*</paranp
</ dat a>
</ define>

Or:

Basi cLati nToken = xsd:token {pattern = "\p{lsBasicLatin}*"}

Lati n-1Token = xsd:token {pattern = "[\p{lsBasiclLatin}\p{lsLatin-1Supplenment}’

Note that such pattern facets do not impose a character encoding on the document itself and that, for
instance, the Lat i n- 1Token datatype would validate instance documents using UTF-8, UTF-16,
ISO-8869-1 or other encoding. (This assumes the characters used in this string belong to the two
UnicodeblocksBasi cLat i nandLat i n- 1Suppl enent .) In other words, working on the lexical
space, i.e., after the transformations have been done by the parser, these pattern facets do not control
the physical format of the instance documents.

Counting words

The pattern facet can be used to limit the number of words in a text. To do so, we will define an
atom, which is a sequence of one or more "word" characters (\ w+) followed by one or more nonword
characters (\ W+), and control the number of occurrences of this atom. If we are not very strict on the
punctuation, we also need to allow an arbitrary number of nonword characters at the beginning of our
value and to deal with the possibility of avalue ending with aword (without further separation). One
of the ways to avoid any ambiguity at the end of the string is to dissociate the last occurrence of a
word to make the trailing separator optional:

<define nanme="st ory100- 200wor ds" >
<data type="token">
<par am nane="pattern">\ W (\wt\ W) {99, 199} \ w+\ W </ par an®
</ dat a>
</ define>

Or:

st ory100- 200wor ds= xsd:token {pattern = "\ W (\ w+\ W) {99, 199} \ w+\ W "}
URIs

The xsd: anyURI datatype doesn't care about "absolutizing" relative URIs and in some cases it is
wise to impose the usage of absolute URIs, which are easier to process. Furthermore, it can aso be
interesting for some applicationsto limit the accepted URI schemes. This can easily be done by a set
of pattern facets such as:

<define name="httpURI ">
<data type="anyURl ">
<param nane="pattern">http://.*</paranp

105

Using Regular Expressions
to Specify Simple Datatypes

</ dat a>
</ defi ne>

Or:

htt pURI = xsd: anyURl {pattern = "http://.*"}

Numeric and Float Types

While numeric types aren't strictly text, pattern facets can still be used appropriately to constrain their
lexical form.

Leading zeros

Getting rid of leading zeros is quite smple but requires some precautions if we want to keep the
optional sign and the number "0" itself. This can be done using pattern facets such as:

<defi ne name="nolLeadi ngZer os" >
<data type="integer">
<param nane="pattern">[+-]1?(["0][0-9] *| 0) </ par an®
</ dat a>
</ defi ne>

Or:

noLeadi ngZer os= xsd:integer {pattern = "[+-]?([70][0-9]*|0)"}

Note that in this pattern facet, we chose to redefine all the lexical rules that apply to an integer.
This pattern facet would give the same lexical space applied to a xsd: t oken datatype as on a
xsd: i nt eger . We could also have relied on the knowledge of the base datatype and written:

<defi ne name="nolLeadi ngZer os" >
<data type="integer">
<param nanme="pattern">[+-]?(["0].*| 0) </ par an®
</ dat a>
</ define>

Or:

noLeadi ngZer os= xsd:integer {pattern = "[+]?(["0].*|0)"}

Relying on the base datatype in this manner can produce simpler pattern facets, but can also be more
difficult to interpret since we would have to combine the lexical rules of the base datatype to the rules
expressed by the pattern facet to understand the result.

Fixed format

The maximum number of digits can be fixed using xsd:totalDigits and
xsd: fracti onDi gits.However, these facets are only maximum numbers and work on the value
space. If we want to fix the format of the lexical space to be, for instance, "DDDD.DD", we can write
a pattern facet such as:

<define name="fixedDigits">

106

Using Regular Expressions
to Specify Simple Datatypes

<data type="deci mal ">
<param nanme="pattern">[+-]?\.{4}\..{2}</ paranr
</ dat a>
</ define>

Or:

fi xedDi gi ts= xsd: decimal {pattern = "[+-]?2\.{4}\..{2}"}

Datetimes

Dates and time have complex lexical representations. Patterns can give devel opers extra control over
how they are used.

Time zones

The time zone support of W3C XML Schema is quite controversial and needs some additional
constraintsto avoid comparison problems. These pattern facets can be kept relatively simple since the
syntax of the datetime is already checked by the schema validator and only simple additional checks
need to be added. Applications which require that their datetimes specify a time zone may use the
following template, which checks that the time part ends with a"Z" or contains a sign:

<define name="dat eTi neWt hTi nrezone" >
<data type="dateTi ne">
<param nane="pattern"> +T[*Z+-] +</ par anp
</ dat a>
</ defi ne>

or:

dat eTi meWt hTi mezone= xsd: dateTinme {pattern = ".+T["Z+-]+"}

Simpler, applications that want to make sure that none of their datetimes specify atime zone may just
check that the time part doesn't contain the characters "+", "-", or "Z":

<define name="dat eTi neW t hout Ti mrezone" >
<data type="dateTi ne" >
<param nane="pattern"> +T[*Z+-] +</ par anp
</ dat a>
</ defi ne>

or:

dat eTi meW t hout Ti mezone= xsd: dateTine {pattern = ".+T["Z+-]+"}

In these two datatypes, we used the separator "T". This is convenient, since no occurrences of the
signs can occur after this delimiter except in the time zone definition. This delimiter would be missing
if we wanted to constrain dates instead of datetimes, but, in this case, we can detect the time zones
on their ":" instead:

<defi ne nane="dateWthTi mezone" >
<data type="date">
<param nane="pattern">. +[:Z].*</paranp

107

Using Regular Expressions
to Specify Simple Datatypes

</ dat a>
</ defi ne>
<defi ne name="dat eWt hout Ti nezone" >
<data type="date">
<par am nane="pattern">[": Z] </ par anr
</ dat a>
</ defi ne>

or:

dat eWt hTi nezone= xsd: date {pattern = ".+[:2Z].*"}
dat eW t hout Ti mrezone= xsd: date {pattern = "[":Z]"}

Applications may also simply impose a set of time zones to use:

<define name="dat eTi nel nMyTi nezones" >
<data type="dateTi ne" >
<param nane="pattern"> +(\+02: 00|\ +01: 00| \ +00: 00| Z| - 04: 00) </ par an®
</ dat a>
</ define>

or:

dat eTi mel nMyTi mezones= xsd: dat eTi ne {
pattern = ".+(\+02: 00|\ +01: 00| \ +00: 00| Z| - 04: 00) "

}

We can aso constrain xsd: dur at i on to a couple of subsets that have a complete sort order. The
first datatype will consist of durations expressed only in months and years, and the second will consist
of durations expressed only in days, hours, minutes, and seconds. The criteria used for the test can be
the presence of a"D" (for day) or a"T" (the time delimiter). If neither of those characters are detected,
then the datatype uses only year and month parts. The test for the other type cannot be based on the
absenceof "Y" and "M", sincethereisalso an "M" in the time part. We can test that, after an optional
sign, thefirst field is either the day part or the"T" delimiter:

<define nanme="YMluration">
<data type="duration">
<par am nane="pattern">[*TD] +</ par an»
</ dat a>
</ defi ne>
<defi ne nanme="DHMSdur ati on" >
<data type="duration">
<param nane="pattern">-?P((\d+D)| T). *</ par anp
</ dat a>
</ defi ne>

or:

YMdur ati on= xsd: duration {pattern = "[~TD] +"}
DHVBdur at i on= xsd: duration {pattern = "-?P((\d+D)|T).*"}

108

Chapter 11. Chapter 10: Creating
Building Blocks

Up to now, we have seen how named patterns could be used to define flat schemas which are more
modular, easier to ready when the number of elements and attributes grows and can be used define
recursive content models. In this chapter we will see how they can be used as building blocks to
build libraries of content models that can be assembled to create complete schemas. To do so, we will
introduce examples which can be seen as basic use cases for these features.

External references

With Russian doll schemas

The first use case is when we want to reuse existing schemas as a whole, without modifying their
definitions. Imagine, for instance that we have defined two grammars in two schemas to describe our
aut hor and char act er elements. We have afirst Relax NG schema to describe our authors:

<?xm version="1.0" encodi ng="UTF-8""?>
<el enent name="aut hor" xm ns="http://rel axng.org/ ns/structure/1.0"
dat at ypeLi brary="htt p://ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >
<attribute name="id">
<data type="I1D"/>
</attribute>
<el enent nane="nane">
<data type="token" datatypelLibrary=""/>
</ el ement >
<opti onal >
<el enent nane="born">
<data type="date"/>
</ el ement >
</ optional >
<opti onal >
<el enent nane="di ed" >
<data type="date"/>
</ el ement >
</ optional >
</ el ement >

(author.rng)

or:

el emrent aut hor
attribute id
el ement nane
el ement born
el ement died

xsd: 1D },
t oken },
xsd: date }?,
xsd: date }?

latn et Nate Wann Waan

(author.rnc)

And a second one to describe our characters:

109

Chapter 10: Creating
Building Blocks

<?xm version="1.0" encodi ng="UTF-8"?>
<el enent name="character" xm ns="http://relaxng.org/ns/structure/1.0"
dat at ypeLi brary="htt p://ww. w3. or g/ 2001/ XM_Schemna- dat at ypes" >
<attribute name="id">
<data type="1D"/>
</attribute>
<el ement nane="nane" >
<data type="token" datatypelLibrary=""/>
</ el ement >
<opti onal >
<el ement nane="born">
<data type="date"/>
</ el ement >
</ opti onal >
<el enent nanme="qualification">
<data type="token" datatypelLibrary=""/>
</ el ement >
</ el ement >

(character.rng)

or:

el enent character { element library {
el enent book {

attribute id { xsd: 1D},

attribute avail abl e { xsd: bool ean },

el enent isbn { token },

elenent title {
attribute xm:lang { xsd:language },
t oken

},

external "author.rnc" +,

external "character.rnc" *

1+

attribute id { xsd:ID },

el enent nanme { token },

el enent born { xsd:date }?,

el enent qualification { token }

(character.rnc)

If we want to use them in a schema describing our library, we will use ext er nal Ref patterns:

<?xm version="1.0" encodi ng="UTF-8""?>
<el enent name="Ilibrary" xm ns="http://relaxng.org/ns/structure/1.0"
dat at ypeLi brary="htt p: //ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >
<oneOr Mor e>
<el ement nane="book" >
<attribute name="id">
<data type="I1D"/>
</attribute>

110

Chapter 10: Creating
Building Blocks

<attribute name="avail abl e">
<data type="bool ean"/ >
</attribute>
<el enent nane="isbn">
<data type="token" datatypelLibrary=""/>
</ el ement >
<el enent name="title">
<attribute name="xmnl :1ang">
<data type="I| anguage"/>
</attribute>
<data type="token" datatypelLibrary=""/>
</ el ement >
<oneOr Mor e>
<ext er nal Ref href="author.rng"/>
</ oneOr Mor e>
<zer oO Mor e>
<ext ernal Ref href="character.rng"/>
</ zer oOr Mor e>
</ el ement >
</ oneOr Mor e>
</ el ement >

In the compact syntax, ext er nal Ref patterns are translated into keyword ext er nal :

elenment library {
el enent book {
attribute id { xsd: 1D},
attribute avail able { xsd: bool ean },
el enent isbn { token },
el ement title {
attribute xm:lang { xsd:|anguage },
t oken
1
external "author.rnc" +,
external "character.rnc" *
}+
}

These patterns have a semantic of straight inclusion: when a Relax NG processor reads a schema it
just replaces ext er nal Ref by the content of the referred document.

With flat schemas

In thisfirst example, we've been using ext er nal Ref with "Russian doll" schemas, but this would
work fine too with flat schemas. For instance, if we change our schemas to:

<?xm version="1.0" encodi ng="UTF-8""?>
<grammar xm ns="http://rel axng.org/ ns/structure/1.0"
dat at ypeLi brary="htt p: //ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >

<start>
<ref nanme="el enent - aut hor"/>
</start>

111

Chapter 10: Creating
Building Blocks

<defi ne nanme="el enent - aut hor" >
<el enment nane="aut hor">
<attri bute nane="id">
<data type="1D"/>
</attribute>
<ref nanme="el enent - nane"/ >
<opti onal >
<ref nanme="el enent-born"/>
</ opti onal >
<opti onal >
<ref nanme="el enent-di ed"/>
</ opti onal >
</ el enent >
</ defi ne>

<defi ne nane="el enent - nane" >
<el enent nane="nane" >
<data type="token" datatypelLibrary=""/>
</ el enent >
</ defi ne>

<defi ne nane="el enent - born" >
<el enent nane="born">
<data type="date"/>
</ el enent >
</ defi ne>

<defi ne nane="el enent -di ed" >
<el enent nane="di ed" >
<data type="date"/>
</ el enent >
</ defi ne>

</ gr ammar >

or:

start = el enent - aut hor
el ement - aut hor =
el enent aut hor {
attribute id { xsd: 1D},
el ement - nane,
el ement - bor n?,
el ement - di ed?
}
el enent-name = el enent nanme { token }
el ement - born el enent born { xsd:date }
el enent-died = el enent died { xsd:date }

And:

112

Chapter 10: Creating
Building Blocks

<?xm version="1.0" encodi ng="UTF-8"?>
<granmmar xm ns="http://rel axng.org/ns/structure/1.0"

<start>
<ref nanme="el enent-character"/>
</start>

<defi ne nane="el enent -character">
<el enment nane="character">
<attri bute nane="id">
<data type="1D"/>
</attribute>
<ref nanme="el enent - nane"/ >
<opti onal >
<ref nanme="el enent-born"/>
</ opti onal >
<ref nane="el enent-qualification"/>
</ el enent >
</ defi ne>

<defi ne nane="el enent - nane" >
<el enent nane="nane" >
<data type="token" datatypelLi brary=""/>
</ el enent >
</ defi ne>

<defi ne nane="el enent - born" >
<el enent nane="born">
<data type="date"/>
</ el enent >
</ defi ne>

<define name="el enent-qualification">
<el enent nanme="qualification">
<data type="token" datatypelLibrary=""/>
</ el ement >
</ define>

</ gr anmar >

or:

start = el enent-character
el enent -character =
el ement character {
attribute id { xsd:ID},
el enent - nane,
el enent - born?,
el ement-qualification
}
el ement-name = el enent nane { token }
el ement-born = el ement born { xsd:date }

dat at ypeLi brary="http://w

el ement-qualification = elenent qualification { token }

113

Chapter 10: Creating
Building Blocks

Embedded grammars

This seems straightforward and logical, but why does that work? How come that thereis no collision
between the named patternsel enent - nane and el enment - bor n defined in both "author.rng" and
"character.rng"? How come that st ar t patterns defined in "author.rng" and "character.rng" do not
apply to the schemafor our library?

This is working because we are using a feature caled "embedded grammars'. As | have already
mentioned, the semantic of ext er nal Ref patternsis a strict inclusion of the referred schema and
in our last example, this means that our resulting schemais:

<?xm version="1.0" encodi ng="UTF-8"7?>
<el enent name="library" xm ns="http://relaxng.org/ns/structure/1.0" datatypeLi!
<oneOr Mor e>
<el ement nane="book" >
<attribute nanme="id">
<data type="I1D"/>
</attribute>
<attribute nanme="avail abl e">
<data type="bool ean"/ >
</attribute>
<el ement nane="isbn">
<data type="token" datatypeLibrary=""/>
</ el enent >
<el emrent nanme="title">
<attribute name="xnl:|ang">
<data type="I| anguage"/ >
</attribute>
<data type="token" datatypeLibrary=""/>
</ el enent >
<oneOr Mor e>
<gr anmar >
<start>
<ref nane="el enent - aut hor"/ >
</start>
<defi ne nanme="el enent - aut hor" >
<el emrent nane="aut hor ">
<attribute nanme="id">
<data type="I1D"/>
</attribute>
<ref nane="el enent - nane"/ >
<opti onal >
<ref nane="el enent-born"/>
</ opti onal >
<opti onal >
<ref nane="el enent -di ed"/ >
</ opti onal >
</ el enent >
</ defi ne>
<defi ne nane="el enent - nane" >
<el ement nane="nane" >
<data type="token" datatypeLibrary=""/>
</ el enent >
</ defi ne>
<defi ne nanme="el enent - bor n" >
<el ement nane="born">
<data type="date"/>

114

Chapter 10: Creating
Building Blocks

</ el enent >external "character.rnc
</ defi ne>
<defi ne nane="el enent -di ed" >
<el enment nane="di ed" >
<data type="date"/>
</ el enent >
</ defi ne>
</ gr ammar >
</ oneOr Mor e>
<zer oOr Mor e>
<gr anmar >
<start>
<ref nanme="el enent-character"/>
</start>
<defi ne nane="el enent -character">
<el enment nane="character">
<attri bute nane="id">
<data type="1D"/>
</attribute>
<ref nanme="el enent - nane"/ >
<opti onal >
<ref nanme="el enent-born"/>
</ opti onal >
<ref nane="el enent-qualification"/>
</ el enent >
</ defi ne>
<defi ne nane="el enent - nane" >
<el enent nane="nane" >

<data type="token" datatypelLibrary=""/>

</ el enent >
</ defi ne>
<defi ne name="el enent - born" >
<el emrent nane="born">
<data type="date"/>
</ el enent >
</ defi ne>
<define name="el enent-qualification">
<el enent nanme="qualification">

<data type="token" datatypelLibrary=""/>

</ el enent >
</ defi ne>
</ gr ammar >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >

or:

element library {
el ement book {
attribute id { xsd:ID},
attribute available { xsd:bool ean },
el ement isbn { token },
element title {
attribute xm:lang { xsd:|anguage },

115

Chapter 10: Creating
Building Blocks

t oken
b
grammar {
start = el enent - aut hor
el ement - aut hor =
el ement aut hor {
attribute id { xsd:ID},
el ement - nane,
el ement - bor n?,
el ement - di ed?
}
el emrent - nane
el ement - born
el ement -di ed
.
grammar {
start = el enent-character
el ement -character =
el ement character ({
attribute id { xsd:ID},
el ement - nane,
el ement - bor n?,
el ement -qual ification

el ement name { token }
el ement born { xsd:date }
el ement died { xsd:date }

}

el ement - name = el ement nane { token }
el ement-born = el ement born { xsd:date }
el ement-qualification = elenent qualification { token }
}*
}+
}

Here we are thus embedding grammars within our schema and they behave as patterns. In fact that's
even more than that: for Relax NG, grammars are patterns! The semantic of these patternsis twofold:

» Asfar as validation is concerned, embedded grammars are equivalent to their start patterns. the
grammar describing thechar act er element for instance will instance nodes corresponding to its
start pattern, i.e. instance nodes matching the pattern el enent - char act er which is what we
were expecting.

» Grammars are also setting the scope of their definitions: st art and named patterns defined in a
grammar are visible only in this grammar. Their scope (i.e. the location where they can be referred
to) is strictly limited to the grammar in which they are defined.

Applied to our example, the strict scoping of st art and named patterns means that:

* The bor n pattern of the grammar describing the char act er element cannot be seen from its
parent grammar, i.e. the grammar describing thel i br ar y and book elements nor fromitssibling
grammar, i.e. the grammar describing the aut hor element. The same appliesto st art patterns.

* Unlike common usage among programming languages, the scope of st ar t and named patterns do

not include embedded grammarsand st ar t and named patterns defined in the grammar describing
I'i brary and book elements would not be visible in the embedded grammars.

Reference to a pattern in the parent grammar

This strict isolation of st art and named patterns in their grammars is usually what we need in
references to external grammars. It means that these external grammars can be written independently

116

Chapter 10: Creating
Building Blocks

without any risk of collision or incompatibility. Or in other words that you can take any Relax NG
schemaand drop it into a new schemato seeit as a single pattern without any risk of collision.

On the other hand, that doesn't let you modify what you are including (we will see how to do soin
the next section) nor even to leverage on a set of common named patterns. In our example, since we
already had two definitions of el emrent - name and el enent - bor n, that was a good thing that
they have been isolated in their grammars. Now, if we were designing the same building blocks from
scratch, we would probably want to have only one definition of these two elements which are common
totheaut hor and char act er elements. In fact if we were following the principle "if it's written
more than once make it common" we would a so want to share the definition of thei d attribute.

We will see another way to do so, but it is also possible to do so through making an explicit reference
to a pattern from the parent grammar, i.e. the grammar embedding the current one. In this case, we
need to add the definitions which we want to share in the top level schema even if we do not use all
of themein this schema:

<?ml version="1.0" encoding="UTF-8"?>

<grammar xm ns="http://relaxng.org/ ns/structure/ 1. 0" datatypeLibrary="http://w

<start>
<el enent name="Ilibrary">
<oneOr Mor e>
<el ement nane="book" >

<ref nane="attribute-id"/>

<attribute nane="avail abl e">
<data type="bool ean"/ >

</attribute>

<el ement nane="isbn">
<data type="token" datatypeLibrary=""/>

</ el enent >

<el emrent nanme="title">
<attribute name="xnl:|ang">

<data type="I| anguage"/ >

</attribute>
<data type="token" datatypeLibrary=""/>

</ el enent >

<oneOr Mor e>
<ext er nal Ref href="author.rng"/>

</ oneOr Mor e>

<zer oOr Mor e>
<ext ernal Ref href="character.rng"/>

</ zer oOr Mor e>

</ el enent >
</ oneOr Mor e>
</ el enent >
</start>

<defi ne nanme="el enent - nane" >
<el emrent nane="nane" >
<data type="token" datatypelLi brary=""/>
</ el enent >

117

Chapter 10: Creating
Building Blocks

</ defi ne>

<defi ne nane="el enent - born" >
<el enment nane="born" >
<data type="date"/>
</ el enent >
</ defi ne>

<define nanme="attribute-id">
<attri bute nane="id">
<data type="1D"/>
</attribute>
</ defi ne>

</ gr ammar >

or:

start =
elenent library {
el enent book {
attribute-id,
attribute avail abl e { xsd: bool ean },
el enent isbn { token },
elenent title {
attribute xm:lang { xsd:language },
t oken
},
external "author.rnc"+,
external "character.rnc"*
1+
}
el enent - nane
el enent - born
attribute-id

el enent nanme { token }
el enent born { xsd:date }
attribute id { xsd: 1D}

Now, to make a reference to the named patterns el ement - nane, el enent - born and
attri bute-idintheembedded grammars, we will use a pattern called par ent Ref :

<?xm version="1.0" encodi ng="UTF-8"7?>
<grammar xm ns="http://relaxng.org/ ns/structure/ 1. 0" datatypeLibrary="http://w
<start>
<ref nane="el ement - aut hor"/ >
</start>
<defi ne name="el enent - aut hor " >
<el enent nanme="aut hor" >
<attribute name="id">
<data type="I1D"/>
</attribute>
<par ent Ref nane="el enent - nane"/ >
<opti onal >
<par ent Ref nane="el enent - born"/>
</ opti onal >
<opti onal >
<ref nane="el enent-di ed"/ >

118

Chapter 10: Creating
Building Blocks

</ opti onal >
</ el enent >
</ defi ne>
<defi ne nane="el enent -di ed" >
<el enment nane="di ed" >
<data type="date"/>
</ el enent >
</ defi ne>
</ gr ammar >

(author.rng)

and:

<?xm version="1.0" encodi ng="UTF-8""?>
<grammar xm ns="http://relaxng.org/ns/structure/1.0" datatypeLibrary="http://w
<start>
<ref nane="el enent-character"/>
</start>
<define nanme="el enent -character">
<el enent name="character">
<attribute name="id">
<data type="I1D"/>
</attribute>
<par ent Ref nane="el ement - nane"/ >
<opti onal >
<par ent Ref name="el enent - born"/>
</ opti onal >
<ref nane="el enent-qualification"/>
</ el ement >
</ defi ne>
<define name="el enent-qualification">
<el ement nane="qualification">
<data type="token" datatypelLibrary=""/>
</ el ement >
</ defi ne>
</ gr anmar >

(character.rng)

The par ent Ref patternistranslated to apar ent keyword in the compact syntax:

start = el enent - aut hor
el ement - aut hor =
el enent aut hor {
attribute id { xsd: 1D},
parent el ement - nane,
parent el ement-born?,
el ement - di ed?

}

el enent-died = el enent died { xsd:date }

(author.rnc)

and:

119

Chapter 10: Creating
Building Blocks

start = el ement-character
el enent-character =
el ement character ({
attribute id { xsd:ID},
par ent el enent - nane,
par ent el enent - born?,
el ement -qual ification

}

el ement-qualification = elenent qualification { token }

(character.rnc)

Here again, we are using these features in the context of multiple schemadocuments, but the semantic
of the ext er nal Ref pattern is unchanged from the previous section and this schema is equivalent
to the same schema with the ext er nal Ref patterns expended in a single monolithic schemawith
two embedded grammars:

<?xm version="1.0" encodi ng="UTF-8"7?>
<grammar xm ns="http://relaxng.org/ ns/structure/ 1. 0" datatypeLibrary="http://w
<start>
<el enent name="Ilibrary">
<oneOr Mor e>
<el enent nane="book" >
<ref nane="attribute-id"/>
<attribute nanme="avail abl e">
<data type="bool ean"/ >
</attribute>
<el enent nane="isbn">
<data type="token" datatypeLibrary=""/>
</ el ement >
<el enent name="title">
<attribute name="xnl:|ang">
<data type="I| anguage"/ >
</attribute>
<data type="token" datatypeLibrary=""/>
</ el ement >
<oneOr Mor e>
<gr ammar >
<start>
<ref nane="el ement - aut hor"/ >
</start>
<defi ne name="el enent - aut hor " >
<el enent nanme="aut hor" >
<attribute name="id">
<data type="I1D"/>
</attribute>
<par ent Ref nane="el enent - nane"/ >
<opti onal >
<par ent Ref nanme="el enent - born"/>
</ opti onal >
<opti onal >
<ref nane="el ement -di ed"/ >
</ opti onal >
</ el emrent >
</ define>
<define nanme="el enent - di ed" >

120

Chapter 10: Creating
Building Blocks

<el enment nane="di ed" >
<data type="date"/>
</ el enent >
</ defi ne>
</ gr ammar >
</ oneOr Mor e>
<zer oOr Mor e>
<gr anmar >
<start>
<ref nanme="el enent-character"/>
</start>
<defi ne nane="el enent -character">
<el enment nane="character">
<attri bute nane="id">
<data type="1D"/>
</attribute>
<par ent Ref name="el enent - nane"/ >
<opti onal >
<par ent Ref name="el enent - born"/>
</ opti onal >
<ref nane="el enent-qualification"/>
</ el enent >
</ defi ne>
<define name="el enent-qualification">
<el enent nanme="qualification">
<data type="token" datatypelLibrary=""/>
</ el enent >
</ defi ne>
</ gr ammar >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >
</start>
<defi ne nane="el enent - nane" >
<el enent nane="nane" >
<data type="token" datatypelLibrary=""/>
</ el enent >
</ defi ne>
<defi ne nane="el enent - born" >
<el enment nane="born" >
<data type="date"/>
</ el enent >
</ defi ne>
<define nanme="attri bute-id">
<attri bute nane="id">
<data type="1D"/>
</attribute>
</ defi ne>
</ gr ammar >

or:

start =
element library {
el ement book {

121

Chapter 10: Creating
Building Blocks

attribute-id,
attribute available { xsd:bool ean },
el ement isbn { token },
element title {
attribute xm:lang { xsd:|anguage },
t oken
H
grammar {
start = el enent - aut hor
el ement - aut hor =
el ement aut hor {
attribute id { xsd:ID},
par ent el enent - nane,
par ent el enent - born?,
el ement - di ed?
}
el ement-died = element died { xsd:date }
H
grammar {
start = el enent-character
el ement - character =
el ement character ({
attribute id { xsd:ID},
par ent el enent - nane,
par ent el enent - born?,
el ement -qual ification
}
el ement-qualification = elenent qualification { token }
}*
}+
}
el ement - nane
el ement - bor n
attribute-id

el ement name { token }
el ement born { xsd:date }
attribute id { xsd:ID}

See how st art and named patterns have been defined in each of the three grammars composing
this schema:

e el enent - di ed is defined in the grammar defining the aut hor element and can only be used
in this grammar.

e similarly, el enent -qual i fication is defined in the grammar defining the char act er
element and can only be used there.

e el ement - nane, el enent-bornandattri bute-id aredefined in the top level grammar.
They can be used in this grammar through normal references (i.e. r ef patterns) and can also be
used in its children grammars, i.e. the grammars which are directly embedded into this one, using
apar ent Ref pattern.

There is acouple of more things to note about the par ent Ref pattern:

« If the depth of imbrication of grammar is higher than two, you may run into troubles since you can
only make areference to your immediate parent grammar, not to the other grammar ancestors. The
Relax NG working group has considered this issue but hasn't found any real world use case for
generalizing par ent Ref patternsto higher imbrication depths. If you find one they will probably
welcome amail on the subject! In practice, if we needed to do so, we would have as a workaround
to define named patterns in the intermediary grammars that would act as "proxies’.

122

Chapter 10: Creating
Building Blocks

 Now that we have added the parent Ref patterns our two schemas "author.rng" and
"character.rng" cannot be used as standalone schemas to validate documents which root elements
are aut hor or char act er elements. they need to be embedded into grammars providing the
definitions for the named patterns they are using to be complete and operational .

Merging grammars

In the preceding sections we have seen how we could use an external grammar as a single pattern.
Thisis useful in cases like those we've seen where we want to include a content model described by
an external schema at a single point, not unlike when you mount a UNIX file system: the description
contained in the external grammar is "mounted"” at the point where you make your reference.

The main drawback is that you cannot individually reuse the definitions contained in the external
schema. To do so, we need to introduce a new pattern, with a different semantic which will merge
two grammars into asingle one.

Merging without redefinition

In the simplest case, we will want to reuse patterns defined in common libraries of patterns without
modifying them. Let's say we have defined a grammar with some common patterns which can be
reused in many different schemas, such as:

<?xm version="1.0" encodi ng="UTF-8""?>
<granmmar xm ns="http://relaxng.org/ ns/structure/ 1. 0" datatypeLibrary="http://w

<defi ne name="el enent - nane" >
<el emrent nane="nane" >
<data type="token" datatypelLibrary=""/>
</ el enent >
</ defi ne>

<defi ne name="el enent - born" >
<el erent nane="born">
<data type="date"/>
</ el enent >
</ defi ne>

<define name="attribute-id">
<attribute name="id">
<data type="I1D"/>
</attribute>
</ defi ne>

<defi ne name="cont ent - person" >
<ref nane="attribute-id"/>
<ref nane="el enent - nane"/ >
<opti onal >
<ref nane="el enent-born"/>
</ opti onal >
</ defi ne>

</ gr anmar >

(common.rng)

Or:

123

Chapter 10: Creating
Building Blocks

el ement - name = el ement nane { token }

el ement-born = el ement born { xsd:date }

attribute-id = attribute id { xsd: 1D}

content-person = attribute-id, element-nane, elenent-born?

(common.rnc)

These schemas are obviously not meant to be used as standalone schemas: they have no st art
patterns and would be considered incorrect. However, they contain definitions which can be used to
write the schema of our library. To use these definitions, we need to usei ncl ude patterns:

<?xm version="1. 0" encodi ng="UTF-8""?>
<granmmar xm ns="http://relaxng.org/ ns/structure/1.0" datatypeLibrary="http://w

<i ncl ude href="common.rng"/>

<start>
<el enent name="Ilibrary">
<oneOr Mor e>
<el enment nane="book" >
<ref nanme="attribute-id"/>
<attri bute nane="avail abl e">
<data type="bool ean"/ >
</attribute>
<el enent nane="isbn">
<data type="token" datatypelLibrary=""/>
</ el enent >
<el enment nane="title">
<attribute name="xm :1ang">
<data type="I| anguage"/>
</attribute>
<data type="token" datatypelLibrary=""/>
</ el enent >
<oneOr Mor e>
<el enment nane="aut hor">
<ref nane="content-person"/>
<opti onal >
<ref nanme="el enent-di ed"/>
</ opti onal >
</ el enent >
</ oneOr Mor e>
<zer oOr Mor e>
<el enent nane="character">
<ref nane="content-person"/>
<ref nane="el enent-qualification"/>
</ el enent >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >
</start>

124

Chapter 10: Creating
Building Blocks

<defi ne nane="el enent -di ed" >
<el enment nane="di ed" >
<data type="date"/>
</ el enent >
</ defi ne>

<define name="el enent-qualification">
<el enent nanme="qualification">
<data type="token" datatypelLibrary=""/>
</ el ement >
</ define>

</ gr ammar >

Thei ncl ude patternistrandated asand i ncl ude keyword in the compact syntax:

i ncl ude "common. rnc"
start =
element library {
el ement book {
attribute-id,
attribute available { xsd:bool ean },
el ement isbn { token },
element title {
attribute xm:lang { xsd:|anguage },
t oken
I3
el ement aut hor {
cont ent - per son,
el ement - di ed?
H
el ement character ({
cont ent - per son,
el ement -qual i fication
}-k
}+
}
el ement-died = element died { xsd:date }
el ement-qualification = elenent qualification { token }

Note that the name of thei ncl ude patternisdlightly misleading. Thei ncl ude pattern here doesn't
include the external grammar as a pattern (we have seen that this was the job of the ext er nal Ref
pattern) but it includes the content of the external grammar, performing a merge of both grammars.
Thisis exactly what we needed, though, and thisisthe reason why we have been able to do references
to the named patterns defined in the "common.rng" grammar.

Theresult of thisinclusion isthus equivalent to the following monolithic schema:

<?xm version="1.0" encodi ng="UTF-8"7?>
<grammar xm ns="http://relaxng.org/ ns/structure/ 1. 0" datatypeLibrary="http://w
<l-- Content of the included gramar -->
<defi ne nanme="el enent - name" >
<el ement nane="nane" >

125

Chapter 10: Creating
Building Blocks

<data type="token" datatypelLibrary=""/>
</ el enent >
</ defi ne>
<defi ne nane="el enent - born" >
<el enment nane="born" >
<data type="date"/>
</ el enent >
</ defi ne>
<define nanme="attribute-id">
<attri bute nane="id">
<data type="1D"/>
</attribute>
</ defi ne>
<defi ne name="cont ent - person" >
<ref nanme="attribute-id"/>
<ref nanme="el enent - nane"/ >
<opti onal >
<ref nanme="el enent-born"/>
</ opti onal >

</ define>
<l-- End of the included grammar -->
<start>
<el enent name="Ilibrary">

<oneOr Mor e>
<el enment nane="book" >
<ref nanme="attribute-id"/>
<attri bute nane="avail abl e">
<data type="bool ean"/ >
</attribute>
<el enent nane="isbn">
<data type="token" datatypelLibrary=""/>
</ el enent >
<el enment nane="title">
<attribute name="xm :1ang">
<data type="I| anguage"/>
</attribute>
<data type="token" datatypelLibrary=""/>
</ el enent >
<oneOr Mor e>
<el enment nane="aut hor">
<ref nane="content-person"/>
<opti onal >
<ref nanme="el enent-di ed"/>
</ opti onal >
</ el enent >
</ oneOr Mor e>
<zer oOr Mor e>
<el enent nane="character">
<ref nane="content-person"/>
<ref nane="el enent-qualification"/>
</ el enent >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >
</start>
<defi ne nane="el enent - di ed" >
<el enent nane="di ed" >

126

Chapter 10: Creating
Building Blocks

<data type="date"/>
</ el ement >
</ define>
<define name="el enent-qualification">
<el enent nanme="qualification">
<data type="token" datatypelLibrary=""/>
</ el ement >
</ define>
</ gr ammar >

or:

el enent - nane el ement name { token }
el enent - born el ement born { xsd:date }
attribute-id attribute id { xsd:ID}

content-person = attribute-id, elenent-nane, elenent-born?

start =
element library {
el ement book {
attribute-id,
attribute available { xsd:bool ean },
el ement isbn { token },
element title {
attribute xm:lang { xsd:|anguage },
t oken
1
el ement aut hor {
cont ent - per son,
el enent - di ed?
|
el ement character {
cont ent - per son,
el ement-qualification
}*
1+
}
el enent-died = el enent died { xsd:date }
el enent-qualification = elenent qualification { token }

Merging and replacing definitions
In the previous example, we have been lucky and the definitions of the common patterns which we've
included were exactly matching what we needed. In the real world, thisisn't alwaysthe caseand it is
quite handy to be able to replace the definitions found in the grammar that we're including.
Let's say that we have already written this very flat version of our schema:

<?xm version="1.0" encodi ng="UTF-8""?>
<grammar xm ns="http://relaxng.org/ ns/structure/ 1. 0" datatypeLibrary="http://w

127

Chapter 10: Creating
Building Blocks

<start>
<ref nanme="elenent-library"/>
</start>

<define name="el enent-1library">
<el enent name="Ilibrary">
<zer oOr Mor e>
<ref nanme="el enent - book"/ >
</ zer oOr Nor e>
</ el enent >
</ defi ne>

<defi ne nane="el enent - book" >
<el enment nane="book" >
<ref nanme="attribute-id"/>
<ref name="attribute-avail able"/>
<ref nanme="el enent-isbn"/>
<ref nanme="elenent-title"/>
<oneOr Mor e>
<ref nanme="el enent - aut hor"/ >
</ oneOr Mor e>
<zer oOr Mor e>
<ref nanme="el enent-character"/>
</ zer oOr Nor e>
</ el enent >
</ defi ne>

<defi ne nane="el enent - aut hor" >
<el enent nane="aut hor">
<ref nane="content-person"/>
<opti onal >
<ref nanme="el enent-di ed"/>
</ opti onal >
</ el enent >
</ defi ne>

<defi ne nane="el enent -character">
<el enment nane="character">
<ref nane="content-person"/>
<ref nane="el enent-qualification"/>
</ el enent >
</ defi ne>

<defi ne nane="el enent -i shn">
<el enent nane="isbn">
<data type="token" datatypelLibrary=""/>
</ el enent >
</ defi ne>

<defi ne nane="el ement-title">

128

Chapter 10: Creating
Building Blocks

<el ement nane="title">
<ref nane="attribute-xm -lang"/>
<data type="token" datatypelLibrary=""/>
</ el ement >
</ define>

<define name="attribute-xm -l ang">
<attribute name="xnl:|ang">
<data type="I| anguage"/ >
</attribute>
</ define>

<define name="attri bute-avail abl e">
<attribute nanme="avail abl e">
<data type="bool ean"/ >
</attribute>
</ defi ne>

<defi ne nane="el enent - nane" >
<el enent nane="nane" >
<data type="token" datatypelLi brary=""/>
</ el enent >
</ defi ne>

<defi ne nanme="el enent - born" >
<el emrent nane="born">
<data type="date"/>
</ el enent >
</ defi ne>

<defi ne name="el enent - di ed" >
<el emrent nane="di ed" >
<data type="date"/>
</ el enent >
</ defi ne>

<define nanme="attribute-id">
<attribute nanme="id">
<data type="I1D"/>
</attribute>
</ defi ne>

129

Chapter 10: Creating
Building Blocks

<defi ne name="cont ent - person" >
<ref nanme="attribute-id"/>
<ref nanme="el enent - nane"/ >
<opti onal >
<ref nanme="el enent-born"/>
</ opti onal >
</ defi ne>

<define name="el enent-qualification">
<el enent name="qualification">
<data type="token" datatypeLibrary=""/>
</ el emrent >
</ define>

</ gr anmar >

(library.rng)

or:

start = elenent-library
element-library = element library { el ement-book* }
el enent - book =
el ement book {
attribute-id,
attribute-avail abl e,
el enent -i sbn,
elenent-title,
el enent - aut hor +,
el enent - character*
}
el ement - aut hor = el enent author { content-person, elenent-died? }
el enent -character =
el ement character { content-person, element-qualification }
el ement-i sbn = el ement isbn { token }
element-title = element title { attribute-xm -lang, token }
attribute-xm-lang = attribute xm:lang { xsd:|anguage }
attribute-available = attribute avail able { xsd: bool ean }
el ement - nanme = el ement nane { token }
el ement-born = el ement born { xsd:date }
el ement-died = elenment died { xsd:date }
attribute-id = attribute id { xsd: 1D}
content-person = attribute-id, elenment-nane, elenent-born?
el ement-qualification = element qualification

(library.rnc)

If thisisagood schemaused in production to validate incoming documents from avariety of patterns
and we wouldn't want to modify it. However, we might have a new application that doesn't work at

130

Chapter 10: Creating
Building Blocks

the level of alibrary but only at the level of abook. This application would need to validate instance
documents with book root elements. Of course we wouldn't want to copy and paste the definition of
our existing schema into another one since that would mean maintaining do different branches.

Thisisacase were wewould want to redefinethe st ar t element of our schema. To do so, wewould
use an i ncl ude pattern and embed the definitions which must be substitute to the one from the
included grammar in thei ncl ude pattern itself:

<?xm version="1.0" encodi ng="UTF-8""?>
<granmmar xm ns="http://rel axng.org/ ns/structure/1.0">

<include href="Ilibrary.rng">
<start>
<ref nane="el enent - book"/ >
</start>

</incl ude>
</ gr anmar >

Or:

include "library.rnc" {
start = el enent - book

}

Note how the new definitions are embedded in the i ncl ude pattern: the content of thei ncl ude
pattern iswhere all the redefinitions must be written. This short schemaisincluding all the definitions
from"library.rng" andredefiningthest ar t pattern. It validatesinstance documentswithabook root
element and since we are performing an inclusion instead of a copy, we will inherit any modification
done on "library.rng".

We have been able to redefinethe st ar t pattern, but each named pattern can be redefined using the
same syntax. Let's say for instance that | am not happy with the definition of the el enent - nane
pattern and want to check that the name is shorter than 80 characters. If | don't want (or can't) modify
the original schema, | can include it and redefine this pattern:

<?xm version="1.0" encodi ng="UTF-8""?>
<grammar xm ns="http://relaxng.org/ns/structure/1.0"
dat at ypeLi brary="htt p: // ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >
<include href="Ilibrary.rng">
<defi ne nane="el enent - name" >
<el ement nane="nane" >
<data type="token">
<par am nanme="maxLengt h" >80</ par an
</ dat a>
</ el emrent >
</ define>
</incl ude>
</ gr anmar >

Or:

include "library.rnc" {
el ement-name = el ement nane { xsd:token{maxLength = "80"} }

}

131

Chapter 10: Creating
Building Blocks

Here again, the grammar of "library.rnc" is merged with the grammar of the new schema (which
happens to be empty) but before the merge, the definitions which are embedded in the i ncl ude
pattern are substituted to the original definitions.

The new definition can be as different from the original one as | want. Without wanting to argue that
it would be agood practice, | could for instanceredefineat t ri but e- avai | abl e and replace the
attribute by an element:

<?xm version="1.0" encodi ng="UTF-8""?>
<granmmar xm ns="http://relaxng.org/ ns/structure/ 1. 0" datatypeLibrary="http://w
<include href="Ilibrary.rng">
<define name="attribute-avail abl e">
<el enent nanme="avail abl e" >
<data type="bool ean"/ >
</ el ement >
</ defi ne>
</incl ude>
</ gr anmar >

Or:

include "library.rnc" {
attribute-available = el enent avail able { xsd: bool ean }

}

That would be rather confusing (the named patterniscaledat t ri but e- avai | abl e andit'snow
describing an element) but the schemaiis perfectly valid and describes instance documents where the
avai | abl e attribute is replaced by an avai | abl e element. This could also be used to remove
this attribute:

<?xm version="1.0" encodi ng="UTF-8""?>
<grammar xm ns="http://rel axng.org/ ns/structure/1.0">

<include href="library.rng">
<define name="attri bute-avail abl e">
<enpty/ >
</ defi ne>

</incl ude>
</ gr anmar >

Or:

include "library.rnc" {
attribute-available = enmpty

}

Note how we are using here a new pattern named enpt y. This pattern will match only text nodes
made of non significant white spaces) and it will have the same effect than if the named pattern had
been removed from the schema.

| have said that i ncl ude patterns have the effect to merge the content of their grammar, after
replacement of the patternsto redefine, with the content of the current grammar. This meansthat these
redefinition can make referencesto any definition from either the including or the included grammars.

132

Chapter 10: Creating
Building Blocks

If we want to add zero or more email addressesto out aut hor element while keeping aflat structure,
we could write:

<?xm version="1.0" encodi ng="UTF-8"7?>
<grammar xm ns="http://rel axng.org/ ns/structure/1.0"
dat at ypeLi brary="htt p: // ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >

<include href="library.rng">

<defi ne name="el enent - aut hor" >
<el emrent nane="aut hor ">
<ref nane="content-person"/>
<opti onal >
<ref nane="el enent -di ed"/ >
</ opti onal >
<zer oOr Mor e>
<ref nane="el enent-enmail"/>
</ zer oOr Mor e>
</ el enent >
</ defi ne>

</incl ude>

<defi ne nanme="el enent-emil ">
<el emrent nanme="enmail ">
<data type="anyURl ">
<param nane="pattern">mailto:.*</paranp
</ dat a>
</ el enent >
</ defi ne>
</ gr anmar >

Or:

include "library.rnc" {
el enent - aut hor =
el ement aut hor { content-person, elenent-died?, elenent-emil* }
}

el enent-emai | =
el ement email {
xsd: anyURlI { pattern = "mailto:.*" }

}

Here, in the redefinition of the el ement - aut hor pattern, we are making three references to
three named patterns: cont ent - per son and el enent - di ed aredefinedin "library.rng", i.e. the
grammar which isincluded and the third one, el enment - ermai | isdefined in the top level grammar
i.e. the including grammar.

Combining definitions

When we've replaced the definitionsin our previous examples, the original definition was completely
replaced by the new one and this can make the maintenance of these schemas more complicated than
it should be. In the last example, if the included schema (library.rng) is updated and the definition of
el ement - aut hor changed to add a new element to include a telephone number, this addition is
lost if we do not add it explicitly in the including schema. Asfar asthe el ermrent - aut hor pattern

133

Chapter 10: Creating
Building Blocks

is concerned, this redefinition is no better than a copy paste and we'd benefit using a mechanism more
similar to inheritance.

If we want to keep the definition from the included grammar, we can combine a new definition with
the existing oneinstead of replacing it. Unlike redefinition, combination of st ar t and named pattern
do not take placeinthei ncl ude pattern and isdone at thelevel of theincluding grammar. Actually,
it isn't even necessary to include agrammar to combine definitions, but the main interest of combining
definitions isto combine new definitions with existing ones from included grammars.

There are two options to combine definitions: by choi ce andby i nt er | eave.
Combining by choice

When definitions are combined by choice, the result is similar to using achoi ce pattern between
the content of the definitions.

A use case for thiswould be to define a schemaaccepting either al i br ar y or abook element from
the schema used in the previous section. In the XML syntax, combining by choice is done through
aconbi ne attribute:

<?xm version="1. 0" encodi ng="UTF-8""?>
<grammar xm ns="http://relaxng.org/ns/structure/1. 0">
<include href="Iibrary.rng"/>
<start conbi ne="choice">
<ref nane="el enent - book"/ >
</start>
</ grammar >

In the compact syntax, combining by choice is done through using the | = operator (instead of =) in

the definition:
i nclude "library.rnc"
start | = el ement - book

Note that in both cases, the combination is done outside of the inclusion. It's effect is to add a choice
between the content of the st ar t pattern which definition is now equivalent to :

<start>
<choi ce>
<ref nane="elenent-library"/>
<ref nanme="el enent - book"/ >
</ choi ce>
</start>

Or:

start = element-library | el enent-book

Thelogic behind this combination is to allow the content model corresponding to the original pattern
and in addition to allow a different content. Thisis different for the logic behind pattern redefinitions
where the original pattern was replaced by a new one.

Named patterns can be combined too and if we wanted to accept either an avai | abl e attribute or
element, we could write:

134

Chapter 10: Creating
Building Blocks

<?xm version="1.0" encodi ng="UTF-8"?>
<granmmar xm ns="http://rel axng.org/ns/structure/1.0"
dat at ypeLi brary="htt p://ww. w3. or g/ 2001/ XM_Schemna- dat at ypes" >

<include href="library.rng"/>

<define nanme="attri bute-avail abl e" conbi ne="choi ce">
<el ement nane="avail abl e">
<data type="bool ean"/ >
</ el enent >
</ defi ne>

</ gr ammar >
Or:

i nclude "library.rnc"
attribute-available | = element avail able { xsd: bool ean }

Another interesting and common case is if we want to make this attribute optional and this can be
achieved by combining this pattern by choice with an enpt y pattern:

<?xm version="1.0" encodi ng="UTF-8""?>
<granmmar xm ns="http://rel axng.org/ ns/structure/1.0">

<include href="Iibrary.rng"/>

<define nane="attri bute-avail abl e" conbi ne="choi ce">
<enpty/>
</ defi ne>

</ gr anmar >
Or:

i nclude "library.rnc"
attribute-available | = enpty

Combining by interleave

We have seen how the"old" pattern could be replaced by anew one using pattern redefinition and how
we could give the choice between an "old" definition and a new one using a combination by choice.
The last option isto combine by interleave and the logic here isto alow to add piecesto the original
content model and to let these pieces been interleaved, i.e. added anywhere before, after and between
the sub patterns of the original pattern.

Do you remember theenai | element that we had added to the content of theaut hor element using
aredefinition?We can a so use acombination by interleave to add thisemail patterntothecont ent -
per son pattern:

<?xm version="1.0" encodi ng="UTF-8""?>

135

Chapter 10: Creating
Building Blocks

<granmmar xm ns="http://rel axng.org/ns/structure/1.0"
dat at ypeLi brary="htt p://ww. w3. or g/ 2001/ XM_Schemna- dat at ypes" >

<include href="library.rng"/>

<def i ne name="cont ent - person" conbi ne="i nterl eave">
<zer oOr Mor e>
<ref nane="el emrent-email"/>
</ zer oOr Mor e>
</ defi ne>

<defi ne nane="el enent-enmail ">
<el enment nane="enmil ">
<data type="anyURl ">
<param nanme="pattern">nmail to:.*</paranp
</ dat a>
</ el enent >
</ defi ne>

</ gr ammar >

Or:

i nclude "library.rnc"
content-person & elenment-emil *
el ement-email =
el enent email {
xsd:anyURlI { pattern = "mmilto:.*" }

}

The effect of this combination is that the cont ent - nodel pattern is now equivalent to an
i nt er | eave pattern embedding both the original and the new definition, i.e.:

<defi ne name="cont ent - person" >
<interleave>
<gr oup>
<ref nane="attribute-id"/>
<ref nane="el enent - nane"/ >
<opti onal >
<ref nane="el enent-born"/>
</ opti onal >
</ group>
<zer oOr Mor e>
<ref nane="el enent-enmail"/>
</ zer oOr Mor e>
</interl eave>
</ defi ne>

Or:

cont ent - person =
(attribute-id, elenent-nanme, elenent-born?) & elenent-email *

136

Chapter 10: Creating
Building Blocks

The effect of thisdefinition isthusto allow any number of enai | elementsbeforethenane element,
between the nanre element and the bor n element and after the "born element".

Thelogic hereisto allow extension by adding new content anywherein the original definition. Thisis
neat and safe if the applications which read the documents are coded to ignore what they don't know.
In our example, if | have designed an application to read the original content model, this application
will be just fine with the new content model if it ignorestheenmi | elementswhich have been added.

We have seen how a combination by choice can be used to turn a pattern into being optional.
Combination by interleave cannot reverse the process, but it can turn a pattern into being forbidden!
If we don't want to end up with a schemawhich won't validate any instance document, we must take
care to do so on a pattern which reference is made optional, such asthe el enent - di ed pattern:

<?xm version="1.0" encodi ng="UTF-8"?>
<grammar xm ns="http://relaxng.org/ns/structure/1.0">
<include href="library.rng"/>
<define name="el enent - di ed" conbi ne="interl eave">
<not Al | owed/ >
</ defi ne>
</ gr anmar >

Or:

include "library.rnc"
el enent -di ed &= not Al | owed

Here, we are interleaving a new pattern, not Al | owed with the content of the named pattern
el ement - di ed. The effect of this operation is that this pattern will not match any content model
any longer. Thisis OK since the reference to the el enent - di ed in the definition of the aut hor
element is optional and the effect is that a document can be valid per the resulting schema only if
thereisno di ed element.

What about combining st ar t patterns by interleave? This may seem weird and even illegal since
we have seen st art patterns in a context where they are using to define the root element of XML
documents and that awell formed XML document can only have one root element.

Another use case where combining by interleave is handy and very widely used isto add attributesto
a named pattern. In this case, the fact that interleave is unordered doesn't make any difference since
attributes are always unordered.

Why can't we combine definitions by group?

We have seen how to combine definitions by i nt er | eave and choi ce and since gr oup isthe
third compositor, we might be tempted to combine definitions by gr oup. Unfortunately, definitions
of named patterns are declarationsand since the relative order of these declarationsis considered as not
significant, combining definitions by group wouldn't give reliable results and has thus been forbidden.
This issue doesn't happen with choi ce and i nt er | eave compositors since the relative order of
their children elementsis not significant for a schema.

A real world example: XHTML 2.0

Let's leave our library for a while to look at XHTML. The modularization of XHTML 1.1, i.e. the
fact to split XHTML 1.0 which was described asamonolithic DTD into a set of independent modules
described as in independent DTDs that can be combined together to create as many flavor as people
may want is one of the most challenging exercise for schema languages. In their Working Drafts, the

137

Chapter 10: Creating
Building Blocks

W3C HTML Working Group -now in charge of XHTML - has published aset of Relax NG schemasto
describe XHTML 2.0 and its many modules which illustrates the flexibility of Relax NG to perform
this type of exercises.

The solution chosen by XHTML 20 (see http:/lwww.w3.0org/TR/Xhtml2/
xhtml20_relax.html#a xhtml20_relaxng for more detail) is to define each module by its own schema
and include all these modulesin atop level schema (called the "RELAX NG XHTML 2.0 Driver") :

<?xm version="1.0" encodi ng="UTF-8""?>

<granmmar ns="http://ww. w3. or g/ 2002/ 06/ xht m 2"
xm ns="http://rel axng. org/ ns/structure/1.0"
xm ns: x="http://ww. w3. org/ 1999/ xhtm " >

<x: h1>RELAX NG schema for XHTM. 2. 0</x: h1>

<X: pre>
Copyri ght © 2003 WBC®, (M T, ERCIM Keio), Al R ghts Reserved.

Edi tor: Masayasu | shi kawa & t; m nasa@3. or g> ;
Revi sion: $ld: chl0.xm 95 2003-09-09 17:55:14Z vdv $

Perm ssion to use, copy, nodify and distribute this RELAX NG schena
for XHTML 2.0 and its acconpanyi ng docunentation for any purpose and

wi thout fee is hereby granted in perpetuity, provided that the above
copyright notice and this paragraph appear in all copies. The copyri ght
hol ders nake no representation about the suitability of this RELAX NG
scherma for any purpose.

It is provided "as is" without expressed or inplied warranty.
For details, please refer to the WBC software |icense at:

<x:a href="http://ww. w3. org/ Consortiuni Legal / copyri ght - sof t war e"
>http:// ww. w3. or g/ Consorti uni Legal / copyri ght - sof t war e</ x: a>
</ x:pre>

<di v>
<x: h2>XHTM. 2. 0 npdul es</ x: h2>

138

Chapter 10: Creating
Building Blocks

<x: h3>Attribute Collections Mdul e</x: h3>
<include href="xhtm -attribs-2.rng"/>

<x: h3>St ruct ure Mdul e</ x: h3>
<include href="xhtm -struct-2.rng"/>

<x: h3>Bl ock Text Modul e</x: h3>
<i nclude href="xhtm -bl ktext-2.rng"/>

<x: h3>Inline Text Modul e</x: h3>
<include href="xhtm -inltext-2.rng"/>

<x: h3>Hypertext Modul e</x: h3>
<i ncl ude href="xhtm -hypertext-2.rng"/>

<x: h3>Li st Modul e</ x: h3>
<include href="xhtm -list-2.rng"/>

<x: h3>Li nki ng Modul e</ x: h3>
<i nclude href="xhtm -1ink-2.rng"/>

<x: h3>Met ai nf or mat i on Modul e</ x: h3>
<i nclude href="xhtm -neta-2.rng"/>

<x: h3>Cbj ect Mbddul e</ x: h3>
<i nclude href="xhtm -object-2.rng"/>

<x: h3>Scri pting Mdul e</ x: h3>
<include href="xhtm -script-2.rng"/>

139

Chapter 10: Creating
Building Blocks

<x: h3>Style Attribute Mdul e</x: h3>
<i nclude href="xhtm -inlstyle-2.rng"/>

<x: h3>Styl e Sheet Modul e</ x: h3>
<include href="xhtm -style-2.rng"/>

<x: h3>Tabl es Modul e</ x: h3>
<include href="xhtm -table-2.rng"/>

<x: h3>Support Modul es</x: h3>

<x: h4>Dat at ypes Modul e</ x: h4>

<i ncl ude href="xhtmn -dat at ypes-2.rng"/>

<x: h4>Event s Modul e</ x: h4>
<include href="xhtm -events-2.rng"/>

<x: h4>Par am Modul e</ x: h4>
<i nclude href="xhtnm -param 2. rng"/>

<x: h4>Capti on Mdul e</ x: h4>
<i nclude href="xhtnl -caption-2.rng"/>
</ div>

<di v>

<x: h2>XM. Events nodul e</ x: h2>

<i ncl ude href="xm -events-1.rng"/>
</div>

<di v>
<x: h2>Ruby nodul e</ x: h2>
<include href="full-ruby-1.rng"/>

140

Chapter 10: Creating
Building Blocks

</ div>

<di v>
<x: h2>XFor ns nodul e</ x: h2>
<x: p>To-Do: work out integration of XForms</Xx:p>
<l--include href="xforns-1.rng"/-->

</ div>

</ gr anmar >

Don't worry for the moment about the ns attribute which we'll seein "Chapter 11: Namespaces' nor
about the foreign (non Relax NG) namespaces and the di v elements which we'll seeiin "Chapter 13:
Annotating Schemas'. One of these modules, the " Structure Module" defines the basic structure of a
XHTML 2.0 document. For instance, the head element is defined as:

<defi ne nane="head">
<el enent nane="head" >
<ref nanme="head.attlist"/>
<ref nanme="head.content"/>
</ el enent >
</ defi ne>

<defi ne nane="head. attlist">
<ref nanme="Common.attrib"/>
</ defi ne>

<defi ne nane="head. content">
<ref nanme="title"/>
</ defi ne>

Or:

head = el enent head { head.attlist, head.content }
head. attli st Common. attrib
head. cont ent title

Thisshowsanother design decision whichis, for each element, to define anamed pattern with the same
name than the element (here head) and two separated named patternsto definethelist of its attributes
(herehead. att i st) anditscontent (here head. cont ent). This design decision makesit easy
for other modules to add new elements and attributes just by combining these named patterns by
interleave. For instance, the "Metainformation Module" adds a met a element to the content of the
head element by combining by interleave the head. cont ent pattern with zero or more net a
elements:

141

Chapter 10: Creating
Building Blocks

<?xm version="1.0" encodi ng="UTF-8"?>
<granmmar xm ns="http://rel axng.org/ns/structure/1.0"
xm ns: x="http://ww. w3. org/ 1999/ xht m " >

<x: hl1>Met ai nfor mati on Modul e</ x: h1>

<di v>
<x: h2>The neta el enment </ x: h2>

<defi ne nane="neta">
<el erent nanme="neta">
<ref nane="neta.attlist"/>
<choi ce>
<ref nanme="Inline. nodel "/ >
<oneOr Mor e>
<ref nanme="neta"/>
</ oneOr Mor e>
</ choi ce>
</ el enent >
</ defi ne>

<define name="neta.attlist">
<ref nanme="Common.attrib"/>
<opti onal >
<attribute nanme="nane">
<ref nane="NMICKEN. dat at ype"/ >
</attribute>
</ opti onal >
</ defi ne>
</div>

<defi ne nane="head. content" conbi ne="interl eave">
<zer oOr Mor e>
<ref nanme="neta"/>
</ zer oOr Nor e>
</ defi ne>

</ gr ammar >

Or:

142

Chapter 10: Creating
Building Blocks

nanespace x = "http://ww. w3. org/ 1999/ xhtm "

neta = element neta { neta.attlist, (Inline.nbdel | neta+) }
neta.attlist =

Common. attri b,

attribute nane { NMIOKEN. dat atype }?
head. content &= neta*

The fact that the content models are combined by interleave guarantees the independence between
modules; we can add or remove modulesindependently of each other and al so the independence of the
resulting schema over the order in which the different modules are included in the top level schema:
we can switch the "Metainformation Modul€" and the " Scripting Module" which both add content into
the head element without any impact on the set of valid documents.

This modularity fully relies on combinations by interleave and Relax NG would have no easy solution
if we wanted to add stuff to what has already be defined in the head element. Of courseg, if we are
interested only by the "Structure Module" and want to add af oo element after theti t | e element,
we can redefine head. cont ent :

<i nclude href="xhtnl -struct-2.rng">
<defi ne name="head. content">
<ref nanme="title"/>
<el emrent nanme="fo0" >
<enpty/>
</ el enent >
</ defi ne>
</include>

But thiswon't take into account all the content added by the other modules into the head element.

Other options

What if we really needed afeature which isreally missing in Relax NG to create our building blocks?
What if, for instance, we needed to reuse a name class or a datatype parameter defined once and only
once in multiple locations of a schema?

If this was an absolute requirement, which is not often the case, we would have to use non Relax
NG tools or features and what's unique with Relax NG compared to DTDs or W3C XML Schemais
that we have two possible syntaxes, leaving the option to use either XML mechanisms with the XML
syntax or plain text tools with the compact syntax.

Thereisno limit to the tools we may want to use to produce our result, but let's set up a possible use
case and some examples of implementations.

A possible use case

Let's just say we want to set the set of possible characters in our documents and that we want to
implement this rule in our Relax NG schemas. The pattern we might have in mind to perform this
restriction could be the one we've seen as an example in "Chapter 9: W3C XML Schema Regular
Expressions’. It's not very complex but not very ssmple either:

pattern = "[\p{lsBasiclLatin}\p{lsLatin-1Supplenent}]*"

143

Chapter 10: Creating
Building Blocks

And of course, we would like to be able to easily update it if we had to and wouldn't want to have to
copy it in each datatype definition and we would like to be able to use this pattern in different contexts
over different data types and eventually combined to other parameters.

XML tools

All the flavors of XML parsed entities (internal or external and in the internal DTD or in an external
DTD) may be used inthiscase. Using internal entitiesin aninternal DTD, we could for instance write:

<?xm version = '1.0" encoding = 'utf-8 ?>
<! DOCTYPE el enent |
<IENTITY val i dChars "<param nane='pattern' >[\p{lsBasicLatin}\p{lsLatin-1Supple
1>
<el enent xm ns="http://relaxng.org/ ns/structure/1.0" nanme="library"
dat at ypeLi brary="htt p://ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >
<oneOr Mor e>
<el ement nane="book" >
<attribute nanme="id">
<data type="NMIOKEN'>&val i dChar s; </ dat a>
</attribute>
<attribute nanme="avail abl e">
<data type="bool ean"/ >
</attribute>
<el emrent nane="isbn">
<data type="NMIOKEN'>&val i dChar s; </ dat a>
</ el enent >
<el emrent nanme="title">
<attribute name="xnl:|ang">
<data type="I| anguage"/ >
</attribute>
<data type="token">&val i dChars; </ dat a>
</ el enent >
<zer oOr Mor e>
<el ement nane="aut hor ">
<attribute nanme="id">
<data type="NMIOKEN'>&val i dChar s; </ dat a>
</attribute>
<el ement nane="nane" >
<data type="token">&val i dChars; </ dat a>
</ el enent >
<el emrent nane="born">
<data type="date"/>
</ el enent >
<optional >
<el emrent nane="di ed" >
<data type="date"/>
</ el enent >
</ opti onal >
</ el enent >
</ zer oOr Mor e>
<zer oOr Mor e>
<el ement nanme="character">
<attribute name="id">
<data type="NMIOKEN'>&val i dChar s; </ dat a>
</attribute>

144

Chapter 10: Creating
Building Blocks

<el enent nane="nane" >
<data type="token">&val i dChars; </ dat a>

</ el enent >

<el enment nane="born" >
<data type="date"/>

</ el enent >

<el enent nanme="qualification">
<data type="token">&val i dChars; </ dat a>

</ el enent >

</ el enent >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >

The trickery here isto define an entity for the parameter:
<IENTITY val i dChars "<param nane='pattern' >[\p{lsBasicLatin}\p{lsLatin-1Suppl el
And to use this entity where we need it, for instance:
<data type="token">&val i dChars; </ dat a>

What about the compact syntax? The compact syntax doesn't support entities but if 1 convert this
schema into the compact syntax | just get:

elenment library {
el enent book {
attribute id {
xsd: NMTOKEN {
pattern = "[\p{lsBasiclLatin}\p{lsLatin-1Supplenment}]*"
}
1
attribute available { xsd:bool ean },
el enment isbn {
xsd: NMTOKEN {
pattern = "[\p{lsBasicLatin}\p{lsLatin-1Supplenent}]*"
}
1
element title {
attribute xm:lang { xsd:|anguage },
xsd: t oken {
pattern = "[\p{lsBasicLatin}\p{lsLatin-1Supplenent}]*"
}
1
el ement aut hor {
attribute id {
xsd: NMTOKEN {
pattern = "[\p{lsBasicLatin}\p{lsLatin-1Supplenent}]*"
}

}l
el emrent nane {
xsd: t oken {

145

Chapter 10: Creating
Building Blocks

pattern = "[\p{lsBasiclLatin}\p{lsLatin-1Supplenment}]*"
}
}
el ement born { xsd:date },
el ement died { xsd:date }?
}e,
el ement character ({
attribute id {
xsd: NMITOKEN {
pattern = "[\p{lsBasiclLatin}\p{lsLatin-1Supplenent}]*"
}
}
el ement nane {
xsd: t oken {
pattern = "[\p{lsBasiclLatin}\p{lsLatin-1Supplenent}]*"
}
}
el ement born { xsd:date },
el ement qualification {
xsd: t oken {
pattern = "[\p{lsBasiclLatin}\p{lsLatin-1Supplenent}]*"
}
}
}*
}+
}

This means that aslong as | keep the XML version as my reference for this schema, | can easily get
the compact syntax but can't go the other way round (compact to XML) without loosing my entity
definition: the fact that | am using a XML mechanism has broken the round tripping between the two
syntaxes.

Other XML tools (such as XInclude or even just writing the schemaasa X SLT transformation) could
be used with pretty much the same effect. Depending on the case, these solutions will be supported
straight away by the parser which will parsethe Relax NG schema (likethisisthe casewith out internal
entity) or will require a first phase during which your schema is compiled into a fully compatible
Relax NG schema.

Asanexample, let'suse XSLT. When you need to do simple stuff, XSLT hasasimplified syntax where
thexsl : styl esheet and xsl : t enpl at e elements may be omitted (exactly like the Relax NG
granmar and st art elements may be omitted in a simple Relax NG schema). That means that if
we just want to use XSLT for its simplest features (here only to expend the values of variables), we
can write our schema as:

<?xm version = '1.0" encoding = 'utf-8 ?>
<el enent xm ns="http://rel axng.org/ ns/structure/1.0" nanme="library"
dat at ypeLi brary="htt p: //ww. w3. or g/ 2001/ XM_Schena- dat at ypes"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni'
xsl :version="1.0">
<xsl :vari abl e name="val i dChars" >
<param nane='pattern' >[\p{lsBasi cLatin}\p{lsLatin-1Suppl enent}]*</paranp
</ xsl:vari abl e>
<oneOr Mor e>
<el ement nane="book" >
<attribute name="id">
<data type="NMIOKEN' ><xsl : copy-of sel ect ="%val i dChars"/ ></dat a>
</attribute>

146

Chapter 10: Creating
Building Blocks

<attribute name="avail abl e">
<data type="bool ean"/ >
</attribute>
<el enent nane="isbn">
<dat a type="NMIOKEN'><xsl : copy-of sel ect="$val i dChars"/></dat a>
</ el ement >
<el enent name="title">
<attribute name="xmnl :1ang">
<data type="I| anguage"/>
</attribute>
<dat a type="t oken"><xsl :copy-of sel ect="%$validChars"/></data>
</ el ement >
<zer oO Mor e>
<el enent name="aut hor" >
<attribute name="id">
<dat a type="NMIOKEN'><xsl : copy-of sel ect="$val i dChars"/></dat a>
</attribute>
<el enent nane="nane">
<dat a type="t oken"><xsl :copy-of sel ect="%$validChars"/></data>
</ el ement >
<el enent nane="born">
<data type="date"/>
</ el ement >
<opti onal >
<el enent nane="di ed">
<data type="date"/>
</ el ement >
</ opti onal >
</ el ement >
</ zer oOr Mor e>
<zer oO Mor e>
<el enent nanme="character">
<attribute name="id">
<dat a type="NMIOKEN'><xsl : copy-of sel ect="$val i dChars"/></dat a>
</attribute>
<el enent nane="nane">
<dat a type="t oken"><xsl :copy-of sel ect="%$validChars"/></data>
</ el ement >
<el enent nane="born">
<data type="date"/>
</ el ement >
<el enent nanme="qualification">
<dat a type="t oken"><xsl :copy-of sel ect="%$validChars"/></data>
</ el ement >
</ el ement >
</ zer oOr Mor e>
</ el ement >
</ oneOr Mor e>
</ el ement >

Appliedto any XML document, thistransformation will produce aRelax NG schemawherethe XSLT
instruction:

<xsl : copy-of sel ect="%val i dChars"/>

will have been replaced by the content of the variable $validChars, i.e.:

147

Chapter 10: Creating
Building Blocks

<param nane='pattern' >[\ p{lsBasi cLatin}\p{lsLatin-1Suppl enent}]*</paranp

Text tools

Here, the situation is different and we can only use tools which, like the XSLT example just shown
above, will require afirst phase to produce a schema. One of the first tools which will come to mind
to people familiar with C programming is the C pre processor (CPP). The syntax for defining a text
replacement with CPP is #def i ne and references are just done using the name of the definition.
Something equivalent to our two previous examples could thus be:

#define VALIDCHARS pattern = '[\p{lsBasicLatin}\p{lsLatin-1Supplenent}]*"
el ement library {
el ement book {
attribute id {
xsd: NMTOKEN {
VAL| DCHARS
}

1
attribute available { xsd: bool ean },
el enment isbn {
xsd: NMTOKEN {
VAL| DCHARS
}

1
element title {
attribute xm:lang { xsd:|anguage },
xsd: t oken {
VAL| DCHARS
}

1
el ement aut hor {
attribute id {
xsd: NMTOKEN {
VAL| DCHARS

}
1
el ement nane {
xsd: t oken {
VAL| DCHARS
}
1
el emrent born { xsd:date },
el enent died { xsd:date }?
He
el ement character {
attribute id {
xsd: NMTOKEN {
VAL| DCHARS
}
1
el emrent nane {
xsd: t oken {
VAL| DCHARS
}
1

148

Chapter 10: Creating
Building Blocks

el ement born { xsd:date },
el ement qualification {
xsd: t oken {
VALI DCHARS

}
}
}*
}+
}

And, when compiled through CPP, this gives afully valid Relax NG schema (compact syntax) where
the occurrences of VALI DCHARS have been replaced by the parameter.

149

Chapter 12. Chapter 11: Namespaces

At this point, you may be wondering why we need a chapter about namespaces; after all sincethevery
first example our schemas include an attribute from the xml:lang namespace and that doesn't seem
like abig deal.

If you think about it more carefully, you'll see that namespaces are presenting two different challenges
to schema languages. The first is syntactical: schema languages need to provide a way to define to
which namespaces bel ong the elements and attributes which are described; the second is how schema
languages can cope with the extensibility which is one of the objectives of XML namespaces.

In this chapter, we'll have acloser look at these two challenges before seeing how Relax NG addresses
them.

A ten minutes guide to XML namespaces

Let's go back to the motivations beyond XML Namespaces. The first and basic one isto be akind of
replacement for the XML (SGML inherited) doctype public identifier and provide an way to identify
which vocabulary, i.e. which set of names is being used in a document. The XML/SGML way of
identifying the vocabulary used in our library would be to add a public identifier in the document type
declaration such as:

<?xm version="1.0"?7>

<! DOCTYPE | i brary PUBLIC "-//ERI CVANDERVLI ST//DTD for library//EN'" "library.dt
<library>

Y A

</library>

One of the downsides of this method is that it doesn't totally decouple the identification of
the vocabulary ("-//ERICVANDERVLIST//DTD for library//EN") from the location of the DTD
describing the vocabulary ("library.dtd"): | can't identify without giving the location! Thisis normal
since in fact, the identification is the identification of the DTD rather than the identification of the
abstract set of names.

Thefirst goal of XML namespacesisto provideidentifiersfor thisabstract notion of "vocabulary", "set
of names' or simply "namespaces" without linking these identifiers to any technical implementation
(DTD, schemasor whatever) defining or enforcing what they are. Theseidentifiersareno longer public
identifiers like those used in doctype declarations but URIs (or rather to be picky "URI references")
and to assign a namespace to all the elements from our example, we could write:

<?xm version="1.0"?>

<library xmns="http://eric.van-der-vlist.conmins/library">
S A

</library>

Theidentifier for my namespaceisthe string "http://eric.van-der-vlist.com/ng/library" and this address
doesn't have to host any document. At the time | am writing these lines, this address doesn't lead to
any web page at all and if you copy it into your favorite web browser, you'd just get a"404 Not Found"
error. The assumption isjust that | useit only if I own the domain and that | won't use it for several
different namespaces. Later on, | could publish something at that location, either a documentation
(formal or not) or any kind of schema; that's not forbidden by the namespaces recommendation, this
can be useful but the whole subject ishighly controversial. Also notethat XML namespaces per see do
not define any way to associate resources such as schemas or documentations with a namespace URI.

150

Chapter 11: Namespaces

The namespace declaration (xmins="http://eric.van-der-vlist.com/nglibrary") has been done for the
document element ("library") and isinherited by all its children elements.

The second goal of XML namespacesisto provide away to mix elementsand attributesfrom different
namespaces in a single document. In our library for instance, the library and book elements use a
vocabulary specific to libraries while the author element could use a vocabulary for human resources
and the character element be amixed of both: the character element itself and the qualification element
would be from the library namespace while the nanme and bor n elements would be from the HR
vocabulary.

Leveraging on declaration inheritance, this could be achieved using the xm ns declaration has we
have already seen:

<?xm version="1.0"?>
<library xmns="http://eric.van-der-vlist.com ns/library">
<book id="b0836217462" avail abl e="true">
<i shn>0836217462</i shn>
<title xm:lang="en">Being a Dog Is a Full-Time Job</title>
<aut hor id="CM5" xm ns="http://eric.van-der-vlist.conf ns/person">
<nane>Charl| es M Schul z</ nane>
<bor n>1922- 11- 26</ bor n>
<di ed>2000- 02- 12</ di ed>
</ aut hor >
<character id="PP">
<name xm ns="http://eric.van-der-vlist.conl ns/person">Peppermn nt Patty</nam
<born xm ns="http://eric.van-der-vlist.conlns/person">1966-08-22</born>
<qual i fication>bold, brash and tonboyi sh</qualification>
</ character>
<charact er id="Snoopy">
<nanme xm ns="http://eric.van-der-vlist.conlns/person">Snoopy</nane>
<born xm ns="http://eric.van-der-vlist.conlns/person">1950-10- 04</ bor n>
<qualification>extroverted beagl e</qualification>
</ character>
<charact er id="Schroeder">
<name xm ns="http://eric.van-der-vlist.conl ns/person">Schroeder </ nane>
<born xm ns="http://eric.van-der-vlist.conlns/person">1951-05-30</ born>
<qual i fication>brought classical nusic to the Peanuts strip</qualification>
</ character>
<character id="Lucy">
<name xm ns="http://eric.van-der-vlist.conlns/person">Lucy</ nane>
<born xm ns="http://eric.van-der-vlist.conlns/person">1952-03-03</born>
<qual i fication>bossy, crabby and sel fish</qualification>
</ character>
</ book>
</library>

But we see that it would rapidly become very verbose and XML namespaces provide away to assign
prefixes to namespaces which can then be used to prefix the names of the elements (and attributes)
to declare their namespaces. The namespace declared using the xm ns attributeis called the "default
namespace” since it is assigned to elements which have no prefix. The document above could be
rewritten using the default namespace for the library and assigning a prefix to the other namespace:

<?xm version="1.0"?>
<library
xm ns="http://eric.van-der-vlist.conins/library"
xm ns: hr="http://eric.van-der-vlist.conf ns/person">

151

Chapter 11: Namespaces

<book id="b0836217462" avail abl e="true">
<i shn>0836217462</ i shn>
<title xm :lang="en">Being a Dog Is a Full-Time Job</title>
<hr: aut hor id="CM5">
<hr: name>Charl es M Schul z</ hr: nane>
<hr: born>1922-11- 26</ hr: bor n>
<hr: di ed>2000- 02- 12</ hr: di ed>
</ hr: aut hor >
<character id="PP">
<hr: name>Pepper m nt Patty</hr: nane>
<hr: bor n>1966- 08- 22</ hr : bor n>
<qual i fication>bold, brash and tonboyi sh</qualification>
</ char act er >
<char act er id="Snoopy">
<hr : name>Snoopy</ hr : nane>
<hr: bor n>1950- 10- 04</ hr : bor n>
<qual i fication>extroverted beagl e</qualification>
</ char act er >
<character id="Schroeder">
<hr: name>Schr oeder </ hr : nane>
<hr: bor n>1951- 05- 30</ hr : bor n>
<qual i fication>brought classical nusic to the Peanuts strip</qualification>
</ char act er >
<character id="Lucy">
<hr: name>Lucy</ hr: nane>
<hr: bor n>1952- 03- 03</ hr : bor n>
<qual i fication>bossy, crabby and sel fish</qualification>
</ char act er >
</ book>
</library>

The value of the prefix (hr inthisexample) is chosen arbitrarily by the author of the XML document
and should be considered as not significant by applications conform the the namespaces specification.
Here, | have chosen hr standing for "Human Resources' to make it easier to remember for human
readers, but | could have chosen any other value (such as f 00) for this prefix as long as, of course,
the prefix matches its definition.

We could aso prefer, for symmetry, use a prefix for both namespaces:

<?xm version="1.0"7?>
<lib:library
xmns:lib="http://eric.van-der-vlist.comns/library"
xm ns: hr="http://eric.van-der-vlist.conf ns/person">
<li b: book id="b0836217462" avail abl e="true">
<lib:isbn>0836217462</1i b:isbn>
<lib:title xm:lang="en">Being a Dog Is a Full-Tine Job</lib:title>
<hr: aut hor id="CWV5">
<hr: name>Charl es M Schul z</ hr: nane>
<hr: born>1922- 11- 26</ hr: bor n>
<hr: di ed>2000- 02- 12</ hr : di ed>
</ hr: aut hor >
<lib:character id="PP">
<hr: name>Pepperm nt Patty</hr: nane>
<hr: bor n>1966- 08- 22</ hr : bor n>
<lib:qualification>bold, brash and tonboyish</Ilib:qualification>
</lib:character>
<l i b: character id="Snoopy">

152

Chapter 11: Namespaces

<hr : name>Snoopy</ hr : nane>
<hr: bor n>1950- 10- 04</ hr : bor n>
<lib:qualification>extroverted beagle</lib:qualification>
</lib:character>
<li b:character id="Schroeder">
<hr: name>Schr oeder </ hr : nane>
<hr: bor n>1951- 05- 30</ hr : bor n>
<lib:qualification>brought classical nmusic to the Peanuts strip</lib:qualif
</lib:character>
<lib:character id="Lucy">
<hr: name>Lucy</ hr: nane>
<hr: bor n>1952- 03- 03</ hr : bor n>
<lib:qualification>bossy, crabby and selfish</Ilib:qualification>
</lib:character>
</lib: book>
</lib:library>

Note that for a namespace aware application, these three documents are considered equivalent:
the prefixes are only shortcuts to associate a namespace URI and a "local name" (the part of the
name which is after the colon) to disambiguate this name from eventual synonyms defined in other
namespaces.

Up to now, we've spoken of elements and attributes are given asimilar yet specia treatment. Similar
in that attribute names can be prefixed to show that they belong to a namespace but special since the
default namespace doesn't apply to them and that the attributes which have no prefix are considered
to have no namespace URI but still "belong” to the namespace of their parent element. The reason
for thisisthat attributes are supposed to be used to provide meta-data qualifying their parent element
rather than to contain actual information and being qualifiers, it has been considered that by default
they "belong" to the same vocabulary than their parent elements. This is the reason why | have kept
thei d and avai | abl e attributes without prefix in my there examples.

The last goa of XML namespaces (and the motivation for taking that much pain to alow several
namespaces in a single document) is to facilitate the development of independent (or semi-
independent) vocabul aries which can be used as building blocks. One of theideasisthat if applications
are cleanly developed and just drop elements and attributes which they don't understand documents
can be extended without breaking existing applications.

For instance, in our library we've not defined the publisher of the book. We can add apubl i sher
element in our namespace, but instead we might want to use the definition given by the Dublin Core
Metadata Initiative (DCMI) and use their namespaces to write:

<?xm version="1.0"?>
<library
xm ns="http://eric.van-der-vlist.conins/library"
xm ns: hr="http://eric.van-der-vlist.conf ns/person"
xm ns:dc="http://purl.org/dc/el enents/1.1/">
<book id="b0836217462" avail abl e="true">
<i shn>0836217462</ i shn>
<title xm :lang="en">Being a Dog Is a Full-Time Job</title>
<dc: publ i sher >Andrews M Meel Publ i shi ng</dc: publisher>
S A
</ book>
</library>

A double benefit is expected from doing so. Everyone understands that the publ i sher element is
corresponding to the definition given by the DCMI:

153

Chapter 11: Namespaces

URI : http://purl.org/dc/el ements/ 1.1/ publisher

Nanespace: http://purl.org/dc/elements/ 1.1/

Nane: publ i sher

Label : Publ i sher

Definition: An entity responsible for nmaking the resource avail abl e
Conment : Exampl es of a Publisher include a person, an organization

or a service.
Typically, the name of a Publisher should be used to
i ndicate the entity.
Type of term http://dublincore. org/usage/ docunment s/ pri nci pl es/ #el enment

St at us: http://dublincore. org/usage/ docunment s/ pr ocess/ #r ecommended
Dat e i ssued: 1998-08- 06

Date nodified: 2002-10-04

Deci si on: htt p: //dubl i ncore. org/usage/ deci si ons/ #Deci si on- 2002- 03
Thi s version: http: //dublincore. org/usage/terns/dc/#publisher-004

Repl aces: http://dublincore. org/usage/terns/dc/#publisher-003

Again, note that the mechanism to retrieve this definition is not specified by the XML namespace
recommendation. The second benefit isthat if my application has been implemented to skip e ements
and attributes from unsupported namespaces, the addition of this dc: publ i sher element won't
break anything.

The two challenges of namespaces

The progression followed in our "10 minutes guide to namespaces' has carefully be designed to let
you guess what these two challenges are and you'll probably have already seen where | wanted to go!

Thefirst issueisto provide the ad-hoc mechani smsto associate namespace URIsto patternsdescribing
elements and attributes and this will be described in the next section.

The second issueisto provide mechani smsto write extensible schemasfor those appli cations skipping
unknown namespaces. Of course, writing extensible schemas is not limited to multi namespaces
documents and we will see more of it in our next chapter, but we will start introducing the mechanism
called "name classes" whichisthe key to extensibility with Relax NG in the last section of this chapter
to fully cover the case of hamespaces.

Namespace declarations

Namespace declarations in a Relax NG schema are following the same principles as namespace
declarations in an instance document with some differences in the syntax and we will aso find both
the possibility to use default namespaces and the possibility to use prefixes.

Using default namespaces

The namespace expected in the instance document can be defined through the ns attribute whichisan
"inherited" attribute like the dat at ypeLi br ary attribute seen before. Being inherited means that
we can define it in the document element of the schema if it remains the same all over the schema.
For instance, to write a schema for the example where al the library is using the same namespace,
we could write:

<?xm version="1.0" encodi ng="utf-8"?>
<el enent xm ns="http://relaxng.org/ ns/structure/1.0" nanme="library"
ns="http://eric.van-der-vlist.conmins/library">
<oneOr Mor e>

154

Chapter 11: Namespaces

<el enment nane="book" >
<attri bute nanme="id"/>
Y
</ el enent >
</ oneOr Mor e>
</ el enent >

Or, using the compact syntax:

default namespace = "http://eric.van-der-vlist.conins/library"

el enent library

{
el enent book
{
attribute id { text },
ol
}*
1+
}

Note that the definition of the default namespace in a Relax NG schema do not apply to attributes
(exactly as the default namespace doesn't apply to attributes in instance documents).

Exactly as default namespaces could be used and changed all over a multi namespace document,
when we are using the XML syntax the ns attribute can be changed in a schema and to validate the
documents with two namespaces show in our " 10 minutes guide to namespaces”, we could write:

<?xm version="1.0" encodi ng="utf-8""?>
<el enent xm ns="http://rel axng. org/ ns/structure/1.0"
nanme="1i brary"
ns="http://eric.van-der-vlist.conmins/library">
<oneOr Mor e>
<el ement nane="book" >
<attribute nanme="id"/>
<attribute nane="avail abl e"/>
<el emrent nane="isbn">
<text/>
</ el enent >
<el emrent nanme="title">
<attribute name="xn:|ang"/>
<text/>
</ el enent >
<zer oOr Mor e>
<el enent name="aut hor" ns="http://eric.van-der-vlist.conf ns/person">
<attribute nanme="id"/>
<el emrent nane="nane" >
<text/>
</ el enent >
<el ement nane="born">
<text/>
</ el enent >

155

Chapter 11: Namespaces

<opti onal >
<el enent nane="di ed">
<text/>
</ el ement >
</ opti onal >
</ el ement >
</ zer oOr Mor e>
<zer oOr Mor e>
<el enent nanme="character">
<attribute name="id"/>
<el enent name="nane" ns="http://eric.van-der-vlist.com ns/person">
<text/>
</ el ement >
<el enent name="born" ns="http://eric.van-der-vlist.com ns/person">
<text/>
</ el ement >
<el enent nanme="qualification">
<text/>
</ el ement >
</ el ement >
</ zer oOr Mor e>
</ el ement >
</ oneOr Mor e>
</ el ement >

The compact syntax does not provide such a way to redefine the default namespace and defining
prefixeswill bethe preferred way to define schemaswith multi ple namespaces when using the compact
syntax.

Since the three variations used to write the document with the two namespaces in our "10 minutes
guide" are considered equivalent for namespaces aware applications, the schema which we've just
written will validate them indifferently. There is thus a complete independence between the prefixes
and default namespaces used to write the instance document and those used in the schema and the
match between namespaces is only done through matching the namespace URI's of each element and
attribute.

Using prefixes

Although the definition of the default target namespace in a Relax NG is done through ans attribute
and thus do not rely on the declaration of the default namespace of the Relax NG document itself
(in our examples, the default namespace of the Relax NG document is the Relax NG namespace),
the declaration of the prefixes used as shortcut to the non default target namespaces is done through
namespaces declarations. In other words, to define a hr prefix which will be used as a prefix for
the namespaces in names or attributes of the instance, | declare this prefix through a xml ns: hr
declaration as if | wanted to use it as a prefix for an element or attribute of the Relax NG document.

We can mix both default and non default namespaces in our schemas and write:

<?xm version="1.0" encodi ng="utf-8""?>
<el enent xm ns="http://rel axng. org/ ns/structure/1.0"
name="1i brary"
ns="http://eric.van-der-vlist.conmns/library"
xm ns: hr="http://eric.van-der-vlist.conf ns/person">
<l-- The default target nanespace is "http://eric.van-der-vlist.comns/librar
<oneOr Mor e>
<el ement nane="book" >

156

Chapter 11: Namespaces

<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<el enent nane="isbn">
<text/>
</ el enent >
<el enment nane="title">
<attribute name="xm :1ang"/>
<text/>
</ el enent >
<zer oOr Mor e>
<el enent nane="hr: aut hor">
<l-- Here we are using a "hr" prefix to match "http://eric.van-der-vlist.ci
<attri bute nanme="id"/>
<el enent nane="hr: nane" >
<text/>
</ el enent >
<el enent nane="hr: born">
<text/>
</ el enent >
<opti onal >
<el enent nane="hr: di ed" >
<text/>
</ el enent >
</ opti onal >
</ el enent >
</ zer oOr Nor e>
<zer oOr Mor e>
<el enment nane="character">
<attri bute nanme="id"/>
<el enent nane="hr: nane" >
<text/>
</ el enent >
<el enent nane="hr: born">
<text/>
</ el enent >
<el enent nanme="qualification">
<text/>
</ el enent >
</ el enent >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >

A namespace declaration is provided in the compact syntax to define namespace prefixes:

default namespace = "http://eric.van-der-vlist.conins/library'
nanespace hr = "http://eric.van-der-vlist.conins/person”

el ement library

{

el ement book

{
attribute id { text },

157

Chapter 11: Namespaces

attribute available { text },

el ement isbn { text },

element title { attribute xm:lang { text }, text },
el enent hr: aut hor

{
attribute id { text },
el ement hr:name { text },
el ement hr:born { text },
element hr:died { text }?
}e,
el enment character
{
attribute id { text },
el ement hr:name { text },
el ement hr:born { text },
el ement qualification { text }
}*
}+

Again, thisschemawill validatethethreevariations seenin the"10 minutesguide”. In fact thisschema
validates exactly the same set of document than the schema using only default namespaces. The third
variation would be to use prefixes for both namespaces:

<?xm version="1.0" encodi ng="utf-8"?>
<el enent xm ns="http://rel axng. org/ ns/structure/1.0"
nanme="1ib:library"
xm ns:lib="http://eric.van-der-vlist.comns/library"
xm ns: hr="http://eric.van-der-vlist.con ns/person">
<oneOr Mor e>
<el ement nane="Ii b: book" >
<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<el ement nane="Ilib:isbn">
<text/>
</ el enent >
<el enment nane="lib:title">
<attribute name="xn:|ang"/>
<text/>
</ el enent >
<zer oOr Mor e>
<el enent nane="hr: aut hor">
<attri bute nanme="id"/>
<el enent nane="hr: nane" >
<text/>
</ el enent >
<el enent nane="hr: born">
<text/>
</ el enent >
<opti onal >
<el enent nane="hr: di ed" >
<text/>
</ el enent >
</ opti onal >
</ el enent >
</ zer oOr Nor e>

158

Chapter 11: Namespaces

<zer oOr Mor e>
<el enment nane="lib:character">
<attri bute nanme="id"/>
<el enent nane="hr: nane" >
<text/>
</ el enent >
<el enent nane="hr: born">
<text/>
</ el enent >
<el enent nanme="Ilib: qualification">
<text/>
</ el enent >
</ el enent >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >

or:
nanespace lib = "http://eric.van-der-vlist.com ns/Ilibrary”
nanespace hr = "http://eric.van-der-vlist.conins/person”

element lib:library

{

el ement |ib: book
{
attribute id { text },
attribute available { text },
element lib:isbn { text },
element lib:title { attribute xm:lang { text }, text },
el ement hr: aut hor
{
attribute id { text },
el ement hr:name { text
el ement hr:born { text
el ement hr:died { text

—

P
el enent |ib:character
{
attribute id { text },
el ement hr:name { text },
el ement hr:born { text },
element lib:qualification { text }
}*
}+

And again, this schema is equivalent to the previous ones since it's validating all the variations of
namespaces declarations in the instance documents.

159

Chapter 11: Namespaces

Accepting "foreign namespaces"

The last schemas which we have seen will validate instance documents independently of the prefixes
being used and they meet the first goals of the namespaces which are to disambiguate elements in
multi-namespaces documents. However, they will fail to validate the instance document where we've
addedthedc: publ i sher element. Wecould easily update our schemato explicitly add this element
to the content model of our book element, but that wouldn't make it an open schemaaccepting addition
of elements from any other namespace.

Instead of some"magic feature" which would probably have been quiterigid, Relax NG hasintroduced
aflexible and clever feature to let you define your own level of "openness'. The ideato do soisto
let you define your own "wildcard" and once you get it, you can include it wherever you want in your
content model.

Constructing our wildcard

Before we start, let's define what we are trying to achieve! We want a named pattern allowing any
element or attribute which do not belongtoour | i b and hr namespaces. We probably want to exclude
elements and attributes with no namespaces: attributes because our own attributes have no namespace
and we might want to differentiate them and elements because all owing elements without namespaces
in adocument using namespaces is kind of messy.

For the content model of these foreign elements, we have two main options:

* We can be liberal and accept anything including elements and attributes from the namespaces
described in the schema.

» We can be more conservative and accept only foreign elements.

If wewant to beliberal, we must definetheinner content of thewildcard to formalizewhat anyt hi ng
is. Inthis case, this can be expressed as any number of elements (themselves containing anyt hi ng),
attributes and text in any order and this is a good candidate for a recursive named pattern:

<defi ne nanme="anyt hi ng">
<zer oOr Mor e>
<choi ce>
<el enment >
<anyNane/ >
<ref nane="anyt hi ng"/>
</ el enent >
<attribute>
<anyNane/ >
</attribute>
<text/>
</ choi ce>
</ zer oOr Mor e>
</ defi ne>

or:
anything = (element * { anything } | attribute * { text } | text)*

The only thing new here is the anyNane element (XML syntax) or * operator (compact syntax) to
replace the name of an element or attribute. Thisisthe first example of a"name class’ (i.e. a class of
names) and we'll see that there are many ways to restrict this name class. Now that we have a named
pattern to express what anyt hi ng is, we can useit to define what "foreign" elements mean:

160

Chapter 11: Namespaces

<define name="forei gn-el enents">
<zer oOr Mor e>
<el ement >
<anyName>
<except >
<nsNanme ns=""/>
<nsName ns="http://eric.van-der-vlist.comns/library"/>
<nsName ns="http://eric.van-der-vlist.com ns/person"/>
</ except >
</ anyNane>
<ref nanme="anythi ng"/>
</ el ement >
</ zer oOr Mor e>

</ define>
or:
default namespace lib = "http://eric.van-der-vlist.comns/library"
nanespace |ocal = ""
nanespace hr = "http://eric.van-der-vlist.conins/person”
A
foreign-elenents = elenent * - (local:* | lib:* | hr:*) { anything }*

To achieve our purpose, we have introduced two new elements embedded in the any Nane name
class: except (or - inthe compact syntax) which has here the same meaning than with enumerations
and nsNarre (xxx:* in the compact syntax) which means "any name from a namespace". When using
the XML syntax, nsNare takesans attribute while prefixes are used when using the compact syntax.
This usage of prefixesin the compact syntax implies that declarations are added to define prefixesfor
thel i b (whichisalso the default namespace) and hr namespaces but also for "no namespace” (here
we have used the prefix | ocal).

Note that name classes are not considered as patterns but as a specific set of elements with a specific
purpose. A consequence of this statement is that name classes definitions cannot be placed within
named patterns to be reused and that we had to repeat the same name class for both elements and
attributes.

The same can be done to define foreign attributes:

<define nanme="foreign-attributes">
<zer oOr Mor e>
<attri bute>
<anyNane>
<except >
<nsName ns=""/>
<nsNanme ns="http://eric.van-der-vlist.comns/library"/>
<nsNanme ns="http://eric.van-der-vlist.com ns/person"/>
</ except >

161

Chapter 11: Namespaces

</ anyNane>
</attribute>
</ zer oOr Nor e>
</ defi ne>

or:
foreign-attributes = attribute * - (local:* | lib:* | hr:*) { text }*

And for our convenience, we can also define foreign nodes by combining foreign elements and
attributes:

<define name="forei gn- nodes" >
<zer oOr Mor e>
<choi ce>
<ref nane="foreign-attributes"/>
<ref nane="foreign-el enents"/>
</ choi ce>
</ zer oOr Mor e>
</ defi ne>

or:

foreign-nodes = (foreign-attributes | foreign-elenments)*

Using our wildcard

So far so good and now that we have defined what f or ei gn- nodes are, we can use it to give
more extensibility to our schema. To enableforeign-nodeswherewehaveaddedthedc: publ i sher
element, i.e. betweenthet i t | e and aut hor elements, we could write (switching to a"flatter" style
to make it more readable):

<el enent nane="book" >

<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<ref nanme="isbn-elenent"/>
<ref nanme="title-elenent"/>
<ref nane="forei gn-nodes"/>
<zer oOr Mor e>

<ref nanme="aut hor-el ement"/>
</ zer oOr Nor e>
<zer oOr Mor e>

<ref nanme="character-element"/>
</ zer oOr Nor e>

</ el enent >

or:

book-el ement =

162

Chapter 11: Namespaces

el ement book

{
attribute id { text },
attribute available { text },
i shn-el emrent,
title-elenent,
f or ei gn- nodes,
aut hor - el enent *,
character-el enent *

This would do the trick for the instance document shown above, but wouldn't validate a document
where foreign nodes would be added at any other place, for instance between thei sbn andtitl e
elements. We could insert areferenceto thef or ei gn- nodes pattern between al the elements, but
this would be very verbose and if we think about it, we want hereto i nt er | eave these foreign
nodes between the content defined for the book element and that's a good opportunity to use the
i nterl eave pattern:

<el enent nane="book" >
<interl eave>
<gr oup>
<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<ref nanme="isbn-elenent"/>
<ref nanme="title-elenent"/>
<zer oOr Mor e>
<ref nanme="aut hor-el ement"/>
</ zer oOr Nor e>
<zer oOr Mor e>
<ref nanme="character-elenment"/>
</ zer oOr Nor e>
</ group>
<ref nane="forei gn-nodes"/>
</interl eave>
</ el enent >

or:

el enent book

{

(
attribute id { text },

attribute available { text },
i sbn-el emrent,
title-el ement,
aut hor - el enent *,
character-el enent *
)

& foreign-nodes

}

As seen in "Chapter 6: More Patterns', foreign nodes will be interleaved in the group which was
previously defining the content of the book element: the order of the group is still enforced but foreign
nodes may appear in any order and everywhere.

163

Chapter 11: Namespaces

Where should we allow foreign nodes?

We may be tempted to allow these foreign nodes everywhere in our document, however if the
extensibility which would be given is usually fine in elements such as book which aready have
children element, it's often considered a bad practice to do the same in elements which content is
text only, such asthei sbn element where this would transform atext content models into a mixed
content model.

Thisisdue to the weak support for mixed content models which we've already mentioned in " Chapter
6: More patterns® when we've discussed the limitations of the m xed pattern. A consequence of
alowing foreign elementsini sbn elements would be that the content of this element could not be
considered adat a any longer and that no datatypes nor restrictions could be applied any longer.

Beyond the limitation of Relax NG, applications would have to concatenate text nodes spread over
the foreign elements and thisis may be pretty verbose with tools such as XPath and XSLT.

A compromise which is often taken isto allow only foreign attributesin text content models, but that's
not an issue for ussince our f or ei gn- at tri but es isready for this purpose:

<el enent nane="isbn">
<ref nane="foreign-attributes"/>
<text/>

</ el ement >

or:

el ement isbn { foreign-attributes, text }

A couple of traps to avoid

If most of the time, using our wildcards is straightforward there are some situations where this may
lead to unexpected schema errors, especially with attributes which usage is subject to restrictions.

Thefirst of the trapswhich I'd like to mention here isrelated to the fact that the definition of attributes
cannot be duplicated in a schema and the following definition would be invalid:

element title { attribute xm:space, attribute xm:space, text } # this is inv

This seems to be pretty sensible since duplicate attributes are forbidden in the instance document.
Unfortunately, the attribute xm : space is allowed by our forei gn-attributes named
template and we will get an error aswell if we extend the definition of our title element without taking
care and write:

element title { foreign-attributes, attribute xm :space, text } # this is also

To fix this error, we will need either to remove the xml:space attribute from the name class of our
foreign attributes or to remove the implicit mention of xml:space in our definition and just write:

element title { foreign-attributes, text }

164

Chapter 11: Namespaces

Of course, this doesn't remove the possibility to include a xml:space attribute inthet i t | e element
since this attribute is a"foreign attribute” as defined in our named pattern.

Thesecondtrapisalevel higher onthe samelineandisspecific tothe DTD compatibility | D datatype.
In "Chapter 8: Datatype libraries', when we have seen this datatype, we have used it to define the
book element:

<el enent nane="book" >
<attribute name="id">
<dat a dat atypelLi brary="http://relaxng. org/ ns/conpatibility/datatypes/1.0" f
</attribute>
S
</ el ement >

or:

el enent book {
attribute id {dtd: D},
A

Hereagain, wewill generatean error if weadd our foreign nodesand thereason for thiserror isthat this
datatype is emulating the DTD in all its aspects including the fact that if an element book is defined
withani d attribute having atype | D, al the other definitions of an attributei d hosted by an element
book must have the sametype| D. The problem here isthat, hidden in the definition of anyt hi ng,
there can be elements book having an attributei d of typet ext and thisis considered as an error.

The only workaround if we want to usethe DTD type| Disto remove this possibility from the named
pattern anyt hi ng. A fast solution would be to exclude our namespaces from the class names in
anyt hi ng but we can find more elaborated constructionswith the el ements which will beintroduced
in the next chapter.

Adding foreign nodes through combination

To add our foreign nodes, we have transformed:

<el emrent nane="book" >
<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<ref nanme="isbn-elenent"/>
<ref name="title-elenment"/>
<zer oOr Mor e>
<ref nanme="aut hor-el ement"/>
</ zer oOr Mor e>
<zer oOr Mor e>
<ref nanme="character-element"/>
</ zer oOr Mor e>
</ el enent >

or:

el ement book

{

165

Chapter 11: Namespaces

attribute id { text },
attribute available { text }
i shn-el emrent,

title-elenent,

aut hor - el enent *,

character-el enent *

into:

<el emrent nane="book" >
<interl eave>
<gr oup>
<attribute name="id"/>
<attribute nanme="avail abl e"/>
<ref nanme="isbn-elenent"/>
<ref nanme="title-elenment"/>
<zer oOr Mor e>
<ref nanme="aut hor-el ement"/>
</ zer oOr Mor e>
<zer oOr Mor e>
<ref nanme="character-elenment"/>
</ zer oOr Mor e>
</ group>
<ref nane="forei gn-nodes"/ >
</interl eave>
</ el enent >

or:

el ement book

{

attribute id { text },
attribute available { text },
i sbn-el enent,

title-el enent,

aut hor - el emrent *,

character-el enent *

)

& foreign-nodes

}

and this operation could be done as a pattern combination by interleave if the content of the element

book isdescribed as a named pattern:

<defi ne nanme="book-content">
<attribute nanme="id"/>
<attribute nane="avail able"/>
<ref nane="isbn-el enent"/>
<ref nane="title-elenent"/>
<zer oOr Mor e>

<ref nane="aut hor-el enent"/>

</ zer oOr Mor e>

166

Chapter 11: Namespaces

<zer oOr Mor e>
<ref name="character-elenment"/>
</ zer oOr Nor e>
</ defi ne>

or:

book-content =
attribute id { text },
attribute available { text },
i sbn-el enent,
title-el enent,
aut hor - el erent *,
character-el enent *

This pattern can then easily be extended as:

<defi ne nane="book-content" conbi ne="interl eave">
<ref nane="forei gn-nodes"/>
</ defi ne>

or
book-content &= foreign-nodes
and used to define the book element:

<el enent nanme="book" >
<ref name="book-content"/>
</ el enent >

or:
el ement book { book-content }

This combination can be done in a single document but this mechanism can also be used to extend a
vocabulary through merging a grammar containing only these combinations.

Note that the exact same combination does also work for appending foreign attributes to the elements
which have atext only content model.

Namespaces and building blocks, chameleon
design

Back to XHTML 2.0

In "Chapter 10: Creating Building Blocks', we've seen the example of the schemas for XHTML 2.0
and | have urged you not to worry about the namespace declarations which hadn't been introduced yet.
Let's have acloser look now that we know how to declare namespaces.

167

Chapter 11: Namespaces

If we look for namespace declarations in the top level schema (the "driver"), we will find them only
in the grammar element:

<?xm version="1. 0" encodi ng="UTF-8""?>

<granmmar ns="http://ww. w3. or g/ 2002/ 06/ xht m 2"
xm ns="http://rel axng. org/ ns/structure/1.0"
xm ns: x="http://ww. w3. org/ 1999/ xht m ">

<x: h1>RELAX NG schema for XHTM. 2. 0</x: hl>
Y A
<x: h3>Structure Mdul e</x: h3>
<i nclude href="xhtm -struct-2.rng"/>
R
</ gr ammar >

What do we seein this snippet?

» xmins="http://relaxng.org/ng/structure/1.0" means that the default namespace of the schema as
a XML document is "http://relaxng.org/ng/structure/1.0". That just means that elements without
prefix in the schema asa XML document are Relax NG patterns.

* ns="http://www.w3.0rg/2002/06/xhtml2" defines the default namespace for the schema itself: the
schema describes el ements from the " http://www.w3.0rg/2002/06/xhtml 2" namespace unless some
other namespace is explicitly defined. Let's call it the "target namespace” to avoid any confusion
with the default namespace of the schema considered as a XML document.

o xmins:x="http://www.w3.0rg/1999/xhtml" defines that the prefix "X" is assigned to "http://
www.w3.0rg/1999/xhtml". This declaration is used here to include XHTML documentation in the
schema and we will see thisin more detail in "Chapter 13: Annotating Schemas'.

Thiswould trandate in the compact syntax as:

default namespace = "http://ww. w3. or g/ 2002/ 06/ xht m 2"
nanespace x = "http://ww. w3. org/ 1999/ xhtm "

i ncl ude "xhtm -struct-2.rnc"
Let's now have alook at the module describing the structure:

<?xm version="1.0" encodi ng="UTF-8"7?>
<grammar xm ns="http://rel axng.org/ ns/structure/1.0"
xm ns: x="http://ww. w3. org/ 1999/ xhtm " >

168

Chapter 11: Namespaces

<x: hl1>Structure Mdul e</x: hl>
oL

</ gr anmar >
Or:

nanespace x = "http://ww. w3. org/ 1999/ xhtm "

x:hl ["Structure Mdule"]
start = htn

The big difference with the top level schemais that the target namespace isn't defined in the schema
defining the module.

How can that work? It'safeature commontothei ncl ude and ext er nal Ref pattern than when no
target namespaceisdefined in theimported schema, the target namespace from the schemaperforming
the inclusion or external reference is used. In our case, that means that the target namespace from
the driver ("http://www.w3.0rg/2002/06/xhtml2") is used by any module which do no specify atarget
namespace.

For this reason, schemas without target namespace are often called "chameleon schemas' since they
take the target namespace of any context in which they are included or referenced.

Inthe compact syntax, ani nher i t qualifier hasbeen added to specify anamespace must beinherited
at inclusion or external referencetime:

nanespace xhtm 2 = "http://ww. w3. org/ 2002/ 06/ xht ni 2"
nanespace x = "http://ww. w3. org/ 1999/ xhtm "

i nclude "xhtm -struct-2.rnc"” inherit = xhtm 2

Thisi nherit qualifier has the same role asans attributein ani ncl ude or externaRef" of the
XML syntax.

Applicability to our library

Back to XHTML 2.0 and our library, we may want to include XHTML elementsinto the description of
our library, for instance to alow the same content for the definition of our titles and qualification than

169

Chapter 11: Namespaces

inthe XHTML p element, i.e. what's described in the "Inline text" module asthe | nl i ne. nodel
named pattern. Theidea beside this mechanism of modulesisthat we can select the moduleswe'll want
to include and we can follow this principle to pick just what we need and that's just what we'll do by
including the common modules ("xhtml-attribs-2.rng" and "xhtml-datatypes-2.rng") and the "Inline
Text" module (xhtml-inltext-2.rng"):

<?xm version="1.0" encodi ng="UTF-8"?>
<granmmar xm ns="http://rel axng.org/ns/structure/1.0">
<start>
<ref nane="library"/>
</start>
<include href="xhtm -attribs-2.rng"/>
<i nclude href="xhtm -inltext-2.rng"/>
<i ncl ude href="xhtmn -dat at ypes-2.rng"/>
<define name="library">
<el enent name="Ilibrary">
<oneOr Mor e>
<el enment nane="book" >
<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<el enent nane="isbn">
<text/>
</ el enent >
<el enment nane="title">
<attribute name="xnl:Iang"/>
<ref name="Inline. nodel "/ >
</ el enent >
<oneOr Mor e>
<el enent nane="aut hor">
<attri bute nanme="id"/>
<el enent nane="nane" >
<text/>
</ el enent >
<opti onal >
<el enent nane="born">
<text/>
</ el enent >
</ opti onal >
<opti onal >
<el enent nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ el enent >
</ oneOr Mor e>
<zer oOr Mor e>
<el enent nane="character">
<attri bute nanme="id"/>
<el enent nane="nane" >
<text/>
</ el enent >
<opti onal >
<el enent nane="born" >
<text/>
</ el enent >
</ opti onal >
<el enent nanme="qualification">

170

Chapter 11: Namespaces

<ref nanme="Inline. nodel "/ >
</ el enent >
</ el enent >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >
</ defi ne>
</ gr ammar >

Or:

start = library
i nclude "xhtm -attribs-2.rnc"
i nclude "xhtm -inltext-2.rnc"
i ncl ude "xhtml -dat at ypes-2.rnc”
library =
elenent library {
el enent book {
attribute id { text },
attribute available { text },
el enent isbn { text },
elenent title {
attribute xm:lang { text },
I nline. nodel
},
el enent aut hor {
attribute id { text
el enent name { text
el enent born { text
el enent died { text
H
el enent character {
attribute id { text },
el enent name { text },
el enent born { text }?,
el enent qualification { Inline.nnodel }
}*
1+
}

—— o

N N T

With this schema, | can include all the XHTML formatting described in the "Inline Text Module" in
mytitleandqualificationeements but sincethey must bein the target namespace defined
in this schema (i.e. with no namespace since | haven't defined a target namespace here). The local
names of the elements are thus the same than those of XHTML 2.0 but these elements must have no
namespace. An example of valid document could be:

<?xm version="1.0" encodi ng="utf-8""?>
<library>
<book id="b0836217462" avail abl e="true">
<i shn>0836217462</i sbn>
<title xm :lang="en">Being a Dog Is a <enpFull-Tine Job</enp</title>
<aut hor id="CM5">
<nane>Charl es M Schul z</ nane>
<bor n>1922- 11- 26</ bor n>

171

Chapter 11: Namespaces

<di ed>2000- 02- 12</ di ed>
</ aut hor >
<character id="PP">
<nanme>Pepper m nt Patty</ name>
<bor n>1966- 08- 22</ bor n>
<qual i fication>bold, brash and tonboyi sh</qualification>
</ character>"http://ww. w3. org/ 2002/ 06/ xht m 2"
<char act er id="Snoopy" >
<nanme>Snoopy</ nanme>
<bor n>1950- 10- 04</ bor n>
<qual i fication>extroverted beagl e</qualification>
</ character>
<char acter id="Schroeder">
<nane>Schr oeder </ nane>
<bor n>1951- 05- 30</ bor n>
<qual i fication>brought classical nusic to the Peanuts strip</qualificati
</ character>
<character id="Lucy">
<nanme>Lucy</ nane>
<bor n>1952- 03- 03</ bor n>
<qual i fication>bossy, crabby and sel fish</qualification>
</ character>
</ book>
</library>

Because the XHTML 2.0 schemas for the modules are chameleon schemas, to import the definitions
from XHTML in their namespaces, | need to specify this namespacein my i ncl ude patterns:

<?xm version="1. 0" encodi ng="UTF-8"?>
<granmmar xm ns="http://rel axng.org/ns/structure/1.0">
<start>
<ref nane="library"/>
</start>
<i nclude href="xhtm -attribs-2.rng" ns="http://ww. w3. org/ 2002/ 06/ xht m 2"/ >
<i nclude href="xhtm -inltext-2.rng" ns="http://ww. w3. org/ 2002/ 06/ xht m 2"/ >
<i ncl ude href="xhtnl -dat at ypes-2.rng" ns="http://ww. w3. org/ 2002/ 06/ xht m 2"/
<define name="library">
<el enent name="Ilibrary">
<oneOr Mor e>
<el enent nane="book" >
<attribute name="id"/>
<attribute name="avail able"/>
<el enent nane="isbn">
<t ext/ >whi ch
</ el ement >
<el enent name="title">
<attribute name="xnm:1ang"/>
<ref nanme="Inline. nodel "/>
</ el ement >
<oneOr Mor e>
<el enent name="aut hor" >
<attribute name="id"/>
<el enent nane="nane">
<text/>
</ el ement >
<opti onal >

172

Chapter 11: Namespaces

<el enent nane="born" >
<text/>
</ el enent >
</ opti onal >
<opti onal >
<el enment nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ el enent >
</ oneOr Mor e>
<zer oOr Mor e>
<el enment nane="character">
<attri bute nanme="id"/>
<el enent nane="nane" >
<text/>
</ el enent >
<opti onal >
<el enent nane="born" >
<text/>
</ el enent >
</ opti onal >
<el enent nanme="qualification">
<ref name="Inline. nodel "/ >
</ el enent >
</ el enent >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >
</ defi ne>
</ gr ammar >

Or:

nanespace x = "http://ww. w3. org/ 2002/ 06/ xht n 2"

start = library
include "xhtm -attribs-2.rnc" inherit
include "xhtm -inltext-2.rnc" inherit =
i nclude "xhtm -datatypes-2.rnc" inherit
library =
element library {
el ement book {
attribute id { text },
attribute available { text },
el ement isbn { text },
element title {
attribute xm:lang { text },
I nl'i ne. model

1 x X

}l

el ement aut hor {
attribute id { text },
el ement name { text },

173

Chapter 11: Namespaces

el ement born { text }?,
element died { text }?

H,

el enent character {
attribute id { text },
el ement name { text },
el ement born { text }?,
el ement qualification { Inline.nodel }

}*

}+
}

The namespace which is inherited is now explicitly set to "http://www.w3.0rg/2002/06/xhtml2" and
valid documents look like:

<?xm version="1.0" encodi ng="utf-8"?>
<library xmns:x="http://ww.w3. org/ 2002/ 06/ xht m 2" >
<book id="b0836217462" avail abl e="true">
<i shn>0836217462</i shn>
<title xm:lang="en">Being a Dog Is a <x:enpFull-Tine Job</Xx:enp</title>
<aut hor id="CM5">
<nane>Charl| es M Schul z</ nane>
<bor n>1922- 11- 26</ bor n>
<di ed>2000- 02- 12</ di ed>
</ aut hor >
<character id="PP">
<nanme>Pepper ni nt Patty</ nane>
<bor n>1966- 08- 22</ bor n>
<qual i fication>bold, brash and tonboyi sh</qualification>
</ character>
<charact er id="Snoopy">
<nanme>Snoopy</ nane>
<bor n>1950- 10- 04</ bor n>
<qual i fication>extroverted <x:strong>beagl e</ x: strong></qualification>
</ character>
<character id="Schroeder">
<nane>Schr oeder </ nane>
<bor n>1951- 05- 30</ bor n>
<qual i fication>brought classical nusic to the Peanuts strip</qualificati
</ character>
<character id="Lucy">
<name>Lucy</ nane>
<bor n>1952- 03- 03</ bor n>
<qual i fication>bossy, crabby and sel fish</qualification>
</ character>
</ book>
</library>

Good or evil?

Chameleon schemas are controversial and | am not a big fan of them. On the bright side, they ook
very handy. The first variation of XHTML inclusion in our library is more concise than the second
one where we need to declare the XHTML namespace in each document and add a prefix to XHTML
elements. On the other hand, one can question the benefit of adding XHTML elementsif they can be
identified as XHTML by their namespace. Yes, we can add emor st r ong elementsinourtitl e

174

Chapter 11: Namespaces

and qual i fi cati on eements, but how can an application recognize them as XHTML document
if they have no namespace or belong to the namespace of our own application?

Chameleon schemas kind of abuse namespaces to remove most of the interest of using them and for
this reason | would recommend to be very cautious when you are using them!

175

Chapter 13. Chapter 12: Writing
Extensible Schemas

Extensible has become one of these buzzwords which have a both a very wide acceptance (everyone
wants everything to be extensible, including computers, hifi systems, cars, houses and XML schemas)
and are worn out to become almost meaningless (isn't it enough that | use the eXtensible Markup
Language to make my application extensible?). It might have been safer to keep away from such
buzzwords, but sincel have used it asthetitle of thischapter, theleast | can doisto provideadefinition
of what an extensible schemais.

There are two different forms of extensibility for a schema: the schema itself can be extensible in
that it i.e. made easy to derive variations through named patterns combinations or redefinitions or the
schema can describe extensible documents where el ements and attributes can be added without having
to redefine the schema. The second case is often called an "open schema' or "open vocabulary".

Note that these two forms of extensibility are largely independent: a schema which is extensible
through combinations and redefinitions can be perfectly strict and forbid the slightest variation in the
instance documentswhile in alesser attempt a schemawhich describes perfectly open documents can
be difficult to extend without redefining most of its patterns.

In this chapter we will cover both paths to extensibility.

Extensible schemas

Among the recipesto write extensible schemas, we can distinguish the recipes where the result isfixed
and we are doing our best to write an extensible schema for an existing XML vocabulary (like if we
were asked to cook the best "blanquette de veau") from the recipes where we have the freedom to act
on theformat itself and decide for instance when we will use el ements or attributes, if order matters, ...
(likeif we were asked to cook the best veal meal).

Fixed result

In this case, the only parameter with which we can play is the way to define named patterns and
this can do quite a difference in the same way that the definitions of classes in an object oriented
implementation does have a lot of impact on its extensibility. In this section, we will see the major
parameters to keep in mind when defining named patterns and start elements.

Do provide a grammar and start element

Let's have alook back at our first schema:

<?xm version="1.0" encoding="utf-8" 2>
<el enent xm ns="http://relaxng.org/ ns/structure/1.0" nanme="library">
<oneOr Mor e>
<el ement nane="book" >
<attribute nanme="id"/>
<attribute nane="avail abl e"/>
<el ement nanme="isbn">
<text/>
</ el enent >
<el emrent nanme="title">
<attribute name="xnl:|ang"/>
<text/>

176

Chapter 12: Writing
Extensible Schemas

</ el enent >
<zer oOr Mor e>
<el enment nane="aut hor">
<attri bute nanme="id"/>
<el enment nane="nane" >
<text/>
</ el enent >
<el enment nane="born" >
<text/>
</ el enent >
<opti onal >
<el enment nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ el enent >
</ zer oOr Nor e>
<zer oOr Mor e>
<el enment nane="character">
<attri bute nanme="id"/>
<el enent nane="nane" >
<text/>
</ el enent >
<el enent nane="born">
<text/>
</ el enent >
<el enent nanme="qualification">
<text/>
</ el enent >
</ el enent >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >

or:

element library {
el ement book {
attribute id {text},
attribute available {text},
el ement isbn {text},
element title {attribute xm :lang {text},
el ement aut hor {
attribute id {text},
el ement name {text},
el ement born {text},
el ement died {text}?}*,
el ement character ({
attribute id {text},
el ement name {text},
el ement born {text},
el ement qualification {text}}*

} o+

text},

177

Chapter 12: Writing
Extensible Schemas

What happens if we want to derive a schema with an additional i d attribute to the library element?
That's simple: we have to take our schema, copy it and edit it as anew one! Thereis no extensibility
at all since we cannot include a schemawhich has not agr anmar element as aroot.

Thefirst thing to consider if we want a Relax NG schemato be extensible isto always use a complete
form where the root element isagr amar element:

<?xm version="1.0" encodi ng="utf-8"?>
<granmmar xm ns="http://rel axng.org/ns/structure/1.0">
<start>
<el enent name="Ilibrary">
<oneOr Mor e>
<el enment nane="book" >
<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<el enment nane="isbn">
<text/>
</ el enent >
<el enment nane="title">
<attribute name="xn:1ang"/>
<text/>
</ el enent >
<zer oOr Mor e>
<el enment nane="aut hor">
<attri bute nanme="id"/>
<el enent nane="nane" >
<text/>
</ el enent >
<el enent nane="born">
<text/>
</ el enent >
<opti onal >
<el enent nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ el enent >
</ zer oOr Nor e>
<zer oOr Mor e>
<el enment nane="character">
<attri bute nanme="id"/>
<el enent nane="nane" >
<text/>
</ el enent >
<el enment nane="born" >
<text/>
</ el enent >
<el enent nanme="qualification">
<text/>
</ el enent >
</ el enent >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>
</ el enent >
</start>
</ gr ammar >

178

Chapter 12: Writing
Extensible Schemas

or:
start =
el ement library
{
el enent book
{
attribute id { text },
attribute available { text },
el ement isbn { text },
element title { attribute xm:lang { text }, text },
el enent aut hor
{
attribute id { text },
el ement name { text },
el ement born { text },
el ement died { text }?
|
el enent character
{
attribute id { text },
el enent nanme { text },
el ement born { text },
el ement qualification { text }
}*
1+

Note that for the compact syntax, gr anmrar isimplicit but that you still needto haveast art pattern
if you want to be able to redefine anything.

Provide a fine enough granularity

Although the previous schemas (let's call them "russian-doll.rng" and "russian-doll.rnc") can be
redefined, this redefinition is pretty ineffective since we are missing the granularity which would let
usredefine only thel i br ar y element and the best wecan doiis:

<?xm version="1.0" encodi ng="utf-8"?>
<grammar xm ns="http://rel axng.org/ ns/structure/1.0">
<include href="russian-doll.rng">
<start>
<el enent name="Ilibrary">
<attribute nane="id"/>
<oneOr Mor e>
<el enent nane="book" >
<attribute nane="id"/>
<attribute nane="avail able"/>
<el enent nane="isbn">
<text/>
</ el emrent >
<el enent name="title">
<attribute name="xn:|ang"/>
<text/>
</ el emrent >

179

Chapter 12: Writing
Extensible Schemas

<zer oOr Mor e>
<el enment nane="aut hor">
<attri bute nanme="id"/>
<el enent nane="nane" >
<text/>
</ el enent >
<el enment nane="born" >
<text/>
</ el enent >
<opti onal >
<el enment nane="di ed" >
<text/>
</ el enent >
</ opti onal >
</ el enent >
</ zer oOr Nor e>
<zer oOr Mor e>
<el enment nane="character">
<attri bute nanme="id"/>
<el enent nane="nane" >
<text/>
</ el enent >
<el enent nane="born" >
<text/>
</ el enent >
<el enent nanme="qualification">
<text/>
</ el enent >
</ el enent >
</ zer oOr Nor e>
</ el enent >
</ oneOr Mor e>

</ el enent >
</start>
</incl ude>
</ gr ammar >

or:

i ncl ude

{

start =

"russian-dol |l .rnc

el ement library

{

attribute id { text },
el enent book
{
attribute id { text },
attribute available { text },
el ement isbn { text },
element title { attribute xm:lang { text },
el enent aut hor
{
attribute id { text },
el enent nane { text },
el ement born { text },

text },

180

Chapter 12: Writing
Extensible Schemas

elenent died { text }?
}*
el enent character
{
attribute id { text },
el ement name { text },
el ement born { text },
el ement qualification { text }
}*
}+

In other words, here we need to redefine the whole schema and we have not gained in modularity
since ulterior changes in the original schemawould not be propagated into our resulting schema. To
fix this, we need to provide a finer granularity in our definitions (we could say that the Russian doll
designislevel 0 of granularity and modularity!). Thisis often done through defining a named pattern
per element (similar to the style of schemaimposed by DTDs) and thiswould lead to a schemasimilar
to the flat schema seen in "Chapter 5: Flattening our first schema":

<?xm version="1.0" encodi ng="utf-8"?>
<granmmar xm ns="http://rel axng.org/ns/structure/1.0">

<start>
<ref nanme="library-elenent"/>
</start>
<define name="library-el enent">
<el enent name="Ilibrary">

<oneOr Mor e>
<ref nanme="book-el enent"/>
</ oneOr Mor e>
</ el enent >
</ defi ne>
<defi ne nanme="aut hor-el emrent " >
<el enent nane="aut hor">
<attri bute nanme="id"/>
<ref nanme="nane-el enent"/>
<ref nanme="born-el enent"/>
<opti onal >
<ref nanme="di ed-el enent"/>
</ opti onal >
</ el enent >
</ defi ne>
<def i ne nane="book-el enent ">
<el enment nane="book" >
<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<ref nanme="isbn-elenent"/>
<ref nanme="title-elenent"/>
<zer oOr Mor e>
<ref nanme="aut hor-el ement"/>
</ zer oOr Nor e>
<zer oOr Mor e>
<ref nanme="character-elenment"/>
</ zer oOr Nor e>
</ el enent >
</ defi ne>

181

Chapter 12: Writing
Extensible Schemas

<defi ne nane="bor n-el enent ">
<el enent nane="born" >
<text/>
</ el enent >
</ defi ne>
<defi ne nane="character-el emrent">
<el enment nane="character">
<attri bute nanme="id"/>
<ref nanme="nane-el enent"/>
<ref nanme="born-el enent"/>
<ref nanme="qualification-element"/>
</ el enent >
</ defi ne>
<defi ne nane="di ed- el enent ">
<el enment nane="di ed" >
<text/>
</ el enent >
</ defi ne>
<defi ne nane="i sbn-el enent ">
<el enent nane="isbn">
<text/>
</ el enent >
</ defi ne>
<defi ne nane="nane-el enent ">
<el enent nane="nane" >
<text/>
</ el enent >
</ defi ne>
<define name="qualification-element">
<el enent nanme="qualification">
<text/>
</ el enent >
</ defi ne>
<define nanme="titl e-elenent">
<el enment nane="title">
<attribute name="xn:1ang"/>
<text/>
</ el enent >
</ defi ne>
</ gr ammar >

or:

start = |ibrary-el enent

library-element = elenent library { book-el enent+ }

aut hor - el enent =
el ement aut hor

{
attribute id { text },

182

Chapter 12: Writing
Extensible Schemas

nane- el enent,
bor n- el enent,
di ed- el enent ?

book- el enent =

el enent book

{
attribute id { text },
attribute available { text },
i sbn-el enent,
title-el enent,
aut hor - el emrent *,
character-el enent *

born-el ement = el enent born { text }

character-el enent =
el ement character

{
attribute id { text },
nane- el ement ,
born- el ement ,
qual i ficati on-el enent
}

di ed-elemrent = elenent died { text }

i sbn- el enent

el ement isbn { text }

name- el ement = elenment name { text }

qual i fication-element = elenent qualification { text }

title-elenent = elenent title { attribute xnm:lang { text }, text }

183

Chapter 12: Writing
Extensible Schemas

These new schemas (let's call them "flat.rng" and "flat.rnc") are more verbose but also much more
extensible and to add our i d attribute, we only need to redefine thel i br ar y element:

<?xm version="1.0" encodi ng="utf-8"?>
<granmmar xm ns="http://rel axng.org/ns/structure/1.0">
<include href="flat.rng">
<define name="library-el ement">
<el emrent name="library">
<attribute name="id"/>
<oneOr Mor e>
<ref nane="book-el emrent"/>
</ oneOr Mor e>
</ el ement >
</ defi ne>
</incl ude>
</ gr anmar >

or:

i nclude "flat.rnc"

{
}

library-elenent = elenent library { attribute id { text }, book-elenent+ }

Prefer to define named patterns for content rather than for
elements

Although the previous result is much better, we still have to redefine the complete content of the
library element to add our attribute and if we have reduced the problem we had wit our Russian doll
model, we haven't eliminated it: if we change our main vocabulary and add a new attribute or element
in"flat.rng", the modification will not be automatically taken into account in our schema and we will
need to edit it.

Thisisbecausethe extensibility of anamed pattern doesn't cross element boundaries and sincewe have

the boundary of thel i br ary element justincludedinour | i br ar y- el enent named pattern, the
content of this element isn't extensible:

Figure 13.1. flat

v . Content could be

& define name="lihrary-element |
= siielement narme="librar"

E----%ref name="hook-glement" |

To avoid this, we could have split our named patterns according to the content of the elements rather
than the element themselves. We will then be able to add new content withinthel i br ar y element:

184

Chapter 12: Writing

Extensible Schemas
Figure 13.2. flat-content
-Sﬁdeﬂne hiame="libhrary-content" Co
= 82 oneOrtore
e} 8 clement hatme="hook"
E----ﬁiiref hiame="hook-content"

Generalizing this over the definition of all our elements would lead to a schema such as;

<?xm version="1.0" encodi ng="utf-8"?>
<grammar xm ns="http://rel axng.org/ ns/structure/1.0">

<start>
<el enent name="Ilibrary">
<ref nanme="library-content"/>
</ el ement >
</start>
<define name="library-content">

<oneOr Mor e>
<el ement nane="book" >
<ref nane="book-content"/>
</ el enent >
</ oneOr Mor e>
</ defi ne>
<defi ne nanme="book-content">
<attribute nanme="id"/>
<attribute nane="avail abl e"/>
<el ement nane="isbn">
<ref nane="isbn-content"/>
</ el enent >
<el emrent nanme="title">
<ref nane="title-content"/>
</ el enent >
<zer oOr Mor e>
<el emrent nane="aut hor ">
<ref nane="aut hor-content"/>
</ el enent >
</ zer oOr Mor e>
<zer oOr Mor e>
<el emrent nanme="character">
<ref nane="character-content"/>
</ el enent >
</ zer oOr Mor e>
</ defi ne>
<defi ne name="aut hor-content">
<attribute nanme="id"/>
<el ement nane="nane" >
<ref nane="nane-content"/>
</ el enent >
<el ement nane="born">
<ref nane="born-content"/>
</ el enent >
<opti onal >

185

Chapter 12: Writing
Extensible Schemas

<el enment nane="di ed" >
<ref nanme="di ed-content"/>
</ el enent >
</ opti onal >
</ defi ne>
<defi ne nane="born-content">
<text/>
</ defi ne>
<defi ne nane="character-content">
<attri bute nanme="id"/>
<el enent nane="nane" >
<ref nanme="nane-content"/>
</ el enent >
<el enent nane="born" >
<ref nanme="born-content"/>
</ el enent >
<el enent nanme="qualification">
<ref nanme="qualification-content"/>
</ el enent >
</ defi ne>
<defi ne nane="di ed-content">
<text/>
</ defi ne>
<defi ne nane="i sbn-content">
<text/>
</ defi ne>
<defi ne nane="nane-content">
<text/>
</ defi ne>
<define name="qualification-content">
<text/>
</ defi ne>
<define nanme="title-content">
<attribute name="xnm :1ang"/>
<text/>
</ defi ne>
</ gr ammar >

or:

start = elenent library { library-content }

library-content = el ement book { book-content

book-content =
attribute id { text },
attribute available { text },
el enent isbn { isbn-content },
elenent title { title-content },
el ement aut hor { author-content }*,
el enent character { character-content }*

aut hor-content =
attribute id { text },
el ement name { nane-content },
el ement born { born-content },

1+

186

Chapter 12: Writing
Extensible Schemas

el ement died { died-content }?

born-content = text

character-content =
attribute id { text },
el ement name { nane-content },
el ement born { born-content },
el ement qualification { qualification-content }

di ed-content = text
i sbn-content = text
name- content = text

qual i fication-content = text

title-content = attribute xm:lang { text }, text

We can now take full advantage of the named pattern and, instead of redefining it, we can combine
itwith thei d attribute:

<?xm version="1.0" encodi ng="utf-8"?7>
<grammar xm ns="http://relaxng.org/ns/structure/1. 0">
<include href="flat-content.rng"/>

<define nanme="library-content" conbine="interl eave">
<attribute name="id"/>
</ define>

</ gr anmar >
or:

include "flat-content.rnc"

library-content & attribute id { text }

Of course, we have been lucky to have a situation where the extension could be done using a
combination by interleave, but this is frequently the case, either when attributes need to be added or
when elements need to be added but only when the relative order isn't significant for the schema.
Otherwise, we would still have needed to redefine the pattern or to combine it by choice.

Free format

When we are free to define the vocabulary itself, we can give three principal guidelines to design
extensible formats. The first one is independent of any schema language, the second one is specific
to Relax NG to make sure we will be in a position to maximize the usage of combination through
interleave and the third one away to minimize the impact of the second on schemas which need to be
converted into W3C XML Schemaor DTD schemas.

Be cautious about attributes

If Russian doll is degree zero in extensibility through schema redefinition or composition, attributes
are degree zero in extensibility for XML information items! When choosing between elements and

187

Chapter 12: Writing
Extensible Schemas

attributes, people often compare their relative easiness to be processed, styled or transform while the
biggest differenceisin their extensibility.

Independently of any XML schemalanguage, when you have an attribute in an instance document, you
are pretty much stuck with it and, save replacing it by an element, thereisno way to extend it: you can't
add any child element or attributeto it sinceit's designed to be and stay aleaf node. Furthermore, you
can't extend its parent element to include a second instance of an attribute with the same name and are
thusimpacting not only the extensibility of the attribute but also the extensibility of the parent element.

To understand the reasons behind these limitations, it's worth looking back to the original use case for
attributesin the XML 1.0 recommendation: attributes were originally designed to hold metadata about
actual data which was to be stored in elements and the editors of XML 1.0 have considered that the
lack of extensibility in XML attributeswas not anissuefor kind of "sticker notes" containing metadata.

Although most of the XML tools do not enforce this restriction and provide equal access to el ements
and attributes, these restrictions remain and it's wise to keep using attributes for what they've been
designed for! In practice, my adviseisto use attributes only when there is a good reason to do so and
when the information is clearly metadata and that we have good reason to believe that this metadata
will not have to be extended.

In our example of library, identifiers are good candidates, but even avai | abl e should rather
have been specified as an element: even though at first look this may be considered as metadata
(avai | abl e doesnot affect the description of abook if you areinterested in that book only for literate
reasons), other users looking at the book element under another angle may find this an important
information attached to the book and may want to give it more structure to extend it to indicate if the
book is available as anew or as a used item.

There is an exception when these rules must be relaxed: we've said in the previous chapter: " Chapter
11: Namespaces' that it wasn't a good idea to add foreign elements into a text only element since it
was transforming its content model into mixed content. This rule isn't restricted to foreign elements
and it's always risky to extend a text only element by adding elements while adding attributes will
most of the time be unnoticed by existing applications.

Themajor reason to use attributesfor information which is not clearly metadataisthuswhen extending
elements with atext only (or text an attributes) content. In this case, the lack of further extensibility
may be compensated by the short term gain in backward compatibility between thevocabulariesbefore
and after the extension.

Be liberal on the relative order between children elements

Together with confusing the usage of elements and attributes, another bad habit taken during our few
years of XML experienceisthe assumption that schemas should always enforce afixed order between
children elements or in other words that relative order between sub elements always matters.

This relative order is much less natural than we usualy think. To draw a parallel with another
technology, it's considered a bad practice to pay attention to the physical order of columns and rows
in the table of arelationa database. Furthermore, the dominant modeling methodology, UML, does
not attach any order to the attributes of class (note that UML attributes are often used to represent
not only XML attributes but also elements) and does not attach any order to relations between classes
(unless specifically specified).

Infact, the main reasons behind this principle are limitations from DTDs and more recently from W3C
XML Schema but there are strong reasons to believe that on the contrary when there is no special
reasons, relative order between sub elementsisaserialization detail and that we shouldn't bother users
and applications with the unnecessary constraint of enforcing it.

With Relax NG, defining content models where the relative order between children elements is not
significant is not only almost as simple as defining content models where it is significant (it's just a
matter of adding i nt er | eave elements) but it is also more extensible since these content models
can easily be extended through pattern combinationsby i nt er | eave.

188

Chapter 12: Writing
Extensible Schemas

Using them wherever it is possible is thus a way to put ourselves in a position where new elements
and attributes can be added as shown in our example about the addition of the i d attribute in the
I i brary eementinthefirst sections of this chapter.

Note that together with the "element or attribute” question this issue is most controversial amongst
XML experts. Technical constraints may in some cases justify enforcing element order in documents,
most notably stream processing of huge documents where the presence of some information may
allow to skip processing long content which would need to be buffered if thisinformation came after
the content. Other arguments which | find far from being obvious include the "disorder" carried by
documentswhere element order is not enforced, easiness to read documents where you know whereto
find each element and even the fact that if the order isn't enforced users will be disoriented, confused
and be at pain to choose an order.

While thei nt er | eave pattern works just fine most of the time, you'll need to keep in mind the
restriction about the i nt er | eave pattern already mentioned in "Chapter 6: More Patterns': there
canbeonly onet ext patternineachi nt er | eave pattern. Thisrestriction is hitting mixed content
models found mainly in document oriented applications and may sometimes balance this advise of
"being liberal with the relative order of elements’.

Don't be shy with containers

As mentioned, generalizing content models in which the relative order of children elements isn't
significant is subject to limitations with other schema languages (notably DTD and W3C XML
Schema). This can be a problem if you are using Relax NG as your main schema language and want
to keep the possibility to generate DTD or W3C XML Schema schemas for the same vocabulary.

A way to limit the potential issues which may happen when generating schemas for languages which
are less tolerant with the relative order of elements is to add elements acting as containers to insure
that elementsinclude either atext node, several elementswhich are not repeated or repeated elements
with the same name.

Among the elements of our library, the book element is the only one which would be a problem
for other schema languages if we wanted to switch its content model toi nt er | eave. The book-
cont ent pattern would become:

<defi ne nanme="book-content">
<interleave>
<attribute nanme="id"/>
<attribute nane="avail able"/>
<el ement nane="isbn">
<ref nane="isbn-content"/>
</ el enent >
<el emrent nane="title">
<ref nane="title-content"/>
</ el enent >
<zer oOr Mor e>
<el ement nane="aut hor ">
<ref nane="aut hor-content"/>
</ el enent >
</ zer oOr Mor e>
<zer oOr Mor e>
<el emrent nanme="character">
<ref nane="character-content"/>
</ el enent >
</ zer oOr Mor e>
</interl eave>
</ defi ne>

or:

189

Chapter 12: Writing
Extensible Schemas

book-content =

attribute id { text }

attribute available { text }

el ement isbn { isbn-content }

element title { title-content }

el ement aut hor { author-content }*

el ement character { character-content }*

Ro Ro Ro Ro Ro

Thiswould allow instance documents where aut hor and char act er elements are mixed up with
the other elements such as:

Figure 13.3. first-interleave

-8y hook id="b033621 7462"
--%character id="Lucy"
--ﬁﬁishn
--sﬁcharacter id="achroeder”
--&title =mllang="en"
--sﬁcharacter id="FP"

B & author id="Ch3"
--sﬁcharacter id="snoopy"

and this is more than W3C XML Schema can support. In order to fix this and to define a schema
which could more easily be translated into W3C XML Schema, we should add containers to isolate
aut hor and char act er elements from the other ones which cannot be repeated. The content of
thebook element would thus become:

<defi ne nanme="book-content">
<interleave>
<attribute nanme="id"/>
<attribute nane="avail abl e"/>
<el emrent nane="isbn">
<ref nane="isbn-content"/>
</ el enent >
<el emrent nanme="title">
<ref nane="title-content"/>
</ el enent >
<el emrent nane="aut hors" >
<zer oOr Mor e>
<el emrent nane="aut hor ">
<ref nane="aut hor-content"/>
</ el enent >
</ zer oOr Mor e>
</ el enent >
<el erent nane="characters">
<zer oOr Mor e>
<el ement nanme="character">
<ref nane="character-content"/>
</ el enent >
</ zer oOr Mor e>
</ el enent >
</interl eave>
</ defi ne>

190

Chapter 12: Writing
Extensible Schemas

What

or:
book-content =

attribute id { text }
& attribute available { text }
& el enent isbn { isbn-content }
& elenent title { title-content }
& el ement authors { element author { author-content }* }
& el enent characters { elenent character { character-content }* }
d

and it would validate elements such as:

Figure 13.4. first-interleave-container

'&hnnk id="b0d36217462"

--siishn

i--ﬁ?title =ml:lang="en

EI sin:haracters
- & character id="Snoopy"
--&character id="FP"
--&character id="3chroeder”
&character id="Lucy"

EI ﬁauthnrs
- & author ig="CM5"

Therelative order between thei sbn, titl e, aut hors and char act er s is till not significant,
but aut hor andchar act er elementsare now grouped with their kind under containers and cannot
interl eave between the other elements and that's enough to make this schemamuch friendlier to schema
languages with alesser expressive power than Relax NG.

Note that even if these containers are not necessary for Relax NG, they are considered as a
good practice by many XML experts who consider that they facilitate the access to aut hor and
char act er elements. The downside is that additional hierarchies are added and X Path expressions
to qualify inner elements become more verbose: instead of writing "/library/book/character” to access
to the char act er elements, we will have to write "/library/book/characters/character” and if this
was repeated multiple times, this could lead to much longer expressions.

about restricting existing schemas?

In the previous sections, we've focused on making schemas easy to extend through combination of
named patternsand trying to limit the use of redefinition which leadsto schemaswith redundant pieces
that are more difficult to maintain. However, extension isjust oneway of modifying aschemato adapt
it to other applications and we often need, on the contrary, to restrict schemas to add new constraints
or remove elements and attributes.

With Relax NG, designing schemas which are easy to restrict without redefinitions is much tougher
than designing schemas which are easy to extend. The reason for thisisthat the only restriction which
can be applied through combination is the combination of not Al | owed patterns through interleave.
Asalready shownin"Chapter 10: Creating Building Blocks", if the definition of thedi ed element has
been included in the named pattern el enent - di ed, we can use this feature to remove this element
from the schema:

191

Chapter 12: Writing
Extensible Schemas

<?xm version="1.0" encodi ng="UTF-8"?>
<grammar xm ns="http://rel axng.org/ns/structure/1.0">
<include href="library.rng"/>
<defi ne nane="el enent - di ed” conbi ne="interl eave">
<not Al | owed/ >
</ define>
</ gr ammar >

Or:

i nclude "library.rnc"
el ement -di ed & not Al | owed

The rule of the thumb to write schemas easy to restrict is thus to increase the granularity of named
pattern exactly as we've seen for writing extensible schemas.

Note that the distinction between defining named patterns for content rather than for elements which
was important for writing extensible schemas becomes meaningless for defining schemas easy to
restrict since interleaving anot Al | owed pattern with an element or with its content leads in both
case to a pattern that cannot be matched in any instance structure.

Theissueof restricting schemasistough enough to have motivated peopl e to propose specific solutions
and, outside of the scope of built-in features of Relax NG, Bob DuCharme has proposed a generic
mechanism relying on annotations which are pre-processed to generate subsets of schemas. Thiswill
be described in next chapter: "Chapter 13: Annotating Schemas”.

The case for Open Schemas

That's fair enough to design extensible schemas like we've seen so far in this chapter, but this will
only impact developers having the ability to extend our initial schema and a document valid per an
extended flavor of our schemaislikely to beinvalid per our original schema.

By contrast, an open schema is about extensible instances and will allow additions of contents that
remain valid per the original content. Of course, since the additions are unpredictable, the validation
of their structure will be very lax, but still, extended documents will be considered as valid.

Designing open schemas is quite challenging since it deals with giving more power to the XML user
and manage the unexpected situations which may result. Open schemas are aso kind of antagonist
with the very notion of "schema': atotally open schemawould alow any well formed XML document
and thus be totally useless. On the other hand, closed schemas are against the fundamental principle
of extensibility of XML, the eXtensible Markup Language.

There are several levels of openness from level 0 which is a totally closed schema where nothing
unexpected that has not been up-front designed can happen up to the top level which would alow
any well formed document, but with Relax NG name classes introduced in last chapter ("Chapter 11:
Namespaces") are the basic blocks which will let us build the wildcards needed to open a schema
and we'll have a closer look to name classes before presenting the constructions most often used to
open schemas.

More name classes

Let'sfirst recap the name classes seen in the last chapter. We've seen how to use any Nane to match
any name from any namespace in the context of an element or an attribute:

<defi ne name="anyt hi ng">
<zer oOr Mor e>

192

Chapter 12: Writing
Extensible Schemas

<choi ce>
<el enent >
<anyNane/ >
<ref nanme="anythi ng"/>
</ el enent >
<attri bute>
<anyNane/ >
</attribute>
<text/>
</ choi ce>
</ zer oOr Nor e>
</ defi ne>

or:

anything = (element * { anything } | attribute * { text } | text)*

Then we have seen how to remove specific namespacesfrom any Name usingexcept and nsNane:

<define name="forei gn-el enents">
<zer oOr Mor e>
<el ement >
<anyName>
<except >
<nsNanme ns=""/>
<nsName ns="http://eric.van-der-vlist.comns/library"/>
<nsName ns="http://eric.van-der-vlist.com ns/person"/>
</ except >
</ anyNane>
<ref nanme="anythi ng"/ >
</ el ement >
</ zer oOr More>

</ defi ne>
or:
default namespace lib = "http://eric.van-der-vlist.comns/library"
nanespace |ocal = ""
nanespace hr = "http://eric.van-der-vlist.conins/person”
L
foreign-elenents = elenent * - (local:* | lib:* | hr:*) { anything }*

The two name class elements except and nsName associated in the last example can be used
independently and if we want to define a name class for any name from the | i b namespace, we can
write:

193

Chapter 12: Writing
Extensible Schemas

<el ement >
<nsName ns="http://eric.van-der-vlist.comns/library"/>
<ref nanme="anythi ng"/>

</ el ement >

or:

element lib:* { anything }

Elements and attributes have one and only one name and it would be meaningless to associate to them
several name classes except as a choice. The choi ce element has thus been introduced to combine
name classes and if we want to define a name class for any name from the | i b or hr namespaces,
we can write:

<el ement >
<choi ce>
<nsNanme ns="http://eric.van-der-vlist.com ns/library"/>
<nsNanme ns="http://eric.van-der-vlist.con ns/person"/>
</ choi ce>
<ref nanme="anyt hi ng"/>
</ el enent >

or:

element lib:* | hr:* { anything }

Finally, thereisalso anameclassto define single name and to defineanameclasswhichisl i b: nane
or hr : nane, we can write:

<el ement >
<nsNanme ns=ns="http://eric.van-der-vlist.conlns/person"/>
<except >
<nane>| i b: name</ nane>
<nane>hr : nane</ nanme>
<except >
</ nsNane>
<ref nane="anythi ng"/>
</ el emrent >

or:
element lib:nane | hr:name { text }
Note that the nanme name classis expecting a qualified name.

These name classes can be combined pretty much as you like and we can define aname class for any
name from the hr namespace except the known elements:

194

Chapter 12: Writing

Extensible Schemas
<el ement >
<nsName ns=ns="http://eric.van-der-vlist.conlns/person"/>
<except >

<name>hr : aut hor </ nane>
<name>hr : nane</ nane>
<name>hr : bor n</ nane>
<name>hr: di ed</ nane>
<except >
</ nsNane>
<ref nanme="anythi ng"/>
</ el enent >

or:

elenent hr:* - (hr:author | hr:nane | hr:born | hr:died) { anything }

Extensible And Open?

| have said in introduction to this chapter that the notions of "extensible" and "open" are largely
independent and after all what we have seen we may even think that opening a schemamay be a brake
toitsextensibility! Let's say we have written an open model for the content of our el enent element
allowing foreign nodes:

<defi ne nane="book-content">
<interl eave>
<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<el enent nane="isbn">
<ref nanme="isbn-content"/>
</ el enent >
<el enent nane="title">
<ref nanme="title-content"/>
</ el enent >
<zer oOr Mor e>
<el enent nane="aut hor">
<ref nanme="aut hor-content"/>
</ el enent >
</ zer oOr Nor e>
<zer oOr Mor e>
<el enment nane="character">
<ref name="character-content"/>
</ el enent >
</ zer oOr Nor e>
<ref nanme="foreign-nodes"/>
</interl eave>
</ defi ne>

or:

book-content =
attribute id { text }
& attribute available { text }

195

Chapter 12: Writing
Extensible Schemas

& el ement isbn { isbn-content }

& element title { title-content }

& el ement aut hor { author-content }*

& el ement character { character-content }*
& foreign-nodes

So far, so good: we have applied independently the tips to build and extensible schema (using
interleave and containers) and to define an open schema (through referencing a wildcard to allow
foreign nodes). Unfortunately, if our schemais open, it's not very extensible any longer!

Imagine | want to add a couple of XLink attributesto define alink toward aweb page, | can't combine
this new attribute by interleave since this new attribute would be considered as duplicated with the
implicit definition of x| i nk: hr ef aready contained in our f or ei gn- nodes wildcard.

The situation is pretty much the same with the addition of new elements. If | want to add for instance
an optional dc: copyri ght element | can do it but the constraint applied to this element will bein
conflict with the lax definition of dc: copyri ght implicitly contained in our f or ei gn- nodes
wildcard and if our new constraint isnot met, Relax NG will still find amatch for abogus dc:copyright
element in the wildcard.

Doesthat mean that open schemas cannot be extensible? Y esand no! It'safact that thewildcards make
open schemas less extensible, but that only means that we must extend our schemas before opening
them. To come back to our example, we'd better write a closed schema first:

<defi ne nanme="book-content">
<interleave>
<attribute nanme="id"/>
<attribute nane="avail able"/>
<el emrent nane="isbn">
<ref nane="isbn-content"/>
</ el enent >
<el emrent nanme="title">
<ref nane="title-content"/>
</ el enent >
<zer oOr Mor e>
<el emrent nane="aut hor ">
<ref nane="aut hor-content"/>
</ el enent >
</ zer oOr Nor e>
<zer oOr Mor e>
<el ement nane="character">
<ref nane="character-content"/>
</ el enent >
</ zer oOr Nor e>
</interl eave>
</ defi ne>

or:

book-content =

attribute id { text }

attribute available { text }

el ement isbn { isbn-content }
element title { title-content }

el ement author { author-content }*

Ro Ro Ro Ro

196

Chapter 12: Writing
Extensible Schemas

& el ement character { character-content }*

We can then carefully keep this closed schema in a first document and extend it by inclusion and
combination to become open as we've seen in last chapter:

<i ncl ude href="cl osed-schema.rng"/>

<defi ne name="book-content" conbi ne="interl eave">
<ref nane="forei gn-nodes"/>

</ defi ne>

or

i ncl ude "cl osed-schena. rnc"
book-content &= foreign-nodes

Applicationswould then use the open schema (after inclusion and combination) with the same benefit
than when the schema was natively open but the "closed-schema" would be available to extend the
content model, redefinethe f or ei gn- nodes wildcard and use it to open the schema again.

197

Chapter 14. Chapter 13: Annotating
Schemas

For Relax NG, annotationstake the form of additions of elementsand attributesfrom other namespaces
in Relax NG schemas. When we have seen in the previous chapter "Chapter 12: Writing extensible
schemas' how to deal with extensibility for our schemas and instance documents, we've been
relying on elements and attributes which syntax and semantic is precisely defined in the Relax NG
specification. The annotations which we will see in this chapter are also a form of extensibility, but
an extensibility of the Relax NG vocabulary itself.

The scope of applications based on annotations is as wide as our imagination! However, there are
common trendsin the existing usage of schemaannotation and we can di stingui sh between annotations
for documentation purposes and annotations for applications. In this second category we can further
distinguish between pre-processing annotations to generate avariety of schemas from acommon one,
annotations for helping to generate something out of a Relax NG schema and annotations extending
the features of Relax NG. But, before walking through these applications of schema annotations, we
need to see the syntax for embedding annotations within Relax NG schemas.

Common principles for annotating Relax NG
schemas

Instead of defining specific elements and attributes reserved for annotations, Relax NG has opened
its language to alow foreign attributes (i.e. attributes from any namespace other than the Relax NG
namespace) in all its elements and to allow elements from either no namespace or from any namespace
other than the Relax NG namespacein al its elementswith a content model which isempty or element
only (i.e. al itselements except val ue and par amwhich have atext only content model). Relax NG
isthus strictly following the principle of open schema which we've presented in the last chapter.

Annotation using the XML syntax

This is both easy and flexible, at least with the XML syntax and it is very straightforward to add
annotations using foreign elements, for instance:

<?xm version="1.0" encodi ng="utf-8"?7>
<grammar xm ns="http://relaxng.org/ ns/structure/1.0" xm ns:dc="http://purl.org
<dc:title>Relax NG flat schema for our library</dc:title>
<dc: aut hor>Eri c van der M st</dc: aut hor >
<start>
<el ement nane="Ilibrary">
<oneOr Mor e>
<ref nane="book-el emrent"/>
</ oneOr Mor e>
</ el ement >
</start>
Y A
</ gramar >

or:

<?xm version="1.0" encodi ng="utf-8"?>

198

Chapter 13: Annotating Schemas

<granmmar xm ns="http://relaxng.org/ns/structure/1.0" xm ns: xhtm ="http://ww. w
<xhtm : di v>
<xhtm : h1>Rel ax NG fl at schema for our |ibrary</xhtm :hil>
<xhtm : p>Thi s schema has been witten by
<xhtm :a href="http://dyonedea. conivdv">Eric van der VlIist</xhtm
</xhtm :div>
Y
</ gr ammar >

or using foreign attributes:

<?xm version="1.0" encodi ng="utf-8"?7>
<grammar xm ns="http://relaxng.org/ns/structure/1.0"
xm ns: xl i nk="http://ww.w3. org/ 1999/ x| i nk" >
<start>
<el ement nane="Ilibrary"
xlink:type="sinple"
xlink:role="http://ww.w3.org/ 1999/ xhtm "
xl'ink:arcrol e="http://wwmv. rddl . org/ purposes#ref erence"”
xlink: href="1ibrary.xhtm ">
<oneOr Mor e>
<ref nane="book-el enent"/>
</ oneOr Mor e>
</ el ement >
</start>
R A
</ gr anmar >

Annotations using the compact syntax

Annotations are much more challenging for the compact syntax which, not being XML had no built-in
support for thiskind of extensibility and an alternative syntax based on square brackets ([and]) has
been developed to embed XML structures. Unfortunately, thisisn't playing very well with the other
constructions used in the compact syntax and, if the syntax to define the annotations is consistent, the
syntax to include them within a schemais slightly different according to the location in the schema.

Without being very difficult, annotati ons using the compact syntax may have astrange looking and are
easily error prone. Translating between the compact and the XML syntax isvery easy using tools such
as"Trang" and you may fedl safer if you aways convert to the XML syntax to edit your annotations.
Anyway, let'stake alook at thisweird syntax.

Grammar annotations

The easiest annotations to write are foreign elements in a grammar element. These annotations and
called "grammar annotations” and correspond to the two first examples given with the XML syntax.

<?xm version="1.0" encodi ng="utf-8"?>
<grammar xm ns="http://relaxng.org/ ns/structure/1.0" xm ns:dc="http://purl.org

<dc:title>Relax NG flat schema for our library</dc:title>

<dc: author>Eric van der Vi st</dc: author>

<start>

<el enent name="Ilibrary">
<oneOr Mor e>
<ref nane="book-el enent"/>

199

Chapter 13: Annotating Schemas

</ oneOr Mor e>
</ el enent >
</start>
Y
</ gr ammar >

would be written:

nanespace dc = "http://purl.org/dc/elements/1.1/"

dc:title ["Relax NG flat schema for our library"]

dc:author ["Eric van der VIist"]

start = elenent library { book-el ement+ }

Note how the annotation has been included by using itsqualified name(dc: ti t| e ordc: aut hor).
This piece is specific to grammar annotations whilethe syntax [el enent content] usedto
represent its content is more generic.

These annotations can have structured contents with children elements and attributes:

<?xm version="1.0" encodi ng="utf-8"?>
<granmmar xm ns="http://relaxng.org/ns/structure/1.0" xm ns: xhtm ="http://ww. w
<xhtm : di v>
<xhtm : h1>Rel ax NG fl at schema for our |ibrary</xhtm :hil>
<xhtm : p>Thi s schema has been witten by <xhtm :a href="http://dyonmedea. col
</xhtm :div>
Y
</ gr ammar >

or, using the compact syntax:

nanespace xhtm = "http://ww. w3. org/ 1999/ xhtm "

xhtm :div

[
xhtm :hl ["Relax NG flat schema for our library"]
xhtm :p

[

"This schema has been witten by
xhtm:a [href = "http://dyonedea. com vdv" "Eric van der Mist"]

200

Chapter 13: Annotating Schemas

start = elenent library { book-el ement+ }
L

Note how, within the annotation, the same principles have been applied recursively and how the hr ef
attribute has been expressed as 'href = "http://dyomedea.com/vadv"'.

These grammar annotations are always foreign elements and another mechanism (the so called "initial
annotations") would be used to express annotations through foreign attributes.

Initial annotations

Initial annotations are used to define annotations (through foreign elements or attributes) which will
be appended as the first children of the next pattern. This is the option we must always use to define
annotations as foreign attributes, such asin:

<?xm version="1.0" encodi ng="utf-8""?7>
<grammar xm ns="http://relaxng.org/ns/structure/1.0"
xm ns: xl i nk="http://ww.w3. org/ 1999/ x| i nk" >
<start>
<el ement nane="Ilibrary"
xlink:type="sinple"
xlink:role="http://wwmv.w3.org/ 1999/ xhtm "
xl'ink:arcrol e="http://wwmv. rddl . org/ purposes#ref erence"”
xlink: href="1ibrary.xhtm ">
<oneOr Mor e>
<ref nane="book-el enent"/>
</ oneOr Mor e>
</ el ement >
</start>
Y A
</ grammar >

which would be written:

nanespace xlink = "http://ww. w3. org/ 1999/ xl i nk"

start =

xlink:type = "sinple"

xlink:role = "http://ww.w3. org/ 1999/ xhtn "
xlink:arcrole = "http://ww.rddl.org/ purposes#reference"”
xlink:href = "library.xhtnm"

]

element library { book-elenment+ }

201

Chapter 13: Annotating Schemas

Note how theforeign elements have been wrapped within square brackets and al so that the annotations
are not included in the el enent pattern but are preceding it. These syntax with sgquare brackets
wrapping annotations without a preceding name is what makes an "initial annotation”. This is
not specific to attributes and elements or both and attributes could have been included as initial
annotations:

<?xm version="1.0" encodi ng="utf-8"?>
<granmar xm ns="http://rel axng.org/ns/structure/1.0"
xm ns: xl i nk="http://ww. w3. org/ 1999/ x| i nk"
xm ns:dc="http://purl.org/dc/el enents/1.1/">
<start>
<el emrent nanme="Ilibrary”
xl'i nk: type="si npl e"
xl'ink:role="http://ww.w3. org/ 1999/ xhtm "
xl'ink:arcrol e="http://wwmv. rddl . org/ purposes#ref erence”
xlink:href="Ilibrary.xhtm ">
<dc:title>The library element</dc:title>
<dc: aut hor>Eric van der Vi st</dc: aut hor >
<oneOr Mor e>
<ref nane="book-el emrent"/>
</ oneOr Mor e>
</ el ement >
</start>

would be written:

nanmespace xlink = "http://ww. w3. org/ 1999/ x| i nk"
nanmespace dc = "http://purl.org/dc/el enents/1.1/"

start =

xlink:type = "sinple"

xlink:role = "http://ww.w3. org/ 1999/ xhtn "
xlink:arcrole = "http://ww.rddl.org/ purposes#reference"”
xlink:href = "library.xhtnm"

dc:title ["The library element”]

dc:author ["Eric van der Mist"]

]

element library { book-elenment+ }

Again, note how the annotations are preceding the el enent pattern to indicate that they are the first
children elements in the XML syntax. This applies also to annotations through foreign attributes of
the grammar pattern, such as:

<?xm version="1.0" encodi ng="utf-8""?>
<grammar xm ns="http://rel axng.org/ns/structure/1.0"
xm ns: xl i nk="http://ww.w3. org/ 1999/ x| i nk"
xlink: type="si npl e"
xlink:role="http://ww.w3.org/ 1999/ xhtnm "
xl'ink:arcrol e="http://ww.rddl.org/ purposes#reference"”
xli nk: href ="granmmar. xhtm ">

202

Chapter 13: Annotating Schemas

Y A
</ gr ammar >
Inthiscase, to be ableto define the annotations before the grammar pattern, we need to makeit explicit

which isusually not necessary with the compact syntax:

nanespace xlink = "http://ww.w3. org/ 1999/ x| i nk"

xl'ink:type = "sinple"
xlink:role = "http://ww.w3. org/ 1999/ xhtn "
xl'ink:arcrole = "http://ww.rddl.org/ purposes#reference"
xl'ink: href = "granmar.xhtn"
]
granmar {
L
}

Following annotations

So far so good, but then how do we define annotations which are not initial nor grammar annotations,
such asin:

<defi ne name="aut hor - el enent " >
<el emrent nane="aut hor" >
<attribute name="id"/>
<ref nane="nane-el enent"/>
<ref nane="born-el ement"/>
<xhtm :p>After this point, everything is optional.</xhtm:p>
<opti onal >
<ref nane="di ed-el enent"/>
</ opti onal >
</ el enent >
</ defi ne>

Thisis done using athird syntax reserved to "following annotations" and here we would write:

aut hor-el ement =
el ement aut hor ({
attribute id { text },
name- el enent,
born-element >> xhtm :p ["After this point, everything is optional."],
di ed- el ement ?

Note the new syntax '>> xhtml:p ["After thispoint, all isoptional."]' with the leading ">>" being the
indication that we have a"following annotation". Aswe see here, the following annotation isinserted
where it is seen as a "following sibling" of the parent element representing the pattern in the XML
syntax.

203

Chapter 13: Annotating Schemas

All together

To wrap-up, let's have a look at the following schema snippet where annotations have been added
pretty much in each location where there was room for them:

<?xm version="1.0" encodi ng="utf-8"?7>
<grammar xm ns="http://relaxng.org/ns/structure/1.0"
xm ns: ann="http:// dyomedea. com exanpl es/ ns/ annot ati ons"
ann: attri bute="Annotation as foreign attribute for 'gramar'">
<ann: el ement>lnitial annotation as foreign elenment for "granmar"</ann:el emren
<start ann:attribute="Annotation as a foreign attribute for 'start'">
<ann:element>lnitial annotation as foreign elenent for "start"</ann:el ement
<el ement nane="Ilibrary" ann:attribute="Annotation as a foreign attribute f
<ann: el ement>lnitial annotation as foreign element for "elenent"</ann:el
<oneOrMore ann:attribute="Annotation as a foreign attribute for 'oneO M
<ann: el ement>lnitial annotation as foreign el enent for "oneOr Mre"</an
<ref nane="book-el ement" ann:attribute="Annotation as a foreign attrib
<ann: el ement>lnitial annotation as foreign elenment for "ref"</ann:el
</ref>
<ann: el ement >Fol | owi ng annotation as foreign element for "oneOr Mre"</
</ oneOr Mor e>
<ann: el ement >Fol | owi ng annotation as foreign element for "element"</ann:
</ el ement >
<ann: el ement >Fol | owi ng annotation as foreign element for "start"</ann:el em
</start>
<ann: el ement >Gramar annotation as foreign el enent for "granmar"</ann: el ement
R A
</ grammar >

The compact syntax would be;

nanespace ann = "http://dyonedea. com exanpl es/ ns/ annot ati ons"

[

ann:attribute = 'Annotation as foreign attribute for "granmar
ann:elenent ['Initial annotation as foreign elenent for "grammar"']

]

grammar {

[

ann: attribute = "Annotation as a foreign attribute for 'start
ann:elenent ['Initial annotation as foreign element for "start"']

]

start

[

ann:attribute = "Annotation as a foreign attribute for 'elenent
ann: el enent |
"Initial annotation as foreign elenment for "el enent

]

]

element library {

[

ann:attribute =
"Annotation as a foreign attribute for 'oneOrMre'"

204

Chapter 13: Annotating Schemas

ann: el enent [
"Initial annotation as foreign element for "oneO Mre"'

]
]
([

ann:attribute = "Annotation as a foreign attribute for 'ref

ann: el enent [
"Initial annotation as foreign elenment for "ref

]
]

book- el enent

>> ann: el enent [
"Fol | owi ng annotation as foreign element for "oneOr More"'

1+)
>> ann: el enent [
"Fol | owi ng annotation as foreign element for "el ement

]
}
>> ann: el enent [
"Fol |l owi ng annotation as foreign elenent for "start

]

ann: el enent [' G ammar annotation as foreign elenent for "grammar"']
A

Impressive, isn't it? Although this syntax is strictly equivalent to the XML syntax, it's quite difficult to
read and very tough to say where each of these annotations do belong. | think that it's a good enough
demonstration that if application specific syntaxes may be defined which are more concise and easier
to read than XML, when there is a need for extensibility and interoperability, XML isaclear winner.

When initial annotations turn into following annotations

A last riddle before we move on... What do you think this annotation would mean?

el enent born {
xsd: dat e {
[

xhtm :p [
"Add new paraneters here to define a range."

]
]
pattern = "[0-9]{4}-[0-9]1{2}-[0-9]{2}"
}
}

It can't beafollowing annotation onthepat t er n parameter since parameters have atext only content
model and can't accept foreign elements and Relax NG considers that in this case, thisis afollowing

annotation and that it's equivalent to:

<el ement nane="born">
<data type="date">
<param nane="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</paranr
<xhtm : p>Add new paraneters here to define a range.</xhtm :p>
</ dat a>
</ el emrent >

205

Chapter 13: Annotating Schemas

Note that this would also apply to the val ue pattern and that in both cases, the syntax using a
following annotation cannot be used in the compact syntax.

Annotating Groups of Definitions

One may want to annotate a group of patterns. When these patterns are definitions of named patterns
in a grammar and that compositors such as gr oup, i nt er | eave or choi ce cannot be used as a
container for the annotation, Relax NG provides adi v pattern for this purpose:

<?xm version="1.0" encodi ng="UTF-8""?>
<grammar xm ns:xhtm ="http://ww. w3. org/ 1999/ xht mi " xm ns="http://rel axng. org/
Y
<di v>
<xhtm : p>The content of the book el enent has been split in two naned patt el
<defi ne name="book-start">
<attribute name="id"/>
<ref nane="isbn-el enent"/>
<ref nanme="title-elenent"/>
<zer oOr Mor e>
<ref nane="aut hor-el enent"/>
</ zer oOr Nor e>
</ defi ne>
<defi ne nanme="book-end" >
<zer oOr Mor e>
<ref nane="aut hor-el enent"/>
</ zer oOr Nor e>
<zer oOr Mor e>
<ref nane="character-elenent"/>
</ zer oOr Nor e>
<attribute nane="avail abl e"/>
</ defi ne>
</div>
Y
</ gr anmar >

or:

[
xhtm:p |

"The content of the book el enent has been split in two named patterns:”
]

]
div {
book-start =
attribute id { text },
i sbn-el enent,
title-el enent,
aut hor - el erent *
book-end =
aut hor - el emrent *,
character-el enent *,
attribute available { text }

206

Chapter 13: Annotating Schemas

The di v pattern has no other effect than to group both definitions in a container so that annotations
can be applied to the whole container instead of being applied to the individual definitions. Each of
the embedded definition is still considered as global to the grammar and can be referenced as if they
had not been wrapped into adi v pattern.

Alternatives and Workarounds

All this seems pretty good, why would we like to find alternatives and workarounds? | can see two
types of reasonsfor this: the first to take advantage of more generic mechanisms defined for XML and
the other deals with the impossibility to annotate val ue and par ampatterns with foreign elements.

Why reinvent XML 1.0 comments and PIs?

There is atendency in recent XML applications to de facto deprecate the usage of XML comments
and Processing Instructions (PIs) and to replace them by XML elements and attributes. There are often
some good reasons to do so: using elements is more flexible when structured content needs to be
added and the lack of support of namespaces for Pls makes it difficult to rely on their names which
might be reused with different meanings by different applications. However, this doesn't mean that
they shouldn't be used in Relax NG schemas.

Comments are fully supported and XML comments even have their equivalent in the compact syntax:

<defi ne name="aut hor - el enent " >
<l-- Definition of the author elenment -->
<el emrent nane="aut hor" >
<attribute name="id"/>
<ref nane="nane-el enent"/>
<ref nane="born-el ement"/>
<opti onal >
<ref nane="di ed-el enent"/>
</ opti onal >
</ el enent >
</ defi ne>

is equivaent to:

author-element =

Definition of the author el enent
el ement aut hor {
attribute id { text },
nane- el enent
bor n- el enent,
di ed- el enent ?

Note how, like in Unix shells, comments are marked by a hash (#) in the compact syntax.

We could discuss endlessly whether thisis better or worse than acounterpart based on foreign el ements
such as:

<defi ne name="aut hor-el emrent " >
<xhtm : p>Definition of the author el enment</xhtn :p>

207

Chapter 13: Annotating Schemas

<el enment nane="aut hor">
<attri bute nanme="id"/>
<ref nanme="nane-el enent"/>
<ref nanme="born-el enent"/>
<opti onal >

<ref nanme="di ed-el enent"/>

</ opti onal >

</ el enent >

</ defi ne>

or:

[xhtm:p ["Definition of the author elenent”]]
aut hor-el enent =
el ement aut hor ({
attribute id { text },
name- el ement ,
bor n- el ement ,
di ed- el enent ?

| would tend to consider that the syntax for comments is much more readable in the compact syntax
and that, even in the XML syntax, XML comments are more easy to be spotted as such with their
syntax which is different from the XML elements. Readability is, of course, very subjective but there
is no reason to refuse to use comments if you think that they are more readable. After all a smple
XSLT transformation can transform comments into foreign elements and vice versa and getting good
comments is more important than the syntax used to express them!

The issue would have been similar for Pls if they had an equivalent in the compact syntax. As
comments, Plsmay be considered as more readabl e than foreign el ements. For instance, if we compare:

<defi ne nanme="aut hor - el enent ">

<?sql query="select nane, birthdate, deathdate fromthbl _ author"?>

<el emrent nane="aut hor ">
<attribute nanme="id"/>
<ref nane="nane-el enent"/>
<ref nane="born-el enent"/>
<opti onal >

<ref nane="di ed-el enent"/>

</ opti onal >

</ el enent >

</ defi ne>

and:

<define name="aut hor-el emrent" >
<sqgl :select xm ns:sql="http://ww.extensibility.com saf/spec/safsanple/sql-
sel ect nane, birthdate, deathdate fromthbl author

</sql : sel ect >

<el enent nanme="aut hor" >
<attribute nane="id"/>
<ref nane="nane-el erent"/>
<ref nane="born-el emrent"/>

208

Chapter 13: Annotating Schemas

<opti onal >
<ref nanme="di ed-el enent"/>
</ opti onal >
</ el enent >
</ defi ne>

There doesn't seem to be that much reasons to prefer the second syntax over the first one except for
the lack of namespace support already mentioned and a greater extensibility of foreign elements.

Unfortunately, Pls do not translate into the compact syntax and are trashed during the conversion. If
you want to keep the possibility to use indifferently both the XML and the compact syntax you will
thus need to avoid using PIs.

Annotation of the val ue and par ampatterns

What if we need to annotateval ue and par ampatternswhich do not accept foreign elements? There
isn't much we can do except using foreign attributes or XML comments or PIs as seen in the previous
section or moving the annotations to another location.

Comments can be used freely in this context:

<el ement nane="born">
<data type="date">
<par am nanme="nmi nl ncl usi ve">1900- 01- 01</ par an®
<par am nanme="rmax| ncl usi ve" >2099- 12- 31</ par anp
<param nanme="pattern">

<l-- W don't want tinmezones in our dates. -->
[0-9]{4}-[0-9]{2}-[0-9]{2}
</ par anp
</ dat a>

</ el ement >

Or:

el ement born {
xsd: date {
m nl ncl usi ve
max| ncl usi ve
pattern =
We don't want tinezones in our dates.
"[0-9]{4}-[0-9]{2}-[0-9]{2}\x{a}"

"1900-01-01"
"2099-12- 31"

We can also transform the foreign elements into the same attributes, for instance:

<el ement nane="born">
<data type="date">
<par am nane="m nl ncl usi ve">1900- 01- 01</ par an®
<par am nane="nmax| ncl usi ve" >2099- 12- 31</ par an®
<param nane="pattern" xhtm :p="We don't want tinmezones in our dat
</ dat a>
</ el emrent >

209

Chapter 13: Annotating Schemas

or:

el ement born {
xsd: date {
m nl ncl usi ve = "1900-01-01"
max| ncl usi ve = "2099-12- 31"
[xhtm:p = "W don't want tinmezones in our dates."]
pattern = "[0-9]{4}-[0-9]1{2}-[0-9]{2}"

}
}

Of course, there is no such thing as a xht m : p attribute, but the meaning seems straightforward
enough! Thedownsideif both workaroundsisthat we cannot extend themif we have structured content
and want, for instance, add a link in our comment. In this case, we will need to locate the comment
inaforeign element at a different location, for instance:

<el ement nane="born">
<data type="date">
<xhtm : p>We don't want timezones in our dates
(see <xhtm :a href="ref.xhtnl #dat es">dates ref</xhtm:a> for addi:
<par am nanme="nmi nl ncl usi ve">1900- 01- 01</ par an®
<par am nanme="rmax| ncl usi ve" >2099- 12- 31</ par anp
<param nane="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</paranp
</ dat a>
</ el emrent >

or:

el ement born {

[

xhtm :p [
"W don't want tinezones in our dates (see "
xhtm:a [href = "ref.xhtnl #dates" "dates ref"]

]

for additional info."

]

xsd: dat e {
m nl ncl usi ve = "1900-01-01"
max| ncl usi ve = "2099-12- 31"

pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
}
}

Note that we have |lost the relation between the annotation and the exact location where it applies. One
of the waysto get this information back isto add an identifier to the annotation and use a mechanism
such as XLink to define alink between our par amelement and the annotation:

<el ement nane="born">
<data type="date">
<xhtm :p id="dates-notz">W don't want tinezones in our dates
(see <xhtm :a href="ref.xhtmn #dates">dates ref</xhtm :a> for add
<par am nane="m nl ncl usi ve">1900- 01- 01</ par an®
<par am nane="nmax| ncl usi ve">2099- 12- 31</ par an®

210

Chapter 13: Annotating Schemas

<param nane="pattern" xlink:type="sinple"
xl'ink:arcrol e="http://wwmv. rddl . org/ purposes#ref erence”
xl'i nk: href ="#dat es-not z" >[0-9]{4}-[0-9]{2}-[0-9]{2}</paranr
</ dat a>
</ el ement >

or:

el ement born {

[

xhtm:p |
id = "dates-notz"
"W don't want tinezones in our dates (see "
xhtm:a [href = "ref.xhtnl #dates" "dates ref"]

" for additional info."

]
]

xsd: date {
m nl ncl usi ve = "1900-01- 01"
max| ncl usi ve = "2099-12- 31"
[
xl'ink:type = "sinple"
xl'ink:arcrole = "http://ww.rddl.org/ purposes#reference"
xlink: href = "#dates-notz"

]
pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
}
}

Another option isto change the rule of the game and state that the annotation do not apply to its parent
element, but, if thereis one, to the preceding element. We will see in the next section that Relax NG's
DTD compatibility specification usesthistrick! Applied to our example, thiswould lead to writing:

el enent born {
xsd: dat e {
m nl ncl usi ve
max! ncl usi ve

[

"1900-01-01"
"2099-12- 31"

xhtm :p [
"W don't want tinezones in our dates (see "
xhtm:a [href = "ref.xhtm #dates" "dates ref"]
' for additional info."

]
]
pattern = "[0-9]{4}-[0-9]1{2}-[0-9]{2}"

}
}

Documentation

After this long introduction to annotations, we can start seeing more applications of these. The first
obvious application of annotations is for documentation. The issue of documenting applicationsis a
long running problem with three different schools:

211

Chapter 13: Annotating Schemas

» The documentation and the code can be separated but in this case there is nothing really specific to
documenting Relax NG schemas and thisis out of the scope of this book.

» The code can be embedded in the documentation as proposed by the proponents of "Literate
Programming" and this approach will be presented in our next chapter "Chapter 14: Generating
Relax NG schemas'.

» The documentation can be embedded within the code and this approach applied to Relax NG leads
to annotations as covered in this section.

We've seen the technical basis of how these annotations may be included in Relax NG schemas
and generating a documentation from these annotations is mainly a matter of writing a XSLT
transformation to extract and format them according to your needs. Instead of going over the details
of such transformations which would be out of the scope of thisbook, wewill see here some examples
of such annotations using different existing XML namespaces.

Comments

Many examples have already been supplied in the previous section, including this one:

<defi ne nane="aut hor-el emrent" >
<l-- Definition of the author elenment -->
<el enment nane="aut hor">
<attri bute nanme="id"/>
<ref nanme="nane-el enent"/>
<ref nanme="born-el enent"/>
<opti onal >
<ref nanme="di ed-el enent"/>
</ opti onal >
</ el enent >
</ defi ne>

which is equivalent to:

author-element =

Definition of the author el enent
el enent aut hor {
attribute id { text },
nane- el enent
bor n- el enent,
di ed- el enent ?

As seen in the previous section, comments have the benefit to be readable both in the XML and
in the compact syntax. They can be easily extracted, not only from the XML syntax using a XSLT
transformation or also from the compact syntax using regular expressions and provide a lightweight
way to document Relax NG schemas. They are also the least intrusive mechanism to annotate schemas
and can beused at any location in aschema, including withinthetext only patternsval ue and par am

Their readability in the compact syntax is so much better than annotations that, taking the risk to be
called a devotee of the past, | would recommend them by default to document Relax NG schemas
when there is no other special requirement.

Their downsides are well known:

212

Chapter 13: Annotating Schemas

e The XML recommendation states that their treatment by applications is optional and some tools
just ignore them. Thiswas the case of early parsers and editors but the situation has been improving
since the early days of XML and most if not al the XML parsers and editors do now respect XML
comments.

» They can only contain plain text and no XML structures. In the context of a Relax NG schema, this
is often not an issue and when needed conventions can easily be added to define specific structures,
either like it is done for JavaDoc where specia "tags' are prefixed by @or for Wiki Wiki Webs
where links are expressed as [link titlejhttp://...link.location]".

Relax NG DTD Compatibility Comments

We have already mentioned the Relax NG DTD Compatibility specification in our chapter about
external datatype libraries" Chapter 8: Datatype Libraries' where we have studied the DTD datatypes.
There is more than that in this specification which also includes a way to specify comments which
would be included in a DTD equivalent to the Relax NG schema and aso an annotation to define
default values which we will seelater onin this chapter.

The DTD compatibility comments have aspecial statusin that a namespace has been defined for them
by the Relax NG Technical Committee and that a shortcut has been defined to provide a concise form
in the compact syntax. Being annotationsin the XML syntax and comment like in the compact syntax,
they are thus a kind of middle solution between XML comments and Relax NG annotations.

When usingthe XML syntax, DTD Compatibility Comments areforeign el ementsfrom the namespace
"http://relaxng.org/ns/compatibility/annotations/1.0". Their content is text only and they may be
annotated using foreign namespace attributes. An example of schemausing thisfeatureis:

<?xm version="1.0" encodi ng="utf-8"?>
<granmar xm ns="http://rel axng.org/ns/structure/1.0"

xm ns:a="http://rel axng. org/ ns/conpatibility/annotations/1.0">
<a: docunent ati on>Rel ax NG fl at schema for our |ibrary</a:docunentation>
<start>

<el enent name="Ilibrary">
<oneOr Mor e>
<ref nanme="book-el enent"/>
</ oneOr Mor e>
</ el enent >
</start>
<defi ne nanme="aut hor-el emrent ">
<a: docunent ati on>Definition of the author el enment</a:docunmentation>
<el enent nane="aut hor">
<attri bute nanme="id"/>
<ref nanme="nane-el enent"/>
<ref nanme="born-el enent"/>
<opti onal >
<ref nanme="di ed-el enent"/>
</ opti onal >
</ el enent >
</ defi ne>
R A
</ gr ammar >

An equivalent schema using the compact syntax is:

Relax NG flat schenma for our library

213

Chapter 13: Annotating Schemas

gr ammar {

start = elenent library { book-el emrent+ }

Definition of the author el enent
aut hor-el ement =
el enent aut hor {
attribute id { text },
nane- el enent
bor n- el enent,
di ed- el enent ?

YA

Note the syntax with the |leading double sharps (##) analogousto the/ * * comments used in JavaDoc
and also the fact that even though they look like comments, these are annotations which have the same
meaning and rules than initial annotations and must precede the pattern to which they apply. In fact,
this syntax is only a shortcut to the corresponding annotations and this is equivalent to:

nanmespace a = "http://relaxng. org/ ns/conpatibility/annotations/1.0"

[a:docunentation ["Relax NG flat schenma for our library"]]

granmar {
start = elenent library { book-el ement+ }

[a:docunentation ["Definition of the author elenent”]]
aut hor -el ement =
el ement aut hor {
attribute id { text },
nane- el ement ,
born- el enment ,
di ed- el ement ?
}
Y A

Also notethat this shortcut hasthe same restrictionsthan initial annotations and that they must precede
all the initial annotations. It is possible to mix them with other types of annotations and write for
instance:

214

Chapter 13: Annotating Schemas

nanespace a = "http://rel axng. org/ ns/conpatibility/annotations/1.0"

a: docunmentation ["Relax NG flat schema for our library”]
start = elenent library { book-el ement+ }

Definition of the author el ement
aut hor-el enent =
el enent aut hor {
attribute id { text },
name- el ement ,
bor n- el ement
di ed- el enent ?

Up to now, we have seen examples of these compatibility commentswhich werethefirst child element
intheir parent and this has been hiding an important feature of these comments: they are using the last
trick we've mentioned in the previous section about workarounds for annotating par amand val ue
patterns and apply to the preceding sibling from the Relax NG namespace when there is one. This
meansthat if wewant to annotatethereferencetothenamne- el enent definition, we can either write:

<defi ne name="aut hor - el enent ">
<el emrent nane="aut hor ">
<attribute nanme="id"/>
<ref nane="nane-el enent">
<a: docunent ati on>Definition of the author el enent</a:docunentation>
</ref>
<ref nane="born-el enent"/>
<opti onal >
<ref nane="di ed-el enent"/>
</ opti onal >
</ el enent >
</ defi ne>

or:

<defi ne name="aut hor - el enent ">
<el emrent nane="aut hor ">
<attribute nanme="id"/>
<ref nane="nane-el enent"/>
<a: docunent ati on>Definition of the author el enent</a:docunentation>
<ref nane="born-el enent"/>
<opti onal >
<ref nane="di ed-el enent"/>
</ opti onal >
</ el enent >
</ defi ne>

215

Chapter 13: Annotating Schemas

Inthefirst case, the DTD compatibility annotationisthefirst child element of itsparent element (r ef)
and appliesto ther ef pattern for this reason. In the second case, the annotation is not the first child
element from the Relax NG namespace and appliesto his preceding sibling, whichisther ef pattern

again.
The compact syntax has the same rules, and the following annotations are equivalent too:

author-element =

el ement aut hor {
attribute id { text },

Definition of the author el enment
name- el emrent ,
born- el emrent
di ed- el enent ?

and:

author-element =

el ement aut hor {
attribute id { text },
name- el enent
>> a:docunentation ["Definition of the author elenent"],
bor n- el enent,
di ed- el ement ?

Here again, afollowing annotation is considered as an annotation of the nane- el enent reference.

Of courseg, if we were annotating a par amor val ue pattern we would have no other choice than to
locate the annotation after the pattern and this is why this tricky mechanism has been introduced.

XHTML Annotations

XHTML seems like a natural choice for embedding documentation in Relax NG schemas and we
have already seen several examples of such annotations. The main benefit of XHTML is to be so
similar to HTML that it is known by pretty much anyone who has ever published a web page. A lot
of documentation and books are available on XHTML and many editors can be used to edit XHTML
documents. Furthermore, if you keep to areasonable subset of XHTML (such asfor instance XHTML
Basic), you have a simple and generic language to write documentation. And of course, the work
needed if you want to publish the result of the extraction of XHTML annotations as XHTML is
minimal since your annotations are already XHTML.

You will find more information about XHTML on the W3C web site: http://www.w3.org/MarkUp/
as well asin specialized books such as "HTML & XHTML: The Definitive Guide" (O'Reilly) and
"XHTML: Moving Toward XML" (M& T Books).

We have a so seen many examples of XHTML annotations, such as:

<?xm version="1.0" encodi ng="utf-8""?>

216

Chapter 13: Annotating Schemas

<granmmar xm ns="http://relaxng.org/ns/structure/1.0" xm ns: xhtm ="http://ww. w
<xhtm : di v>
<xhtm : h1>Rel ax NG fl at schema for our |ibrary</xhtm :hil>
<xhtm : p>Thi s schema has been witten by <xhtm :a href="http://dyonmedea. col
</xhtm :div>
Y
</ gr ammar >

or, using the compact syntax:

nanespace xhtnm = "http://ww. w3. org/ 1999/ xht m "

xhtm :div
[
xhtm :hl ["Relax NG flat schema for our library"]
xhtm :p
[
"This schema has been witten by "
xhtm:a [href = "http://dyonmedea. confvdv" "Eric van der VIist"]

start = elenent library { book-el emrent+ }
Y

Beyond the syntax which has already been discussed in the first part of this chapter, note how we have
embedded atitle (xht m : h1) and a paragraph (xht i : p) within adivisions (xht mi : di v). This
is generally agood practice which makesit easier to associate the title with the rest of the content and
to manipulate the annotation as awhole.

DocBook Annotations

First design asa SGML application, DocBook is now also a XML language very popular for writing
technical documentations. Beyond features which can be compared to those of XHTML, DocBook
offersmany predefined bells and whistlesto facilitate indexes and cross references, to say that atext is
asnippet of source code, identify acronyms and many other things. These features can be emulated in
XHTML usingthecl ass attribute, but in DocBook they are built-in from the beginning and people
agree with their meaning.

You will find more information about DocBook on its web site: http://www.oasis-open.org/
committees/docbook/ and in the book "DocBook: The Definitive Guide" (O'Reilly).

DocBook is defined as a DTD which doesn't use any namespace and that's not an issue since Relax
NG allows annotations through elements without namespace. To give you an idea of what DocBook
looks like as well as an example showing how to "undeclare" a namespace in XML, the following
example would match more or less what we had written in XHTML in the previous one:

<?xm version="1.0" encodi ng="utf-8""?>
<grammar xm ns="http://rel axng.org/ ns/structure/1.0">

217

Chapter 13: Annotating Schemas

<sectl xm ns="">
<title>Relax NG flat schema for our library</title>
<para>Thi s schema has been witten by <xref |inkend="vdv"/>.</para>
</ sect 1>
<start>
<el enent name="Ilibrary">
<oneOr Mor e>
<ref nane="book-el emrent"/>
</ oneOr Mor e>
</ el ement >
</start>
T A
</ gr ammar >

Or, with the compact syntax:

sectl [
title ["Relax NG flat schema for our library"]
para [
"This schema has been witten by "
xref [linkend = "vdv"]

]
]

start = elenent library { book-el ement+ }
Y

Dublin Core Annotations

While XHTML and DocBook are great to include content as documentation, Dublin Core is widely
used over the web to include metadata about all type of resources and includes aset of elementswith a
description of their semanticswhich provideinteroperableinformation including notions very relevant
in aschema such asthe name of its authors, their organization, the date, the copyright associated with
the schema or the subjects which are relevant. Dublin Core is very complementary to DocBook and
XHTML and Dublin Coreis often usein XHTML documents whereit finds anatura fitin thenet a
elements.

Y ou will find more information about Dublin Core on their site: http://dublincore.org/ .

In a Relax NG schema, Dublin Core elements may be included wherever it makes sense: under the
gr ammar pattern, they will qualify the whole grammar while under anel enent pattern, they would
be useful to qualify the specific element.

A more complete exampleis:

<?xm version="1.0" encodi ng="UTF-8""?>
<grammar xm ns:dc="http://purl.org/dc/elenents/1.1/" xm ns="http://rel axng. org
<dc:title>The library elenent</dc:title>
<dc:creator>Eric van der Vlist</dc:creator>
<dc: subject>library, book, relax ng</dc:subject>
<dc: description>This Rel ax NG schena has been witten as an exanple to show
<dc: dat e>2003- 01- 30</ dc: dat e>
<dc: | anguage>en</ dc: | anguage>
<dc:rights>Copyright Eric van der M ist, Dyonedea.
During devel opnent, | give perm ssion for non-comercial copying for

218

Chapter 13: Annotating Schemas

educational and revi ew purposes.
After publication, all text will be released under the
Free Software Foundati on GFDL. </dc:rights>
Y
</ gr ammar >

or:

namespace dc = "http://purl.org/dc/elements/1.1/"

dc:title ["The library element"]
dc:creator ["Eric van der Mist"]
dc:subject ["library, book, relax ng"]
dc: description [
"This Rel ax NG schema has been witten as an exanple to show how Dublin Core

]
dc:date ["2003-01-30"]

dc:language ["en"]
dc:rights |
"Copyright Eric van der Mist, Dyonedea. \x{a}" ~
" During devel opnent, | give perm ssion for non-comercial copying for \x
" educational and revi ew purposes. \x{a}" ~
" After publication, all text will be rel eased under the \x{a}" ~

" Free Software Foundation G-DL."

SVG Annotations

Thereis no reason to limit ourselves to text and metadata and graphics can be included, such as:

<?xm version="1.0" encodi ng="utf-8""?>
<grammar xm ns="http://relaxng.org/ ns/structure/1.0" xm ns:svg="http://ww. w3.
<start>
<el enent name="Ilibrary">
<oneOr Mor e>
<ref nane="book-el emrent"/>
</ oneOr Mor e>
</ el emrent >
</start>
<defi ne name="aut hor-el emrent " >
<el enent nanme="aut hor" >
<svg: svg>
<svg:title>A typical author</svg:title>
<svg: el lipse style="stroke: #000000; fill:#e3e000; stroke-w dth:2pt;" i

<svg:ellipse style="stroke:none; fill:#7f7f7f; " id="I|eftEye" cx="240"
<svg:ellipse style="stroke: none; fill:#7f7f7f; " id="rightEye" cx="320
<svg: path style="fill:none;stroke: #7F7F7F; stroke-wi dth: 5pt;" id="nout

</ svg: svg>
<attribute nanme="id"/>
<ref nane="nane-el enent"/>
<ref nane="born-el enent"/>
<opti onal >

<ref nane="di ed-el enent"/>

219

Chapter 13: Annotating Schemas

</ opti onal >
</ el enent >
</ defi ne>

/

</ gr ammar >

Or, using the compact syntax:

nanespace svg = "http://ww. w3. or g/ 2000/ svg"

start

element library { book-elenment+ }

aut hor - el enent =

[

]

svg: svg |
svg:title ["A typical author"]
svg: el lipse >[

]

style = "stroke: #000000; fill: #e3e000;

id = "head"
cx = "280"
cy = "250"
rx = "110"
ry = "130"

svg: el lipse |

]

style = "stroke: none; fill:#7f7f7f; "

id = "leftEye"
cx = "240"
cy = "225"
rx = "18"
ry = "18"

svg: el lipse |

style = "stroke: none; fill:#7f7f7f; "

id = "rightEye"
cx = "320"
cy = "225"
rx = "18"
ry = "18"
]
svg: path [

]

]

st roke-w dt h: 2pt ;"

style = "fill:none; stroke: #7/F7F7F; stroke-wi dth: 5pt;"

id = "pnouth"
d = "M222 280 A 58 48 0 0 0 338 280"

el ement aut hor {
attribute id { text },
nane- el enent ,

bor n- el enent

di ed- el enent ?

Y A

220

Chapter 13: Annotating Schemas

| leave it to you as an additional exerciseto visualize what atypical author looks like! Note we could
have included a UML representation of the author element instead.

The Scalable Vector Graphics (SVG) is a XML vocabulary published by the W3C. You will find
moreinformation about SV G onitsweb site: http://www.w3.org/Graphics/SV G/ aswell asin the book
"SVG Essentials' (O'Reilly).

RDDL Annotations

The last type of annotation I'd like to mention here is a good transition between annotations for
documentation purposes which we are seeing in this section and annotation for applications which we
will see in the next section: RDDL has been designed as a XML vocabulary which can be used both
by humans as documentation and by applications! Although RDDL has been invented to document
namespaces, it can find a very good fit in a Relax NG schema from which it can be extracted to
congtitute RDDL documentations for the namespaces described in the schema. RDDL is based on
XHTML and XLink and plays well with XHTML documentation.

Y ou will find more information about RDDL on its web site: http://rddl.org .

RDDL main benefit isto provide away to associate resources with a document and could be used to
associate for instance a XSL T template and a CSS style to the definition of the author element:

<?xm version="1.0" encodi ng="utf-8"?>
<grammar xm ns="http://rel axng.org/ ns/structure/1.0"
xm ns: xl i nk="http://ww.w3. org/ 1999/ x| i nk"
xm ns:rddl ="http://ww.rddl.org/"
xm ns: xhtm ="http://ww. w3. org/ 1999/ xht m " >
<start>
<el enent name="Ilibrary">
<oneOr Mor e>
<ref nane="book-el emrent"/>
</ oneOr Mor e>
</ el ement >
</start>
<defi ne name="aut hor-el emrent " >
<el enent nanme="aut hor" >
<xhtm : di v>
<rddl : resource id="author-transfornm xlink:arcrole="http://ww.w3.org/
xlink:role="http://ww.w3.org/ 1999/ XSL/ Transform' xlink:title="Authol
xl'ink: href="1ibrary. xsl t #aut hor" >
<xhtm :div class="resource">
<xht m : h4>XSLT Transfornmati on</xhtm : h4>
<xhtm : p>This <xhtm :a href="1ibrary. xslt#aut hor">XSLT t enpl at e</ x|
</ xhtm :div>
</rddl : resource>
<rddl : resource id="CSS" xlink:title="CSS Styl esheet"
xlink:role="http://ww.isi.edu/in-notes/ianal/assignnents/nedi a-types,
<xhtm :div class="resource">
<xhtm : h4>CSS Styl esheet </ xht m : h4>
<xhtm : p>A <xhtnl:a href="aut hor.css">CSS styl esheet </ xhtnl :a> def|
</ xhtm :div>
</rddl : resource>
</ xhtm :div>
<attribute nane="id"/>
<ref nane="nane-el erent"/>
<ref nane="born-el emrent"/>
<opti onal >
<ref nane="di ed-el emrent"/>

221

Chapter 13: Annotating Schemas

</ opti onal >
</ el ement >
</ defi ne>
Y
</ gr ammar >

or:
nanespace rddl = "http://ww.rddl.org/"

nanespace xhtn "http://ww. w3. org/ 1999/ xhtm "
nanmespace xlink "http://ww. w3. org/ 1999/ xIl i nk"

start = elenent library { book-el ement+ }
aut hor-el ement =

xhtm :div [
rddl : resource |
id = "author-transfornt

xlink:arcrole = "http://ww.w3. org/ 1999/ xhtnm "
xlink:role = "http://ww.w3. org/ 1999/ XSL/ Tr ansf or nt'
xlink:title = "Author XSLT tenpl ate"

xl'ink: href = "library. xslt#aut hor"
xhtm :div [
class = "resource"
xhtm :h4 ["XSLT Transformation"]
xhtm :p |
"This "
xhtm:a [href = "library.xslt#author" "XSLT tenpl ate"]

di spl ays the description of an author as XHTM.."

]
]
]

rddl : resource |
id="CSss"
xlink:title = "CSS Styl esheet™
xlink:role =
"http://ww. isi.edu/in-notes/ianal/assi gnments/ nedia-types/text/css"

xlink: href = "author.css"
xhtm :div [
class = "resource"
xhtm :h4 ["CSS Styl esheet”]
xhtm :p |
xhtm:a [href = "author.css" "CSS styl esheet"]

defining some cool styles to display an author."

]
]
]
]
]

el ement aut hor {
attribute id { text },
nane- el enent ,
bor n- el enent
di ed- el enent ?

222

Chapter 13: Annotating Schemas

Annotation for applications

Asmentioned in the introduction of this chapter, common uses of annotations by applicationsinclude
using them as pre-processing instructions, as hel pers for generating other schemas out of a Relax NG
schema and as extensionsto Relax NG itself.

Annotations for pre-processing

An interesting application of annotation for pre-processing has been proposed by Bob DuCharme and
can be used to derive specific schemas by restriction out of a generic schema. The benefits of this
approach are that it is extremely simple an provides a very straightforward workaround to the lack of
derivation by restriction of Relax NG. It is also language neutral and can be applied to other schema
languages such as W3C XML Schema where it is much simpler than the derivation by restriction
feature built into the language.

You can find Bob DuCharme's proposal on the web: http://www.snee.com/xml/schemaStages.html
and can download the XSLT transformation implementing it at http://www.snee.com/xml/
schemaStages.zip.

The ideaisto add annotations in elements which needs to be removed in avariant of the schema and
to use these annotations to generate the different variants using a XSLT transformation. Each variant
is caled astage. Thelist of the available stages is declared in asn: st ages element and for each
element which is conditional, the list of the stages in which it needs to be kept is declared through
asn: st ages attributes.

Since this technique is using annotations, the global schema can till be a valid schema which will
validate a superset of the instance documents valid per each of the stages.

If wewanted to derive schemasrequiring either abook, aut hor ,| i brary orchar act er element
or both book or aut hor as a document element from a generic schema alowing any of these, we
could write:

<?xm version="1.0" encodi ng="utf-8"?7>
<granmmar xm ns="http://relaxng.org/ns/structure/1.0" xm ns:sn="http://ww. snee
<sn: st ages>
<sn: stage name="library"/>
<sn: stage name="book"/>
<sn: st age nane="aut hor"/>
<sn: st age nane="character"/>
<sn: st age nane="aut hor - or - book"/ >
</ sn: st ages>
<start>
<choi ce>
<ref nanme="library-elenent" sn:stages="library"/>
<ref nane="book-el ement" sn:stages="book author-or-book"/>
<ref nanme="aut hor-el ement" sn:stages="aut hor author-or-book"/>
<ref nane="character-el ement" sn:stages="character"/>
</ choi ce>
</start>
P A
</ gr ammar >

or:

223

Chapter 13: Annotating Schemas

nanespace sn = "http://ww. snee. coni ns/ st ages™

sn: stages |

sn:stage [nane = "library"]
sn:stage [name = "book"]
sn:stage [name = "author"]
sn:stage [name = "character"]
sn:stage [name = "aut hor-or-book"]
]
start =

[sn:stages =
| [sn:stages
| [sn:stages
| [sn:stages
N

i brary" 1 library-el ement

"book aut hor-or-book"] book-el ement
"aut hor aut hor-or-book"] author-el ement
"character"] character-el emrent

This schema is a valid Relax NG schema which would accept any of these elements as a root. A
transformation of the XML syntax through the XSLT transformation "getStage.xd" provided in the
zip file mentioned above with aparameter st ageNarme settoaut hor - or - book would remove all
the elementswith asn: st age attribute that do not have aut hor - or - book in their list of values:

$ xsltproc --stringparam stageNanme aut hor-or-book get Stage. xsl doc-snee.rng
<?xm version="1.0"?>
<grammar xm ns="http://relaxng.org/ ns/structure/ 1.0" xm ns:sn="http://ww. snee

<start>
<choi ce>

<ref nanme="book-el enent"/>
<ref nanme="aut hor-el ement"/>

</ choi ce>
</start>
R
</ gr anmar >

This transformation has thus performed a restriction on the schema and as many schemas can be
generated this way as stages have been declared inthe sn: st ages element.

Annotations for conversion

We will seein"Appendix B: Using Relax NG As aPivot Format" that Relax NG isagood fit to be a
"pivot" format, i.e. areferenceformat in which schemas are kept and transformed into other languages.

224

Chapter 13: Annotating Schemas

One of the limits of this approach is that features which are part of the target languages and not part
of Relax NG seem to be out of reach and that would be true if we had no annotations. The two most
notorious examples of such annotations are for generating DTDs and W3C XML Schema.

Annotations to generate DTDs

This is the third and last facet of the DTD Compatibility specifications and this deals with default
values for attributes which can be declared using aa: def aul t Val ue attribute:

<?xm version="1.0" encodi ng="utf-8"?>
<el ement xm ns="http://relaxng.org/ns/structure/1.0" xm ns:a="http://rel axng. o
<oneOr Mor e>
<el enent nane="book" >
<attri bute nanme="id"/>
<optional >
<attri bute nane="avail abl e" a: defaultVal ue="true">
<choi ce>
<val ue>t rue</ val ue>
<val ue>f al se</val ue>
</ choi ce>
</attribute>
</ opti onal >
R S
</ el enent >
</ oneOr Mor e>
R S
</ el enent >

or:

nanespace a = "http://rel axng. org/ns/conpatibility/annotations/1.0"

el ement library {
el ement book {
attribute id { text },
[a:defaultValue = "true"]
attribute available { "true" | "fal se" }?,
el ement isbn { text },
element title {
attribute xm:lang { text },
t ext

b
.

}+..

The attribute needs to be declared as optional to use thisfeature and that means that there is no impact
onthevalidation by a Relax NG processor. However, converters such as Trang will use thisannotation
to generate adefault valuein aDTD:

<! ATTLI ST book

225

Chapter 13: Annotating Schemas

i d CDATA #REQUI RED
avail able (true|false) "true' >

Annotations to generate W3C XML Schema schemas

Thereisno officia specification about how to generate W3C XML Schema schemas from Relax NG
and what we will say in this small section is derived from the documentation of Trang available on
the web at http://www.thai opensource.com/rel axng/trang-manual .html.

Thefirst thing to noteisthat Trang does support thea: def aul t Val ue attribute and that the schema
presented above would be trandlated as:

<xs: el enent nane="book" >
<xs:conpl exType>
<XS:sequence>
<xs: el enent ref="ishn"/>
<xs:elenent ref="title"/>
<xs:elenment m nQccurs="0" nmaxCccurs="unbounded" ref="author"/>
<xs: el enment m nCccurs="0" naxCccurs="unbounded" ref="character"/>
</ xs: sequence>
<xs:attribute nane="id" use="required"/>
<xs:attribute nane="avail abl e" default="true">
<xs: si npl eType>
<xs:restriction base="xs:token">
<xs:enuneration val ue="true"/>
<xs:enuneration val ue="fal se"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
</ xs: conpl exType>
</ xs: el enent >

Notethedef aul t attribute in the declaration of the avai | abl e attribute.

In addition to this annotation, James Clark has created a specific namespace: http:/
www.thai opensource.com/ns/relaxng/xsd to control the trandation to W3C XML Schema This
trandlation is far from being obvious and a Relax NG schema can often be translated using different
features of W3C XML Schema. James Clark has made a lot of choicesin his implementation based
on best practices, but there are still some options which are really context dependent and for which
the users may be given a choice.

In the current version (as of 30 January 2003), there is only one annotation attribute available to
perform such choices, thet x: enabl eAbst r act El enent s attribute which may be included in
grammar,di v ori ncl ude. Thisattribute cantakethevaluest r ue or f al se and controlswhether
abstract elements may be used in substitution groups. Thisisafairly advanced feature of W3C XML
Schema and we won't present it here nor give any example. You will find more information on this
feature in my tutorial on XML.com: http://xml.com/pub/a’2000/11/29/schemas/part1.html or in my
book "XML Schema: The W3C Object-Oriented Descriptions for XML" (O'Reilly).

The Trang manual indicates that more annotations might be added in the future.
Schema Adjunct Framework
The Schema Adjunct Framework (SAF) is more or less faling into this category as well. SAF isa

generic framework to store processing information in relation with schemas and can work either as
standalone or as "schema adornments®, i.e. annotations embedded in schemas. Although it has been

226

Chapter 13: Annotating Schemas

developed to work with W3C XML Schema, thereis no reason that it couldn't be used to adorn Relax
NG schemas.

You can find more information about SAF on the web: http://www.tibco.com/solutions/products/
extensibility/resources/saf.jsp

The momentum behind SAF seems to have decreased a lot since end of 2001, but this is definitely
something to check if you need to add processing information in a schema. A simplified example for
a SAF adornment in Relax NG could be;

<defi ne name="aut hor - el enent ">
<sql : sel ect >sel ect <sql: el enpnane</sql : el en», <sql: el enrbirthdate</sql:elemn
from tbl _aut hor</sql:select>
<el erent nane="aut hor">
<attribute name="id"/>
<ref nane="nane-el enent"/>
<ref nane="born-el enent"/>
<opti onal >
<ref nane="di ed-el enent"/>
</ opti onal >
</ el enent >
</ defi ne>

or:

[
sql : sel ect |
"select "
sqgl:elem ["nane"]

sqgl:elem["birthdate"]
sqgl:elem ["deathdate"]
" fromthbl _author"
]
]

aut hor-el enent =
el ement aut hor ({
attribute id { text },
name- el emrent ,
born- el emrent,
di ed- el enent ?

Annotations for extension

Annotations can al so be used as extensionsto influence the behavior of the Relax NG processorswhich
support them which is more controversial but can also be very useful. The two applications which |
am aware of in this category are for embedding Schematron rule and my own XVIF project which
allows to define pipes of validations and transformations that act as Relax NG patterns.

Embedded Schematron rules

Schematron is a XML schema language rather untypical since instead of being grammar based like
Relax NG and focus on describing documents, Schematron is rule based and consistsin lists of rules

227

Chapter 13: Annotating Schemas

to check on documents. Giving the exhaustive list of al the rules needed to validate a document is a
very verbose and error prone task but on the other hand, the ability to write your own rules gives a
flexibility and a power which can't be matched by a grammar based schema language. The two types
of languages appear thus to be more complementary than competitors and using both together allows
to take the best of each of them.

Y ou will find more information about Schematron on its web site: http://www.ascc.net/xml/resource/
schematron/schematron.html.

Schematron is a good fit, for instance, if we want to check that the i d attribute of our book element
is composed of the ISBN number prefixed by the letter b. In this case we would write:

<?xm version="1.0" encodi ng="utf-8"?>
<grammar xm ns="http://relaxng.org/ns/structure/1.0" xm ns:s="http://ww. ascc.
<defi ne nane="book-el enent ">
<el enent nane="book" >
<s:rul e cont ext="book">
<s:assert test="@d = concat('b', isbn)"> The id needs to be the isbhn |
</s:rul e>
<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<ref nanme="isbn-elenent"/>
<ref name="title-elenent"/>
<zer oOr Mor e>
<ref nanme="aut hor-el emrent"/>
</ zer oOr Nor e>
<zer oOr Mor e>
<ref nanme="character-element"/>
</ zer oOr Nor e>
</ el enent >
</ defi ne>
R A
</ gr anmar >

or:

nanespace s = "http://ww. ascc. net/xm /schematron”

book-el ement =

[

s:rule |
context = "book"
s:assert |
test = "@d = concat('b', isbn)"

' The id needs to be the isbn nunmber prefixed by "b"

]
]
]
el ement book {
attribute id { text },
attribute available { text },

i sbn-el emrent,
title-el enent,

228

Chapter 13: Annotating Schemas

aut hor - el enent *,
char acter-el enent *

The Schematron annotationis composed of ar ul e element which is setting the context and embedded
assert elementsdefining assertions. Instead of assert ,r eport elementscan aso be used which
are the opposite of assertions and report errors when they are true. These checks are applied to all the
elements mesting the XPath expression expressed in the cont ext attribute of ther ul e elements
and thet est attribute of theassert orr eport elementsare also XPath expressions.

At this point, we must note that there is a difference of appreciation between implementations on
the scope in which the rules must be applied leading to potential issues of interoperability between
implementations.

On one side, the Schematron specification states that when Schematron rules are embedded in another
language, they must be collected and bundled into a Schematron schema independently of where
they have been found in the original schema. In other words, this means that the rule which we has
been defined above should be applied to al the book elements in the instance documents. This is
the approach taken by the Topologi multi validator (see http://www.topol ogi.com/products/validator/
index.html).

On the other side, when a schematron rule is embedded in a Relax NG el enent pattern like it is
the case here, it is rather tempting to evaluate the rule in the context of the pattern. In that case, the
rule will only apply to the book elements which are included in the context node and if the rule fails,
the element pattern will fail and other aternativeswill be checked. Thisisthe approch taken by Sun's
Multi Schema Validator (see http://wwws.sun.com/software/xml/devel opers/multischema/).

The difference can be seen in an example such as:

<defi ne nanme="book- el enent ">
<choi ce>
<el ement nane="book" >
<s:rul e cont ext="book">

<s:assert test="@d = concat('b', isbn)"> The id needs to be the isbn

</s:rul e>
<attribute nanme="id"/>
<attribute nane="avail abl e"/>
<ref nane="isbn-el enent"/>
<ref nanme="title-elenent"/>
<zer oOr Mor e>

<ref nane="aut hor-el enent"/>
</ zer oOr Nor e>
<zer oOr Mor e>

<ref nane="character-elenent"/>
</ zer oOr Nor e>

</ el enent >
<el ement nane="book" >

<attribute name="id">

<val ue>ggj h0836217462</ val ue>
</attribute>
<attribute nane="avail abl e"/>
<ref nane="isbn-el enent"/>
<ref nanme="title-elenent"/>
<zer oOr Mor e>

<ref nane="aut hor-el enent"/>
</ zer oOr Nor e>

229

Chapter 13: Annotating Schemas

<zer oOr Mor e>
<ref name="character-elenment"/>
</ zer oOr Nor e>
</ el enent >
</ choi ce>
</ defi ne>

In this case, the approach taken by the Schematron specification would lead to consider an instance
document with abook id equal to "ggjh0836217462" asinvalid since the evaluation of the Schematron
rulesis completely decoupled from the validation by the Relax NG schema and the approach taken by
MSV would consider the same document as valid since it's meeting one of the alternative definitions
for the book element.

XVIF

Theinteroperability issue mentioned aboveisagood illustration of the difficulty to mix elementsfrom
different languages which have been specified independently and the XML Validation Interoperability
Framework (XVIF) isaproposal for aframework which would take care of thiskind of issues. Y ouwill
find more information on XV IF at its home page: http://downl oads.xmlschemata.org/python/xvif/.

The principle of XVIF is to define "micro pipes' of transformations and validations which can be
embeded in different transformation and validation languages. When the host language is Relax NG,
these micro pipes behave as Relax NG patterns.

There are many use cases for such micro pipes and one of them is to include transformations to fit
text nodes into existing datatypes. For instance, we have been lucky enough to have dates which are
using the 1SO 8601 format in our documents, but we could as well have had let's say French date
formats. In this case, a set of regular expressions can be defined to do the transformation between
these dates and the 1SO 8601 format and XV IF gives away to integrate these regular expressionsin
aRelax NG schema:

<?xm version="1.0" encodi ng="utf-8"?>
<grammar xm ns="http://relaxng.org/ns/structure/1.0" xmns:if="http://nanespac
dat at ypeLi brary="htt p: //ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >
<defi ne nanme="born-el ement " >
<el ement nane="born">
<if:pipe>
<if:validate type="http://nanespaces. xm schemat a. or g/ xvi f/ regexp"
appl y="n[0-9]+ .+ [0-9] +/"/>
<if:transformtype="http://nanespaces. xnl schemat a. or g/ xvi f/regexp"
apply="s/~[\t\n]*([0-9] .*)$/0\1/"/>
<if:transformtype="http://nanespaces. xnl schemat a. or g/ xvi f/regexp"
appl y="s/([0-9]+) janvier ([0-9]+)/\2-01-\1/"/>
<if:transformtype="http://nanespaces. xnl schemat a. or g/ xvi f/regexp"
appl y="s/([0-9]+) fevrier ([0-9]+)/\2-02-\1/"/>
<if:transformtype="http://nanespaces. xnl schemat a. or g/ xvi f/regexp"
appl y="s/([0-9]+) mars ([0-9]+)/\2-03-\1/"/>
<if:transformtype="http://nanespaces. xnl schemat a. or g/ xvi f/regexp"
appl y="s/([0-9]+) avril ([0-9]+)/\2-04-\1/"/>
<if:transformtype="http://nanespaces. xnl schemat a. or g/ xvi f/regexp"
appl y="s/([0-9]+) mai ([0-9]+)/\2-05-\1/"/>
<if:transformtype="http://nanespaces. xnl schemat a. or g/ xvi f/regexp"
appl y="s/([0-9]+) juin ([0-9]+)/\2-06-\1/"/>
<if:transformtype="http://nanespaces. xnl schemat a. or g/ xvi f/regexp"
appl y="s/([0-9]+) juillet ([0-9]+)/\2-07-\1/"/>
<if:transformtype="http://nanespaces. xnl schemat a. or g/ xvi f/regexp"
appl y="s/([0-9]+) aout ([0-9]+)/\2-08-\1/"/>

230

Chapter 13: Annotating Schemas

<if:transformtype="http://namespaces. xm schemat a. or g/ xvi f/ r egexp"
appl y="s/([0-9]+) septenbre ([0-9]+)/\2-09-\1/"/>

<if:transformtype="http://namespaces. xm schemat a. or g/ xvi f/ r egexp"
appl y="s/([0-9]+) octobre ([0-9]+)/\2-10-\1/"/>

<if:transformtype="http://namespaces. xm schemat a. or g/ xvi f/ r egexp"
appl y="s/([0-9] +) novenbre ([0-9]+)/\2-11-\1/"/>

<if:transformtype="http://namespaces. xm schemat a. or g/ xvi f/ r egexp"
appl y="s/([0-9] +) decenbre ([0-9]+)/\2-12-\1/"/>

<if:validate type="http://relaxng.org/ ns/structure/ 1. 0">

<if:apply>
<data type="date">
<par am nane="m nl ncl usi ve">1900- 01- 01</ par an®
<par am nane="max| ncl usi ve" >2099- 12- 31</ par an®
</ dat a>
</if:apply>
</if:validate>
</if:pipe>
<text if:ignore="1"/>
</ el ement >
</ define>
Y
</ gr ammar >

or:
nanespace if = "http://namespaces. xm schemat a. org/ xvi f/ifrane"
nanespace rng = "http://relaxng. org/ns/structure/1.0"

datatypes d = "http://relaxng. org/ ns/conpatibility/datatypes/1.0"

born-el emrent =

[

i f:pipe [
if:validate |
type = "http://nanespaces. xm schemat a. or g/ xvi f/ regexp"

apply = "m [0-9]+ .+ [0-9]+/"

if:transform |
type = "http://nanespaces. xm schemat a. or g/ xvi f/ regexp"
apply = "s/~[\t\n]*([0-9] .*)$/0\1/"

]

if:transform |
type = "http://nanespaces. xm schemat a. or g/ xvi f/ regexp"
apply = "s/([0-9]+) janvier ([0-9]+)/\2-01-\1/"

]

if:transform |
type = "http://nanespaces. xm schemat a. or g/ xvi f/ regexp"
apply = "s/([0-9]+) fevrier ([0-9]+)/\2-02-\1/"

if:transform |
type = "http://nanespaces. xm schemat a. or g/ xvi f/ regexp"

231

Chapter 13: Annotating Schemas

]
]

el ement born { [if:ignore

In this example, we have defined a pipe (i f: pi pe) of twelve transformations (i f : t r ansf orm
using regular expressions and each of them converting one of the twelve monthsand afinal validation
(i f:validate)whichitself isusing Relax NG to check that the result isalSO 8601 date between
1900 and 2099. Thet ext patternhasai f : i gnor e attribute showing to XVIF compliant processors

apply = "s/([0-9]+) mars ([0-9]+)/\2-03-\1/"

]

if:transform [
type = "http://nanespaces. xm schemat a. or g/ xvi f/ r egexp”
apply = "s/([0-9]+) avril ([0-9]+)/\2-04-\1/"

]

if:transform [
type = "http://nanespaces. xm schemat a. or g/ xvi f/ regexp”
apply = "s/([0-9]+) mai ([0-9]+)/\2-05-\1/"

if:transform [
type = "http://nanespaces. xm schemat a. or g/ xvi f/ regexp”
apply = "s/([0-9]+) juin ([0-9]+)/\2-06-\1/"

]

if:transform [
type = "http://nanmespaces. xm schemat a. or g/ xvi f/ r egexp”
apply = "s/([0-9]+) juillet ([0-9]+)/\2-07-\1/"

]

if:transform [
type = "http://nanespaces. xm schemat a. or g/ xvi f/ r egexp”
apply = "s/([0-9]+) aout ([0-9]+)/\2-08-\1/"

if:transform [
type = "http://nanespaces. xm schemat a. or g/ xvi f/ r egexp”
apply = "s/([0-9]+) septenbre ([0-9]+)/\2-09-\1/"

]

if:transform [
type = "http://nanespaces. xm schemat a. or g/ xvi f/ r egexp”
apply = "s/([0-9]+) octobre ([0-9]+)/\2-10-\1/"

]

if:transform [
type = "http://nanespaces. xm schemat a. or g/ xvi f/ r egexp”
apply = "s/([0-9]+) novenbre ([0-9]+)/\2-11-\1/"

if:transform |
type = "http://nanespaces. xm schemat a. or g/ xvi f/ r egexp”
apply = "s/([0-9]+) decenbre ([0-9]+)/\2-12-\1/"
]
if:validate [
type = "http://rel axng.org/ ns/structure/ 1. 0"
if:apply [
rng: data |
type = "date"
rng: param [name
rng: param [name
]
]

"m nlnclusive" "1900-01-01"]
"max| ncl usi ve" "2099-12-31"]

]

"1"] text }

that it's afallback pattern for the other Relax NG processors.

232

Chapter 15. Chapter 14: Generating
Relax NG schemas

In the previous chapter (Chapter 12: Annotating Schemas) we have seen how information could be
added to Relax NG schemas to make them more readable and also to improve the ability to extract
information from the schemas and transform them into other useful documents such as documentation,
diagrams or even applications. The underlying assumption up to now in this book has been that Relax
NG was a natural level at which we would work and that we would be editing these schemas and this
is certainly avalid point of view. However, a Relax NG schema (and any XML schemain general)
isaphysical model of aclass of instance documents and we could also want to work at another level
and generate our Relax NG schemas from this other level.

From this other point of view, Relax NG shines as an ideal choice for a target language because of
itsalmost complete lack of restrictions. This lack of restrictions means that during the transformation
of amodel into a Relax NG schema, you won't have to worry with things such as "l must declare all
my attributes after my elements’, "I should take care to disallow unordered models in such and such
circumstances', "if | have already declared this content here, | can't declareit again here", ... In other
words, it will make your life much easier and let you concentrate on which document you want to get

instead of having to worry about the constraints of the schema language.

What are these other levels on which we might want to work? In fact we could want to be either more
concrete or more abstract than Relax NG and could either have a"bottom up™ or "top down" approach.
Proponents of a"bottom up” approach would enjoy working with instance documents rather than with
schemas and Examplotron has been designed for them while the adepts of a"top down" approach will
want to work at a higher level and use a methodology such as UML to model their documents. These
two approaches may lead to many other variants and we will also see how literate programmers can
include Relax NG patternsin their documentations and when you may want to replace your Relax NG
schema by a simple spreadsheet.

Examplotron: the instance document is its
own schema

| have created Examplotron in March 2001 from a very simple idea: when you want to describe
the element f oo, why would you have to learn yet another language and write "<element
name="foo'><empty/></element>' or 'element foo {empty}'? Wouldn't it be so much simpler to
just write the element in plain XML: "<foo/>"? Or, in other terms, instead of describing instance
documents, why couldn't we show them?

The first implementation, published with the original description of Examplotron relied on a double
XSLT transformation: the Examplotron "schema' was compiled by a XSLT transformation into
another XSLT transformation which performed the validation of the instance documents. The concept
has received many good commentswhen | have announced it, but nothing very significant did happen:
moving along to add new features would have meant to redefine the full semantics of a new schema
language and the implementation as a XSLT transformation was becoming very complex and the
project was stalled until | realized the potential of using Relax NG as a target format.

Since its release 0.5, Examplotron is now implemented as a XSLT transformation transforming its

schemainto Relax NG and due to the potential of this approach, Examplotron has made more progress
in two weeks than in two years under the previous architecture!

Ten minutes guide to Examplotron

Let's take a snippet of our example document:

233

Chapter 14: Generating
Relax NG schemas

<?xm version="1.0" encodi ng="utf-8"?>
<char act er id="Snoopy" >

<nanme>Snoopy</ nanme>

<bor n>1950- 10- 04</ bor n>

<qual i fication>extroverted beagl e</qualification>
</ character>

The good news is that thisis an Examplotron schema and to get an idea of what this schema means,
we can trandate it into a Relax NG schema:

<?xm version="1.0" encodi ng="UTF-8""?>
<granmmar xm ns="http://rel axng.org/ns/structure/1.0"
xm ns: ega="http://exanpl otron. org/annot ati ons/"
xm ns: sch="http://ww. ascc. net/xm /schematron"
dat at ypeLi brary="htt p://ww. w3. or g/ 2001/ XM_Schemna- dat at ypes" >
<start>
<el ement nane="character">
<opti onal >
<attribute name="id">
<ega: exanpl e i d="Snoopy"/ >
</attribute>
</ opti onal >
<el ement nane="nane" >
<t ext >
<ega: exanpl e>Snoopy</ ega: exanpl e>
</text>
</ el ement >
<el ement nane="born">
<data type="date">
<ega: exanpl e>1950- 10- 04</ ega: exanpl e>
</ dat a>
</ el ement >
<el enent name="qualification">
<t ext >
<ega: exanpl e>extroverted beagl e</ ega: exanpl e>
</text>
</ el ement >
</ el ement >
</start>
</ grammar >

or:

nanespace ega = "http://exanpl otron. org/annotations/"
nanespace sch "http://ww. ascc. net/xm /schematron”

start =
el ement character {
[ega:exanple [id = "Snoopy"]] attribute id { text }?,
el ement name { [ega:exanple ["Snoopy"]] text },
el ement born { [ega:exanple ["1950-10-04"]] xsd:date },

234

Chapter 14: Generating
Relax NG schemas

el ement qualification {
[ega:exanple ["extroverted beagle"]] text
}
}

We see there that the Examplotron, schema has not only the same modeling power than its Relax NG
counterpart, but that annotations need to be added to the Relax NG schema if we don't want to loose
the "examples' provided in Examplotron which are useful for documentation purposes and also to
allow the reverse transformation (Relax NG to Examplotron) if that was needed.

The other thing to note in this example is that Examplotron is making inferences from what is
found in the schema: here, Examplotron has assumed that the order between nane, born and
gual i fi cati on issignificant, that these elements are mandatory, that the id attribute is optional,
that thebor n element hasatypexsd: dat e and that all the other elements and attribute are just text.
These assumptions are designed to catch what is most likely to have been the intention of the designer
of the document. Theideabehind thisisto bet that most of the time, people won't have to do anything
to tweak their Examplotron schema.

What's happening when Examplotron got it wrong? Thereis no magic here: if you want to go against
the inferences of Examplotron, you need to say it. And the way to say it is through annotating the
Examplotron schema. To say that thequal i fi cati on element isoptional, you would for instance
add an eg: occur s attribute with avalue ? and to say that thei d attribute hasatypedt d: | D, you
would haveto setitscontentto { dt d: i d} :

<?xm version="1.0" encodi ng="utf-8""?>
<character id="{dtd:id}" xmns:eg="http://exanplotron.org/0/">
<nane>Snoopy</ nane>
<bor n>1950- 10- 04</ bor n>
<qualification eg:occurs="?">extroverted beagl e</qualification>
</ character>

And thiswould be trandlated as:

<?xm version="1.0" encodi ng="UTF-8""?>
<grammar xm ns="http://rel axng.org/ ns/structure/1.0"
xm ns: ega="http://exanpl otron. org/ annot ati ons/ "
xm ns: sch="http://ww. ascc. net/xm /schematron"
dat at ypeLi brary="htt p://ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >
<start>
<el ement nane="character">
<opti onal >
<attribute name="id">
<data type="id" datatypeLibrary="http://rel axng. org/ ns/conpati bi
</attribute>
</ opti onal >
<el ement nane="nane" >
<t ext >
<ega: exanpl e>Snoopy</ ega: exanpl e>
</text>
</ el emrent >
<el ement nane="born">
<data type="date">
<ega: exanpl e>1950- 10- 04</ ega: exanpl e>
</ dat a>
</ el emrent >

235

Chapter 14: Generating
Relax NG schemas

<opti onal >
<el enent nanme="qualification">
<t ext>
<ega: exanpl e>extroverted beagl e</ ega: exanpl e>
</text>
</ el ement >
</ opti onal >
</ el ement >
</start>
</ gr ammar >

or:

namespace ega
nanespace sch

"http://exanpl otron. org/annotations/"
"http://ww. ascc. net/xm /schematron”

datatypes d = "http://rel axng. org/ ns/ conpati bility/datatypes/1.0"

start =
el ement character {
attribute id { d:id }?,
el ement name { [ega:exanple ["Snoopy"]] text },
el ement born { [ega:exanple ["1950-10-04"]] xsd:date },
el ement qualification {
[ega:exanple ["extroverted beagle"]] text

}?

If you compare the compact syntax and the Examplotron schema, you see that we have something
of similar conciseness, the compact syntax looking more formal and Examplotron looking more
"visual". However, given the rules described in the documentation of Examplotron, these two schemas
are equivalent and a round trip is possible (Examplotron to Relax NG and back from Relax NG to
Examplotron).

One can go pretty far with these annotations as shown in this more complete example which defines
contentsasi nt er | eave, mandatory attributes and defines the content of the complex elements as
named patterns:

<?xm version="1.0" encodi ng="utf-8"?>
<library xmns:eg="http://exanplotron.org/0/" eg:content="eg:interl eave" eg:de
<book avail abl e="true" eg:occurs="*" eg: defi ne="book-content">
<eg: attribute name="id" eg:content="dtd:id">b0836217462</eg: attri bute>
<i sbhn>0836217462</ i sbn>
<title xm :lang="en">Being a Dog Is a Full-Tinme Job</title>
<aut hor eg: occurs="+" eg: define="author-content" eg:content="eg:interl eave
<eg: attribute name="id" eg:content="dtd:id">CVB</eg:attribute>
<nane>Charl| es M Schul z</ nane>
<bor n>1922- 11- 26</ bor n>
<di ed>2000- 02- 12</ di ed>

236

Chapter 14: Generating
Relax NG schemas

</ aut hor >
<character eg:define="character-content"™ eg:content="eg:interl eave">
<eg:attribute name="id" eg:content="dtd:id">PP</eg:attribute>
<nanme>Pepper m nt Patty</ name>
<bor n>1966- 08- 22</ bor n>
<qual i fication>bold, brash and tonboyi sh</qualification>
</ character>
<char act er id="Snoopy" >
<nanme>Snoopy</ nanme>
<bor n>1950- 10- 04</ bor n>
<qual i fication>extroverted beagl e</qualification>
</ character>
<char acter id="Schroeder">
<nane>Schr oeder </ nane>
<bor n>1951- 05- 30</ bor n>
<qual i fication>brought classical nusic to the Peanuts strip</qualificati
</ character>
<character id="Lucy">
<nanme>Lucy</ nane>
<bor n>1952- 03- 03</ bor n>
<qual i fication>bossy, crabby and sel fish</qualification>
</ character>
</ book>
</library>

The schema generated by this Examplotronis:

<?xm version="1. 0" encodi ng="UTF-8"?>
<granmmar xm ns="http://relaxng.org/ ns/structure/1.0" xm ns: ega="http://exanpl o

<start>
<el enent name="Ilibrary">
<ref nanme="library-content” ega:def="true"/>
</ el ement >
</start>
<define name="li brary-content">

<interl eave>
<zer oO Mor e>
<el enent nane="book" >
<ref nane="book-content" ega:def="true"/>
</ el ement >
</ zer oOr Mor e>
</interl eave>
</ defi ne>
<defi ne nanme="book-content">
<opti onal >
<attribute name="avail abl e">
<data type="bool ean">
<ega: exanpl e avail abl e="true"/>
</ dat a>
</attribute>
</ opti onal >
<attribute name="id">
<ega: ski pped>b0836217462</ ega: ski pped>
<data type="id" datatypelLi brary="http://relaxng. org/ns/conpatibility/
</attribute>
<el enent nane="isbn">

237

Chapter 14: Generating
Relax NG schemas

<data type="integer">
<ega: exanpl e>0836217462</ ega: exanpl e>
</ dat a>
</ el ement >
<el ement nane="title">
<opti onal >
<attribute name="I|ang" ns="http://ww. w3. or g/ XM_/ 1998/ nanespace" >
<ega: exanmpl e xm : | ang="en"/ >
</attribute>
</ opti onal >
<t ext>
<ega: exanpl e>Being a Dog Is a Full-Time Job</ega: exanpl e>
</text>
</ el ement >
<oneOr Mor e>
<el ement nane="aut hor">
<ref nanme="aut hor-content" ega:def="true"/>
</ el ement >
</ oneOr Mor e>
<oneOr Mor e>
<el ement nane="character">
<ref nane="character-content" ega:def="true"/>
</ el ement >
</ oneOr Mor e>
<ega: ski pped>
<character xm ns="" xm ns:eg="http://exanplotron.org/0/" id="Snoopy">
<nanme>Snoopy</ nanme>
<bor n>1950- 10- 04</ bor n>
<qual i fication>extroverted beagl e</qualification>
</ character>
</ ega: ski pped>
<ega: ski pped>
<character xm ns="" xm ns:eg="http://exanplotron.org/0/" id="Schroede
<nanme>Schr oeder </ nane>
<bor n>1951- 05- 30</ bor n>
<qual i fication>brought classical nusic to the Peanuts strip</qualif
</ character>
</ ega: ski pped>
<ega: ski pped>
<character xm ns="" xm ns:eg="http://exanmplotron.org/0/" id="Lucy">
<nanme>Lucy</ nane>
<bor n>1952- 03- 03</ bor n>
<qual i fication>bossy, crabby and sel fish</qualification>
</ character>
</ ega: ski pped>
</ define>
<defi ne nane="aut hor-content">
<interl| eave>
<attribute name="id">
<ega: ski pped>CM5</ ega: ski pped>
<data type="id" datatypeLibrary="http://relaxng. org/ns/conpatibilif
</attribute>
<el ement nane="nane" >
<t ext>
<ega: exanpl e>Char |l es M Schul z</ ega: exanpl e>
</text>
</ el ement >
<el ement nane="born">

238

Chapter 14: Generating
Relax NG schemas

<data type="date">
<ega: exanpl e>1922- 11- 26</ ega: exanpl e>
</ dat a>
</ el ement >
<el enent nane="di ed">
<data type="date">
<ega: exanpl e>2000- 02- 12</ ega: exanpl e>
</ dat a>
</ el ement >
</interl eave>
</ defi ne>
<define name="character-content">
<interl eave>
<attribute name="id">
<ega: ski pped>PP</ ega: ski pped>
<data type="id" datatypeLibrary="http://relaxng. org/ns/conpatibilif
</attribute>
<el enent nane="nane">
<t ext>
<ega: exanpl e>Pepper m nt Patty</ega: exanpl e>
</text>
</ el ement >
<el enent nane="born">
<data type="date">
<ega: exanpl e>1966- 08- 22</ ega: exanpl e>
</ dat a>
</ el ement >
<el enent nanme="qualification">
<t ext>
<ega: exanpl e>bol d, brash and tonmboyi sh</ ega: exanpl e>
</text>
</ el ement >
</interl eave>
</ defi ne>
</ gr ammar >

Or (skipping some annotation for readability):

nanespace eg = "http://exanplotron.org/0/"
nanmespace ega "http://exanpl otron. org/ annot ati ons/ "
nanespace sch "http://ww. ascc. net/xm /schematron”

datatypes d = "http://relaxng. org/ ns/conpatibility/datatypes/1.0"

start = elenent library { [ega:def = "true"] library-content }
library-content = el enent book { [ega:def = "true"] book-content }*
book-content =
attribute avail able {
[ega:exanple [available = "true"]] xsd: bool ean
12,
[ega:skipped ["b0836217462"]]| attribute id { d:id },

239

Chapter 14: Generating
Relax NG schemas

el ement isbn { [ega:exanple ["0836217462"]] xsd:integer },
element title {
[ega:exanmple [xm:lang = "en"]] attribute lang { text }?,
[ega:exanmple ["Being a Dog Is a Full-Tine Job"]] text

}l
el ement author { [ega:def = "true"] author-content }+,
(el ement character { [ega:def = "true"] character-content }+)

aut hor-content =
[ega:skipped ["Cvs"]] attribute id { d:id }
& element name { [ega:exanple ["Charles M Schulz"]] text }
& element born { [ega:exanple ["1922-11-26"]] xsd:date }
& element died { [ega:exanple ["2000-02-12"]] xsd:date }
character-content =
[ega:skipped ["PP*"]] attribute id { d:id }
& element name { [ega:exanple ["Peppermint Patty"]] text }
& element born { [ega:exanple ["1966-08-22"]] xsd:date }
& el ement qualification {
[ega:exanmple ["bold, brash and tonmboyish"]] text

}

And for those of us who would like still more flexibility, the next versions should "import" all the
Relax NG patterns in the Exampl otron namespace so that we can use Relax NG compositors, patterns
and name classes where needed.

Use scenarios

Why should we want to use Examplotron instead of Relax NG? We could reverse the question and
ask why should we want to use Relax NG instead of Examplotron! At the end of the day, | think that
it doesn't really matter. What's important is that the semantics of the validation engine is rock solid
and has no limitations. As for the syntax which you'll be using to express your schemas, you can just
usethe oneyou like. And if you like the visual qualities of Examplotron, thereis no reason to use any
other: you will just be looking at a Relax NG schema under a different angle.

Literate Programming

A common approach to software documentation include extracting documentation from the source
documents relying on the structure of the programs and their comments (a good example is JavaDoc,
the documentation extracting tool shipped with Java and u universally used on Java projects). Other
project keep code and documentation separate and for both approaches, it is often the case that
documentation and comments evolve separately from the code and that the documentation becomes
sooner or later out of date.

The reason for thisisthat the focusis on the code and that documentation is often considered asaside
product, lessimportant than the code. Donald Knuth, the inventor of the term "literate programming",
claims on the contrary:

"I believe that the time is ripe for significantly better documentation of programs, and that we
can best achieve this by considering programs to be works of literature. Hence, my title: "Literate
Programming."”

Let us change our traditiona attitude to the construction of programs: Instead of imagining that our
main task isto instruct a computer what to do, let us concentrate rather on explaining to human beings
what we want a computer to do.

The practitioner of literate programming can be regarded as an essayist, whose main concern is
with exposition and excellence of style. Such an author, with thesaurus in hand, chooses the names

240

Chapter 14: Generating
Relax NG schemas

of variables carefully and explains what each variable means. He or she strives for a program that
is comprehensible because its concepts have been introduced in an order that is best for human
understanding, using a mixture of formal and informal methods that reinforce each other."

(Donad Knuth. "Literate Programming (1984)" in Literate Programming. CSLI, 1992, pg. 99.)

Norm Walsh has adapted the concept to XML and tools for doing Literate Programming in XML
are shipped under the name "litprog" by the DocBook project on SourceForge (http://sourceforge.net/
projects/dochbook/). The basic idea is to include snippet of code (or snippet of schemas in our case)
within the documentation which can be written in any XML format including XHTML or DocBook.
From this single document embedding code in documentation, a couple of XSLT transformation
generate then aformated documentation and the source code.

Beyond the fact that you're working upside down compared to the common usage to add comments
in the code, the other major practical difference is that you are now defining the relations between
the snippets of code or schema using the mechanisms of "litprog" instead of using the mechanisms
which are specific to each programming language. The granularity of the documentation becomes
virtually independent of the granularity of your functions, methods, or in our case of the granularity
of our named patterns. This has also the benefit, if needed, that we could group in a single literate
documentation several languages and describe for instance the Relax NG schema of a document
together with a XSLT transformation to manipul ate the document and a DOM application to read it.

Out of the box

Literate Programming plays rather well with Relax NG as we will show on a small example. A
literate programming document is a documentation embedding sr c: f r agnent elements to mark
the fragments of schema which will assembled into complete schemas. The documentation can use
any format such as DocBook, XHTML or even RDDL. Using XHTML, the description of the narre
element could be:

<di v>
<h2>The <tt>nane</tt> el emrent </ h2>
<p>This is the nane of the character.</p>
<src:fragnment id="name" xm ns="">

<rng: el ement nane="nane" >

<rng:text/>

</rng: el enent >
</src:fragnent>
</div>

Or, with the compact syntax:

<di v>

<h2>The <tt>nane</tt> el ement </ h2>
<p>This is the nane of the character.</p>
<src:fragnent id="nane" xm ns="">

element name { text }

</src:fragnment >
</ div>

In thisfirst snippet, the definition of our element doesn't use any existing pattern, but a definition can
also make areferencetoasr c: fragnment elementusingsr c: fragref, suchasin:

<di v>

<h1>The <tt>character</tt> el enent</hl>

<p>The <tt>character</tt> elenent is the container holding all the infornmation
<src:fragnent id="character" xm ns="">

241

Chapter 14: Generating
Relax NG schemas

<rng: el ement nane="character">
<src:fragref |inkend="id"/>
<src:fragref |inkend="nanme"/>
<src:fragref |inkend="born"/>
<rng: opti onal >

<src:fragref |inkend="qualification"/>
</ rng: opti onal >
</rng: el enent >
</ src:fragment >
</div>

Or, using the compact syntax:

<di v>
<h1>The <tt>character</tt> el enent</hil>
<p>The <tt>character</tt> elenent is the container holding all the information
<src:fragment id="character" xnm ns="">
el enent character {
<src:fragref |inkend="id"/>,
<src:fragref |inkend="nanme"/>,
<src:fragref |inkend="born"/>,
<src:fragref |inkend="qualification"/> ?

</src:fragnment >
</ div>

From this literate programming document, two different outputs may be generated through XSLT
transformations. The first one is the schema itself. Assuming we've defined al the sub-elements and
attribute of our character element, the generated schemawill be:

<?xm version="1.0" encodi ng="utf-8"?>
<rng: grammar xm ns:rng="http://relaxng.org/ns/structure/1.0"
xm ns:src="http://nwal sh.coni xm ns/Ilitprog/fragment"
dat at ypeLi brary="htt p: //ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >
<rng:start>
<rng: el emrent nane="character">
<rng:attribute nane="id">
<rng: data type="id" datatypelLibrary="http://relaxng.org/ns/conpatibili:
</rng:attribute>
<rng: el ement nane="nane" >
<rng:text/>
</rng: el emrent >
<rng: el ement nane="born">
<rng: data type="date"/>
</rng: el emrent >
<rng: opti onal >
<el ement nane="qualification">
<text/>
</ el ement >
</rng: optional >
</rng: el emrent >
</rng:start>
</ rng: gramar >

Or, using the compact syntax:

datatypes d = "http://relaxng. org/ ns/conpatibility/datatypes/1.0"

242

Chapter 14: Generating
Relax NG schemas

start=
el ement character ({
attribute id { d:id },
el ement name { text },
el ement born { xsd:date },
el ement qualification { text } ?

}

Thisisapretty normal schema and the thing we need to highlight is the way it has been modularized.
Up to now, to split a schemainto small and manageable pieces, we've been using named patterns, a
mechanism provided by Relax NG itself. We could have done so in our last example, but we have now
a second possihility which is to use the mechanisms provides by the literate programming framework
and define fragments and combine them using sr c: f ragnment and sr c: f r agr ef instead of the
define and r ef elements from Relax NG. By doing so, we have generated a monolithic Russian
doll schema through a modular description of its elements and attributes.

The second output from this literate programming document is the XHTML documentation:;

243

Chapter 14: Generating

Eile Edit Miew Go Bookmarks Tabs Help

@ . ®» 62) o

Back Reload Home History

=3 | file:///home/vdv/xmlschemata-cvs/books/relaxng/examples/chapte

§3.

=rng:element name="born"=
srng:data type="date"/s>
sfrngielement>

The qualification element

This 15 a short a sentence to qualify the character.

§4.

celement name="gualification":=
“texts/=
=felement>

The character element

The character element 15 the contamer holding all the mformation about a chs

§5.

=rng:element name="character":=
81, The id attribute
2., The name element
83, The born element
srng:optional>

84, The gualification element

s/rngioptionale

=fragielement>

Kl T
Done,

244

Chapter 14: Generating
Relax NG schemas

or, for the compact syntax:

245

Chapter 14: Generating

Eile Edit Miew Go Bookmarks Tabs Help

@ . ®» 62)

Back Reload Home History

=3 | file:///home/vdv/xmlschemata-cvs/books/relaxng/examples/chapte

T ELEMERT Frame {1 TEXT §

The born element

This 15 the "barth" date of the character wiich 15 often the date of hus first publ

§3.

element born { x=sd:.date }

The qualification element

This 15 a short a sentence to qualify the character.

§4.

element qualification { text }

The character element

The character element 15 the contamer holding all the mformation about a ch:

§5.

element character {
§l, The id attribute,
52, The name element,
§3. The born element,
84, The qualification element 7

Done,

246

Chapter 14: Generating
Relax NG schemas

Adding bells and whistles for RDDL

We have already mentioned RDDL in "Chapter 13: Annotating Schemas'. RDDL (see http://rddl.org
for more details) can be seen as a compromise to standardize a usage of XHTML and XLink that can
be read both as plain XHTML by human beings with a standard web browser and by applications
which will use the semantic attributes of XLink to discover resources such as schemas and stylesheets.

RDDL documents can be generated from annotated Relax NG schema. When documenting XML
vocabularies, the opposite works very well too and it is very tempting to use the literate programming
framework to produce RDDL documents. There is no basic difference compared to what we've seen
with XHTML and we could use the DocBook litprog styleshests right away but we can also import
them into stylesheets which will facilitate the authoring of RDDL documents.

RDDL is basically a compromise to share the same document between human readers through
XHTML and applications through RDDL and XLink and the main burden when writing RDDL
documents is that the information made available for the application needs to be repeated for the
readers. For instance, to publish the snippet of schema describing the name element as a RDDL
normativereference, we could write (notethe"exclude-result-prefixes' and " mundane-result-prefixes’
attributes which become needed to control various namespaces introduced for RDDL):

<rddl :resource id="nane-elt" xlink:type="sinple"
xl'ink:arcrol e="http://ww.rddl.org/purposes#normative-reference
xlink:role="http://ww.w3.org/ 1999/ xhtm "
xlink:title="The name el enent”
xl'i nk: hr ef ="#name-el t">

<di v class="resource">

<h2>The <tt>nane</tt> el emrent </ h2>

<src:fragment id="name" xmns=""
excl ude-resul t-prefixes="cr xlink rddl rng"
mundane-resul t-prefixes="rng">

<rng: el ement nane="nane" >

<rng:text/>

</rng: el emrent >

</src:fragnent>

</div>

</rddl:resource>

That's not really tough, but there are some repetitions here: the content of the "h2" element is copied
into "xlink:title" and xlink:href is constructed after the id attribute because the resource is local. For
external resources, different but similar redundancies may be found too. When the RDDL document
is generated by a XSLT transformation like it's the case with Literate Programming, it's tempting to
define shortcuts that avoid these redundancies and write for instance:

<cr:resource id="nane-elt"
rol e="http://ww. w3. org/ 1999/ xhtm "
arcrol e="http://ww.rddl.org/ purposes#normati ve-reference">
<h2>The <tt>nane</tt> el ement </ h2>
<p>This is the nane of the character.</p>
<src:fragnent id="nane" xm ns=""
exclude-result-prefixes="cr xlink rddl rng"
mundane-resul t - prefi xes="rng">
<rng: el ement nane="nane" >
<rng:text/>
</rng: el enent >
</src:fragnent>
</cr:resource>

Other features can easily be added, such as numbering the divisions, generating table of contents and
indexes of resources and pretty printing code snippets and our document becomes:

247

L - - HIIIII-"I‘H N T Nl ¥ Ye'd | S J’ o e B LB

This schema is an illustration of how to describe
programming.

This schema defines the element character, whick
5ifT'ID|E elements ':r'uameJ born and gqualifi cat‘inn:'.

2. Table of content

1. A simple vocabulary for libraries

2. Table of content

3. The simple elements and attribute
3.1, The id attribute
3.2. The name element
3.3. The born element
3.4, The gualification element

4, The character element

5. The Schema

3. The simple elements and &

3.1. The 1id attribute

This is the id of the character element,

§1.

‘rng.attribute name="1id">
<rng.data type="1id"
datatypelibrary="http://rel
</frng.attribute?

248

Chapter 14: Generating
Relax NG schemas

UML

UML (Unified Modeling Language) is an OMG standards which can be seen as the successor of the
many Object Oriented methods invented in the 80s and 90s. The idea of using UML to model XML
document is not new and good stuff has already been published on the subject (see for instance the
book "Modeling XML applications with UML" by David Carlson published by Addison Wesley or
his articles on XML.com).

There are two different levels at which UML and XML can be mapped.

* UML can be used to model the structure of XML documents directly. In this case, XML schemas
can be generated for the purpose of validating the documents but they are provided asaconvenience
for the application more than a main delivery. Their style and modularity is not important as such
and the algorithm to produce these schemas is focused on expressing validation rules as close as
possible to the UML diagram.

* UML can be used to model a XML schema. In this case, the UML diagram is a higher level view
of the schema and the schema by itself is the main delivery. The UML diagram needs to be able to
control exactly how each schema structure is described and specific stereotypes and parameters are
often added to provide the right level of control.

One of the pointswhich appear quiteclearly in al thework related to thistopicisthat it isquite easy to
map UML objectsinto XML or, which is quite equivalent, to use UML to describe classes of instance
documents. The most difficult issue when doing so is that UML is a graph while XML is atree and
some links need to be either removed or serialized using techniques such as X Link which are not built-
in within XML 1.0. Except for this issue, the relationship between UML and XML is quite natural
in both directions: UML provides a simple language to model XML documents and XML provides a
natural serialization syntax for UML objects.

The other point which is also very clear is that it's not that simple to generate DTDs and W3C XML
Schema schemas from UML.

The issue when generating DTDs or W3C XML Schemas from UML is to cope with the multiple
restrictions of these languages, starting with those related to unordered content models: unordered
content modelsare natural for UML for which the attributes of aclassare unordered and the limitations
of DTDsand W3C XML Schemasareaproblemwhen UML attributesare serialized as XML elements.

Theissue when modeling W3C XML Schemaschemasisthat the model does not only need to describe
the XML instances but also the schema itself and all the complexity of W3C XML Schema kind of
entersinto UML world.

The situation with UML, XML and W3C XML Schema is that if there is a good overlap between
UML and XML, the overlap is not so good between XML and W3C XML Schema and W3C XML
Schema adds to XML its own concepts. To draw arough picture, the situation is not unlike:

249

Chapter 14: Generating
Relax NG schemas

Figure 15.4. overlap

XM/

WXS

il
r
-
.\.'\'- -"-..
- o

With Relax NG, on the contrary, the overlap between XML and the schema language is near to
perfection: Relax NG can describe almost any XML structure and having no notion of Post Schema
Validation Infoset (PSVI), Relax NG doesn't add anything to XML. The overlap between UML, XML
and Relax NG is thus almost as big as the overlap between UML and XML:

250

Chapter 14: Generating
Relax NG schemas

Figure 15.5. overlap2

Designed with a UML editor such as ArgoUML, our library could be described as:

251

Chapter 14: Generating
Relax NG schemas

Figure 15.6. argoum|

library

title

+ @eml:lang : wzd:language

+ rhg:data ; ssd:itoken

Notethat | have been using conventionswhich look natural but arefar from being official. For instance,
| have prefixed the attribute names with @ an idea borrowed to Will Provost on XML.com. Also, to
model the title element with its text node and attribute, | have used the name "rng:data" to name its
text content asa UML attribute.

ArgoUML saves its documents using the XML Metadada Interchange (XM1) format defined by the
Object Management Group (OMG). Y ou'll find moreinformation about XMI at http://www.omg.org/
technology/xml/.

XMl is pretty verbose and the XMI document generated by ArgoUML for this diagram is more than
800 lineslong. | won't include it here, but thereis no major difficulty to generate from this document
a schema with unordered content models, such as:

<?xm version="1.0" encodi ng="utf-8"?>
<grammar xm ns="http://rel axng.org/ns/structure/1.0"

author
book + @id : xzditoken
o + hame : xsd:toketr
+ izbn : xsditoken + bork c xsd date
+ ®@id ; xsd:itoken + dead : xsd:date
n.-
+ @Wavailable : xsd:boolean
ch
+ @id ; xzdit
+ hame : xsd,

+ born ;o xsd:

+ qualificatio

dat at ypeLi brary="htt p://ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >

<start>
<el enent name="Ilibrary">
<interleave>
<zer oOr Mor e>
<el emrent nane="book" >
<interleave>
<el emrent nane="isbn">
<data type="token"/>

252

Chapter 14: Generating
Relax NG schemas

</ el enent >
<attri bute nane="id">
<data type="token"/>
</attribute>
<attri bute nane="avail abl e">
<data type="bool ean"/ >
</attribute>
<zer oOr Mor e>
<el enment nane="aut hor">
<interl eave>
<attribute name="id">Foundation. Data_Types. Multiplicity
<data type="token"/>
</attribute>
<el enent nane="nane" >
<data type="token"/>
</ el enent >
<el enent nane="born" >
<data type="date"/>
</ el enent >
<el enent nane="di ed" >
<data type="date"/>
</ el enent >
</interl eave>Foundati on. Data_Types. Multiplicity
</ el enent >
</ zer oOr Nor e>
<zer oOr Mor e>Foundati on. Dat a_Types. Mul tiplicity
<el enment nane="character">
<interl eave>
<attri bute nane="id">
<data type="token"/>
</attribute>
<el enent nane="nane" >
<data type="token"/>
</ el enent >
<el enent nane="born">
<data type="date"/>
</ el enent >
<el enent nanme="qualification">
<data type="token"/>
</ el enent >
</interl eave>
</ el enent >
</ zer oOr Nor e>
<el enment nane="title">
<attribute name="xmn :1ang">
<data type="I| anguage"/>
</attribute>
<data type="token"/>
</ el enent >
</interl eave>
</ el enent >
</ zer oOr Nor e>
</interl eave>
</ el enent >
</start>
</ gr ammar >

Or, after conversion by Trang:

253

Chapter 14: Generating
Relax NG schemas

start =
element library {
el ement book {

el ement isbn { xsd:token }

& attribute id { xsd:token }

& attribute available { xsd:bool ean }

& el ement aut hor {
attribute id { xsd:token }
& el ement name { xsd:token }
& el ement born { xsd:date }
& el ement died { xsd:date }

}*

& el ement character ({
attribute id { xsd:token }
& el ement name { xsd:token }
& el ement born { xsd:date }
& el ement qualification { xsd:token }

}*

& element title {
attribute xm:lang { xsd:|anguage },
xsd: t oken

}*
}

In fact, the only trouble | have had with Relax NG itself comes out of one of the few restrictions
of Relax NG which we've mentioned in "Chapter 7: Constraining Text Values': data pattern cannot
be interleaved and when generating this schema one must be careful to treat complex type simple
content models (i.e. elements such asthet i t | e element which accepts attributes and text nodes but
no children elements) as an exception. This straight trandation is, of course, impossible with W3C
XML Schemabecause of the cardinality of the character and author sub elementsand containerswould
need to be added to fit into the limitations of the language.

Note that here we have generated a Russian doll design but that depending on the strategy used in the
trandation, we could have generated other "flavors' aswell.

Spreadsheets

The last transformation 1'd like to show here is probably much widely used than one would think.
Spreadsheets are very convenient to store and manipulate large lists of information items and have
been used as a modeling tool for many years. This has been recently acknowledged by the UBL
QOasis Technical committee (see http://www.oasi s-open.org/committees/ubl/) which isin charge of a
set of "core components' to be used by B2B applications and frameworks such as ebXML. Although
this project is using a UML methodology, the release note of their 0.70 version states: "The current
spreadsheet matrix used by UBL has proved the most versatile and manageable in developing alogical
model of the UBL Library."

Now most if not al of the spreadsheet software are supporting XML format, generating Relax NG
schemas from such atool isreally easy. There is no standard ways of representing XML documents
in a spreadsheet. The benefit of spreadsheets is their flexibility and we can define specific layouts
specific to each application. Coming back to our library, we could formalize it as:

254

Chapter 14: Generating
Relax NG schemas

Figure 15.7. oo

& model.sxc - OpenOffice.org 1.0.3
File Edit View Insert Format Tools Data Window Help
ﬁle:;’fﬁhnmeﬁmﬂvfxmlschemata-cvsfhans,-’relaxnj () || ET = | =
Albany jlleBiﬂﬁ|§§§§|=@%$ﬁ‘H
A3 | @ = = [book
Q A E
1 [ttem |%|Description
e 2 |library Root element. Describes the whole library
gk |_ 3 Jbook !?Desn::rihes a boolk.
4 id dentifier
4 E |availahle Is the book availakle?
% |8 |ishn ISEBMN number
—| 7 [utle Title of the book
g [xml:lang Language
E’ & |author Author of a book
10 |name MName
% [11 |bom Date of hirth
|E 12 |dead Date of death
| 13 |character Character of a book
e 14 |qualification Gualification of a character
][15
1&
17
18
15
20
Al [> |2 1] sheet1 fSheetz fheets / 141 |
Sheet 1 /3 Default B

That's basically nothing more than than a catalog of each information item with just enough
information to generate a schema. The benefit of getting it as a spreadsheet is that it's easy to read
and, when the catal og gets bigger, features such asfilters, sort and search become increasingly useful
to navigate over the catalog.

Again, generating Relax NG schemas is really easy and it doesn't take long before you turn this
spreadsheet into schemas such as:

<?xm version="1.0" encodi ng="utf-8""?>

<grammar xm ns="http://rel axng.org/ ns/structure/1.0"
xm ns:a="http://rel axng. org/ ns/conpati bility/annotations/1.0"
dat at ypeLi brary="htt p: // ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >

255

Chapter 14: Generating
Relax NG schemas

<start>
<el enent name="Ilibrary">
<a: docunent ati on>Root el enent. Describes the whole |ibrary. </a:docunent al
<zer oOr Mor e>
<el enment nane="book" >
<a: docunent ati on>Descri bes a book. </ a: docunent ati on>
<attri bute nane="id">
<a: docunent ati on>l dentifier</a:docunentation>
<data type="token"/>
</attribute>
<attri bute nane="avail abl e">
<a: docunent ati on>ls the book avail abl e?</ a: docunent ati on>
<data type="bool ean"/ >
</attribute>
<el enment nane="isbn">
<a: docunent ati on>l SBN nunber </ a: docunent ati on>
<data type="token"/>
</ el enent >
<el enment nane="title">
<a: docunentation>Titl e of the book</a:documentation>
<data type="token"/>
<attribute name="xmnl :|ang">
<a: docunent at i on>Language</ a: docunent at i on>
<data type="I| anguage"/>
</attribute>
</ el enent >
<zer oOr Mor e>
<el enent nane="aut hor">
<a: docunent ati on>Aut hor of a book</a: docunent ati on>
<attri bute nane="id">
<a: docunent ati on>l dentifier</a:docunentation>
<data type="token"/>
</attribute>
<el enent nane="nane" >
<a: docunent at i on>Nane</ a: docunent at i on>
<data type="token"/>
</ el enent >
<el enent nane="born" >
<a: docunent ati on>Dat e of birth</a:docunentation>
<data type="date"/>
</ el enent >
<el enent nane="di ed" >
<a: docunent ati on>Dat e of deat h</a: docunent ati on>
<data type="date"/>
</ el enent >
</ el enent >
</ zer oOr Nor e>
<zer oOr Mor e>
<el enent nane="character">
<a: docunent ati on>Character of a book</a: docunentation>
<attri bute nane="id">
<a: docunent ati on>l dentifier</a:docunentation>
<data type="token"/>
</attribute>
<el enent nane="nane" >
<a: docunent at i on>Nane</ a: docunent at i on>
<data type="token"/>
</ el enent >

256

Chapter 14: Generating
Relax NG schemas

<el enent nane="born" >
<a: docunent ati on>Dat e of birth</a:docunentation>
<data type="date"/>
</ el enent >
<el enent nanme="qualification">
<a: docunentation>Qualification of a character</a:docunentation
<data type="token"/>
</ el enent >
</ el enent >
</ zer oOr Nor e>
</ el enent >
</ zer oOr Nor e>
</ el enent >
</start>
</ gr ammar >

or, after atrandation by Trang:

nanespace a = "http://rel axng. org/ ns/conpatibility/annotations/1.0"

start =
Root el enent. Describes the whole library.
el ement library {
Descri bes a book.
el ement book {
ldentifier
attribute id { xsd:token },
|s the book avail abl e?
attribute available { xsd: bool ean },
| SBN nunber
el ement isbn { xsd:token },
Title of the book
element title {
xsd: t oken,
Language
attribute xm:lang { xsd:|anguage }
1
Aut hor of a book
el ement aut hor {
ldentifier
attribute id { xsd:token },
Nanme
el ement name { xsd:token },
Date of birth
el emrent born { xsd:date },
Date of death
el emrent died { xsd:date }
He
Character of a book
el ement character {
ldentifier
attribute id { xsd:token },
Nanme
el ement name { xsd:token },
Date of birth
el emrent born { xsd:date },
Qualification of a character
el ement qualification { xsd:token }

257

Chapter 14: Generating
Relax NG schemas

}*
}*
}

And here again, instead of a Russian doll schema, we could have generated any other style of schema.

258

Chapter 16. Chapter 15: Simplification
And Restrictions

Simplification and restrictions are two topics on which | have been very evasive all over this book.
The reason for thisis that they are pretty technical and have few direct concrete impact when you're
writing a Relax NG schema. Still, this book wouldn't be complete without describing it.

Why should we care at all of the simplification if it's so technical and looks like an implementation
algorithm? To be honest, most of the time we do not have to care about this stuff at al. The
simplification can be seen as an intermediary step when a Relax NG processor reads a schema.
During this step, all the syntactical sugar is removed and the processor can then work with a perfectly
normalized schema. On the other hand, the few restrictions existing with Relax NG are formalized
relatively to thisnormalized version of the schema. Because of theflexibility of Relax NG, formalizing
them on schemas before simplification would be very complex and very difficult to read. The downside
is that when you hit one of these restrictions you often need to understand the main principles of the
simplification process to understand what's happening. The good news is that it doesn't happen so
often!

Simplification

During its conception, Relax NG has always tried to keep a balance between simplicity of use,
simplicity to implement and the simplicity of its data model. What's simple to implement is often
simple to use, but there are many features which are very useful to the users, add complexity for the
implementers and clutter the data model. This is the case, for instance, of al the features designed
to create building blocks (named patterns, includes, embedded grammars): they are very useful for
the users but the fact that you've used named patterns or a Russian doll style, has zero impact on the
validation itself. Thisis also the case for shorthands, such as the mixed pattern which is just a more
concise way of writing an interleave pattern with an embedded text pattern.

The quest for smplicity has had a huge influence over the design of Relax NG and here is the view
of James Clark on the subject:

"Simplicity of specification often goes hand in hand with simplicity of use. But | find that these
are often in conflict with simplicity of implementation. An example would be ambiguity restrictions
as in XSD: these make implementation simpler (well, at least for people who don't want to learn
a new agorithm) but make specification and use more complex. In general, RELAX NG aims for
implementation to be practical and safe (i.e. implementations shouldn't use huge amounts of time/
memory for particular schemas/instances), but apart from that favors simplicity of specification/use
over simplicity of implementation.”

To keep the description of the restrictions and validation algorithm simple while offering those useful
features to the users, Relax NG has chosen to describe validation through a Relax NG as a two step
process:

* First, the schema is read and simplified. The purpose of the simplification is to remove al the
additional complexity of the"syntactic sugar" and to reducethe schematoitsmost simple equivalent
form.

* Then, instance documents are validated against the simplified schema. Since all the syntactic sugar
has been removed from the simplified schema, it does not need to be taken into account in the
description of the validation, leading to much simpler algorithms.

The simplification is described for each Relax NG element in the reference manua and we won't do
deep intoitsdetail s here but just give the main points. If you don't want to go into too much detail, let's
just say that the simplification removes all the syntactic sugar, consolidate all the external schemas,
uses a subset of al the available Relax NG elements and transforms the resulting structure into a flat

259

Chapter 15: Simplification
And Restrictions

schema where each element is embedded in a named pattern and all the named patterns contain the
definition of asingle element.

The Relax NG specification is very clear that this simplification is done by the Relax NG processors
after on the data model resulting of the reading of the complete schema and that the results of this
simplification doesn't have to be serialized as XML. However, | think that showing intermediary
results presented as XML help to visualize the simplification process (note that even if these
intermediary results are presented indented for readability even if we have seen that text nodes with
only whitespaces have been removed in one of the first steps of the simplification).

The XML syntax iscloser to the datamodel used to describe the simplification than the compact syntax
and the details of the simplification will be shown below on XML snippets but for each sequence of
steps | will also give the compact syntax for the whole schema to show a better overall view of the
impact on the structure of the schema (note that some impact of the simplification are just lost on the
compact syntax).

The schemawhich will be used in this chapter is a consolidation of features seen all over this book to
cover most of the elements impacted by the simplification. It is composed of three documents:

e library.rnc (or .rng):

nanespace a = "http://rel axng. org/ ns/conpatibility/annotations/1.0"
nanespace hr = "http://eric.van-der-vlist.conins/person”

nanespace |local = ""

default namespace nsl = "http://eric.van-der-vlist.comns/library"
nanespace sn = "http://ww. snee. coni ns/ st ages"

a: docurmentation ["Relax NG schema for our library"]
sn: stages |

sn:stage [name = "library"]
sn:stage [name = "book"]
sn:stage [name = "author"]
sn:stage [name = "character"]
sn:stage [name = "aut hor-or-book"]
]
start =
[sn:stages = "library"] elenent library { book-el enent+ }

| [sn:stages "book aut hor-or-book"] book-el emrent
| [sn:stages "aut hor aut hor-or-book"] author-el ement
| [sn:stages "character"] character-el emrent
i nclude "foreign.rnc" {
foreign-elements = elenent * - (local:* | nsl:* | hr:*) { anything }*

foreign-attributes = attribute * - (local:* | nsl:* | hr:*) { text }*

}

aut hor - el enent =
el ement hr: aut hor {
attribute id {
xsd: NMTOKEN { naxLength =" 16 " }
} y
name- el emrent ,
bor n- el emrent,
di ed- el enent ?
}
i ncl ude "book-content.rnc"
book-content &= foreign-nodes

260

Chapter 15: Simplification
And Restrictions

book-el ement = el enent book { book-content }

born-el ement = el enent hr:born { xsd:date }
character-element = external "character-elenent.rnc"

di ed- el enment el ement hr:died { xsd:date }

i sbn-el ement el ement isbn { foreign-attributes, token }
nane- el ement el ement hr:name { xsd:token }
qgualification-elenent = elenment qualification { text }
title-elenment = elenent title { foreign-attributes, text }
avai |l abl e-content = "true" | xsd:token " false " | " "

* book-content.rnc (or .rng)

book-content =
attribute id { text },
attribute available { avail abl e-content },
i shn-el emrent
title-elenent,
aut hor - el enent *,
character-el enent *

« foreign.rnc (or .rng)

anyt hing =
(element * { anything }
| attribute * { text }
| text)*
foreign-elenents = elenent * { anything }*
foreign-attributes = attribute * { text }*
foreign-nodes = (foreign-attributes | foreign-elements)*

* character-element.rnc (or .rng)

start =
el ement character ({
attribute id { text },
par ent name- el enent,
par ent born-el enent,
parent qualification-el ement

Whitespace and attribute normalization and
inheritance

The first sequence of simplification steps realizes various normalizations without changing the
structure of the schema:

» Annotations (i.e. attributes and elements from foreign namespaces) are removed.

 Text nodes with only whitespaces are removed except when found inval ue and par amelements
and whitespaces are normalized in nane, t ype and conbi ne attributes and in nane elements.

» Thecharacterswhich are not allowed inthedat at ypeLi br ar y attributes are escaped and these
attributes are transfered through inheritance to each dat a and val ue pattern.

261

Chapter 15: Simplification
And Restrictions

e Thet ype attributes of the val ue pattern are defaulted to the t oken datatype from the built in
datatype library.

After this sequence of steps, the structure of the schemaisstill unchanged, but all the cosmetic features
which have no impact on the schema have been removed. For instance, the following schema snippet:

<?xm version="1.0" encodi ng="utf-8"?>
<grammar xm ns="http://relaxng. org/ns/structure/1.0"
xmns:hr="http://eric.van-der-vlist.com ns/person”
ns="http://eric.van-der-vlist.conins/library"
xm ns:a="http://rel axng. org/ ns/ conpatibility/annotations/1.0"
xm ns:sn="http://ww. snee. com ns/ st ages"
dat at ypeLi brary="http://ww. w3. or g/ 2001/ XM_Schena- dat at ypes" >
<a: docunent ati on>Rel ax NG schenma for our |ibrary</a:docunentation>
<sn: st ages>
<sn:stage nanme="library"/>
<sn: st age nanme="book"/>
<sn: st age nanme="aut hor"/>
<sn: stage nanme="character"/>
<sn: st age nanme="aut hor-or - book"/>
</ sn: st ages>
<start>
<choi ce>
<el ement name=" |ibrary
<oneOr Mor e>
<ref nane="book-el emrent"/>
</ oneOr Mor e>
</ el ement >
<ref nane="book-el ement"” sn: stages="book aut hor-or-book"/>
<ref nane="aut hor-el ement"” sn:stages="aut hor author-or-book"/>
<ref nane="character-el enent" sn:stages="character"/>
</ choi ce>
</start>
Y
<define name=" author-elenent ">
<el emrent name="hr: aut hor" dat at ypeLi brary="">
<attribute name="id" datatypelLibrary="http://ww. w3. org/ 2001/ XM.Schema-d
<data type="NMIOKEN' >
<par am nanme="maxLengt h"> 16 </ paranp
</ dat a>
</attribute>
<ref nane=" nane-elenent"/>
<ref nane="born-el emrent"/>
<optional >
<ref nane="died-el emrent"/>
</ opti onal >
</ el ement >
</ defi ne>

sn: stages="li brary">

o

<defi ne nanme="avail abl e-content ">
<choi ce>
<val ue>t rue</ val ue>
<val ue type="t oken"> fal se </val ue>
<val ue> </val ue>

262

Chapter 15: Simplification
And Restrictions

</ choi ce>
</ defi ne>
</ gr ammar >

will be transformed during this sequence of stepsinto this (note that | am still showing whitespace for
readability even though they should have been removed):

<?xm version="1.0"7?>
<grammar xm ns="http://relaxng.org/ns/structure/1.0"
xm ns: hr="http://eric.van-der-vlist.confns/person"
xm ns:a="http://rel axng. org/ ns/conpati bility/annotations/1.0"
xm ns:sn="http://ww. snee. conf ns/ st ages"
ns="http://eric.van-der-vlist.conins/library">
<start>
<choi ce>
<el ement nane="Ilibrary">
<oneOr Mor e>
<ref nane="book-el enent"/>
</ oneOr Mor e>
</ el ement >
<ref nane="book-el enent"/>
<ref nane="aut hor-elenment"/>
<ref nane="character-element"/>
</ choi ce>
</start>

..

<defi ne name="aut hor - el enent ">
<el emrent nanme="hr: aut hor">
<attribute name="id">
<dat a dat atypeLi brary="htt p://ww. w3. or g/ 2001/ XM_Schema- dat at ypes" typ
<par am nane="nmaxLengt h"> 16 </ paranp
</ dat a>
</attribute>
<ref nane="nane-el enent"/>
<ref nane="born-el enent"/>
<opti onal >
<ref nane="di ed-el enent"/>
</ opti onal >
</ el enent >
</ defi ne>

ol

<defi ne nane="avail abl e-content">
<choi ce>
<val ue type="t oken" datatypeLi brary="">true</val ue>
<val ue datatypeLi brary="http://ww. w3. or g/ 2001/ XM_Schena- dat at ypes" type
<val ue type="t oken" datatypeLibrary=""> </val ue>
</ choi ce>
</ define>
</ gr ammar >

263

Chapter 15: Simplification
And Restrictions

After this sequence of steps, our schemaiis:

nanespace a = "http://rel axng.org/ ns/conpatibility/annotations/1.0"
nanespace hr = "http://eric.van-der-vlist.conins/person”

nanespace |local = ""

default namespace nsl = "http://eric.van-der-vlist.comns/library"
nanespace sn = "http://ww. snee. coni ns/ st ages"

start =

element library { book-element+ }
| book- el ermrent
| author-el ement
| character-el emrent
i nclude "foreign.rnc" {
foreign-elements = elenent * - (local:* | nsl:* | hr:*) { anything }*
foreign-attributes = attribute * - (local:* | nsl:* | hr:*) { text }*
}
aut hor - el ement =
el enent hr:author {
attribute id {
xsd: NMTOKEN { naxLength =" 16 " }
1
name- el enent ,
bor n- el enent,
di ed- el ement ?
}
i ncl ude "book-content.rnc"
book-content &= foreign-nodes
book-el enent = el ement book { book-content }
born-el ement = el enent hr:born { xsd:date }
character-element = external "character-elenent.rnc
di ed-el ement = elenment hr:died { xsd:date }
i sbn-el ement = elenent isbn { foreign-attributes, token }
name-el enent = el enment hr:nane { xsd:token }
qualification-element = elenent qualification { text }
title-elenent = elenent title { foreign-attributes, text }
avai | abl e-content = "true" | xsd:token " false " | " "

Retrieval of external schemas

This second sequence of steps reads and processes ext er nal Ref andi ncl ude patterns:

» ext ernal Ref patterns are replaced by the content of the resource referenced by their hr ef
attributes and all the simplification steps up to this one must be recursively applied during this
replacement to make sure that we merge schemas at the same level of simplification.

» The schemas referenced by i ncl ude patterns are read and all the simplification steps up to this
arerecursively are applied on these schemas. Their definitions are overridden by those found in the
i ncl ude pattern itself when it is the case and the content of their grammar isadded in anew di v
pattern to the current schema. This di v pattern is needed to carry namespace information to the
next sequence of steps and will be remove in the following one.

After this sequence of steps, we obtain a standalone schema without any reference to external
documents.

264

Chapter 15: Simplification
And Restrictions

The following snippet:

<defi ne nane="character-el enent">
<ext ernal Ref href="character-element.rng" ns="http://eric.van-der-vlist. col
</ define>

will be transformed into:

<define name="character-el emrent">
<grammar ns="http://eric.van-der-vlist.comns/library">
<start>
<el enent nane="character">
<attribute name="id"/>
<par ent Ref nanme="nane-el ement"/ >
<par ent Ref nanme="born-el ement"/>
<par ent Ref name="qualification-elenment"/>
</ el ement >
</start>
</ gr anmar >
</ defi ne>

And the snippet:

<include href="foreign.rng">
<define name="forei gn-el enents">
<zer oOr Mor e>
<el ement >
<anyNane>
<except >
<nsNanme ns=""/>
<nsNanme ns="http://eric.van-der-vlist.com ns/library"/>
<nsNanme ns="http://eric.van-der-vlist.con ns/person"/>
</ except >
</ anyNane>
<ref nanme="anyt hi ng"/>
</ el ement >
</ zer oOr Mor e>
</ define>
<define nane="foreign-attributes">
<zer oOr Mor e>
<attribute>
<anyName>
<except >
<nsNanme ns=""/>
<nsNanme ns="http://eric.van-der-vlist.com ns/library"/>
<nsNanme ns="http://eric.van-der-vlist.con ns/person"/>
</ except >
</ anyNane>
</attribute>
</ zer oOr Mor e>
</ define>
</incl ude>

isreplaced by:

265

Chapter 15: Simplification
And Restrictions

<di v>
<define name="forei gn-el enents">
<zer oOr Mor e>
<el ement >
<anyName>
<except >
<nsNanme ns=""/>
<nsName ns="http://eric.van-der-vlist.comns/library"/>
<nsName ns="http://eric.van-der-vlist.com ns/person"/>
</ except >
</ anyNane>
<ref nanme="anythi ng"/>
</ el ement >
</ zer oOr Mor e>
</ define>
<define name="foreign-attributes">
<zer oOr Mor e>
<attri bute>
<anyName>
<except >
<nsNanme ns=""/>
<nsName ns="http://eric.van-der-vlist.comns/library"/>
<nsName ns="http://eric.van-der-vlist.com ns/person"/>
</ except >
</ anyNane>
</attribute>
</ zer oOr Mor e>
</ define>
<defi ne name="anyt hi ng">
<zer oOr Mor e>
<choi ce>
<el ement >
<anyNane/ >
<ref nanme="anythi ng"/>
</ el ement >
<attribute>
<anyNane/ >
</attribute>
<text/>
</ choi ce>
</ zer oOr Mor e>
</ define>
<defi ne name="f orei gn- nodes" >
<zer oOr Mor e>
<choi ce>
<ref nane="foreign-attributes"/>
<ref nanme="foreign-el enents"/>
</ choi ce>
</ zer oOr Mor e>
</ define>
</div>

The schema after this sequence of stepsis:

nanespace a = "http://rel axng. org/ ns/conpatibility/annotations/1.0"

266

Chapter 15: Simplification
And Restrictions

nanespace hr = "http://eric.van-der-vlist.conins/person”

nanespace |local = ""

default namespace nsl = "http://eric.van-der-vlist.comns/library"
nanespace sn = "http://ww. snee. coni ns/ st ages™

start =

element library { book-element+ }
| book- el erment
| author-el ement
| character-el ement
div {
foreign-elenents = elenent * - (local:* | nsl:* | hr:*) { anything }*
foreign-attributes = attribute * - (local:* | nsl:* | hr:*) { text }*
anything =
(element * { anything }
| attribute * { text }
| text)*
foreign-nodes = (foreign-attributes | foreign-elements)*
}
aut hor-el enent =
el ement hr: aut hor ({
attribute id {
xsd: NMTOKEN { nmaxLength =" 16 " }
b
name- el ement ,
bor n- el emrent ,
di ed- el enent ?
}
div {
book-content =
attribute id { text },
attribute available { avail abl e-content },
i shn-el emrent
title-elenent,
aut hor - el enent *,
character-el enent *
}
book-content &= foreign-nodes
book-el ement = el enent book { book-content }
born-el ement = el enent hr:born { xsd:date }
character-el enent =
grammar {
start =
el ement character ({
attribute id { text },
par ent name- el enent,
par ent born-el enent,
parent qualification-el ement
}
}

di ed- el enent

el ement hr:died { xsd:date }

i sbn-el ement el ement isbn { foreign-attributes, token }
nane- el ement el ement hr:name { xsd:token }
qgualification-elenent = elenment qualification { text }
title-elenment = elenent title { foreign-attributes, text }

267

Chapter 15: Simplification
And Restrictions

avai |l abl e-content = "true" | xsd:token false " | " ™

Name classes normalization

This third sequence of steps performs the normalization of name classes:

» Thenane attribute of theel emrent andat t ri but e patterns are replaced by nane element, i.e.
aname class matching only this single name.

» Thens attributes are transfered through inheritance to the elements which need them, i.e. nane,
nsNane and val ue (val ue patterns need this attribute to support QName datatypes). Note that
thens attribute behaves like the default namespacein XML and isn't passed to attributes which, by
default, are considered as having no namespace URI.

e The QName (qualified name) used in nane elements are replaced by their local part and the ns
attribute of these elements is replaced by the namespace URI defined for their prefix.

After this sequence of steps, name classes are almost normalized (the except and choice name class
will be normalized in the next sequence of steps).

During this sequence of steps, the snippet:

<el ement nane="hr: aut hor">
<attri bute nane="id">
<dat a dat atypeLi brary="http://ww. w3. or g/ 2001/ XM_Schena- dat at ypes" typ
<par am nanme="maxLengt h"> 16 </ paranp
</ dat a>
</attribute>
<ref nanme="nane-el enent"/>
<ref nanme="born-el enent"/>
<optional >
<ref nanme="di ed-el enent"/>
</ opti onal >
</ el enent >

is transformed into:

<el ement >
<nane ns="http://eric.van-der-vlist.com ns/person">aut hor </ name>
<attribute>
<nanme ns="">i d</ nane>
<dat a dat at ypeLi brary="htt p://ww. w3. or g/ 2001/ XM_Schema- dat at ypes" typ
<par am name="maxLengt h"> 16 </ paranp
</ dat a>
</attribute>
<ref nane="nane-el erent"/>
<ref nane="born-el emrent"/>
<opti onal >
<ref nane="died-el emrent"/>
</ opti onal >
</ el ement >

Note that none of these modifications are visible on the compact syntax which requires that all the
namespace declarations are done in the declaration section of the schema and for which there is no
difference between name elements and attributes.

268

Chapter 15: Simplification
And Restrictions

Pattern normalization

In this fourth sequence of steps, pattern are normalized:
 di v elements are replaced by their children.

» define,oneOr More,zeroOr More,optional,list andm xed patterns are transformed
to have exactly one child pattern: if they had more than one pattern, these patterns are wrapped into
agr oup pattern.

* el ement patterns follow a similar rule and are transformed to have exactly a name class and a
single child pattern.

* except patternsand name classes are also transformed to have exactly one child pattern, but since
they have a different semantic, their children elements are wrapped in achoi ce element.

e Ifanattri but e pattern has no child pattern, at ext pattern is added.

 Thegroup andi nt er | eave patterns and the choi ce pattern and name class are recursively
transformed to have exactly two sub elements: if it has only one child, it is replaced by this child
and if it has more than two children, the first two child elements are combined into a new element
until there are exactly two child elements.

* m xed patterns are transformed into i nt er | eave patterns between their unique child pattern
and at ext pattern.

» opti onal patternsaretransformed into choi ce patterns between their unique child pattern and
an enpt y pattern.

e zer oOr Mor e patterns are transformed into choi ce patterns between a oneOr Mor e pattern
including their unique child pattern and an enpt y pattern.

After this sequence of steps, the number of different type of patterns has been reduced to a set of
"primitive" patterns and all the patterns which are left have a fixed number of children elements.

During this sequence of steps, the snippet:

<define name="forei gn-el enents">
<zer oOr Mor e>
<el ement >
<anyNane>
<except >
<nsNanme ns=""/>
<nsNanme ns="http://eric.van-der-vlist.com ns/library"/>
<nsNanme ns="http://eric.van-der-vlist.conm ns/person"/>
</ except >
</ anyNane>
<ref nane="anyt hi ng"/>
</ el ement >
</ zer oOr Mor e>
</ define>

is transformed into:

<define name="forei gn-el enents">
<choi ce>

269

Chapter 15: Simplification
And Restrictions

<oneOr Mor e>
<el enent >
<anyName>
<except >
<choi ce>
<choi ce>
<nsName ns=""/>
<nsName ns="http://eric.van-der-vlist.comns/library"/>
</ choi ce>
<nsName ns="http://eric.van-der-vlist.com ns/person"/>
</ choi ce>
</ except >
</ anyNane>
<ref nanme="anythi ng"/>
</ el ement >
</ oneOr Mor e>
<enpty/>
</ choi ce>
</ defi ne>

After this sequence of steps, our schemaiis:

nanespace a = "http://rel axng. org/ ns/conpatibility/annotations/1.0"
nanespace hr = "http://eric.van-der-vlist.conins/person”

nanespace |local = ""

default namespace nsl = "http://eric.van-der-vlist.comns/library"
nanespace sn = "http://ww. snee. coni ns/ st ages"

start =

((elenent library { book-el enent+ }
| book-el ement)
| aut hor-el ement)
| character-el ement
foreign-elenents =
elenent * - ((local:* | nsl:*) | hr:*) { anything }+
| enpty
foreign-attributes =
attribute * - ((local:* | nsl:*) | hr:*) { text }+
| enpty
anything =
((elenent * { anything }
| attribute * { text })
| text)+
| enpty
foreign-nodes = (foreign-attributes | foreign-elenents)+ | enpty
aut hor-el ement =
el ement hr: aut hor {
((attribute id {
xsd: NMTOKEN { naxLength =" 16 " }
1
name- el enent),
born-el enent),
(di ed-el ement | enpty)
}

270

Chapter 15: Simplification
And Restrictions

book-content =
((((attribute id { text },
attribute available { avail abl e-content }),
i sbn-el ement),
title-elenent),
(aut hor-element+ | enpty)),
(character-element+ | enpty)
book-content &= foreign-nodes
book-el ement = el enent book { book-content }
born-el ement = el enent hr:born { xsd:date }
character-el ement =
grammar {
start =
el ement character ({
((attribute id { text },
par ent namne-el enent),
par ent born-el enent),
parent qualification-el ement
}
}
di ed- el ement el ement hr:died { xsd:date }
i sbn- el ement el ement isbn { foreign-attributes, token }
nane- el ement el ement hr:name { xsd:token }
qgqualification-elenent = elenment qualification { text }
title-elenment = elenent title { foreign-attributes, text }
avai |l abl e-content = ("true" | xsd:token " false ") | " "

First set of constraints

A first set of constraintsis defined at thispoint. They are mainly sanity checks conform to the common
XML sense but are easier and safer to check at that stage than on the compl ete schema:

* It's not possible to define name classes -or except - which would contain no name at al by
including anyNane inan except nameclassor nsNarme inan except name classincluded in
another nsNane.

* It's not possible to define attributes having the name xm ns or a namespace URI equal to the
namespace URI "http://www.w3.0rg/2000/xmins" (corresponding to the "xmlns" prefix).

» Datatype libraries are used correctly: each type exists in their datatype library and its par am
eements are valid for it).

Grammar merge

During this sequence of steps, def i ne and st art elements are combined when needed in each
grammar and the grammar are merged into asingle top level grammar:

* Ineach grammar, multiplest art elementsand multipledef i ne element with the sasmename are
combined as defined in their conbi ne attribute.

* The names of the named patterns are then changed to be unique to the whole schema and the
references to these named patterns changed accordingly.

e A top level granmar and its st art element are created if not already present, all the named
patterns are moved to be children if this top level grammar, par ent Ref elements are replaced
by r ef elements and and al the other gr anmar, st art elements are replaced by their children
elements.

271

Chapter 15: Simplification
And Restrictions

During this sequence of steps,

<defi ne nanme="bor n-el erent ">
<el enent >
<nanme ns="http://eric.van-der-vlist.conlns/person”>born</nane>
<dat a dat at ypeLi brary="http://ww. w3. or g/ 2001/ XM_Schema- dat at ypes" type="
</ el ement >
</ defi ne>
<define name="character-el emrent">
<gr ammar >
<start>
<el enent >
<name ns="http://eric.van-der-vlist.comns/library">character</nane>
<gr oup>
<gr oup>
<gr oup>
<attribute>
<name ns=
<text/>
</attribute>
<par ent Ref name="nane-el enent"/>
</ group>
<par ent Ref name="born-el enent"/>
</ group>
<par ent Ref name="qualification-element"/>
</ group>
</ el ement >
</start>
</ gr anmar >
</ defi ne>

>i d</ nanme>

isreplaced by:

<define name="born-el enent -i d2613943" >
<el ement >
<nanme ns="http://eric.van-der-vlist.conins/person">born</nane>
<dat a dat at ypeLi brary="http://ww. w3. or g/ 2001/ XM_Schema- dat at ypes" type="
</ el ement >
</ define>
<define name="character-el enent-id2613924" >
<el ement >
<nanme ns="http://eric.van-der-vlist.comns/library">character</nane>
<gr oup>
<gr oup>
<gr oup>
<attri bute>
<name ns=
<text/>
</attribute>
<ref nane="nane-el enent-i d2613832"/ >

>j d</ nane>

</ group>
<ref nane="born-el enent-i d2613943"/ >
</ group>
<ref nane="qualification-el enent-id2613840"/>
</ group>

</ el enent >

272

Chapter 15: Simplification
And Restrictions

</ defi ne>

No specific algorithm to create unique names for named pattern is described in the specification and
these names will vary between implementations.

The complete schema after this sequence of stepsis:

nanespace |ocal =

nanespace nsl = "http://eric.van-der-vlist.con ns/person"
default namespace ns2 = "http://eric.van-der-vlist.comns/library"
start =

((elenent library { book-el enent-id2613963+ }
| book-el ement-i d2613963)
| author-el enent-id2614058)
| character-el ement-id2613924
foreign-el enents-id2614183 =
elenent * - ((local:* | ns2:*) | nsl:*) { anything-id2614112 }+
| enpty
foreign-attributes-id2614152 =
attribute * - ((local:* | ns2:*) | nsl:*) { text }+
| enpty
anyt hi ng-i d2614112 =
((elenent * { anything-id2614112 }
| attribute * { text })
| text)+
| enpty
forei gn- nodes-i d2614043 =
(foreign-attributes-id2614152 | foreign-el enents-i d2614183)+ | enpty
aut hor - el enent -i d2614058 =
el ement nsl:author {
((attribute id {
xsd: NMTOKEN { naxLength =" 16 " }
1
nane- el enent -i d2613832) ,
born-el enent -i d2613943) ,
(di ed-el ement -1 d2613856 | enpty)
}
book- cont ent -i d2614016 =
(((((attribute id { text },
attribute available { avail abl e-content-id2613805 }),
i sbn-el enent -i d2613872),
title-el enent-id2613819),
(aut hor - el enent -i d2614058+ | enpty)),
(character-el ement-i d2613924+ | enpty))
& foreign-nodes-i d2614043
book- el enent -i d2613963 = el enent book { book-content-i d2614016 }
born-el ement -i d2613943 = el enent nsl:born { xsd:date }
character-el ement-i d2613924 =
el ement character {
((attribute id { text },
nane- el enent -i d2613832),
born-el enent -i d2613943) ,
qual i fication-el enent-i d2613840

273

Chapter 15: Simplification
And Restrictions

}
di ed- el enent -i d2613856

i sbn-el enent-i d2613872
el ement isbn { foreign-attributes-id2614152, token }
nane- el ement -i d2613832 = el enent nsl:nane { xsd:token }
qualification-el enent-id2613840 = el ement qualification { text }
title-elenent-id2613819 =
element title { foreign-attributes-id2614152, text }
avai |l abl e-content-i d2613805 = ("true" | xsd:token " false ") | " ™

el ement nsl:died { xsd:date }

Schema flattening

The basic style of the schema (Russian doll or named templates) has been preserved by the previous
steps. The goa of this new step is on the contrary to normalize the use of named templates. The target
isto make the schema similar in structure to a DTD with each element cleanly embedded in its own
named pattern and no other use of named pattern than to embed a single element:

* For each element which is not the unique child of adef i ne element, a named pattern is created
to embed its definition.

 Each named pattern which does not embed a single element pattern is suppressed and the references
to this named pattern replaced by its definition.

During this step,

<start>
<choi ce>
<choi ce>
<choi ce>
<el enent >
<name ns="http://eric.van-der-vlist.conm ns/library">library</name>
<oneOr Mor e>
<ref nanme="book-el enent-i d2613963"/ >
</ oneOr Mor e>
</ el enent >
<ref nanme="book-el enent-i d2613963"/ >
</ choi ce>
<ref nanme="aut hor-el ement-i d2614058"/ >
</ choi ce>
<ref nanme="character-el ement-id2613924"/ >
</ choi ce>
</start>
isreplaced by:
<start>
<choi ce>
<choi ce>
<choi ce>
<ref nane="__library-elt-id2615152"/>
<ref nane="book-el enent-i d2613963"/ >
</ choi ce>
<ref nane="aut hor-el enent-i d2614058"/ >
</ choi ce>
<ref nanme="character-el enent-id2613924"/ >
</ choi ce>

274

Chapter 15: Simplification
And Restrictions

</start>

o

<define name="__library-elt-id2615152">
<el enent >
<name ns="http://eric.van-der-vlist.conm ns/library">library</name>
<oneOr Mor e>
<ref nane="book-el ement-i d2613963"/ >
</ oneOr Mor e>
</ el ement >
</ defi ne>

The full schema after thisstepis:

nanespace | ocal =

nanespace nsl = "http://eric.van-der-vlist.con ns/person"
default namespace ns2 = "http://eric.van-der-vlist.comns/library"
start =

((__library-elt-id2615152 | book-el ement-i d2613963)
| author-el enent-i d2614058)
| character-el ement-id2613924
aut hor - el enent -i d2614058 =
el ement nsl:author {
((attribute id {
xsd: NMTOKEN { naxLength =" 16 " }
1
nane- el enent -i d2613832) ,
born-el enent -i d2613943) ,
(di ed-el ement -1 d2613856 | enpty)
}
book- el enent -i d2613963 =
el ement book {
(((((attribute id { text },
attribute available { ("true" | xsd:token " false ") | " " }),
i sbn-el enent -i d2613872),
title-el enent-id2613819),
(aut hor-el enent -i d2614058+ | enpty)),
(character-el ement-i d2613924+ | enpty))
& (((attribute * - ((local:* | ns2:*) | nsl:*) { text }+
| enpty)
| (__-elt-id2615098+ | enpty))+
\ | enpty)
born-el ement -i d2613943 = el enent nsl:born { xsd:date }
character-el ement-i d2613924 =
el ement character {
((attribute id { text },
nane- el enent -i d2613832) ,
born-el enent -i d2613943) ,
qual i fication-el enent-id2613840

275

Chapter 15: Simplification
And Restrictions

}
di ed- el enent -i d2613856

i sbn-el enent-i d2613872
el ement isbn {
(attribute * - ((local:* | ns2:*) | nsl:*) { text }+
| enpty),
t oken
}
nane- el ement -i d2613832 = el enent nsl:nane { xsd:token }
qualification-el enent-id2613840 = el ement qualification { text }
title-elenent-id2613819 =
element title {
(attribute * - ((local:* | ns2:*) | nsl:*) { text }+
| enpty),
t ext
}
__-elt-id2615020 =
el ement * {
((__-elt-id2615020
| attribute * { text })
| text)+
| enpty

el ement nsl:died { xsd:date }

}
__library-elt-id2615152 = elenment library { book-el enent-id2613963+ }

__-elt-id2615098 =
element * - ((local:* | ns2:*) | nsl:*) {
((__-elt-id2615020
| attribute * { text })
| text)+
} | enpty

Final cleanup

Now, we're ailmost done and just need to do a bit of final cleanup:

* Recursively escalate not Al | owed patterns when they are at a location where their effect is that
their parent patternitself isnot Al | owed and remove choiceswhich arenot Al | owed. Note that
this simplification doesn't pass through elements boundaries and that "element foo { notAllowed }"
is not transformed into not Al | owed.

* Removeenpt y elements which have no effect.
* Moveenpt y eementsto bethefirst childin choi ce elements.

After this cleanup, our schemais:

nanespace | ocal =

nanespace nsl = "http://eric.van-der-vlist.com ns/person”
default namespace ns2 = "http://eric.van-der-vlist.comns/library"
start =

((__library-elt-id2615152 | book-el ement-i d2613963)
| author-el enent-id2614058)
| character-el ement-id2613924

276

Chapter 15: Simplification
And Restrictions

aut hor - el enent -i d2614058 =
el ement nsl:aut hor {
((attribute id {
xsd: NMTOKEN { naxLength =" 16 " }

b
nane- el enent -i d2613832) ,
born-el enent -i d2613943) ,

(enpty | died-el ement-id2613856)

book- el ement -i d2613963 =
el ement book {
(((((attribute id { text },

attribute available { ("true" | xsd:token " false ") | " " }),
i sbn-el enent -i d2613872) ,
title-el enent-id2613819),
(enpty | author-element-id2614058+)),
(enpty | character-el ement-id2613924+))
& (enpty
| ((enpty
| attribute * - ((local:* | ns2:*) | nsl:*) { text }+)
| (empty | __-elt-id2615098+))+)

}

born-el ement -i d2613943 = el enent nsl:born { xsd:date }
character-el enment-id2613924 =
el ement character ({
((attribute id { text },
nane- el enent -i d2613832) ,
born-el enent -i d2613943) ,
qgualification-el enent-id2613840

di ed- el ement -1 d2613856
i sbn-el enent-i d2613872
el ement isbn {
(enpty
| attribute * - ((local:* | ns2:*) | nsl:*) { text }+),
t oken
}
nane- el ement -i d2613832 = el enent nsl:nane { xsd:token }
qualification-el enent-id2613840 = el ement qualification { text }
title-elenent-id2613819 =
element title {
(enpty
| attribute * - ((local:* | ns2:*) | nsl:*) { text }+),
t ext
}
__-elt-id2615020 =
el ement * {
enpty
| ((__-elt-id2615020
| attribute * { text })
| text)+

el ement nsl:died { xsd:date }

}
__library-elt-id2615152 = elenment library { book-el enent-id2613963+ }

__-elt-id2615098 =
element * - ((local:* | ns2:*) | nsl:*) {
empty
| ((__-elt-id2615020
| attribute * { text })

277

Chapter 15: Simplification
And Restrictions

| text)+

Restrictions

With the exception of the constraints expressed by the Relax NG schema for Relax NG and those
which are part of the smplification itself (see above), al the restrictions of Relax NG are expressed
on the simplified schema. Most of them are obvious and easy to understand.

Constraints on the attributes

These constraints match the definition of the attributes given by the XML 1.0 recommendation,
namely:

« Attributes can't contain other attributes: at t r i but e patterns cannot have another att ri but e
pattern in their descendants.

» Attributes can't contain elements. att ri but e patterns cannot have a r ef pattern in their
descendants.

« Attributes can't be duplicated: an attribute may not be found in a oneOr Mor e pattern with a
combination by gr oup ori nt er | eave. Furthermore, if "attributes’ patterns are combined in a
group or interleave pattern, their name classes must not overlap, i.e. they cannot be any name which
belongs to both name classes.

« Attributes which have an infinite name class (anyName or nsNanme) must be enclosed in a
oneOr Mor e pattern. In other words, we can't specify that we want to allow only one or a certain
number of occurrences of these attributes. Furthermore, they can only havet ext as their model
(in other words, dat a patterns are forbidden here).

L et's give some examples of schemaswhich may look valid through aquick glance but are hit by these
restrictions (please note that all these schemas are invalid).

Example: content model of attributes

This schemais defining that any content model can be accepted in the bar attribute:

anything =
(element * { anything }
| attribute * { text }
| text)*
start =
el emrent foo {
attribute bar { anything },
t ext

}

Unfortunately, it's translated into:

start = _ foo-elt-id2602800
__-elt-id2602788 =
el ement * {
enpty
| ((__-elt-id2602788

278

Chapter 15: Simplification
And Restrictions

| attribute * { text })
| text)+
}
__foo-elt-id2602800 =
el ement foo {
attribute bar {
empty
| ((__-elt-id2602788
| attribute * { text })
| text)+

b

t ext

And thisisallowing areference to anamed pattern (which means an element in the simplified syntax)
and an attribute. Both are forbidden.

Tofix this, wemust makesurethat theanyt hi ng defined for the content of the attributeiscompatible
with the content of attributes as defined by the XML specification, for instance:

anything =
(text)
start =
el emrent foo {
attribute bar { anything },
t ext

which will be smplified into:

start = _foo-elt-id2602296
__foo-elt-id2602296 =
el ement foo {
attribute bar { text },
t ext

This schema is expressing what we wanted to expressand it is valid.

Example: duplication of attributes

Let'ssay wewant to extendthedefinitionof ourt i t | e element to havethe sameattributesand content
model than the XHTML 2.0 span element. If we look into the Relax NG module implementing the
span element, we can see that its definition is:

span = el enent span { span.attlist, Inline.nodel }

and ma want to just include it in the definition of thetit| e element which already includes an
xml:lang" attribute:

nanespace x = "http://ww. w3. org/ 2002/ 06/ xht n 2"

279

Chapter 15: Simplification
And Restrictions

start = book

include "xhtm -attribs-2.rnc" inherit = X
include "xhtm-inltext-2.rnc" inherit = X
i ncl ude "xhtm -datatypes-2.rnc" inherit = x

book =
el ement book {

attribute id { text },

attribute available { text },

el ement isbn { text },

element title {
attribute xm:lang { xsd:|anguage },
span.attlist,
I nl'ine. nodel

Unfortunately, thisisinvalid becausethexm : | ang attributeisalready included somewhereinto the
" span.attlist" pattern and gets pulled during the simplification which definesthet i t | e element as:

_title-elt-id2641936 =
element title {
(attribute xm:lang { xsd:|anguage },
(CCCCCC((enpty
| attribute id { xsd:I1D }),
(empty
| attribute class { xsd: NMTOKENS })),
(empty
| attribute title { text })),
(empty
| attribute xm:lang { xsd:|anguage })),
(empty
| attribute dir {
(¢"ter™] "rtl™)y | "lro")
| "“rlo"
1),
((enmpty
| attribute edit {
(("inserted" | "deleted") | "changed")
| "rmoved"
1.
(enpty default namespace lib = "http://eric.van-der-vlist.conins/libr.
nanespace |local = ""

start = book

book =
el ement book {

attribute id { text },

attribute available { text },

foreign-attributes,

el ement isbn { text },

element title {
attribute xm:lang { xsd:|anguage },
t ext

280

Chapter 15: Simplification
And Restrictions

foreign-attributes = attribute * - (local:* | lib:*) { text }*
| attribute datetinme { xsd:dateTinme }))),
(CCCCC((empty
| attribute href { xsd:anyURl 1}),
(enpty
| attribute cite { xsd:anyURl 1})),
(enpty
| attribute target { xsd: NMICKEN })),
(enpty
| attribute rel { xsd: NMIOKENS })),
(enpty
| attribute rev { xsd: NMIOKENS })),
(enpty
| attribute accesskey ({
xsd:string { length = "1" }
1),
(enpty
| attribute navindex {
xsd: nonNegat i vel nt eger {
pattern = "0-9+"
m nlnclusive = "0
max!| nclusive = "3
}
1),
(enpty
| attribute base { xsd:anyURl }))),
((enpty
| attribute src { xsd:anyURl }),
(enpty
| attribute type { text }))),
((((enmpty
| attribute usemap { xsd:anyURl }),
(enpty
| attribute ismap { "ismap" })),
(enpty
| attribute shape {
(("rect” | "circle™) | "poly")
| "default”
1),
(enpty
| attribute coords { text })))),
(enpty
| (empty
| (text
| (CCCCCC((((((abbr-id2635861 | cite-id2635889)
| code-id2635918)
| dfn-id2635947)
| emid2635975)
| kbd-i d2636004)
| 1-id2636032)
| quote-id2636061)
| sanp-id2636090)

2767"

281

Chapter 15: Simplification
And Restrictions

| span-id2636118)
| strong-id2636147)
| sub-id2636176)
| sup-id2636204)
| var-id2636233)))+)

To fix this, we just need to remove thexm : | ang from our definition:

nanespace x = "http://ww. w3. org/ 2002/ 06/ xht ni 2"

start = book
i nclude "xhtm -attribs-2.rnc" inherit
include "xhtm -inltext-2.rnc" inherit
i ncl ude "xhtm -datatypes-2.rnc" inherit
book =
el ement book {
attribute id { text },
attribute available { text },
el ement isbn { text },
el ement title {
span. attlist,
I nli ne. nodel

1 x X

Example: name class overlap

Let's say we have the following schema:

defaul t nanespace lib = "http://eric.van-der-vlist.comns/library"
nanespace |ocal = ""

start = book

book =
el ement book {

attribute id { text },

attribute available { text },

foreign-attributes,

el ement isbn { text },

element title {
attribute xm:lang { xsd:|anguage },
t ext

foreign-attributes = attribute * - (local:* | lib:*) { text }*

282

Chapter 15: Simplification
And Restrictions

(book.rnc)

Although we have accepted foreign attributes, we may want to be more precise on the definition of
some Dublin Core elements and extend our schema as:

nanespace dc="http://purl.org/dc/el enents/1.1/"

i ncl ude "book. rnc"

book. content &= attribute dc:rights { text } ?
Unfortunately, thisisinvalid because it gets simplified as:

book-i d2604347 =
el ement book {
((((attribute id { text },
attribute available { text }),
(enpty
| attribute * - (lib:* | local:*) { text }+)),
__isbn-elt-id2604556),
__title-elt-id2604551)
& attribute nsl:rights { text }

}

Where the attribute dc: Ri ght s isincluded in the name class "* - (lib:* | local:*)". To fix this, we
need to redefine the named patternf or ei gn- at t ri but es toremovethe name"dc:Riggs' or even
all the namespace for Dublin Core elements:

default namespace lib = "http://eric.van-der-vlist.comns/library"
nanespace dc="http://purl.org/dc/elenents/1.1/"
nanespace |ocal = ""

i ncl ude "book.rnc" {
foreign-attributes = attribute * - (local:* | lib:* | dc:*) { text }*

}

book. content &= attribute dc:rights { text } ?

Constraints on lists

Lists work on text nodes by splitting them into tokens which are handled as text nodes. It's therefore
not possible to find elements, attributesin alist. Texts nodes and embedded lists would be confusing
and are forbidden too:

* List patterns cannot have as their descendantsany | i st , r ef (remember that after simplification,
the access to elements is done as references to named patterns), attri bute, text. The
i nterl eave pattern is aso forbidden as descendant of | i st patterns because it would
complicate the implementations and has been considered not worth of it.

283

Chapter 15: Simplification
And Restrictions

Example: list and interleave

Let'ssay wed like to define a price element as allowing either anumeric followed by atoken, such as:
<price>1 Euro</price>

or atoken followed by a numeric:
<price>1 Euro</price>

We might be tempted to write:

el enent price {
list { xsd:decinmal & xsd:token }
}

But this would be invalid because i nt er | eave is forbidden in al i st. To workaround this
limitation, we need to give all the possible combinations, which iseasy on thisexample but can rapidly
grow out of control:

el ement price {
list { (xsd:decimal, xsd:token) | (xsd:token, xsd:decinal) }

}

Constraints on except patterns

Except patterns (i.e. except elementsused in adat a pattern) are about single data.

* Anexcept element with adat a parent can only contain dat a, val ue and choi ce elements.

Constraints on st art patterns.

After simplification, astart pattern describesthelist of possible root elements. Y ou can thusfind only
combinations of choices betweenr ef elements.

Constraints on content models

Relax NG defines three different content models for an el ement:
» Empty when the element has only attributes.

» Simple when the element has only attributes and has been described using dat a, val ue or | i st
patterns.

e Complex in the other cases.

Note that this is identical to the definition given by W3C XML Schema and similar but somewhat
different from the definition of these terms in "plain™ XML: an element expressed as "<foo>bar</
foo>" is considered by Relax NG as complex content if its content has been described using at ext

pattern and as a simple content if its content has been described using other patterns. This means that
it's not enough for an element that it contains only atext node to have a simple content but that it is

284

Chapter 15: Simplification
And Restrictions

also necessary that this element has been described with adat a orientation. When it's not the casei.e.
whenthet ext pattern has been used, the element is considered as "document” oriented and a special
case of mixed content where no elements are included.

The restriction on the content model is expressed saying that empty content can be grouped with any
other content models but that simple and complex content models can't be grouped together (through
group ori nterl eave patterns): they can only appear under the definition of the same element
as aternatives. In other words, for each aternative, you need to choose if you are dat a or t ext
oriented but can't mix both mindsets.

We have aready mentioned the practical consequence of this restriction on mixed content model in
"Chapter 7: Constraining Text Values': it is not possible to use dat a patterns to specify constraints
on the text nodes occurring in mixed elements.

Limitations oni nt erl eave.

The last two limitations are on i nt er | eave and their goa is to facilitate the implementation
of this feature which is lacking so much in other schema languages... These two limitations are
defined to reduce the number of combinations that Relax NG processors need to explore to support
i nterl eave:

» Elements combined through interleave must have name classes without overlap: we have aready
seen asimilar restriction with attributes which are always combined through interleave.

» There must be at most onet ext pattern in each set of patterns combined by i nt er | eave.

These limitations don't impact the expressive power of Relax NG (i.e. the set of content modelswhich
can be written with Relax NG): even if we may hit them from time to time, schemas can always be
rewritten to work around them; but they are a nuisance when combining existing patterns with mixed
content models.

They are needed for the different algorithms currently used to implement Relax NG and James Clark
thinks that they could be removed in future versions of Relax NG: "Hopefully better algorithms will
be developed that will alow this restriction to be removed in future versions."

Example: at most one text pattern in interleave

We may have the following schemato describe our books:

start = book
book = el enent book { book.content }
book. content =

attribute id { text },

attribute available { text },

el ement isbn { text },

title
title = elenent title { title.attributes, title.content }
title.attributes = attribute xnl:lang { xsd:|anguage }
title.content = text

(book.rnc)

Toadd the XHTML | nl i ne. nodel totitl e. cont ent we could betempted to write:

i ncl ude "book. rnc"

285

Chapter 15: Simplification
And Restrictions

i nclude "xhtml -attri bs-2.rnc"
i nclude "xhtm -inltext-2.rnc"
i ncl ude "xhtm -dat at ypes- 2. rnc"

title.content &= Inline. nodel

Unfortunately, | nl i ne. nodel already containsat ext pattern and this gets ssimplified as:

title-id2635741 =
element title {
attribute lang { xsd:language },
(text
& (enpty
| (enpty
| (text
[(CCCCCC((((((abbr-id2636549 | cite-i d2636578)
| code-id2636607)
| dfn-id2636636)
| emid2636664)
| kbd-id2636693)
| 1-id2636721)
| quote-id2636750)
| sanp-id2636778)
| span-id2636807)
| strong-i d2636836)
| sub-id2636865)
| sup-id2636893)
| var-id2636922)))+))

Wherewefindt ext patternswithini nt er| eave.

To fix this, be need to replace our combination by aredefinitionof titl e. content:

i ncl ude "book.rnc" {
title.content = Inline. nodel

}

i nclude "xhtm -attribs-2.rnc"

include "xhtm -inltext-2.rnc"

i ncl ude "xhtm - dat at ypes-2.rnc"

i ncl ude "book.rnc" {
title.content = Inline. nodel

}

i nclude "xhtm -attribs-2.rnc"

include "xhtm -inltext-2.rnc"

i ncl ude "xhtm - dat at ypes-2.rnc"

We seethat we have not lost in expressive power (we are able to describe what we wanted to describe)
but in modularity: changesdonetoti t| e. cont ent in"book.rnc" would now have to be manually
added to our derived schema.

286

Chapter 17. Chapter 16: Determinism
and Datatype Assignment

One of the strengths of Relax NG isits flexibility in supporting scaring concepts called "ambiguous
content models' (SGML world) "non-deterministic content models' (XML DTDs) or "Unique Particle
Attribution rule" and "Consistent Declaration rule” (W3C XML Schema).

Before you read on into this chapter, let's make it clear that as far as validation only is concerned, it's
perfectly fine with Relax NG to write ambiguous schemas.

That being said, when type assignment or data binding isinvolved, ambiguity may become aproblem
and we will seein this chapter how Relax NG can be used to be "type assignment friendly".

What are we talking about?

The thing we need to do first isto try to clarified these notions which are blurred in many papers and
discussions and are not as obscure as peopl e often think.

Ambiguity versus determinism

The first distinction to make is to differentiate what's called ambiguity (or rather unambiguity) and
what's called determinism. Thesetwo terms have been given precise definitions by regular expressions
and hedge grammars theoreticians and part of the confusion around these notions comes from the fact
that they are often misused.

A schemaissaid to be ambiguouswhen adocument may bevalid through different pattern alternatives.
A trivial exampleis:

el ement foo{empty} | elenment foo{enpty}

When an empty element named f 00 isfound in an instance document, thereisno way to say if itis
valid per the left or right definition of "element foo{ empty}" in the schema.

Thereare, of course, more complex cases of ambiguity and we'll see some of them in the next sections,
but thisis the general idea behind ambiguity.

Ambiguity (or unambiguity) isindependent of any implementation or algorithm. It's a property of the
schemaitself and without rewriting it a schemais either ambiguous or not.

On the contrary, determinism has been introduced to facilitate implementation of schema processors.
The basic idea beyond determinism isthat at each point when matching an instance document against
a schema, the schema processor has at most one possible choice. This is making the life easier for
implementers which can safely rely on well known algorithm such as automatons (also called Finite
State Machines or FSMs) and be sure that their computation times will not grow up exponentially.
Thisisaso amajor constraint imposed on schema authors.

An ambiguous schema is aways non deterministic, but the opposite is far from being true. Consider
for instance:

el enent foo{enpty} | (elenent foo{enpty}, elenent bar{enpty})

Thisisnot ambiguous since after having read the element after an empty element named f oo aschema
processor isableto say if theright or left alternative is being used (or noneif the document isinvalid)

287

Chapter 16: Determinism
and Datatype Assignment

but this is non deterministic since when a schema processor is matching an empty element named
f 0o it has two different choices and cannot choose between them without looking ahead at the next
element.

Ambiguous schemas are not aproblem aslong as validation only is concerned: their validation reports
are consistent and we don't care why adocument isvalid or not aslong asthe answer (valid or invalid)
isreliable. The only real downside about ambiguous schemasis for applications performing datatype
assignment (or more generally instance document annotation) through validation and wewill see more
about these issues in the next sections of this chapter.

The main issue with schema languages requiring deterministic schemas is that some content models
are fundamentally non deterministic and cannot be rewritten in a deterministic form. Such schema
languages are not only adding restrictions on the forms to use to write a schema but their expressive
power is limited and they cannot describe all the content models allowed in well formed XML. We
will see examples of content modelsimpossible to describein adeterministic form in the section about
compatibility with W3C XML Schema.

Different types of ambiguities

In a Relax NG schema, we can distinguish four different types of ambiguities: regular expression
ambiguities, hedge grammar ambiguities, name classes ambiguity and datatype ambiguities and we'll
briefly introduce them since they have dightly different behaviors.

Regular expression ambiguities

Note that in this chapter we are using the term "regular expression” as used in the math behind Relax
NG. Theterm "regular expression” that you'll find in this chapter should thus not be confused with the
regular expressions which we've seen in the W3C XML Schemapat t er n facet.

After a schema has been simplified, we can make a clear distinction between the definition of each
element (embedded in its own named pattern) and the grammar which combines these definitions.
What's called a regular expression ambiguity is an ambiguity which resides within the definition of
an element.

Theoreticians have demonstrated that any ambiguous regular expressions may be rewritten in an
unambiguous way and these ambiguities may be considered as unlucky variations over unambiguous
schemas.

A basic example of such a choice between a pattern and itself is:

<choi ce>
<ref nane="pattern"/>
<ref nane="pattern"/>
</ choi ce>

or:
pattern|pattern

Obvious in this case, the unambiguous form is more or less difficult to find when the ambiguous
pattern gets more complex. For instance, the following pattern:

<choi ce>
<gr oup>

288

Chapter 16: Determinism
and Datatype Assignment

<opti onal >
<ref name="first"/>
</ opti onal >
<ref nanme="second"/>
</ group>
<gr oup>
<ref nanme="second"/>
<opti onal >
<ref nanme="third"/>
</ opti onal >
</ group>
</ choi ce>

or:

(first?,second)| (second,third?)

Is ambiguous because an instance nodeset matching only the named pattern second without the
leadingf i r st northeendingt hi r d isvalid per the two alternative of the choice. It can berewritten
by removing the option of matching only the second pattern from one of the alternatives:

or:

<gr oup>
<optional >
<ref name="first"/>
</ opti onal >
<ref nanme="second"/>
</ group>
<gr oup>
<ref nanme="second"/>
<ref name="third"/>
</ group>
</ choi ce>

or:

(first?,second)| (second,third)

Algorithms have been developed to rewrite ambiguous regular expressions in their unambiguous
forms and it would be really useful if XML development tools could implement them to propose non
ambiguous aternatives for ambiguous patterns when they exist. Until this happens, the best thing to
do when you are confronted with an ambiguous pattern to disambiguate is to take a step back, grab a
cup of tea or coffee and calmly write the different combinations expressed by the schemato combine
them differently till the combination isn't ambiguous any longer.

Note that explicit choices aren't the only pattern which can lead to ambiguous schemas. Consider this
simple pattern:

<gr oup>
<opti onal >
<ref nane="pattern"/>

289

Chapter 16: Determinism
and Datatype Assignment

</ opti onal >
<opti onal >
<ref nane="pattern"/>
</ opti onal >
<gr oup>

or:

pattern?, pattern?

If we have a content model which matches only one pattern, we cannot know if it will match it for
the first or the second occurrence of the pattern and this schema can be considered as ambiguous. To
rewrite it as a non ambiguous schema, we could write:

<opti onal >

<ref nane="pattern"/>
<opti onal >

<ref nane="pattern"/>
</ opti onal >
</ opti onal >

or:

(pattern, pattern?)?

Although the way leading to rewritings may look opaque, the math behind Relax NG can help uslike
high school algebra helps us factorize mathematical expressions. As an exercise, let's decompose the
chain of factorizations and simplifications to rewrite "pattern?, pattern?' as " (pattern, pattern?)?".
Thefirst step relies on the fact that "pattern?” is equivalent to "empty|pattern”:

pattern?, pattern?
isequivalent to:

(enpty| pattern), (enpty|pattern)
which can be factorized as:

(enpty, enpty)| (enpty, pattern)| (pattern,enpty)]| (pattern, pattern)
which can be simplified as:

enpty| pattern| (pattern, pattern)

which is equivalent to:

290

Chapter 16: Determinism
and Datatype Assignment

enpty| (pattern, (enpty| pattern))

whichis equivalent to
(pattern, pattern?)?

We could argue whether the unambiguous forms are clearer, more logical an easier to read than the
ambiguousformsor not, but | think that the answer would be very subjective. Thesedifferent formsare
highly dependent of the perspective from which we have analyzed the content of instance documents.
There isn't a good nor a bad form and working with a schema language such as Relax NG which
supports all of these forms does save alot of time: you don't have to take a perspective imposed by
the language!

A last thing to note is that disambiguating regular expressions does not significantly change the
structure or the style of your schema since the changes are limited to the regular expression itself and
thiswill not be the case of ambiguous regular hedge grammars.

Ambiguous regular hedge grammars

Inthe case of aRelax NG schema, we've defined aregular expression ambiguity as an ambiguity which
resides within the definition of an element. Ambiguous regular hedge grammars are on the contrary
ambiguities spread over element definitions which play the role of "hedges' in a Relax NG schema.
A example of an ambiguous regular hedge grammar is:

<choi ce>
<ref nanme="patternl"/>
<ref nanme="pattern2"/>
</ choi ce>
Y A
<define name="patternl">
<el enent nane="foo">
<enpty/>
</ el ement >
</ defi ne>
<define name="pattern2">
<el enent nane="foo">
<enpty/>
</ el ement >
</ defi ne>

or:

patternl| pattern2

Y A

patternl=el enent foo{enpty}
pattern2=el enent foo{enpty}

This example is ambiguous because when we find an empty element f oo we can't tell if it's been
validated through pat t er nl or pat t er n2 and it's an ambiguous hedge grammar (rather than an
ambiguous regular expression) because the ambiguity is spread over two hedges, i.e. two definitions
of the element f 0o0.

291

Chapter 16: Determinism
and Datatype Assignment

Again, it has been demonstrated that ambiguous regular hedge grammars can be rewritten in
unambiguous forms but the disambiguation must be done at the level of the grammar itself and does
often requires heavy changes to the structure of the schema.

The exercise of disambiguating regular hedge grammars can get significantly complicated when
compositions of named patterns and grammars are involved. For instance, maintai ning non ambiguous
patterns while combining definitions by choice means that you need to exclude al the instance
nodesets valid per the origina definition from the pattern given as a choice and this isn't aways
possible without modifying the included schema. Consider for instance this pattern:

<defi ne nane="nanedPattern">
<ref name="first"/>
</ defi ne>

or:
nanedPat t ern=fi rst

If we need to add an optional second pattern it may seem natural to combine it by choice as:

<defi ne nanme="nanedPattern" comnbi ne="choi ce">
<ref name="first"/>
<optional >
<ref nanme="second"/>
</ opti onal >
</ defi ne>

or:
nanedPattern| =first, second?
Theresult of the combination is equivalent to:

<defi ne nane="nanedPattern">
<choi ce>
<ref name="first"/>
<gr oup>
<ref name="first"/>
<opti onal >
<ref nanme="second"/>
</ opti onal >
</ group>
</ choi ce>
</ defi ne>

or:

nanmedPattern=first| (first, second?)

292

Chapter 16: Determinism
and Datatype Assignment

Thisgivesusan ambiguous pattern. Of course, outside the context of apattern combination, thiswould
be trivial to rewrite as:

<defi ne nane="nanedPattern">
<ref name="first"/>
<opti onal >
<ref nane="second"/>
</ opti onal >
</ defi ne>

or:

nanedPat t ern=first, second?

but in this case, we won't get there directly by pattern combination and we need to take the problem
under adifferent angle and consider that we must leave in the alternative to the original definition only
things which would are not already allowed. In other words, we need to remove from our target of "the
first pattern followed by an optional second pattern” the case where the first pattern is not followed
by the second one. The alternative will thus be between the first pattern alone and the first pattern
followed by a second one:

<defi ne nanme="nanedPattern" conbi ne="choi ce">
<choi ce>
<ref nane="first"/>
<gr oup>
<ref nane="first"/>
<ref nanme="second"/>
</ group>
</ choi ce>
</ defi ne>

or:

nanedPattern=first| (first, second)

With this target in mind, we can rewrite our combination as:

<defi ne nanme="nanedPattern" comnbi ne="choice">
<ref name="first"/>
<ref nane="second"/>

</ defi ne>

or:

nanedPattern| =first, second

If we want to avoid ambiguous hedge grammars, we also need to be careful when combining named
patterns by choice: without knowing how patternl and pattern2 are defined, it'sjust impossible to say
if:

293

Chapter 16: Determinism
and Datatype Assignment

<choi ce>

<ref nanme="patternl"/>
<ref nanme="pattern2"/>
</ choi ce>

or:
patternl|pattern2

is ambiguous or not.

Name class ambiguity

Another source of ambiguity is when name classes used in different alternatives of a choice overlap.
Again, aschematic example of such overlap would be:

<choi ce>
<el enent nane="foo0">
<enpty/>
</ el enent >
<el enent >
<anyNane/ >
<enpty/>
</ el enent >
</ choi ce>

or:
el ement foo{enmpty} | elenment * {enpty}

This is ambiguous since the name class any Nane includes the name class matching only the name
f 0o and an element f 0o would be valid per both branches of the choice pattern.

The except name class does save our lives for name class ambiguity since it lets us remove the
overlap from one of the alternatives and this pattern can easily be rewritten as a non ambiguous choice
pattern:

<choi ce>
<el emrent nane="foo0" >
<enpty/ >
</ el enent >
<el enent >
<anyNane>
<except >
<nane>f oo</ nane>
</ except >
</ anyNane>
<enpty/ >
</ el enent >
</ choi ce>

294

Chapter 16: Determinism
and Datatype Assignment

or:

el ement foo{empty} | element * - foo {enpty}

Or more simply:

<el enent >
<anyName>
<except >
<name>f oo</ nane>
</ except >
</ anyNane>
<enpty/>
</ el ement >

or:

el ement * {enpty}

Note that the fact that name classes overlap is not enough to make an ambiguous pattern. For instance:

<choi ce>
<el enment nane="foo0">
<attri bute nane="bar">
<enpty/>
</attribute>
</ el enent >
<el enent >
<anyNane/ >
<enpty/>
</ el enent >
</ choi ce>

or: element foof attribute bar{ empty}} | element * {empty}}

is no ambiguous since the content model of the elements with the two name class do not overlap.
Making our bar attribute optional:

<choi ce>
<el emrent nane="foo0" >
<opti onal >
<attribute nane="bar">
<enpty/ >
</attribute>
</ opti onal >
</ el enent >
<el enent >
<anyNane/ >
<enpty/ >

295

Chapter 16: Determinism
and Datatype Assignment

</ el enent >
</ choi ce>

or: element foof attribute bar{ empty} 7} | element * {empty}}

is enough to make our pattern ambiguous. However, this pattern is strictly equivalent to the preceding
one which means that we know how to rewrite it in a non ambiguous way.

Finally, note that name class ambiguity may be considered as an extension to regular hedge grammar
ambiguity. When we have been writing:

el enent foo{enpty} | elenment foof{enpty}

which after simplification is an example of regular hedge grammar ambiguity, the ambiguity comes
from the fact that the name classes for both aternatives are the single value f 0o and thus do overlap.

Ambiguous datatypes

Datatype ambiguity is the one which is the most difficult to handle with Relax NG and that doesn't
come from Relax NG itself but rather from the fact that datatype libraries are not built-in and are kind
of opaque and less flexible than other patterns or name classes.

A basic example of ambiguous datatypesis:

<el enent nane="foo0">
<choi ce>
<data type="bool ean"/ >
<data type="integer"/>
</ choi ce>
</ el enent >

or:
el enent foo{xsd: bool ean| xsd: i nt eger}

Since thelexical space of the two possible datatypes do overlap (0 and 1 are valid W3C XML Schema
boolean and integers), there is no way to determine what is the datatype an element foo with a value
0 or 1. We have no except pattern available to remove the lexical space of a datatype from the lexical
space of another datatype and, the only way to disambiguate such pattern is using parameters when
the datatype library provides any. In the case of W3C XML Schema, the parameter to use if we want
to work on the lexical space is the pattern parameter and we could remove 0 and 1 from the lexical
space of the boolean datatype by either specifying the lexical space of boolean as being explicitly
trueorfal se:

<el enent nane="foo">
<choi ce>
<data type="bool ean">
<par am nanme="pattern">true| f al se</ paranp
</ dat a>
<data type="integer"/>
</ choi ce>
</ el emrent >

296

Chapter 16: Determinism
and Datatype Assignment

or:

el ement foo{
xsd: bool ean{pattern="true|fal se"}
| xsd: i nt eger

}

Or by removing the lexical space of integer from boolean:

<el enent nane="foo">
<choi ce>
<data type="bool ean">
<par am nane="pattern">[*0-9] *</ par ane
</ dat a>
<data type="integer"/>
</ choi ce>
</ el ement >

or:

el ement foo{
xsd: bool ean{pattern="["0-9] *"}
| xsd: i nt eger

}

That's not much fun for more complex cases, but that's the only hope we have to disambiguate such
ambiguities.

The downsides of ambiguous and non
deterministic content models

Again, if you're only interested in using a Relax NG schema for validation which, after al, is the
primary goal of Relax NG, it is perfectly fineto design and use non deterministic and even ambiguous
schemas. The downsides of ambiguous schemas appear when we want to use Relax NG schemas for
adding validation information to the instance documents or use a Relax NG schemafor guided editing
and the downsides of non deterministic schemas only appear when we want to be able to translate our
schemas into aW3C XML Schema.

Instance annotations

What I'll be calling instance annotation in this book is the ability to attach to the instance document
information gathered during the validation to facilitate its processing. I nstance annotation is probably
one of the most promising paths to automating XML document processing and its applications cover
domains such as datatype assignment (which is one of the basis of XQuery 1.0, XPath 2.0 and XSLT
2.0), data binding (probably the only way to automate the creation of objects from XML documents
and the creation of XML documents from objects) and XML guided editing.

Some tools may have more stringent requirements depending on their algorithms (for instance, aSAX
based streaming tool might want to impose deterministic schemas), but in theory (and in general), it

297

Chapter 16: Determinism
and Datatype Assignment

is sufficient for the applications of instance annotations to insure that the annotations are consistent
and this can be achieved if the schema is unambiguous.

Note that even this condition isn't aways required and that these regquirements are application
dependents. Consider for instance a databinding application which needs to know the content model
of each element. This application might be in trouble to determine which content model to use if it
finds a pattern such as:

el emrent foo {first?, second}
| el ement foo {second,third?}

first=el enent first{xsd:integer}
second=el enent second{xsd: t oken}
t hi rd=el enent third{xsd: bool ean}

and an element foo with a content pattern matching the second pattern. Should it bind it into an
object allowing an optional f i r st or into an object allowing an optional t hi r d? Such ambiguity is
likely to be an issue for this application. On the other hand, if all you need is to perform simple type
assignment, this schemais perfectly fine since even though it is ambiguous, there is no ambiguity on
datatype assignment.

As abottom line, we can say that chasing ambiguity in your Relax NG schemas may be considered a
good practice if you have in mind instance annotation applications at large, you must also check the
toolswhich you will be using since they can have either more stringent or more relaxed requirements.

Compatibility with W3C XML Schema

| have promised to give an example of unambiguous patterns which is not deterministic and can't be
rewritten in adeterministic form and hereit is! Let's consider apattern describing abook as a sequence
of odd and even pages:

<zer oOr Mor e>
<ref nane="odd"/>
<ref nanme="even"/>
</ zer oOr Mor e>
<opti onal >
<ref nane="odd"/>
</ optional >

or:
(odd, even)*, odd?

This pattern is not ambiguous since for any valid combinations of odd and even pages it is possible
to know which pattern has matched each of the pages. It can't be deterministic since for each odd
page, you need to look ahead at the next one to see if it is the last before knowing if an even page
isrequired in next position.

W3C XML Schema requires deterministic content models under the name of "Unique Particle
Attribution" and " Consistent Declaration” rulesand just can't describe such asimple and useful content
model!

298

Chapter 16: Determinism
and Datatype Assignment

Another example of non deterministic pattern is:

<choi ce>
<el enent nane="foo0">
<attri bute nane="bar"/>
</ el enent >
<el enent nane="foo0">
<el enent nane="bar">
<text/>
</ el enent >
</ el enent >
</ choi ce>

or:

elenent foo {attribute bar} | elenment foo {elenent bar {text}}

This one would seem easier to trandlate. At least, it can be factorized and rewritten as a deterministic
pattern in Relax NG as:

<el emrent nane="fo00">
<choi ce>
<attribute nanme="bar"/>
<el erent nane="bar">
<text/>
</ el enent >
</ choi ce>
</ el enent >

or:

el ement foo {attribute bar| elenent bar {text}}

Unfortunately, this doesn't help to translate our schemainto W3C XML Schema since this language
doesn't know how to handle this type of situations mixing constraints on sub elements and attributes
without using dark hacks with key definitions which don't work in all the cases.

Making surethat your schemasare deterministic isthusagood practice when you plan to translate your
schemas into W3C XML Schema schemas but unfortunately not a guarantee that they will trandate
gracefully. Theonly rulel can giveif you want to make surethat your schemaswill be easy to trandlate
is to check the result of trandation frequently as you write your schema and hope that James Clark
will continue to improve the conversion agorithm!

On the other hand, note that W3C XML Schema deals nicely with datatype ambiguities. If we take
or example of datatype ambiguity:

el enent foo{xsd: bool ean| xsd: i nt eger}

you will be surprised to know that it trandates gracefully into:

299

Chapter 16: Determinism
and Datatype Assignment

<xs: el enent nane="foo0">
<xs:si npl eType>
<xs:uni on nmenber Types="xs: bool ean xs:integer"/>
</ xs:si npl eType>
</ xs: el ement >

and that thisis not considered as ambiguous by W3C XML Schemawhich has added arule to say that
when several datatypeswhere grouped "by union" whichisbasically what our choice between datatype
does, aprocessor should stop after the first type which matches and not evaluate the next alternatives.

Some ideas to make disambiguation easier

To close this chapter 1'd like to present some ideas which would facilitate our lives in disambiguating
schemas.

Generalized except pattern

In the different forms of ambiguity, name classes has been the easiest one to disambiguate. Why is
this? Not because name classes are inherently simpler than regular expressions or datatypes: all of
them are about defining sets of things that can happen in a XML documents and | would argue that
they are very similar. The reason why name classes have been easier to disambiguate is because they
have afirst classexcept operator and if we had the same level of support for patterns and datatypes,
we could more easily disambiguate them.

Applied to datatypes, thisis aready possible to some extend and away to disambiguate our example:
el ement foo{xsd: bool ean| xsd: i nt eger}
isto write:

el ement foo{ (xsd:boolean - xsd:integer) |xsd:integer}

A value which is only integer will obviously match only the right alternative. A value which is only
boolean (i.e. t r ue and f al se) will match the left alternative and a value which is both a boolean
and an integer (i.e. 0 and 1) will match the first condition of the left alternative (xsd: bool ean) but
will not match the exception clause.

Unfortunately, this can't be generalized out of the scope of dat a patterns (note that the examples
given below with the except (-) operator are not valid Relax NG).
If this could be generalized, applied to an ambiguous regular expression such as:
two| (one?, two+, t hr ee*)
We would be able to write:

two| ((one?, t wo+, t hree*) -t wo)

Of course, this can be developed and rewritten with the existing Relax NG patterns, but that would
give anew level of flexibility to the language.

300

Chapter 16: Determinism
and Datatype Assignment

Explicit disambiguation rules

Thesecondideal'dliketo giveisfar lessdisruptive andisjust the realization that these ambiguitiesare
just ambiguous because we have not decided anything to rule them out. There are plenty of examples
in other computer languages of ambiguities which have been partialy or fully ruled out such as for
XSLT templates, order of evaluation of statementsin programming languages or as we've seen in the
section about W3C XML Schema union of datatypes.

There is absolutely nothing preventing writing a specification defining a priority for the alternatives
to be used by applications interested in instance annotation at large when they encounter ambiguities.

This specification wouldn't need to apply to Relax NG processors interested only in validation and
would not compromise their optimizations. It would only apply to NG processors performing instance
annotation and guarantee a consistent and interoperabl e type annotation for schema which are today
considered as ambiguous.

The rule could be as simple as "use the first alternative in document order” or it could a so take into
account additional factors such as giving a lesser precedence to included grammars like XSLT does
with stylesheet imports.

Accepting ambiguity

The third idea has been proposed by Jeni Tennison on the xml-dev mailing list: instead of trying to
fight against ambiguity, why not accept it? Why couldn't we acknowledge that something can have
several datatypes (or model) and have at the same type a datatype "A" and "B"? Why avalue couldn't
be at the sametypeani nt eger and abool ean?

This idea would have a serious impact on specifications such as XPath 2.0 which assign a single
datatype to each simple type element and attribute, but that would be much more compatible with the
principle of markup which isonly the projection of a structure over adocument. It often happen that a
piece of text may have several meaning, acknowledging that elements and attributes may have belong
to datatypes at the same time just seems something obvious to do.

301

Part Ill. Short reference guide

Thispart isaconcisereference guide covering the elementsof the RELAX NG XML syntax, thecommented EBNF
of the non XML syntax, a glossary and a short reference guide for the W3C XML Schema datatypes (adapted
from my book about W3C XML Schema).

Chapter 18. Elements reference guide

This short reference guide to Relax NG elements presents each of the elements composing the
XML syntax for Relax NG by aphabetical order. Note that the synopsis given for each element is
generated from the Relax NG schemafor Relax NG and dooesn't capture the restrictions applied after
simplification. The simplification process and restrictions are detailed in " Chapter 15: Simplification
And Restrictions®. The main restrictions are also mentioned for each element in this chapter in the
section titled "Restrictions”.

Elements

303

Elements reference guide

Name

anyName — Name class accepting any name.

Class:

name-class

Synopsis

el ement anyName

{
(
attribute ns { text }?,
attribute datatypelLibrary { xsd:anyURl 1}?,
attribute * - (rng:* | local:*) { text }*
).
((elenent * - rng:* { ... }*) & elenment except { ... }?)
}

May be included in:

attribute,choice,el ement,except.

Compact syntax equivalent:

*-nameClass

Description:

The anyName name class matches any name from any namespace. This wild spectrum may be
restricted by embedding except name classes.

Restrictions:

Within the scope of an element, the name classes of attributes cannot overlap. The same restriction
applies to name classes of elements when these elements are combined by i nt er | eave.

Example:

<el ement >

<anyNane/ >

<ref nane="anyt hi ng"/ >
</ el emrent >

<el ement >
<anyNane>
<except >
<nsName ns=""/>
<nsNanme ns="http://eric.van-der-vlist.comns/library"/>
<nsNanme ns="http://eric.van-der-vlist.com ns/person"/>
</ except >
</ anyNane>
<ref nane="anyt hi ng"/ >
</ el emrent >

304

Elements reference guide

<attri bute>
<anyNane/ >
</attribute>

Attributes:

dat at ypeli brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited. Note that although dat at ypeli br ary isalowed
in anyName to maintain a coherence with other Relax NG
elements, it has no direct consequence on any Nane itself nor
on the name class definitions which might be embedded.

ns Thens attribute definesthe default namespace for the elements
defined in a portion of schema. The value of ns is inherited.
Note that although ns isallowed in any Nane it has no direct
consequence on any Nane itself which does always allow any
name from any namespace and may only have a consequence
on name class definitions embedded in this one."

305

Elements reference guide

Name
attribute — Pattern matching an attribute.

Class:

pattern

Synopsis

el emrent attribute

{
(

attribute ns { text }?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*

attribute nane { xsd: QNane }

| (
(element * - rng:* { ... }*)
& (
elenent nane { ... }
| elenent anyName { ... }
| element nsNane { ... }
| elenent choice { ... }

(element * - rng:* { ... }*)
& (
el enent elenent { ... }
el enent attribute { ... }
el enent group { ... }
elenent interleave { ... }
el enent choice { ... }
el enent optional { ... }
el enent zeroOMre { ... }
el enent oneOrMre { ... }
elenent list { ... }
element mixed { ... }
elenent ref { ... }
el enent parentRef { ... }
el enent enmpty { ... }
element text { ... }
el enent value { ... }
el enent data { ... }
el enent notAllowed { ... }
el enent externalRef { ... }
el enent granmar { ... }

306

Elements reference guide

May be included in:

attribute, choice, defi ne, el ement, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:

attribute

Description:

Theat t ri but e pattern matchesan attribute. The name of the attribute may be defined either through
anane attribute or through a name class.

Restrictions:

<itemizedList>
<listltem>

After simplification, attributes patterns can only contain patterns relevant for text nodes.
</listltem>
<listltem>

Attributes cannot be duplicated, either directly or through overlaping name classes.
</listltem>
<listltem>

Attributes which have an infinite name class (anyNanme or nsNanme) must be enclosed in a
oneOr Mor e (or zer oOr Mor e before simplification) pattern.

</listltem>

</itemizedList>

Example:

<attri bute nanme="id"/>

<attribute name="xm :|ang">
<data type="I| anguage"/>
</attribute>

<attri bute>
<anyNane/ >
</attribute>

Attributes:
dat at ypeLi brary The dat atypelLi brary attribute defines the default
datatype library. The value of datatypeLibrary is
inherited.
nane When name is specified, the at t ri but e pattern matches

only attributes with this name (narme is a shortcut to define a
single name as aname classfor theat t r i but e pattern).

Both nane and the definition of a name class cannot be
specified (they are exclusive options).

307

Elements reference guide

ns

The ns attribute defines the namespace of the attribute. Note
that in the context of the ns pattern, the ns attribute is not
inherited.

308

Elements reference guide

Name

choice (in the context of a name-class) — Choice between name classes

Class:

name-class

Synopsis

el ement choi ce

{
(
attribute ns { text }?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*
),
(
(elenent * - rng:* { ... }*)
& (
element nanme { ... }
| elenent anyNarme { ... }
| elenment nsNane { ... }
| elenment choice { ... }
)+
)
}

May be included in:

attribute,choice, el enent, except.

Compact syntax equivalent:

nameClass|nameClass

Description:

Thechoi ce name class performsachoice between several name classes: anamewill matchchoi ce
if and only if it matches at least one of the sub-name classes.

Example:

<el ement >
<choi ce>
<nsNanme ns="http://eric.van-der-vlist.com ns/library"/>
<nsNanme ns="http://eric.van-der-vlist.con ns/person"/>
</ choi ce>
<ref nanme="anythi ng"/>
</ el enent >

Attributes:

dat at ypeLi brary The dat atypelLi brary attribute defines the default
datatype library. The value of datatypeLibrary is

309

Elements reference guide

ns

inherited. Note that although dat at ypelLi br ary isalowed
in choi ce to maintain a coherence with other Relax NG
elements, it has no direct consequence on choi ce itself nor
on the name class definitions which might be embedded.

Thens attribute definesthe default namespace for the el ements
defined in a portion of schema. The value of ns isinherited.

310

Elements reference guide

Name

choice (in the context of a pattern) — choi ce pattern

Class:

pattern

Synopsis

el ement choi ce

{
(

attribute ns { text }7?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*

),

(

(element * - rng:* { ... }*)
& (
el enent elenent { ... }
el enent attribute { ... }
el enent group { ... }
elenent interleave { ... }
el enent choice { ... }
el enent optional { ... }
el enent zeroOMre { ... }
el enent oneOrMre { ... }
elenent list { ... }
elenent mxed { ... }
elenent ref { ... }
el enent parentRef { ... }
el enent empty { ... }
elenent text { ... }
el enent value { ... }
el enent data { ... }
el enent notAllowed { ... }
el enent externalRef { ... }
el enent granmar { ... }

}
May be included in:

attribute, choice, defi ne, el enment, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:
pattern|pattern

Description:

The choi ce pattern defines a choice between different patterns: it matches a node if and only if at
least one of its sub-pattern matches this node.

311

Elements reference guide

Example:
<el emrent nane="nane" >
<choi ce>
<text/>
<gr oup>
<el ement nanme="first"><text/></el enent>
<opti onal >
<el emrent nanme="mni ddl e" ><t ext/ ></ el enent >
</ opti onal >
<el emrent nanme="| ast " ><t ext/ ></ el enent >
</ group>
</ choi ce>
</ el enent >
<attribute nanme="avail abl e">
<choi ce>
<val ue>t rue</ val ue>
<val ue>f al se</ val ue>
<val ue>who knows?</val ue>
</ choi ce>
</attribute>
<start>
<ref nane="libraryEl enment"/>
<ref nane="bookEl enent"/>
</start>
Attributes:
dat at ypeLi brary The dat atypeLi brary attribute defines the default
datatype library. The value of datatypeLibrary is
inherited.
ns Thens attribute definesthe default namespace for the el ements

defined in a portion of schema. The value of ns isinherited.

312

Elements reference guide

Name
data— dat a pattern
Class:
pattern
Synopsis
el enent data
{
attribute type { xsd: NCNane },
(
attribute ns { text }?,
attribute datatypelLibrary { xsd:anyURl 1}?,
attribute * - (rng:* | local:*) { text }*
)l
(
(element * - rng:* { ... }*)
& (element param{ ... }*, elenment except { ... }?)
)
}

May be included in:

attribute, choice, defi ne, el ement, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:

datatypeName param exceptPattern

Description:

The dat a pattern matches a single text node and gives the possibility to restrict its values. Thisis
differentfromthet ext patternwhich matcheszero or moretext nodesand doesn't give any possibility
to restrict the values of these text nodes. The restrictions are applied through thet ype attribute which
defines the datatype and the par amand except children patterns.

Restrictions:

The dat a pattern is meant for data oriented applications and can't be used in mixed content models.

Example:

<attribute nanme="see-al so">
<list>
<data type="token"/>
</list>
</attribute>

<attribute name="id">
<data type="NMIOKEN' >
<par am nane="nmaxLengt h" >16</ par an»

313

Elements reference guide

</ dat a>
</attribute>

<el enent nane="isbn">

<data type="token">
<except >
<val ue>0836217462</ val ue>
</ except >

</ dat a>
</ el enent >

Attributes:

dat at ypeli brary

ns

type

The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.

Thens attribute definesthe default namespace for the elements
defined in a portion of schema. The value of ns isinherited.

Thet ype attribute specifies the datatype used for evaluating
thedat a pattern. Any text nodewhich valueisn't valid per this
datatype failsto match the dat a pattern.

314

Elements reference guide

Name
define — Named pattern definition

Class:

define-element

Synopsis

el enent define
{
attri bute name { xsd: NCName },
(attribute combine { "choice" | "interleave" }?),
(
attribute ns { text }?,
attri bute datatypeLibrary { xsd:anyURl }?,
attribute * - (rng:* | local:*) { text }*

).

(

(element * - rng:* { ... }*)
& (
el enent elenment { ... }
el enent attribute { ... }
el enent group { ... }
elenent interleave { ... }
el enent choice { ... }
el enent optional { ... }
el enent zeroOrMore { ... }
el enent oneOrMre { ... }
elenment list { ... }
elenent mxed { ... }
elenment ref { ... }
el enent parentRef { ... }
el enent enmpty { ... }
elenent text { ... }
el enent value { ... }
el enent data { ... }
el enent notAllowed { ... }
el enent external Ref { ... }
el enent grammar { ... }

}
May be included in:

di v, granmar,i ncl ude.
Compact syntax equivalent:

identifier assignMethod pattern

Description:

When def i ne is embedded in a grammar, it defines a named pattern or combines a new definition
with an existing one. Named pattern are global to agr ammar and can be referenced by r ef inthe

315

Elements reference guide

scope of their gr anmmar and by par ent Ref in the scope of the grammars directly embedded in
their gr ammar .

When def i ne is embedded in i ncl ude, the new definition is a redefinition and replaces the
definitions from the included grammar unless a conbi ne attribute is specified in which case the
definitions are combined.

Restrictions:

Named patterns are always global and apply only to patterns and it is not possible to define and make
reference to non patterns such as class names or datatype parameters.

Example:

<defi ne nane="bor n-el enent ">
<el enent nane="born" >
<text/>
</ el enent >
</ defi ne>

<defi ne nane="book-content" comnbi ne="interl eave">
<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<ref nanme="isbn-elenent"/>
<ref nanme="title-elenent"/>
<zer oOr Mor e>
<ref nanme="aut hor-el ement"/>
</ zer oOr Nor e>
<zer oOr Mor e>
<ref nanme="character-elenment"/>
</ zer oOr Nor e>
</ defi ne>

<defi ne nane="i sbn-el enent" conbi ne="choi ce">
<not Al | owed/ >
</ defi ne>

Attributes:

conbi ne The combi ne attribute specifies how multiple definitions of
a named pattern should be combined together. The possible
valuesarechoi ce andi nt er| eave.

When the conbi ne attribute is specified and set to choi ce,
multiple definitions of a named pattern are combined in a
choi ce pattern. Whentheconbi ne attributeis specified and
set to i nt er | eave, multiple definitions of a named pattern
arecombined inani nt er | eave pattern.

Notethat it isforbidden to specify morethan onedef i ne with
the samename and no conbi ne attribute or multipledef i ne
with different values of conbi ne attribute.

dat at ypeLi brary The dat at ypeLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.

316

Elements reference guide

nane The nane attribute specifies the name of the named pattern.

ns Thens attribute definesthe default namespace for the el ements
defined in a portion of schema. The value of ns isinherited.

317

Elements reference guide

Name

div (in the context of a grammar-content) — Division (in the context of agr anmar)

Class:

grammar-content

Synopsis

el enent div

{
(
attribute ns { text }?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*
),
(
(element * - rng:* { ... }*)
& (
(element start { ... })
| (element define { ... })
| elenent div { ... }
| elenent include { ... }
)*
)
}

May be included in:

di v, gr anmar .

Compact syntax equivalent:
div

Description:

The di v element is provided to define logical divisions in Relax NG schemas. It has no effect on
the validation and its purpose is to define a group of definitions within a gr ammar which may be
annotated as awhole.

Inthe context of agr anmar , the content of adi v element isthe same than the content of agr anmmar
(thismeansthat di v elements may be embedded in other di v elements.

Example:

<grammar xm ns:xhtm ="http://ww. w3. org/ 1999/ xhtm " xm ns="http://rel axng. or g
Y
<di v>
<xhtm : p>The content of the book el enent has been split in two naned patt el
<define name="book-start">
<attribute nane="id"/>
<ref nane="isbn-element"/>
<ref nane="title-elenent"/>
<zer oOr Mor e>

318

Elements reference guide

<ref nanme="aut hor-el emrent"/>
</ zer oOr Nor e>
</ defi ne>
<defi ne nane="book-end" >
<zer oOr Mor e>
<ref nanme="aut hor-el ement"/>
</ zer oOr Nor e>
<zer oOr Mor e>
<ref name="character-elenment"/>
</ zer oOr Nor e>
<attri bute nane="avail able"/>
</ defi ne>
</ div>
R A
</ gr ammar >

Attributes:
dat at ypeli brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the el ements

defined in a portion of schema. The value of ns isinherited.

319

Elements reference guide

Name

div (in the context of ainclude-content) — Division (in the context of ani ncl ude)

Class:

include-content

Synopsis

el enent div

{
(
attribute ns { text }?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*
).
(
(element * - rng:* { ... }*)
& (
(element start { ... })
| (element define { ... })
| elenent div { ... }
)*
)
}

May be included in:

di v, incl ude.

Compact syntax equivalent:
div

Description:

The di v element is provided to define logical divisions in Relax NG schemas. It has no effect on
the validation and its purpose is to define a group of definitions within ani ncl ude which may be
annotated as awhole.

Inthecontext of ani ncl ude, thecontent of adi v element isthe samethan the content of ai ncl ude
(thismeansthat di v elements may be embedded in other di v elements.

Example:

<i ncl ude href="common. rng">
o
<di v>
<xhtm : p>The content of the book el enent has been split in two naned patt el
<defi ne nanme="book-start">
<attribute nanme="id"/>
<ref nane="isbn-el enent"/>
<ref nane="title-elenent"/>
<zer oOr Mor e>
<ref nane="aut hor-el enent"/>

320

Elements reference guide

</ zer oOr Nor e>
</ defi ne>
<defi ne nane="book-end" >
<zer oOr Mor e>
<ref nanme="aut hor-el ement"/>
</ zer oOr Nor e>
<zer oOr Mor e>
<ref name="character-elenment"/>
</ zer oOr Nor e>
<attri bute nane="avail able"/>
</ defi ne>
</ div>
R A
</incl ude>

Attributes:
dat at ypeli brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the el ements

defined in a portion of schema. The value of ns isinherited.

321

Elements reference guide

Name

element — Pattern matching an element
Class:

pattern

Synopsis

el ement el enent

{
(
attribute nane { xsd: QNane }

| (
(element * - rng:* { ... }*)
& (
elenent nane { ... }
| elenent anyName { ... }
| elenent nsName { ... }
| elenent choice { ... }

attribute ns { text }7?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*

),

(

(element * - rng:* { ... }*)
& (
el enent elenent { ... }
el enent attribute { ... }
el enent group { ... }
elenent interleave { ... }
el enent choice { ... }
el enent optional { ... }
el enent zeroOMre { ... }
el enent oneOrMre { ... }
elenent list { ... }
element mixed { ... }
elenent ref { ... }
el enent parentRef { ... }
el enent enmpty { ... }
element text { ... }
el enent value { ... }
el enent data { ... }
el enent notAllowed { ... }
el enent externalRef { ... }
el enent granmar { ... }

322

Elements reference guide

May be included in:

attribute, choice, defi ne, el enment, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:

element

Description:

The el ement pattern matches an element. The name of the element may be defined either through
anarme attribute or through a name class.

Example:

<el enent nanme="born">

<text/>
</ el enent >

<el enent nane="character">
<attri bute nanme="id"/>
<el enent nanme="nane" >

<text/>
</ el enent >

<el enent nanme="born">

<text/>
</ el enent >

<el enent nanme="qualification">

<text/>
</ el enent >
</ el enent >

<el enment >
<anyNane/ >

<ref nane="anythi ng"/>

</ el enent >

Attributes:

dat at ypeLi brary

nanme

ns

The dat atypelLi brary attribute defines the default
datatype library. The value of datatypeLibrary is
inherited.

When nane is specified, the el ement pattern matches only
elements with this name (name isashortcut to define asingle
name as aname classfor theel ement pattern).

Both nanme and the definition of a name class cannot be
specified (they are exclusive options).

Thens attribute definesthe default namespace for the el ements
defined in a portion of schema. The value of ns isinherited.

323

Elements reference guide

Name
empty — Empty content
Class:
pattern
Synopsis
el emrent enpty
{
(
attribute ns { text }7?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*
)1
(element * - rng:* { ... }*)
}

May be included in:

attribute, choice, defi ne, el ement, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:
empty
Description:

The enpty patterns is used to define elements which are empty, i.e. which have no children
elements, text nor attributes. Note that it is mandatory to use this pattern in such case (<el enent

name="f 00"/ > is forbidden) and that there is no such thing as empty attributes (an attribute such
asfoo="" isconsidered as having a value which is the empty string rather than be considered as
being empty, i.e. having no value).

Example:
<el enent name="pageBr eak" >
<enpty/ >
</ el emrent >
Attributes:
dat at ypeLi brary The dat at ypeLi brary attribute defines the default
datatype library. The value of dat atypeLibrary is
inherited.
ns Thens attribute definesthe default namespace for the elements

defined in a portion of schema. The value of ns isinherited.

324

Elements reference guide

Name

except (in the context of a except-name-class) — Remove a name class from another

Class:

except-name-class

Synopsis

el ement except

{
(
(element * - rng:* { ... }*)
& (
element name { ... }
| elenent anyName { ... }
| element nsName { ... }
| element choice { ... }
)+
)
}

May be included in:

anyNane, nsNane.

Compact syntax equivalent:

-nameClass

Description:

Theexcept name classis used to remove a name class from another. Note that this name class has
no attributes.

Restrictions:

Itisimpossibleto useexcept to produce empty name classes by including "anyName" in an"except"”
name class or "nsName" in an "except" name class included in another "nsName".

Example:

<el ement >
<anyNane>
<except >
<nsName ns=""/>
<nsNanme ns="http://eric.van-der-vlist.comns/library"/>
<nsNanme ns="http://eric.van-der-vlist.com ns/person"/>
</ except >
</ anyNane>
<ref nane="anyt hi ng"/ >
</ el emrent >

<el enent >

325

Elements reference guide

<nsName ns=ns="http://eric.van-der-vlist.conlns/person"/>
<except >
<nane>| i b: nane</ nane>
<nane>hr : name</ nane>
<except >
</ nsNane>
<ref nanme="anythi ng"/>
</ el ement >

Attributes:

None.

326

Elements reference guide

Name

except (in the context of a pattern) — Remove a set of valuesfrom adat a

Class:

pattern

Synopsis

el ement except

{
(

attribute ns { text }7?,

attribute datatypeLibrary { xsd:anyURl
attribute *

),

(
(el enent
& (

el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent
el enent

}
May be included in:

dat a.

}?,

- (rng:* | local:*) { text }*

- rng:* |)
elerent { ... }
attribute { ... }
group { ... }
interleave { ... }
choice { ... }
optional { ... }
zeroOrMre { ... }
oneOrMre { ... }
list { ...}
mxed { ... }

ref { ...}
parentRef { ... }
empty { ... }

text { ... }
value { ... }
data { ... }
notAllowed { ... }
external Ref { ... }
granmar { ... }

Compact syntax equivalent:

-pattern

Description:

Theexcept pattern is used to remove a set of values from adat a pattern.

327

Elements reference guide

Restrictions:

Theexcept pattern can only be used in the context of data and can only contain dat a, val ue and
choi ce elements.

Example:
<el ement nane="isbn">
<data type="token">
<except >
<val ue>0836217462</ val ue>
</ except >
</ dat a>
</ el ement >
<attribute nanme="avail abl e">
<data type="token">
<except >
<choi ce>
<val ue type="string">true</val ue>
<val ue type="string">fal se</val ue>
</ choi ce>
</ except >
</ dat a>
</attribute>
Attributes:
dat at ypeLi brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the elements

defined in a portion of schema. The value of ns isinherited.

328

Elements reference guide

Name

external Ref — Reference to an external schema

Class:

pattern

Synopsis

el enent ext er nal Ref

{
attribute href { xsd:anyURl 1},
(
attribute ns { text }?,
attribute datatypelLibrary { xsd:anyURl 1}?,
attribute * - (rng:* | local:*) { text }*
)l
(element * - rng:* { ... }*)
}

May be included in:

attribute, choice, defi ne, el ement, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:
external

Description:

The ext er nal Ref pattern is a reference to an external schema. This has the same effect than
replacing the ext er nal Ref pattern by the external schema considered as a pattern.

Example:
<el enent nane="book" >
<ext er nal Ref href="book.rng"/>
</ el ement >
<el enent xm ns="http://relaxng.org/ ns/structure/ 1. 0" nanme="university">
<el enent nane="nane">
<text/>
</ el ement >
<external Ref href="flat.rng"/>
</ el ement >
Attributes:
dat at ypeLi brary The dat atypelLi brary attribute defines the default
datatype library. The value of datatypelibrary is
inherited.

329

Elements reference guide

hr ef Thehr ef attribute definesthelocation of the external schema.

ns Thens attribute definesthe default namespace for the el ements
defined in a portion of schema. The value of ns isinherited.

330

Elements reference guide

Name

grammar — Grammar pattern

Class:

pattern

Synopsis

el enent granmar

{
(
attribute ns { text }7?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*
),
(
(element * - rng:* { ... }*)
& (
(element start { ... })
| (element define { ... })
| elenent div { ... }
| element include { ... }
)*
)
}

May be included in:

attribute, choice, defi ne, el enment, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:

grammar

Description:

Thegr anmar pattern encapsulates the definitions of st art and named patterns.

Themost common use of gr ammar istovaidate XML documentsand inthiscasethest ar t pattern
defines which elements may be used as the document root element. The gr ammar pattern may also
be used as a way to write modular schemas and in this case the st ar t pattern defines which nodes
must be matched by the gr anmrar at the location where it appears in the schema.

In every case, the named patterns defined inagr ammar are considered to belocal to thisgr amar .

Example:

<grammar xm ns="http://rel axng.org/ ns/structure/1.0">
<start>
<el enent name="Ilibrary">
<oneOr Mor e>
<ref nane="book-el emrent"/>
</ oneOr Mor e>

331

Elements reference guide

</ el enent >
</start>
<defi ne nanme="aut hor-el emrent " >
R A
</ defi ne>
</ gr ammar >
<defi ne nanme="aut hor-el emrent " >
<gr anmar >
<start>
<el enment nane="aut hor">
<attri bute nanme="id"/>
<ref nanme="nane-el enent"/>
<par ent Ref name="born-el enent"/>
<opti onal >
<ref nanme="di ed-el enent"/>
</ opti onal >
</ el enent >
</start>
<defi ne nane="nane-el enent ">
<el enent nane="nane" >
<text/>
</ el enent >
</ defi ne>
<defi ne nane="di ed- el enent ">
<el enent nane="di ed" >
<text/>
</ el enent >
</ defi ne>
</ gr ammar >
</ defi ne>

<el enent xm ns="http://rel axng.org/ ns/structure/1.0" name="university">
<el ement nane="nane" >
<text/>
</ el ement >
<gr anmar >
<include href="flat.rng"/>
</ gr ammar >
</ el ement >

Attributes:
dat at ypelLi brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the elements

defined in a portion of schema. The value of ns isinherited.

332

Elements reference guide

Name
group — gr oup pattern

Class:

pattern

Synopsis

el enent group

{
(

attribute ns { text }?,
attri bute datatypeLibrary { xsd:anyURl }?,
attribute * - (rng:* | local:*) { text }*

).

(

(element * - rng:* { ... }*)
& (
el enent elenment { ... }
el enent attribute { ... }
el enent group { ... }
elenent interleave { ... }
el enent choice { ... }
el enent optional { ... }
el enent zeroOrMore { ... }
el enent oneOrMre { ... }
elenment list { ... }
elenent mxed { ... }
element ref { ... }
el enent parentRef { ... }
el enent enmpty { ... }
elenent text { ... }
el enent value { ... }
el enent data { ... }
el enent notAllowed { ... }
el enent external Ref { ... }
el enent grammar { ... }

}
May be included in:

attribute, choice, defi ne, el enent, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:

pattern,pattern

Description:

The gr oup pattern defines an ordered group of sub patterns (note that when at t r i but e patterns
areincluded in such agroup, their order is not enforced). gr oup patternsareimplicit with el enent
and def i ne patterns.

333

Elements reference guide

Example:

<el emrent nane="nane" >
<choi ce>
<text/>
<gr oup>
<el ement nanme="first"><text/></el enent>
<opti onal >
<el emrent nanme="mni ddl e" ><t ext/ ></ el enent >
</ opti onal >
<el emrent nanme="| ast " ><t ext/ ></ el enent >
</ group>
</ choi ce>
</ el enent >

<el ement nane="foo0">

<interl eave>
<el enent name="out " ><enpty/ ></ el enent >
<gr oup>
<el enent name="i nl" ><enpty/ ></ el enent >
<el enent name="i n2" ><enpt y/ ></ el enent >
</ group>

</interl eave>

</ el emrent >

Attributes:
dat at ypeLi brary The dat atypelLi brary attribute defines the default
datatype library. The value of datatypeLibrary is
inherited.
ns Thens attribute definesthe default namespace for the el ements

defined in a portion of schema. The value of ns isinherited.

334

Elements reference guide

Name

include — Grammar merge

Class:

grammar-content

Synopsis

el emrent i ncl ude

{
attribute href { xsd:anyURl 1},
(
attribute ns { text }?,
attribute datatypelLibrary { xsd:anyURl }?,
attribute * - (rng:* | local:*) { text }*
),
(
(elenent * - rng:* { ... }*)
& (
(elenent start { ... })
| (element define { ... })
| elenment div { ... }
)*
)
}

May be included in:

di v, granmar .

Compact syntax equivalent:

include

Description:

Thei ncl ude patternincludesagrammar and mergesits definitionswith the definitions of the current
grammar. The definitions of the included grammar may be redefined and overridden by the definitions
embedded inthei ncl ude pattern. Note that a schema must contain an explicit gr ammar definition
in order to be included.

Example:

<grammar xm ns="http://rel axng.org/ ns/structure/1.0">
<start>
<el enent name="Ilibrary">
<oneOr Mor e>
<ref nane="book-el emrent"/>
</ oneOr Mor e>
</ el emrent >
</start>
<i nclude href="included.rng"/>
Y A
</ gr ammar >

335

Elements reference guide

<grammar xm ns="http://rel axng.org/ns/structure/1.0">
<include href="flat.rng">
<defi ne nane="book-el enent ">
<el enment nane="book" >
<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<ref nanme="isbn-el enent"/>
<ref name="title-elenent"/>
<ref nane="description-element"/>
<zer oOr Mor e>
<ref nanme="aut hor-el emrent"/>
</ zer oOr Nor e>
</ el enent >
</ defi ne>
</incl ude>
<define name="descri ption-el emrent ">
<el enent nane="description">
<text/>
</ el enent >
</ defi ne>
</ gr ammar >

Attributes:
dat at ypelLi brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
hr ef The hr ef attribute defines the location of the schema which
grammar should be included.
ns Thens attribute definesthe default namespace for the el ements

defined in a portion of schema. The value of ns isinherited.

336

Elements reference guide

Name

interleave— i nt er | eave Pattern

Class:

pattern

Synopsis

el enent interl eave

{
(

attribute ns { text }7?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*

),

(

(element * - rng:* { ... }*)
& (
el enent elenent { ... }
el enent attribute { ... }
el enent group { ... }
elenent interleave { ... }
el enent choice { ... }
el enent optional { ... }
el enent zeroOMre { ... }
el enent oneOrMre { ... }
elenent list { ... }
elenent mxed { ... }
elenent ref { ... }
el enent parentRef { ... }
el enent empty { ... }
elenent text { ... }
el enent value { ... }
el enent data { ... }
el enent notAllowed { ... }
el enent externalRef { ... }
el enent granmar { ... }

}
May be included in:

attribute, choice, defi ne, el enment, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:
pattern& pattern

Description:

The i nt er | eave pattern "interleaves' sub patterns, i.e. allows their leaves to be mixed in any
relative order.

337

Elements reference guide

i nterl eave is more than defining unordered groups as we can see on the following example:
consider element "a" and the ordered group of element "b1" and "b2". An unordered group of thesetwo
patterns would only allow element "a" followed by elements "b1" and "b2" or elements "b1" and "b2
followed by element "a'. Ani nt er | eave of these two patterns does allow these two combinations
but also element "b1" followed by "a" followed by "b2", i.e. a combination where the element "a" has
been "interleaved" between elements "b1" and "b2".

Thei nt erl| eave behavior is the behavior applied to at t ri but e patterns even when they are
embedded in (ordered) gr oup patterns (the reason for thisisthat XML 1.0 specifies that the relative
order of attributesis not significant).

Another case wherei nt er | eave patterns are often needed is to described mixed content models,
i.e. content models wheret ext are interleaved between elements. A shortcut (the m xed pattern)
has been defined for this case.

Restrictions:

<itemizedList>
<listltem>

Thei nt er | eave pattern cannot be used withinal i st .
</listltem>
<listltem>

Elementswithinai nt er | eave pattern cannot have overlapping name classes.
</listltem>
<listltem>

There must be at most one "text" pattern in each set of patterns combined by i nt er | eave
</listltem>
</itemizedList>

Example:

<el ement nanme="character">
<interleave>
<attribute nanme="id"/>
<el ement nane="nane" >
<text/>
</ el enent >
<el ement nanme="born">
<text/>
</ el enent >
<el enent name="qualification">
<text/>
</ el enent >
</interl eave>
</ el enent >

<el emrent nanme="title">
<interleave>
<attribute name="xnl:|ang"/>
<zer oOr Mor e>
<el emrent nane="a">
<attribute nanme="href"/>
<text/>
</ el enent >
</ zer oOr Nor e>

338

Elements reference guide

<text/>
</interl eave>
</ el enent >

Attributes:
dat at ypeli brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the elements

defined in a portion of schema. The value of ns isinherited.

339

Elements reference guide

Name
list — Text node split

Class:

pattern

Synopsis

el enent |i st

{
(

attribute ns { text }7?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*

),

(

(element * - rng:* { ... }*)
& (
el enent elenent { ... }
el enent attribute { ... }
el enent group { ... }
elenent interleave { ... }
el enent choice { ... }
el enent optional { ... }
el enent zeroOMre { ... }
el enent oneOrMre { ... }
elenent list { ... }
elenent mxed { ... }
elenent ref { ... }
el enent parentRef { ... }
el enent empty { ... }
elenent text { ... }
el enent value { ... }
el enent data { ... }
el enent notAllowed { ... }
el enent externalRef { ... }
el enent granmar { ... }

}
May be included in:

attribute, choice, defi ne, el enment, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:
list
Description:

Thel i st pattern splits a text node into tokens separated by white spaces to allow the validation of
these tokens separately. Thisis most useful for validating lists of values.

340

Elements reference guide

Restrictions:

<itemizedList>
<listltem>

i nt er| eave cannot be used within| i st .
</listltem>
<listltem>

The content of al i st isonly about data: it's forbidden to defineel enent ,at tri but e or t ext
there.

</listltem>

<listltem>

It'sforbiddentoembed | i st intol i st.
</listltem>
</itemizedList>

Example:

<attri bute nane="see-al so">
<list>
<zer oOr Mor e>
<data type="token"/>
</ zer oOr Nor e>
</list>
</attribute>

<attri bute nane="di nensi ons">
<list>
<data type="xs:deciml"/>
<data type="xs:deciml"/>
<data type="xs:deciml"/>
<choi ce>
<val ue>i nches</ val ue>
<val ue>cnk/ val ue>
<val ue>mm«k/ val ue>
</ choi ce>
</list>
</attribute>

Attributes:
dat at ypeLi brary The dat at ypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the elements

defined in a portion of schema. The value of ns isinherited.

341

Elements reference guide

Name

mixed — Pattern for mixed content models

Class:

pattern

Synopsis

el enent m xed

{
(

attribute ns { text }?,
attri bute datatypeLibrary { xsd:anyURl }?,
attribute * - (rng:* | local:*) { text }*

).

(

(element * - rng:* { ... }*)
& (
el enent elenment { ... }
el enent attribute { ... }
el enent group { ... }
elenent interleave { ... }
el enent choice { ... }
el enent optional { ... }
el enent zeroOrMore { ... }
el enent oneOrMre { ... }
elenment list { ... }
elenent mxed { ... }
element ref { ... }
el enent parentRef { ... }
el enent enmpty { ... }
elenent text { ... }
el enent value { ... }
el enent data { ... }
el enent notAllowed { ... }
el enent external Ref { ... }
el enent grammar { ... }

}
May be included in:

attribute, choice, defi ne, el enent, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:
mixed
Description:
The m xed pattern is a shortcut for i nt er | eave with an embedded t ext pattern. It describes

unordered content models where atext node may beincluded before and after each element. Note that
Relax NG does not alow to add constraints on these text nodes.

342

Elements reference guide

Restrictions:

Thelimitationsof i nt er | eave apply here:
<itemizedList>
<listltem>

Them xed pattern cannot be used withinal i st .
</listltem>
<listltem>

Elements within am xed pattern cannot have overlapping name classes.
</listltem>
<listltem>

There must no other "text" pattern in each set of patterns combined by m xed
</listltem>
</itemizedList>

Example:

<el emrent nanme="title">
<m xed>
<attribute name="xnl:lang"/>
<zer oOr Mor e>
<el erent nane="a">
<attribute nanme="href"/>
<text/>
</ el enent >
</ zer oOr Mor e>
</ m xed>
</ el enent >

is equivalent to:

<el emrent nane="title">
<interleave>
<text/>
<gr oup>
<attribute name="xnl:|ang"/>
<zer oOr Mor e>
<el erent nane="a">
<attribute name="href"/>
<text/>
</ el enent >
</ zer oOr Mor e>
</ group>
</interl eave>
</ el enent >

which itself is equivalent to:

<el emrent nane="title">
<interleave>
<text/>
<attribute name="xnl:|ang"/>
<zer oOr Mor e>
<el erent nane="a">

Elements reference guide

<attri bute nanme="href"/>
<text/>
</ el enent >
</ zer oOr Nor e>
</interl eave>
</ el enent >

Attributes:
dat at ypeli brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the elements

defined in a portion of schema. The value of ns isinherited.

Elements reference guide

Name

name — Name class for asingle name
Class:

name-class

Synopsis

el ement nane

{
(
attribute ns { text }?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*
).
xsd: QNane
}

May be included in:

attribute,choice, el ement,except.

Compact syntax equivalent:

name

Description:

The nane name class defines a class with a single name.

Example:

<el ement >
<nsNanme ns="http://eric.van-der-vlist.con ns/person"/>
<except >
<nane>| i b: name</ nane>
<nane>hr : nane</ nanme>
<except >
</ nsNane>
<ref nane="anythi ng"/ >
</ el ement >

<el enment >
<choi ce>
<name>| i b: name</ nane>
<name>hr : nanme</ nane>
</ choi ce>
<ref nane="nane-content"/>
</ el enent >

Elements reference guide

Attributes:
dat at ypelLi brary The dat atypelLi brary attribute defines the default
datatype library. The value of datatypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the el ements

defined in a portion of schema. The value of ns isinherited.

346

Elements reference guide

Name
notAllowed — Not allowed
Class:
pattern
Synopsis
el enent not Al | owed
{
(
attribute ns { text }7?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*
)1
(element * - rng:* { ... }*)
}

May be included in:

attribute, choice, defi ne, el ement, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:
notAllowed

Description:

Thenot Al | owed pattern always fails. It can be used to provide abstract definitions which must be
overridden before they can be used in a schema.

Example:

<defi ne nane="i sbn-el enent” conbi ne="choi ce">
<not Al | owed/ >

</ defi ne>
Attributes:
dat at ypeLi brary The dat at ypeLi brary attribute defines the default
datatype library. The value of dat atypeLibrary is
inherited.
ns Thens attribute definesthe default namespace for the el ements

defined in a portion of schema. The value of ns isinherited.

347

Elements reference guide

Name

nsName — Name class for any name in a namespace

Class:

name-class

Synopsis

el enent nsName

{
(
attribute ns { text }?,
attribute datatypelLibrary { xsd:anyURl 1}?,
attribute * - (rng:* | local:*) { text }*
).
((elenent * - rng:* { ... }*) & elenment except { ... }?)
}

May be included in:

attribute,choice,el ement,except.

Compact syntax equivalent:

nsName exceptNameClass
Description:

The nsName name class allows any name in a specific namespace.
Restrictions:

Within the scope of an element, the name classes of attributes cannot overlap. The same restriction
applies to name classes of elements when these elements are combined by i nt er | eave. It is
impossibleto use ns Nare to produce empty nhame classes by including nsName inanexcept name
classincluded in another nsNane.

Example:

<el ement >
<choi ce>
<nsNanme ns="http://eric.van-der-vlist.comns/library"/>
<nsNanme ns="http://eric.van-der-vlist.com ns/person"/>
</ choi ce>
<ref nane="anyt hi ng"/ >
</ el emrent >

<el ement >
<nsNanme ns="http://eric.van-der-vlist.com ns/person"/>
<except >
<nane>| i b: name</ nane>
<nane>hr : nane</ nanme>
<except >

Elements reference guide

</ nsNane>
<ref nanme="anythi ng"/>
</ el ement >

Attributes:
dat at ypeli brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the el ements

defined in a portion of schema. The value of ns isinherited.

349

Elements reference guide

Name
oneOrMore — oneOr Mor e pattern

Class:

pattern

Synopsis

el ement oneOr More

{
(

attribute ns { text }7?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*

),

(

(element * - rng:* { ... }*)
& (
el enent elenent { ... }
el enent attribute { ... }
el enent group { ... }
elenent interleave { ... }
el enent choice { ... }
el enent optional { ... }
el enent zeroOMre { ... }
el enent oneOrMre { ... }
elenent list { ... }
elenent mxed { ... }
elenent ref { ... }
el enent parentRef { ... }
el enent empty { ... }
elenent text { ... }
el enent value { ... }
el enent data { ... }
el enent notAllowed { ... }
el enent externalRef { ... }
el enent granmar { ... }

}
May be included in:

attribute, choice, defi ne, el enment, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:
pattern+

Description:

The oneOr Mor e pattern specifies that its sub patterns considered as an ordered group must be
matched one or more time.

350

Elements reference guide

Restrictions:

The oneOr Mor e pattern cannot contain attribute definitions.

Example:

<el enent name="Ilibrary">
<oneOr Mor e>
<el enent nane="book" >
R S
</ el enent >
</ oneOr Mor e>
</ el enent >

Attributes:
dat at ypelLi brary The dat at ypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the elements

defined in a portion of schema. The value of ns isinherited.

351

Elements reference guide

Name

optional — opt i onal pattern
Class:

pattern

Synopsis

el ement optional

{
(

attribute ns { text }7?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*

),

(

(element * - rng:* { ... }*)
& (
el enent elenent { ... }
el enent attribute { ... }
el enent group { ... }
elenent interleave { ... }
el enent choice { ... }
el enent optional { ... }
el enent zeroOMre { ... }
el enent oneOrMre { ... }
elenent list { ... }
elenent mxed { ... }
elenent ref { ... }
el enent parentRef { ... }
el enent empty { ... }
elenent text { ... }
el enent value { ... }
el enent data { ... }
el enent notAllowed { ... }
el enent externalRef { ... }
el enent granmar { ... }

}
May be included in:

attribute, choice, defi ne, el enment, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:
pattern?

Description:

Theopt i onal pattern specifies that its sub-patterns considered as an ordered group is optional, i.e.
must be matched zero or one time.

352

Elements reference guide

Example:

<el emrent nane="aut hor">

<attribute nanme="id"/>

<el emrent nane="nane" >
<text/>

</ el enent >

<el emrent nane="born">
<text/>

</ el enent >

<opti onal >
<el emrent nane="di ed" >
<text/>
</ el enent >

</ opti onal >

</ el enent >

<el emrent nane="nane" >
<choi ce>

<text/>

<gr oup>

<el enent nanme="first"><text/></el enent >

<opti onal >

<el enent nane="m ddl e" ><t ext/ ></ el enent >

</ opti onal >

<el enent nanme="| ast " ><t ext/ ></el enent >

</ group>
</ choi ce>
</ el enent >

Attributes:

dat at ypeLi brary

ns

The dat atypeLi brary attribute defines the default
datatype library. The value of datatypeLibrary is
inherited.

Thens attribute definesthe default namespace for the el ements
defined in a portion of schema. The value of ns isinherited.

353

Elements reference guide

Name
param — Datatype parameter

Class:

pattern

Synopsis

el ement param

{
attribute nane { xsd: NCNane },

(
attribute ns { text }?,
attribute datatypelLibrary { xsd:anyURl }?,
attribute * - (rng:* | local:*) { text }*
)1
t ext

}
May be included in:

dat a.

Compact syntax equivalent:

param

Description:

The par amelement defines parameters passed to the datatype library to determineif avaueisvalid
per adatatype. When the datatypelibrary isthe W3C XML Schemadatatypes, these parameters arethe
facets of the datatype and they define additional restrictions to be applied. The name of the parameter
is defined by the nane attribute and its value is the content of the par amelement.

Example:

<el enent nane="book" >
<attribute name="id">
<data type="NMIOKEN' >
<par am nane="nmaxLengt h" >16</ par an»
</ dat a>
</attribute>
<attribute nanme="avail abl e">
<data type="bool ean"/ >
</attribute>
<el enent nane="isbn">
<data type="NMIOKEN' >
<param nane="pattern">[0-9]{9}[0- 9x] </ par an®
</ dat a>
</ el emrent >
<el enent name="title">
<attribute name="xnl:|ang">
<data type="I| anguage" >
<par am nane="| engt h" >2</ par an®

354

Elements reference guide

</ dat a>
</attribute>
<data type="token">
<par am nanme="maxLengt h" >255</ par anp
</ dat a>
</ el ement >

Attributes:
dat at ypeli brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
nane The nane attribute specifies the name of the parameter.
ns Thens attribute definesthe default namespace for the el ements

defined in a portion of schema. The value of ns isinherited.

355

Elements reference guide

Name

parentRef — Reference to anamed pattern from the parent grammar

Class:

pattern

Synopsis

el ement par ent Ref

{
attribute nane { xsd: NCNane },
(
attribute ns { text }?,
attribute datatypelLibrary { xsd:anyURl }?,
attribute * - (rng:* | local:*) { text }*
)1
(elenent * - rng:* { ... }*)
}

May be included in:

attribute, choice, defi ne, el ement, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:

parent

Description:

Thepar ent Ref pattern isareference to anamed pattern belonging to the parent gr ammar , i.e. the
gr anmrar inwhich the current gr ammar isincluded. The scope of named pattern is usually limited
tothegr amrar inwhich they are defined and the par ent Ref pattern provides away to extend this
scope and refer named pattern defined in the parent gr ammar .

Example:

<defi ne nanme="born-el enent ">
<el emrent nane="born">
<text/>
</ el enent >
</ defi ne>
<defi ne nanme="aut hor - el enent ">
<gr ammar >
<start>
<el ement nane="aut hor ">
<attribute nanme="id"/>
<ref nane="nane-el enent"/>
<par ent Ref nane="born-el enent"/>
<opti onal >
<ref nane="di ed-el enent"/>
</ opti onal >
</ el enent >
</start>

356

Elements reference guide

<defi ne nane="nane-el enent ">
<el enent nane="nane" >
<text/>
</ el enent >
</ defi ne>
<defi ne nane="di ed- el enent ">
<el enment nane="di ed" >

dat at ypeli brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is

nane The nane attribute specifies the name of the named pattern

<text/>
</ el enent >
</ defi ne>
</ gr ammar >
</ defi ne>
Attributes:
inherited.
which is referenced.

ns Thens attribute definesthe default namespace for the el ements
defined in a portion of schema. The value of ns isinherited.

357

Elements reference guide

Name

ref — Reference to a named pattern

Class:

pattern

Synopsis

el enent ref

{
attribute nane { xsd: NCNane },
(
attribute ns { text }?,
attribute datatypelibrary { xsd:anyURl 1}7?,
attribute * - (rng:* | local:*) { text }*
)l
(element * - rng:* { ... }*)
}

May be included in:

attribute, choice, defi ne, el enment, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO Mre.

Compact syntax equivalent:

Name without a colon

Description:

Ther ef pattern defines areference to anamed pattern defined in the current gr amar .

Example:

<el emrent nane="book" >
<ref nanme="book-start"/>
<ref nane="book-end"/>
</ el enent >

<el ement nane="Ilibrary">
<oneOr Mor e>
<ref nane="book-el enent"/>
</ oneOr Mor e>
</ el enent >

Attributes:
dat at ypelLi brary The datatypeli brary attribute defines the default
datatype library. The value of dat atypeLi brary is
inherited.
nane The nane attribute specifies the name of the named pattern

which is referenced.

358

Elements reference guide

ns

Thens attribute definesthe default namespace for the elements
defined in a portion of schema. The value of ns isinherited.

359

Elements reference guide

Name

start — Start of a grammar

Class:

start-element

Synopsis

el enent start

{

(attribute combine { "choice" | "interleave" }?),
(
attribute ns { text }7?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*

(element * - rng:* { ... }*)
& (
el enent elenent { ... }
el enent attribute { ... }
el enent group { ... }
elenent interleave { ... }
el enent choice { ... }
el enent optional { ... }
el enent zeroOMre { ... }
el enent oneOrMre { ... }
element list { ... }
elenent mixed { ... }
elenent ref { ... }
el enent parentRef { ... }
el enrent empty { ... }
element text { ... }
el enrent value { ... }
el enrent data { ... }
el enent notAllowed { ... }
el enent externalRef { ... }
el enent granmar { ... }

}
May be included in:
di v, granmar,i ncl ude.
Compact syntax equivalent:
start
Description:

The st art pattern defines the "start" of a gr ammar . When this grammar is used to validate a
complete document, the st art pattern defines which elements may be used as the document (root)
element. When this grammar is embedded in another gr ammar , the st ar t pattern describes which
pattern should be applied at the location where the gr ammar is embedded. Like named pattern

360

Elements reference guide

definitions, start patterns may be combined by choi ce or i nt er | eave and redefined when they

areincluded ini ncl ude patterns.

Example:

<start>

<el enent name="Ilibrary">

<oneOr Mor e>

<ref nanme="book-el enent"/>

</ oneOr Mor e>
</ el enent >
</start>

<start conbi ne="choi ce">
<ref nanme="book-el enent"/>

</start>

<defi ne nane="aut hor-el enent ">

<gr amar >
<start>

<el enment nane="aut hor">
<attri bute nanme="id"/>
<ref nanme="nane-el enent"/>
<ref nanme="born-el enent"/>

<opti onal >

<ref nanme="di ed-el enent"/>

</ opti onal >
</ el enent >
</start>

<defi ne nane="nane-el emrent ">
<el enent nanme="name" >

<text/>
</ el enent >
</ defi ne>

<defi ne nane="born-el ement">
<el enent nanme="born">

<text/>
</ el enent >
</ defi ne>

<defi ne nane="di ed- el ement " >
<el enent nanme="di ed" >

<text/>
</ el enent >
</ defi ne>
</ gr ammar >
</ defi ne>

Attributes:

conbi ne

The conbi ne attribute specifies how multiple definitions of
start pattern should be combined together. The possible
valuesarechoi ce andi nt er| eave.

When the conbi ne attribute is specified and set to choi ce,
multiple definitions of a st art pattern are combined in a

361

Elements reference guide

choi ce pattern. Whentheconbi ne attributeisspecified and
settoi nt er | eave, multiple definitions of ast art pattern
arecombinedinani nt er | eave pattern.

Note that it is forbidden to specify more than onest art with
the same name and no conbi ne attribute or multiple st ar t
with different values of conbi ne attribute.

dat at ypelLi brary The dat atypelLi brary atribute defines the default
datatype library. The value of dat atypelibrary is
inherited.

ns Thens attribute definesthe default namespace for the elements

defined in a portion of schema. The value of ns isinherited.

362

Elements reference guide

Name

text — Pattern matching text nodes

Class:

pattern

Synopsis

el enent text

{
(
attribute ns { text }?,
attribute datatypelLibrary { xsd:anyURl 1}?,
attribute * - (rng:* | local:*) { text }*
).
(element * - rng:* { ... }*)
}

May be included in:

attribute, choice, defi ne, el ement, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:

text
Description:

Thet ext pattern matches zero or more text nodes. The fact that at ext pattern matches more than
onetext node hasno effect whenitisused in ordered content model s (the datamodel used by Relax NG
for XML documentsis similar to the data model of XPath 1.0 and two text nodes cannot be adjacent)
but makes a difference when at ext patternisusedini nt er | eave:adding asinglet ext pattern
inani nt er | eave pattern has the effect of allowing any number of text nodes which can interleave
before and after each element (note that the m xed pattern is provided as a shortcut to define these
content models).

Restrictions:
No more than onet ext pattern can beincludedinani nt er | eave pattern.

Example:

<el enent nanme="first"><text/></el enent >

<el emrent nane="nane" >
<choi ce>
<text/>
<gr oup>
<el ement nanme="first"><text/></el enent>
<opti onal >
<el emrent nanme="mn ddl e" ><t ext/ ></ el enent >
</ opti onal >

363

Elements reference guide

<el enent nane="l| ast " ><t ext/ ></ el enent >
</ group>
</ choi ce>
</ el enent >

Attributes:
dat at ypeli brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the elements

defined in a portion of schema. The value of ns isinherited.

364

Elements reference guide

Name

value — Match atext node and avalue

Class:

pattern

Synopsis

el enent val ue

{ attribute type { xsd: NCNane }?,
(attribute ns { text }?,
attribute datatypelLibrary { xsd:anyURl 1}?,
attribute * - (rng:* | local:*) { text }*
).
t ext
}

May be included in:

attribute, choice, defi ne, el ement, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:

datatypeName literal

Description:

Theval ue pattern matches a text node against a value using the semantic of a specified datatype to
perform the comparison.

Restrictions:

Theval ue patternis meant for data oriented applications and can't be used in mixed content models.

Example:

<attribute nane="see-al so">
<list>
<oneOr Mor e>
<choi ce>
<val ue>0836217462</ val ue>
<val ue>0345442695</ val ue>
<val ue>0449220230</ val ue>
<val ue>0449214044</ val ue>
<val ue>0061075647</ val ue>
</ choi ce>
</ oneOr Mor e>
</list>
</attribute>

365

Elements reference guide

<attri bute nane="avail abl e">
<data type="bool ean">
<except >
<val ue>0</ val ue>
<val ue>1</ val ue>
</ except >
</ dat a>
</attribute>

<attribute name="avail abl e">
<data type="bool ean">
<except >
<val ue type="bool ean">f al se</val ue>
</ except >
</ dat a>
</attribute>

Attributes:
dat at ypelLi brary The dat atypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the el ements
defined in a portion of schema. The value of ns isinherited.
type The t ype attribute specifies the datatype to use to perform

the comparison. Note that thisis not an inherited attribute and
that when it is not specified, the comparison is done using the
default datatype which isthet oken datatype of the Relax NG
built in type library which means that a string comparison will
be done on the values after space normalization.

366

Elements reference guide

Name

zeroOrMore — zer oOr Mor e pattern

Class:

pattern

Synopsis

el ement zeroOr More

{
(

attribute ns { text }7?,
attribute datatypeLibrary { xsd:anyUR }?,
attribute * - (rng:* | local:*) { text }*

),

(

(element * - rng:* { ... }*)
& (
el enent elenent { ... }
el enent attribute { ... }
el enent group { ... }
elenent interleave { ... }
el enent choice { ... }
el enent optional { ... }
el enent zeroOMre { ... }
el enent oneOrMre { ... }
elenent list { ... }
elenent mxed { ... }
elenent ref { ... }
el enent parentRef { ... }
el enent empty { ... }
elenent text { ... }
el enent value { ... }
el enent data { ... }
el enent notAllowed { ... }
el enent externalRef { ... }
el enent granmar { ... }

}
May be included in:

attribute, choice, defi ne, el enment, except, group, i nterl eave, | i st, m xed,
oneOr Mor e, opti onal ,start,zeroO More.

Compact syntax equivalent:
pattern*

Description:

The zer oOr Mor e pattern specifies that its sub patterns considered as an ordered group must be
matched zero or moretime.

367

Elements reference guide

Restrictions:

Thezer oOr Mor e pattern cannot contain attribute definitions.

Example:

<defi ne nane="book-el enent ">
<el enent nane="book" >
<attri bute nanme="id"/>
<attri bute nane="avail able"/>
<ref nanme="isbn-el enent"/>
<ref name="title-elenent"/>
<zer oOr Mor e>
<ref nanme="aut hor-el emrent"/>
</ zer oOr Nor e>
<zer oOr Mor e>
<ref nanme="character-elenment"/>
</ zer oOr Nor e>
</ el enent >

</ define>
Attributes:
dat at ypelLi brary The dat at ypelLi brary attribute defines the default
datatype library. The value of dat atypelibrary is
inherited.
ns Thens attribute definesthe default namespace for the el ements

defined in a portion of schema. The value of ns isinherited.

368

Chapter 19. Compact syntax
reference guide

Compact syntax reference guide

Introduction

This quick reference guide is following the formal description of the compact syntax described as an
EBNF grammar in its documentation. Each definition of the EBNF grammar is documented and when
thesedefinitionsincludealong list of alternatives(such asitisthecasefor pat t er n,naned ass or
I'iteral Segnent), eachalternativeisdocumented separately. The grammar from the specification
has also been dlightly simplified to suppress definitions which were used only once but its meaning
has been kept unchanged. Note that this grammar is a summary which does not include the definition
of annotations.

Here isthe full EBNF which has been used as a basis for this guide:

t opLevel = decl * (pattern| gramrar Cont ent*)
decl = "nanmespace" identifierOKeyword "=" namespaceURI Literal
| "defaul t" "namespace" [identifierO Keyword] "=" nanesp:
| "dat at ypes" identifierOKeyword "=" literal
pattern = "element" naneC ass "{" pattern "}"
| "attribute" nameC ass "{" pattern "}"
| pattern ("," pattern)+
| pattern ("&" pattern)+
| pattern ("|" pattern)+
| pattern "?"
| pattern "*"
| pattern "+"
["list" "{" pattern "}"
| "m xed" "{" pattern "}"
|identifier
| "parent” identifier
| " enpty”
| "text"
| [dat at ypeNane] literal
| dat at ypeName ["{" parant "}"] [exceptPattern]
| “not Al | owed"
| "external" literal [inherit]
| “granmar" "{" grammarContent* "}"
|"(" pattern ")"
par am = identifierOKeyword "=" literal
except Pattern ="-" pattern
gr ammar Cont ent = start
| defi ne
| “div* "{" grammarContent* "}"
| "include" literal [inherit] ["{" includeContent* "}"]
i ncl udeCont ent = define
| start

| *div" "{" includeContent* "}"
"start" assignMethod pattern
identifier assignMethod pattern

start
define
assi gnhet hod

369

Compact syntax reference guide

| " &="
nameCl ass 1= name
| NCNanme ":*" [except NameC ass]
| "*" [except NameCl ass]
| naned ass "|" named ass
|"(" nameCl ass ")"

nane = identifierO Keyword
| CNamre
except NameCl ass = "-" pamed ass
dat at ypeNane = CName
| "string”
| "t oken"
nanespaceURI Li t er al =litera
| “inherit"
i nherit c:="inherit" "=" identifierO Keyword
identifierOKeyword ::= identifier
| keywor d

identifier = (NCNane - keyword)
| quot edl dent i fier
guot edl denti fi er = "\'" NCNane
CNare = NCNane ":" NCNane
literal = literal Segnent ("~" literal Segrment) +

literal Segnent "ttt (Char - (""" newline))* """
[""" (Char - (""" newline))* """
| = (0] [trt] (Charo - mrt))
[O B B S B GO 11T D R
keywor d c:= "attribute”
"defaul t"
'dat at ypes"
"div"
‘el ement "
‘enpt y"
"external "
'grammar"
i ncl ude”
i nherit”

I
I
I
I
I
I
I
I
I
["1ist"
I
I
I
I
I
I
I
I

"m xed"
"nanmespace”
not Al | owed"
'parent”
‘start”
"string"
"text"

"t oken”

Note that this EBNF dooesn't capture the restrictions applied after simplification. The simplification
process and restrictions are detailed in "Chapter 15: Simplification And Restrictions'. The main
restrictions are also mentioned for each element in this chapter in the section titled "Restrictions’.

EBNF production quick reference

370

Compact syntax reference guide

Name
LM — Literal segment enclosed in three double quotes
Class:
literal Segment
Synopsis
([""] ["""] (Char - mwey)x weeee

May be included in:

dat at ypeName |iteral,datatypes,external,include.
XML syntax equivalent:

none

Description:

The"""...""" production describes literal segments enclosed in three double quotes. These
segments can include any character except sequences of three double quotes.

371

Compact syntax reference guide

Name

"..." — Literal segment enclosed in double quotes
Class:

literal Segment

Synopsis

(Char - (""" newline))* """

May be included in:

dat at ypeName |iteral,datatypes,external,include.
XML syntax equivalent:

none

Description:

The"..." production describes literal segments enclosed in double quotes. These segments can
include any character except newlines and double quotes.

372

Compact syntax reference guide

Name

™..." — Literal segment enclosed in three single quotes

Class:

literal Segment

Synopsis

([""] ["""] (Char - "oy "ot
May be included in:

dat at ypeName |iteral,datatypes,external,include.

XML syntax equivalent:
none
Description:

The'''...'"" production describes litera segments enclosed in three single quotes. These
%gments can include any character except sequences of three single quotes.

373

Compact syntax reference guide

Name

"...'— Literal segment enclosed in single quotes
Class:

literal Segment

Synopsis

(Char - (""" newline))* """
May be included in:

dat at ypeName |iteral,datatypes,external,include.

XML syntax equivalent:
none

Description:

The'..."' production describes literal segments enclosed in single quotes. These segments can
include any character except newlines and single quotes.

374

Compact syntax reference guide

Name

(nameClass) — Container

Class:

nameClass

Synopsis

"(" nameC ass ")"

May be included in:

(named ass), *-named ass,attri but e, el ement,naned ass| naned ass, nsNane
except NaneCl ass.

XML syntax equivalent:

none

Description:

The (naned ass) container is useful to group together name classes combined through
"| " (choice). This container is aname class and may be combined with other name classes.

Even when such acontainer isnot required, it may often be used to improvethereadability of aschema.

Example:

elenent hr:* - (hr:author | hr:nane | hr:born | hr:died) { anything }

375

Compact syntax reference guide

Name

(pattern) — Container

Class:

pattern

Synopsis

“(" pattern ")"

May be included in:

(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,
m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

none

Description:

The(pat t er n) containerisuseful to group together patterns combined through™, " (ordered group),
“| " (choice) or "&" (interleave). This container is a pattern and may be combined with other patterns
or quantified using qualifiers.

The operator ", ","| " or "&" used withinthe (pat t er n) container defines how the sub patterns are
combined and different operators cannot be mixed at the same level.

Evenwhen such acontainer isnot required, it may often be used to improvethereadability of aschema.

Example:

el ement nane {
text] (
el ement first{text},
el ement m ddl e{text}?,
el ement | ast{text}

)}

el ement foo {

el ement out {empty} &
(
el ement inl {enpty},
el ement in2 {enmpty}

)

}

376

Compact syntax reference guide

Name

*-nameClass — Name class accepting any name.

Class:

nameClass

Synopsis

"*" [except NameCd ass]

May be included in:

(named ass), *-named ass,attri but e, el ement,naned ass| naned ass, nsNane
except NaneCl ass.

XML syntax equivalent:
anyName
Description:

The anyName name class matches any name from any namespace. This wild spectrum may be
restricted by embedding except name classes.

The set of these names can be restricted using the optional except NaneC ass production.

Restrictions:

Within the scope of an element, the name classes of attributes cannot overlap. The same restriction
applies to name classes of elements when these elements are combined by i nt er | eave.

Example:

foreign-elenents = elenent * - (local:* | lib:* | hr:*) { anything }*

377

Compact syntax reference guide

Name

-nameClass — Remove a name class from another

Class:

Synopsis

except Nanmed ass c:="-" nanmed ass

May be included in:
*-naned ass,nsNanme except Naned ass.
XML syntax equivalent:
except
Description:
Theexcept name classis used to remove a hame class from another.

Restrictions:

It isimpossibleto use - nanmeCl ass to produce empty name classes by including "anyName" in an
"except" name class or "nsName" in an "except" name class included in another "nsName'".

Example:

element hr:* - (hr:author | hr:name | hr:born | hr:died) { anything }

378

Compact syntax reference guide

Name

-pattern — Remove a set of valuesfrom adat a
Class:
Synopsis

except Pattern r="-" pattern

May be included in:

dat at ypeNane param except Pattern.
XML syntax equivalent:

except
Description:

The except pattern is used to remove a set of values from a "dat at ypeNanme param
except Pat t er n" pattern.

Restrictions:

The - pat t er n pattern can only be used in the context of data and can only contain dat a, val ue
and choi ce elements.

Example:

attribute avail abl e {xs:bool ean - (xs:bool ean "fal se")}

379

Compact syntax reference guide

Name

CName — Colonized names

Class:

Synopsis

CNane 2= NCNane ":" NCNane

May be included in:

(named ass), attribute, datatypeNane literal, datatypeNane par am
except Patt ern, el enent, naneC ass| nanmed ass.

XML syntax equivalent:
none

Description:

The CNane production describes colonized names (i.e. names containing a colon) as two non
colonized names separated by acolon (": ").

380

Compact syntax reference guide

Name
Quotedldentifier — Quoted identifier
Class:
Synopsis
qguot edl denti fi er o= "\" NCNane

May be included in:

(pattern), attri bute, dat at ypes, default nanmespace, el enent, | i st, m xed,
nanespace, parent, pattern&pattern, pattern*, pattern+, pattern, pattern,
pattern?,pattern|pattern.

XML syntax equivalent:

none

Description:

The Quot edl denti fi er production describes quoted identifiers, i.e. non colonized names
preceded by a\ . Thisis needed to allow names which are the same than the keywords of the compact
syntax.

381

Compact syntax reference guide

Name
Top level — Top level

Class:

Synopsis

t opLevel .= decl* (pattern|granmmar Cont ent*)

May be included in:

XML syntax equivalent:

none

Description:

Start symbol for the Relax NG compact syntax EBNF. The Top | evel production describes the
top level structure of a Relax NG compact syntax document composed of an optional declaration
section and of the actual schema composed of either a single pattern or a more complete
gr anmar Cont ent .

382

Compact syntax reference guide

Name

assignMethod — Define how to assign acontent to st ar t and named patterns.

Class:

Synopsis
assi gniet hod sz =t

May be included in:

di v, granmar,i ncl ude.

XML syntax equivalent:

none

Description:

Theassi gnMet hod how the content of st ar t and named patterns are affected by anew definition.
assi gnMet hod which may take the values: "=" (definition), "&=" (combination by interleave) or
"| =" (combination by choice).

383

Compact syntax reference guide

Name
attribute — Pattern matching an attribute.

Class:

pattern

Synopsis

"attribute" nameC ass "{" pattern "}"

May be included in:

(pattern), attri bute, dat at ypeNane param exceptPattern, el ement, |ist,
m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

attribute

Description:

The attri but e pattern matches an attribute. The name of the attribute is defined through a
nameClass which may be either a single name or name class. Note unlike that, for the XML syntax,
the content of an attribute is not defaulted to t ext and must always be explicitly defined.

Restrictions:

<itemizedList>
<listltem>

After simplification, attributes patterns can only contain patterns relevant for text nodes.
</listltem>
<listltem>

Attributes cannot be duplicated, either directly or through overlaping name classes.
</listltem>
<listltem>

Attributes which have an infinite nhame class (anyNane or nsNane) must be enclosed in a
oneOr Mor e (or zer oOr Mor e before simplification) pattern.

</listltem>

</itemizedList>

Example:

attribute available { text }
attribute xm:lang { xsd:|anguage }

attribute * - (local:* | lib:* | hr:*) { text }

384

Compact syntax reference guide

Name
datatypeName — Datatype nhame
Class:
Synopsis
dat at ypeNane ;.= CNane
| “string"
| "t oken"

May be included in:

dat at ypeName |iteral,hdatatypeNanme param except Pattern.
XML syntax equivalent:

none

Description:

The dat at ypeNane production defines what is a valid datatype name. CName (Colonized names)
must be used for any datatype library except for the built in type library which has only two datatypes
(stringandtoken).

385

Compact syntax reference guide

Name
datatypeName literal — Match atext node and avalue

Class:

pattern

Synopsis

[dat at ypeNane] literal

May be included in:
(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,

m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:
value
Description:

Thedat at ypeNane |iteral pattern matches atext node against a value using the semantic of
a specified datatype to perform the comparison.

When datatypeName is omitted, the default datatype (which is the token datatype from the Relax NG
built in library) is used.

Restrictions:

The dat at ypeNane |iteral patternis meant for data oriented applications and can't be used
in mixed content models.

Example:

n Oll
Xs:integer "0"
xs: bool ean "f al se"

attribute available {xs:boolean "true"}

386

Compact syntax reference guide

Name
datatypeName param exceptPattern — dat a pattern

Class:

pattern

Synopsis

dat at ypeName ["{" parant "}"] [exceptPattern]

May be included in:

(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,
m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

data

Description:

Thedat at ypeName par am except Pat t er n pattern matches a single text node and gives the
possibility to restrict its values. Thisis different from thet ext pattern which matches zero or more
text nodes and doesn't give any possibility to restrict the values of these text nodes.

In this construction, therestrictions are applied through dat at ypeName which definesthe datatype,
the optional par amwhich define additional parameters passed to the datatype library (when the
datatypelibrary isW3C XML Schema datatypes, these parameters are the W3C XML Schemafacets)
and the optional except Pat t er n which defines exceptions, i.e. a set of valueswhich are excluded
by theexcept Pat t er n.

Restrictions:

The dat at ypeNane param except Pat t er n pattern is meant for data oriented applications
and can't be used in mixed content models.

Example:

attribute avail able {xs:bool ean - (xs:boolean "false")}

el ement born {xs:date {
m nl ncl usi ve = "1900-01-01"
max| ncl usi ve = "2099-12- 31"
pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
3

387

Compact syntax reference guide

Name
datatypes — Namespace declaration (to identify datatype libraries)

Class:

decl

Synopsis

"datatypes" identifierO Keyword "=" literal

May be included in:

XML syntax equivalent:

xmins:

Description:

The dat at ypes declaration assigns a prefix to a datatype library for the compact syntax like
xmins:xxx attributes in XML. Note that unlike XML namespace declarations, declarations for the
Relax NG compact syntax in general (and dat at ypes declarations in particular) are global to a
schemaand cannot beredefined. The prefix xsd ispredefined and bound to " http://www.w3.0rg/2001/
XML Schema-datatypes’.

Example:

dat atypes xs = "http://ww. w3. or g/ 2001/ XM_.Schena- dat at ypes"

388

Compact syntax reference guide

Name
decl — Declarations
Class:
Synopsis
decl ;.= "namespace" identifierO Keyword "=" nanespaceURI Literal
| "“default" "namespace" [identifierO Keyword] "=" namesp
| “dat at ypes" identifierO Keyword "=" literal

May be included in:

XML syntax equivalent:
none

Description:

Declarations section of a Relax NG compact syntax schema. These declarations are global and
common to the whole schema and include the namespace and datatype libraries declarations.

389

Compact syntax reference guide

Name

default namespace — Default namespace declaration

Class:

decl

Synopsis

"default" "namespace" [identifierO Keyword] "=" namespaceURI Literal

May be included in:

XML syntax equivalent:

xmins

Description:

Thedef aul t nanmespace declaration defines the default namespace for the compact syntax like
xm ns attributesin XML. An optional prefix may be assigned to the default namespace which may
then be explicitly referenced. Note that unlike XML default namespace declarations, declarations for
the Relax NG compact syntax in general (and def ault nanespace declarations in particular)
are globa to a schema and cannot be redefined. A prefix can be assigned to the lack of namespace

using thevalue" " .

Example:

default namespace = "http://eric.van-der-vlist.com ns/Ilibrary"
def aul t nanespace local =""

390

Compact syntax reference guide

Name

div — Division (in the context of agr amar)

Class:

grammarContent

Synopsis

"“div" "{" grammarContent* "}"

May be included in:

di v, gr anmar .

XML syntax equivalent:
div

Description:

The di v element is provided to define logical divisions in Relax NG schemas. It has no effect on
the validation and its purpose is to define a group of definitions within a gr ammar which may be
annotated as awhole.

Inthe context of agr anmar , the content of adi v element isthe same than the content of agr anmar
(thismeansthat di v elements may be embedded in other di v elements.

Example:

[
xhtm :p [

"The content of the book el ement has been split in two named patterns:"
]
]
div {
book-start =
attribute id { text },
i sbn-el enent,
title-elenent,
aut hor - el ement *
book-end =
aut hor - el enent *,
character-el ement*,
attribute available { text }

391

Compact syntax reference guide

Name

element — Pattern matching an element

Class:

pattern

Synopsis

"el enent" naned ass "{" pattern "}"

May be included in:
(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,

m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:
element

Description:

Theel enent pattern matches an element. The name of the element is defined through a nameClass
which may be either a single name or name class.

Example:

el ement isbn { text }
el ement hr:born { text }
element title { attribute xm:lang { text }, text }

element * - (local:* | lib:* | hr:*) { anything }

392

Compact syntax reference guide

Name
empty — Empty content

Class:

pattern

Synopsis

-
May be included in:

(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,
m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:
empty
Description:

Theenpt y patternsis used to define elementswhich are empty, i.e. which have no children elements,
text nor attributes. Note that it is mandatory to use this pattern in such case (el ement f oo{} is
not forbidden) and that there is no such thing as empty attributes (an attribute such as f oo="" is
considered as having a value which is the empty string rather than be considered as being empty, i.e.
having no value).

Example:

el emrent foo {

el ement out {enmpty} &
(
el ement inl {enpty},
el emrent in2 {enpty}

)

}

393

Compact syntax reference guide

Name

external — Reference to an external schema

Class:

pattern

Synopsis

"external" literal [inherit]

May be included in:
(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,

m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

external Ref

Description:

Theext er nal pattern isareference to an externa schema. This has the same effect than replacing
theext er nal pattern by the external schema considered as a pattern.

Example:

el ement university { element name { text }, external "flat.rnc" }

el ement book { external "book.rnc" }

394

Compact syntax reference guide

Name

grammar — Grammar pattern

Class:

pattern

Synopsis

"grammar" "{" grammarContent* "}"

May be included in:

(pattern), attri bute, dat at ypeNane param exceptPattern, el enment, |ist,
m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

grammar

Description:
Thegr anmar pattern encapsulates the definitions of st art and named patterns.

Themost common use of gr amar istovaidate XML documentsand inthiscasethest ar t pattern
defines which elements may be used as the document root element. The gr ammar pattern may also
be used as a way to write modular schemas and in this case the st ar t pattern defines which nodes
must be matched by the gr antrar at the location where it appears in the schema.

In every case, the named patterns defined inagr ammar are considered to belocal to thisgr amar .

Example:

grammar {

aut hor - el enment = el ement aut hor {
attribute id {text},
nane- el enent ,
bor n- el enent
di ed- el enent ?

}

book-el ement = el enent book {
attribute id {text},
attribute available {text},

i shn-el enent,

title-el enent,

aut hor - el ement *,
character-el enent *

}

born-el ement = el enent born {text}

character-elenment = elenent character {

395

Compact syntax reference guide

attribute id {text},
namne- el ement ,

bor n- el enment

qgual i ficati on-el enent

}

di ed-el ement = el enment died {text}

i sbn-el ement el ement isbn {text}
nane-el ement = el enent nane {text}
qgqualification-elenent = elenment qualification {text}

title-element = elenent title {attribute xm:lang {text}, text}

start = elenent library {
book- el enent +

}
}

aut hor - el enent =

gr anmar
{
start =
el emrent aut hor
{
attribute id { text },
name- el ement ,
bor n- el emrent ,
di ed- el enent ?
}

nane-el ement = el enent name { text }
bor n- el ement el ement born { text }
di ed-el ement = element died { text }

396

Compact syntax reference guide

Name
grammarContent — Content of a grammar
Class:
Synopsis
gr ammar Cont ent »:= start
| defi ne
["div" "{"
| "incl ude"

May be included in:

di v, gramar.

XML syntax equivalent:

none

Description:

grammar Content* "}"

literal

[inherit] ["{"

The gr anmar Cont ent production defines the content of agr ammar .

i ncl udeCont ent *

397

"1l

Compact syntax reference guide

Name

identifier — ldentifier

Class:

Synopsis

identifier ;.= (NCNanme - keywor d)
| quot edl denti fi er

May be included in:
(pattern), attribute, datatypeNanme param exceptPattern, datatypes,
default nanespace, div, el enent, external, granmar, i ncl ude, | i st, m xed,

nanespace, parent, pattern&pattern, pattern*, pattern+, pattern, pattern,
pattern?, pattern|pattern.

XML syntax equivalent:
none

Description:

The i denti fi er production describes valid i denti fi er s for the compact syntax, i.e. either
quoted identifiers or the non colonized names which are not keywords.

398

Compact syntax reference guide

Name
identifier assignMethod pattern — Named pattern definition

Class:

Synopsis

defi ne ;.= identifier assignMethod pattern

May be included in:

di v, granmar,i ncl ude.

XML syntax equivalent:

define

Description:

Wheni dentifier assignMethod pattern isembeddedinagrammar, it defines a named
pattern or combines a new definition with an existing one. Named pattern are global to a gr anmar
and can be referenced by r ef in the scope of their gr ammrar and by par ent Ref in the scope of
the grammars directly embedded in their gr ammar .

Wheni dentifier assignMethod patternisembeddedini ncl ude, the new definition
is aredefinition and replaces the definitions from the included grammar unless aconbi ne attribute
is specified in which case the definitions are combined.

The combinationisdefined through theassi gnMet hod which may takethevalues: "=" (definition),
"&=" (combination by interleave) or "| =" (combination by choice).

Restrictions:

Named patterns are always global and apply only to patterns and it is not possible to define and make
reference to non patterns such as class names or datatype parameters.

Example:

dat e-el ement = el ement born { xsd:data }

date-el ement | = elenent died { xsd:date }

399

Compact syntax reference guide

Name
identifierOrK eyword — Identifier or keyword
Class:
Synopsis
identifierOKeyword ::= identifier
| keywor d

May be included in:
(named ass), attribute, datatypeName param exceptPattern, datatypes,

def aul t nanespace, el enment, external, include, naned ass| naned ass,
nanmespace.

XML syntax equivalent:

none

Description:

Thei denti fi er O Keywor d production either avalidi denti fi er or akeywor d.

400

Compact syntax reference guide

Name

include — Grammar merge

Class:

grammarContent

Synopsis

"include" literal [inherit] ["{" includeContent* "}"]
May be included in:
di v, gramar.

XML syntax equivalent:

include

Description:
Thei ncl ude patternincludesagrammar and mergesitsdefinitionswith the definitions of the current
grammar. The definitions of the included grammar may be redefined and overridden by the definitions
embedded inthei ncl ude pattern. Note that a schema must contain an explicit gr anmmar definition
in order to be included.

Theoptional i nher i t production defineswhich namespaces areinherited from theincluded schema
andi ncl udeCont ent allowsto redefine definitions from the included schema.

Example:

i ncl ude "incl uded. rnc"

include "flat.rnc" { start = book-el enment }

401

Compact syntax reference guide

Name
includeContent — Content of ani ncl ude pattern.
Class:
Synopsis
i ncl udeCont ent .. = define
| start

| "div" "{" includeContent* "}"
May be included in:
i ncl ude.
XML syntax equivalent:

none

Description:

Thei ncl udeCont ent production defines the content of an i ncl ude. The only difference with
gr anmar Cont ent isthati ncl udeCont ent doesn't allow embeddedi ncl ude.

402

Compact syntax reference guide

Name

inherit — Namespace inheritance

Class:

Synopsis

i nherit c:="inherit" "=" identifierO Keyword

May be included in:
external ,i ncl ude.

XML syntax equivalent:
none

Description:

Thei nherit productionisusedinext er nal andi ncl ude statementsto specify the prefixes of
the namespaces which are inherited by the included file.

403

Compact syntax reference guide

Name
keyword — Keywords

Class:

Synopsis

keywor d c:= "attribute"
| “defaul t"

| " dat at ypes"
| " div"

| el ement ™

| "empty”

| "external "

| " granmar "

| "incl ude"

| "inherit"
["1ist"

| " m xed"

| “namespace"
| “not Al | owed"
| " parent”

| “start"

| "string"

| "text"

| "t oken"

May be included in:

(pattern), attribute, datatypeNanme param exceptPattern, datatypes,
default nanespace, el enent, external, i nclude, |ist, m xed, nanespace,
parent, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

none

Description:

Thekeywor d production givesthelist of keywordsfor the Relax NG compact syntax. Note that these
keywords are reserved only when thereis arisk of confusion and that they can be used, for instance,
as element or attribute names without being quoted. When they are reserved, they can still be used
asidentifiers but need to be quoted.

404

Compact syntax reference guide

Name
list — Text node split

Class:

pattern

Synopsis

"list" "{" pattern "}"

May be included in:

(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,
m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:
list
Description:

Thel i st pattern splits a text node into tokens separated by white spaces to allow the validation of
these tokens separately. Thisis most useful for validating lists of values.

Restrictions:

<itemizedList>
<listltem>

i nt er| eave cannot be used within| i st .
</listltem>
<listltem>

The content of al i st isonly about data: it's forbidden to defineel enent ,attri but e ort ext
there.

</listltem>

<listltem>

It'sforbiddentoembed | i st intol i st .
</listltem>
</itemizedList>

Example:

attribute see-also {list {token*}}

attribute dinensions {list {xsd:deciml, xsd:decinmal, xsd:decinal,

405

("inches"|™

Compact syntax reference guide

Name
literal — Litera

Class:

Synopsis

literal o= literal Segment ("~" literal Segnent) +

May be included in:

dat atypeName |literal, datatypeNane param exceptPattern, datatypes,
defaul t namespace, ext ernal ,incl ude, nanmespace.

XML syntax equivalent:

none

Description:

Thel i t er al production describes literals as several segments of literals contained by the"~" sign.

406

Compact syntax reference guide

Name
literal Segment — Literal segment

Class:

Synopsis

l'iteral Segnent co= """ (Char - (""" newine))* """
["*" (Char - (""" newine))* """
e (] [tt] (Char -ttty
[(] [t] (Char -ttt
May be included in:
dat atypeName |literal, datatypeNane param exceptPattern, datatypes,

defaul t namespace, ext ernal ,incl ude, nanmespace.
XML syntax equivalent:
none

Description:

Thel i t er al Segrment production describesliteral segments as strings enclosed either in simple or
double quotes or enclosed in three double or single quotes using a pythonic syntax.

407

Compact syntax reference guide

Name

mixed — Pattern for mixed content models

Class:

pattern

Synopsis

"m xed" "{" pattern "}"

May be included in:

(pattern), attri bute, dat at ypeNane param exceptPattern, el ement, |ist,
m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:
mixed
Description:

The i xed pattern is a shortcut for i nt er | eave with an embedded t ext pattern. It describes
unordered content models where atext node may beincluded before and after each element. Note that
Relax NG does not allow to add constraints on these text nodes.

Restrictions:

Thelimitationsof i nt er | eave apply here:
<itemizedList>
<listltem>

Them xed pattern cannot be used withinal i st .
</listltem>
<listltem>

Elements within ani xed pattern cannot have overlapping name classes.
</listltem>
<listltem>

There must no other "text" pattern in each set of patterns combined by ni xed
</listltem>
</itemizedList>

Example:

element title {
m xed {
attribute xm:lang {text}&
element a {attribute href {text}, text} *
}
}

is equivalent to:

408

Compact syntax reference guide

element title {
(text & (
attribute xm:lang {text}&
element a {attribute href {text}, text} *

)
}

which itself is equivalent to:

element title {
text &
attribute xm:lang {text}&
element a {attribute href {text}, text} *

409

Compact syntax reference guide

Name

name — Define a set of names that must be matched by an element or attribute.

Class:

Synopsis

name ::= identifierOKeyword
| CNarre

May be included in:

(named ass), *-named ass,attri but e, el ement,naned ass| naned ass, nsNane
except NaneCl ass.

XML syntax equivalent:

none

Description:

The nane name class defines sets of nameswhich are singletonsi.e. that match only one name. There
is no other restriction than those of XML 1.0 and namespacesin XML 1.0 on such names and they
can be either CNan®e ori denti fi er Or Keywor d (in particular, even keywor ds can be used as
nanes).

410

Compact syntax reference guide

Name

nameClass — Define a set of names that must be matched by an element or attribute.

Class:

Synopsis

naned ass : 1= nane
| NCNanme ":*" [except NameC ass]
| "*" [except NameC ass]
| naned ass "|" nanmed ass
|"(" named ass ")"

May be included in:

(named ass), *-named ass,attri but e, el ement,naned ass| naned ass, nsNane
except NaneCl ass.

XML syntax equivalent:

none

Description:

Thenaned ass production defines sets of names that must be matched by elements and attributes.
Its simplest expression is to define a single nane but specific wildcards can also be expressed as
nameCl ass.

411

Compact syntax reference guide

Name

nameClassinameClass — Choice between name classes
Class:

nameClass

Synopsis

naneC ass "|" nanmed ass

May be included in:

(named ass), *-named ass,attri but e, el ement,naned ass| naned ass, nsNane
except NaneCl ass.

XML syntax equivalent:

choice

Description:

The nameC ass| nameC ass production performs a choice between two name classes: a name
will match nameC ass| nameCl ass if and only if it matches at least one of the two alternatives.

Example:

element lib:* | hr:* { anything }

412

Compact syntax reference guide

Name

namespace — Namespace declaration

Class:

decl

Synopsis

"namespace" identifierO Keyword "=" nanespaceURI Literal

May be included in:

XML syntax equivalent:

xmins:

Description:

The nanmespace declaration defines namespace prefixes for the compact syntax like xmIns:xxx
attributes in XML. Note that unlike XML namespace declarations, declarations for the Relax NG
compact syntax in general (and hamespace declarations in particular) are global to a schema and
cannot be redefined. A prefix can be assigned to the lack of namespace using thevalue" " . The xni
prefix is predefined.

Example:

nanespace hr = "http://eric.van-der-vlist.conins/person”
nanespace |local = ""

413

Compact syntax reference guide

Name
namespaceURILitera — Namespace URI Literal
Class:
Synopsis
nanespaceURI Literal ::=literal
| "inherit"

May be included in:

def aul t namespace, nanespace.
XML syntax equivalent:

none

Description:

ThenanespaceURI Li t er al production is used to specify a namespace URI and can either be a
['iteral orthevaue"i nherit to specify that the namespace URI isinherited from theincluding
file.

414

Compact syntax reference guide

Name
notAllowed — Not allowed

Class:

pattern

Synopsis

“not Al | owed"

May be included in:
(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,

m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

notAllowed

Description:

Thenot Al | owed pattern always fails. It can be used to provide abstract definitions which must be
overridden before they can be used in a schema.

Example:

i sbn-el ement | = not Al | owed

415

Compact syntax reference guide

Name

nsName exceptNameClass — Name class for any name in a namespace

Class:

nameClass

Synopsis

NCNarme ":*" [except NanmeC ass]

May be included in:

(named ass), *-named ass,attri but e, el ement,naned ass| naned ass, nsNane
except NaneCl ass.

XML syntax equivalent:

nsName

Description:

ThensName except NaneC ass name class allows any name in a specific namespace.

The namespace is defined by the nsNane production and the set of these names can be restricted
using the except NameC ass production.

Restrictions:
Within the scope of an element, the name classes of attributes cannot overlap. The same restriction
applies to name classes of elements when these elements are combined by i nt er | eave. It is

impossible to use nsNane except NameCl ass to produce empty name classes by including
nsName except NaneC ass inanexcept name classincluded in another nsNane.

Example:

element lib:* { anything }

element hr:* - (hr:author | hr:nanme | hr:born | hr:died) { anything }

416

Compact syntax reference guide

Name
param — Datatype parameter

Class:

Synopsis

par am c:= identifierOKeywrd "=" literal

May be included in:

dat at ypeNane param except Pattern.

XML syntax equivalent:

param
Description:

The par amproduction defines parameters passed to the datatype library to determine if a value is
valid per adatatype. When the datatype library isthe W3C XML Schema datatypes, these parameters
are the facets of the datatype and they define additional restrictions to be applied. The name of the
parameter isdefined by i dent i fi er Or Keywor d anditsvaluedefined by | i t er al par am

Example:

el ement born {xs:date {

m nl ncl usi ve "1900-01- 01"

max| ncl usi ve "2099-12- 31"

pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
3

417

Compact syntax reference guide

Name

parent — Reference to a named pattern from the parent grammar

Class:

pattern

Synopsis

"parent" identifier

May be included in:

(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,
m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

parentRef

Description:

The par ent pattern is a reference to a named pattern belonging to the parent gr anmrar , i.e. the
gr ammar inwhich the current gr antrar isincluded. The scope of named pattern is usually limited
to the gr ammar in which they are defined and the par ent pattern provides a way to extend this
scope and refer named pattern defined in the parent gr anmar .

Example:

born-el ement = parent born-el ement

start =
attribute id { parent id-content },
attribute available { parent avail abl e-content },
el ement isbn { parent isbn-content },
elenment title { parent title-content },
el ement aut hor { parent author-content }*,
el ement character { parent character-content }*

418

Compact syntax reference guide

Name
pattern — Pattern

Class:

Synopsis

pattern ::= "elenent" naned ass "{" pattern "}"
| "attribute" nameC ass "{" pattern "}"
| pattern ("," pattern)+
| pattern ("&" pattern)+
| pattern ("|" pattern)+
| pattern " 2"
| pattern "*"

| pattern "+"

"list" "{" pattern "}"

"m xed" "{" pattern "}"

identifier

"parent" identifier

" enpt y"

"text"

[dat at ypeNane] literal

dat at ypeName ["{" parant "}"] [exceptPattern]
not Al | owed"

"external" literal [inherit]
"grammar" "{" granmarContent* "}"
"(" pattern ")"

May be included in:
(pattern), attribute, datat ypeNane param exceptPattern, div, el enent,

grammar, include, list, nixed, pattern&pattern, pattern*, pattern+,
pattern, pattern,pattern?, pattern|pattern.

XML syntax equivalent:
none

Description:

A patternisan atom of Relax NG schemawhich is matched against nodes from the instance document
(elements, attributes, text nodes or token resulting of a split through | i st).

419

Compact syntax reference guide

Name

pattern& pattern — i nt er | eave Pattern

Class:

pattern

Synopsis

pattern ("&" pattern)+

May be included in:

(pattern), attri bute, dat at ypeNane param exceptPattern, el ement, |ist,
m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

interleave

Description:

The i nt er | eave pattern "interleaves' sub patterns, i.e. allows their leaves to be mixed in any
relative order.

i nterl eave is more than defining unordered groups as we can see on the following example:
consider element "a" and the ordered group of element "b1" and "b2". An unordered group of thesetwo
patterns would only allow element "a" followed by elements "b1" and "b2" or elements "b1" and "b2
followed by element "a'. Ani nt er | eave of these two patterns does allow these two combinations
but also element "b1" followed by "a" followed by "b2", i.e. a combination where the element "a" has
been "interleaved" between elements "b1" and "b2".

Thei nt er| eave behavior is the behavior applied to at t ri but e patterns even when they are
embedded in (ordered) gr oup patterns (the reason for thisisthat XML 1.0 specifies that the relative
order of attributesis not significant).

Another case wherei nt er | eave patterns are often needed is to described mixed content models,
i.e. content models wheret ext are interleaved between elements. A shortcut (the m xed pattern)
has been defined for this case.

Any number of patterns may be combine through the & operator using this construct, but one should
note that different operators (, ,| and &) cannot be mixed at the same level.

Restrictions:

<itemizedList>
<listltem>

Thepat t er n&pat t er n pattern cannot be used withinal i st .
</listltem>
<listltem>

Elementswithin apat t er n&pat t er n pattern cannot have overlapping name classes.
</listltem>
<listltem>

420

Compact syntax reference guide

There must be at most one "text" pattern in each set of patterns combined by pat t er n&pat t er n
</listltem>
</itemizedList>

Example:

el enent character {

attribute id {text}&

el ement nanme {text}&

el ement born {text}&

el ement qualification {text}}

el ement foo {

el ement out {empty} &
(
el ement inl {enpty},
el emrent in2 {enmpty}

)

}

421

Compact syntax reference guide

Name
pattern* — zer oOr Mor e pattern

Class:

pattern

Synopsis

pattern "*"

May be included in:

(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,
m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

zeroOrMore

Description:

A pattern qualified aszer oOr Mor e must be matched zero or more times (i.e. any number of times).

Restrictions:

Thepat t er n* pattern cannot contain attribute definitions.

Example:

el ement aut hor ({
attribute id {text},

el ement name {text},
el ement born {text},

el emrent died {text}?}*

book- el ement = el enent book {
attribute id {text},
attribute available {text},

i sbn-el emrent,

title-elenent,

aut hor - el enent *,
character-el enent *

422

Compact syntax reference guide

Name
pattern+ — oneOr Mor e pattern

Class:

pattern

Synopsis

pattern "+"

May be included in:
(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,

m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

oneOrMore
Description:

A pattern qualified asoneOr Mor e must be matched one or more times.
Restrictions:

Thepat t er n+ pattern cannot contain attribute definitions.

Example:

start = elenent library {
book- el ement +

}

attribute see-also {list {("0836217462"|"0345442695"|"0449220230"| " 044921404

423

Compact syntax reference guide

Name

pattern,pattern — pat t er n, pat t er n pattern
Class:

pattern
Synopsis

pattern ("," pattern)+

May be included in:
(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,

m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:
group

Description:
Thegr oup pattern defines an ordered group of sub patterns (notethat whenat t r i but e patternsare
included in such agroup, their order cannot be guaranteed). Any number of patterns may be combine

through the, operator using this construct, but one should note that different operators(, , | and &)
cannot be mixed at the same level.

Example:

el ement aut hor {
attribute id {text},
el ement nanme {text},
el ement born {text},
el ement died {text}?}*

element lib:title { attribute xm:lang { text }, text }

attribute dinensions {list {token, token, token, ("inches"|"cn'|"m)}}

424

Compact syntax reference guide

Name

pattern? — opt i onal pattern
Class:

pattern

Synopsis

pattern "?"

May be included in:
(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,

m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:
optional
Description:
A pattern qualified asopt i onal isoptional, i.e. must be matched zero or onetime.

Example:

el ement died {text}?

attribute see-also {list {token, token?, token?, token?}}

425

Compact syntax reference guide

Name
pattern|pattern — choi ce pattern

Class:

pattern

Synopsis

pattern ("|" pattern)+

May be included in:

(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,
m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

choice

Description:

The choi ce pattern defines a choice between different patterns: it matches a node if and only if at
least one of its sub-pattern matches this node.

Any number of patterns may be combine through the | operator using this construct, but one should
note that different operators (, ,| and &) cannot be mixed at the same level.

Example:

el enent nane {
text] (
el enent first{text},
el enent middl e{text}?,
el enent |ast{text}

)}

attribute available {"true"|"fal se"|"who knows?"}

426

Compact syntax reference guide

Name

start — Start of a grammar

Class:

Synopsis

start ::= "start" assignMethod pattern

May be included in:

di v, granmar,i ncl ude.

XML syntax equivalent:

Start

Description:

The st art pattern defines the "start" of a gr ammar . When this grammar is used to validate a
complete document, the st art pattern defines which elements may be used as the document (root)
element. When this grammar is embedded in another gr ammar , the st ar t pattern describes which
pattern should be applied at the location where the gr ammar is embedded. Like named pattern
definitions, start patterns may be combined by choi ce or i nt er | eave and redefined when they
areincluded ini ncl ude patterns.

The combination isdefined through theassi gnMet hod which may takethevalues: "=" (definition),
"&=" (combination by interleave) or "| =" (combination by choice).

Example:

start = element library {
book- el enent +

}

start | = book-el enent

427

Compact syntax reference guide

Name

text — Pattern matching text nodes

Class:

pattern

Synopsis

"text"
May be included in:

(pattern), attri bute, dat at ypeNane param exceptPattern, el enent, |i st,
m xed, pattern&pattern, pattern*, pattern+, pattern, pattern, pattern?,
pattern| pattern.

XML syntax equivalent:

text

Description:

Thet ext pattern matches zero or more text nodes. The fact that at ext pattern matches more than
onetext node hasno effect whenitisused in ordered content model s (the datamodel used by Relax NG
for XML documentsis similar to the data model of XPath 1.0 and two text nodes cannot be adjacent)
but makes a difference when at ext patternisusedini nt er | eave:adding asinglet ext pattern
inani nt er | eave pattern has the effect of allowing any number of text nodes which can interleave
before and after each element (note that the m xed pattern is provided as a shortcut to define these
content models).

Restrictions:
No morethan onet ext pattern can beincludedinani nt er | eave pattern.

Example:

el ement aut hor ({
attribute id {text},

el ement name {text},

el ement born {text},

el ement died {text}?}?

428

Chapter 20. Datatype Reference
Guide

This chapter provides a quick reference to all of the datatypes W3C XML Schema defines. Each
datatype is listed with the list of its Relax NG datatype parameters (this list correspond to the list of
W3C XML Schema facets available for the datatype with the exception of the whi t eSpace facet
which is not supported by Relax NG), as well as information about what it represents and how. For
the so called "secondary datatypes’ (i.e. the W3C XML Schema builtin types which are derived from
another builtin type), the synopsis shows the formal definition of the type using W3C XML Schema
syntax. Examples are given for all these datatypes.

429

Datatype Reference Guide

Name
xsd:anyURI — URI (Uniform Resource Identifier).

Derived from:
xsd:anySimpleType
Primary:
xsd:anyURI

Known subtypes:

none

Data parameters (facets):

enuner ati on, | engt h, maxLengt h, m nLengt h, pattern.

Synopsis

<xsd: si npl eType name="anyURI " id="anyURl ">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction></xsd: si npl eType>

Description

This datatype corresponds normatively tothe XLink hr ef attribute. Itsvalue spaceincludesthe URIs
defined by the RFCs 2396 and 2732, but its lexical space doesn't require the character escapes needed
to include non-ASCI| charactersin URIs.

Restrictions

Relative URIs are not "absolutized" by W3C XML Schema. A pattern defined as:

<data type="xsd:anyURl ">
<choi ce" >
<val ue type="xsd: anyURlI ">htt p: // www. w3. or g/ TR/ xm schema- 0/ </ val ue>
<val ue type="xsd: anyURl ">htt p: // www. w3. or g/ TR/ xm schema- 1/ </ val ue>
<val ue type="xsd: anyURl ">htt p: //www. w3. or g/ TR/ xm schema- 2/ </ val ue>
</ choi ce>
</ dat a>

should not match the hr ef attribute in this instance element:

<a xm : base="http://wwmw. w3.0rg/ TR'" href="xm schema-1/">
XML Schema Part 2: Datatypes
</ a>

The Recommendation states that "it is impractical for processors to check that a value is a context-
appropriate URI reference,” freeing schema processors from having to validate the correctness of the
URI.

430

Datatype Reference Guide

Example

<define name="httpURl ">
<data type="xsd:anyURl ">
<param nane="pattern">http://.*<paranp
</ dat a>
</ define>

431

Datatype Reference Guide

Name
xsd:base64Binary — Binary content coded as "base64".

Derived from:
xsd:anySimpleType

Primary:
xsd:base64Binary

Known subtypes:

none

Data parameters (facets):

enumer at i on, | engt h, maxLengt h, mi nLengt h, pattern.

Synopsis

<xsd: si npl eType name="base64Bi nary" id="base64Bi nary">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

The value space of xsd: base64Bi nary isthe set of arbitrary binary contents. Itslexical spaceis
the same set after base64 coding. This coding is described in Section 6.8 of RFC 2045.

Restrictions

RFC 2045 has been defined to transfer binary contents over text-based mail systems. It imposesaline
break at least every 76 characters to avoid the inclusion of arbitrary line breaks by the mail systems.
Sending base64 content without line breaks is nevertheless a common usage for applications such as
SOAP and the W3C XML SchemaWorking Group. After arequest from other W3C Working Groups,
the W3C XML SchemaWorking Group decided to remove the obligation to include these line breaks
from the constraints on the lexical space. (This decision was made after the publication of the W3C
XML Schema Recommendation and has been included in arelease of the errata.)

Example

<define name="picture">
<attribute name="type">
<ref nane="graphi cal Format"/>
</attribute>
<data type="xsd: base64Bi nary" >
</ defi ne>

432

Datatype Reference Guide

Name

xsd:boolean — Boolean (true or false).

Derived from:
xsd:anySimpleType
Primary:
xsd:boolean

Known subtypes:

none

Data parameters (facets):

pattern.

Synopsis

<xsd: si npl eType name="bool ean" i d="bool ean">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

Thevalue space of xsd: bool ean is"true" and "false," and itslexical space acceptstrue, false, and
also "1" (for true) and "0" (for false).

Restrictions

This datatype cannot be localized—for instance, to accept "vra" and "faux" instead of "true" and
"false".

Example

<book i d="b0836217462" avail abl e="true"/>

433

Datatype Reference Guide

Name
xsd:byte — Signed value of 8 hits.

Derived from:
xsd:short

Primary:
xsd:decimal

Known subtypes:

none

Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="byte" id="byte">
<xsd:restriction base="xsd:short">
<xsd: m nl ncl usi ve val ue="-128"/>
<xsd: max| ncl usi ve val ue="127"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description
The value space of xsd: byt e isthe integers between -128 and 127, i.e., the signed values that can
fitinaword of 8 hits. Itslexical space allows an optional sign and leading zeros before the significant
digits.

Restrictions

The lexical space does not allow values expressed in other numeration bases (such as hexadecimal,
octal, or binary).

Example

Valid values for byte include 27, -34, +105, and 0.

Invalid valuesinclude OA, 1524, and INF.

Datatype Reference Guide

Name

xsd:date — Gregorian calendar date.

Derived from:

xsd:anySimpleType

Primary:

Know

xsd:date

n subtypes:

none

Data parameters (facets):

enumrer ati on, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve, m nl ncl usi ve,
pattern.

Synopsis

<xsd: si npl eType nanme="date" id="date">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

Thisdatatype is modeled after the calendar dates defined in Chapter 5.2.1 of 1SO 8601. Its value space
isthe set of Gregorian calendar dates as defined by thisstandard; i.e., aone-day-long period of time. Its
lexical space isthe 1SO 8601 extended format "[-]CCYY-MM-DDJ[Z|(+]-)hh:mm]" with an optional
timezone. Timezones that are not specified are considered "undetermined.”

Restrictions

The basic format of 1SO 8601 calendar dates "CCYYMMDD" is not supported.

The other forms of dates available in 1SO 8601—ordinal dates defined by the year and the number of
the day in the year and dates identified by calendar week and day numbers—are not supported.

As the value space is defined by reference to 1SO 8601, there is no support for any calendar system
other than Gregorian.

Asthelexica spaceis also defined as reference to 1SO 8601, there is no support for any localization
such as different orders for date parts or named months.

The order relation between dates with and without timezone is partial: they can be compared only
outside of a+/- 14 hoursinterval.

Thereisadissension between | SO 8601 which defines aday as aperiod of time of 24 hours, and W3C
XML Schema, whichindicatesthat adateisa"one-day long, non-periodic instance. . . independent of
how many hours this day has." Even though technically right (some days do not last exactly 24 hours

435

Datatype Reference Guide

because of leap seconds), this definition is not coherent with the definition of xsd: dur at i on for
which aday is always exactly 24 hours long.

Example

Vadid values include "2001-10-26", "2001-10-26+02:00", "2001-10-26Z",
"2001-10-26+00: 00", " -2001-10-26",0r"-20000- 04- 01".

The following vaues would be invalid: "2001- 10" (al the parts must be specified),
"2001- 10- 32" (thedayspart (32) isout of range), " 2001- 13- 26+02: 00" (the month part (13)
isout of range), or " 01- 10- 26" (the century part is missing).

436

Datatype Reference Guide

Name

xsd:dateTime — Instant of time (Gregorian calendar).

Derived from:

xsd:anySimpleType

Primary:

Know

xsd:dateTime

n subtypes:

none

Data parameters (facets):

enumrer ati on, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve, m nl ncl usi ve,
pattern.

Synopsis

<xsd: si npl eType nane="dat eTi ne" id="dateTi ne">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</xsd:restriction>
</ xsd: si npl eType>

Description

This datatype describes instants identified by the combination of a date and atime. Its value space is
described as a "combination of date and time of day" in Chapter 5.4 of 1SO 8601. Itslexical spaceis
the extended format "[-]CCYY-MM-DDThh:mm:sg[Z|(+[-)hh:mm]". The timezone may be specified
as"Z" (UTC) or "(+]-)hh:mm." Timezones that are not specified are considered "undetermined.”

Restrictions

The basic format of 1SO 8601 calendar datetimes "CCYYMMDDThhmmss" is not supported.

The other forms of datetimes availablein SO 8601—ordinal dates defined by the year and the number
of the day in the year and dates identified by calendar week and day numbers—are not supported.

As the value space is defined by reference to 1SO 8601, there is no support for any calendar system
other than Gregorian.

Asthelexica spaceis also defined as reference to 1SO 8601, there is no support for any localization
such as different orders for date parts or named months.

The order relation between datetimes with and without timezoneis partial: they can be compared only
outside of a+/- 14 hoursinterval.

Example
Valid values for xsd: dat eTi e include: "2001-10-26T21: 32: 52",
"2001-10-26T21: 32: 52+02: 00", "2001-10-26T19: 32: 527",

437

Datatype Reference Guide

"2001-10-26T19: 32: 52+00: 00", "-2001-10-26T21: 32: 52", or
"2001-10-26T21: 32: 52. 12679".

The following values would be invalid: "2001- 10- 26" (al the parts must be specified),
"2001-10-26T21: 32" (all the parts must be specified), " 2001- 10- 26T25: 32: 52+02: 00"
(the hours part (25) isout of range), or " 01- 10- 26T21: 32" (all the parts must be specified).

438

Datatype Reference Guide

Name

xsd:decimal — Decimal numbers.

Derived from:
xsd:anySimpleType
Primary:
xsd:decimal
Known subtypes:
xsd:integer
Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="deci mal " i d="deci mal ">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

xsd: deci mal isthedatatypethat representsthe set of all thedecimal numberswith arbitrary lengths.
Itslexical space allowsany number of insignificant leading and trailing zeros (after the decimal point).

Restrictions

The decimal separator is aways a point (".") and no thousand separator may be added. There is no
support for scientific notations.

Example

Valid valuesinclude: " 123. 456" ," +1234. 456" ," - 1234. 456" ," - . 456" ,0r " - 456" .

The following values would be invalid: "1 234. 456" (spaces are forbidden), " 1234. 456E
+2" (scientific notation (" E+2") is forbidden), "+ 1234. 456" (spaces are forbidden), or
"+1, 234. 456" (delimiters between thousands are forbidden).

439

Datatype Reference Guide

Name
xsd:double — | EEE 64 bit floating point.

Derived from:
xsd:anySimpleType
Primary:
xsd:double

Known subtypes:

none

Data parameters (facets):

enuner ati on, nmaxExcl usive, nmaxlncl usive, m nExclusive, m nlnclusive,
pattern.

Synopsis

<xsd: si npl eType name="doubl e" i d="doubl e">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

Thevauespaceof xsd: doubl e is"double" (64 bits) floating-point numbers as defined by the |EEE.
The lexical space uses a decimal format with optional scientific notation. The match between lexical
(powers of 10) and value (powers of 2) spaces is approximate and done on the closest value.

This datatype differentiates positive (0) and negative (-0) zeros, and includes the special values "-
INF" (negativeinfinity), "INF" (positive infinity) and "NaN" (Not a Number).

Note that the lexical spaces of xsd: fl oat and xsd: doubl e are exactly the same; the only
differenceis the precision used to convert the values in the value space.

Restrictions

The decimal separator is always apoint (".") and no thousands separator may be used.

Examples

Valid valuesinclude: " 123. 456", " +1234. 456", " - 1. 2344e56","-. 45E-6"," I NF", " -
I NF", or " NaN".

The following values would be invalid: " 1234. 4E 56" (spaces are forbidden), " 1E+2. 5" (the
power of 10 must be an integer), " +1 NF" (positive infinity doesn't expect a sign), or " NAN'
(capitalization mattersin special values).

Datatype Reference Guide

xsd:duration — Time durations.

Derived from:

xsd:anySimpleType

Primary:

xsd:duration

Known subtypes:

none

Data parameters (facets):

enumrer ati on, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve, m nl ncl usi ve,
pattern.

Synopsis

<xsd: si npl eType name="duration" id="duration">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

Durations may be expressed using all the parts of a datetime (from year to fractions of second) and
are, therefore, defined as a "six-dimensional space." Note that because the relation between some of
these date parts (such as the number of daysin a month) is not fixed, the order relationship between
durationsis only partial and the result of a comparison between two durations may be undetermined.

The lexical space of xsd: duration is the format defined by 1SO 8601 under the form
"PnYnMnDTnHNMnS," in which the capital letters are delimiters and can be omitted when the
corresponding member is not used.

Although some durations are undetermined, this is fixed as soon as a starting point is fixed for the
duration. W3C XML Schema relies on this feature to define the algorithm to use to compare two
durations. Four datetimes have been chosen, which produce the greatest deviations when durations
are added. A duration will be considered bigger than another when the result of its addition to
these four dates is consistently bigger than the result of the addition of the other duration to
these same four datetimes. These datetimes are: "'1696-09-01T00:00:00Z", "1697-02-01T00:00:00Z,"
"1903-03-01T00:00:00Z," and "1903-07-01T00:00:00Z."

Restrictions

Thelexical space cannot be customized.

Example

Valid values include " PT1004199059S", "PT130S", " PT2MLOS", " P1DT2S", " - P1Y", or
"P1Y2M3DT5H20M30. 123S".

441

Datatype Reference Guide

The following values would be invalid: " 1Y" (leading " P" is missing), " P1S" (" T" separator is
missing)," P- 1Y" (al partsmust bepositive), " PLM2Y" (partsorder issignificant and Y must precede
M, or " P1Y- 1M' (all parts must be positive).

442

Datatype Reference Guide

Name
xsd:ENTITIES — Whitespace separated list of unparsed entity references.

Derived from:

xsd:ENTITY
Primary:
none

Known subtypes:

none

Data parameters (facets):

enumer at i on, | engt h, maxLengt h, m nLengt h.

Synopsis

<xsd: si npl eType name="ENTI TI ES" i d="ENTI Tl ES" >
<xsd:restriction>
<xsd: si npl eType>
<xsd:list>
<xsd: si npl eType>
<xsd:restriction base="xsd: ENTI TY"/>
</ xsd: si npl eType>
</xsd:list>
</ xsd: si npl eType>
<xsd: m nLengt h val ue="1"/>
</xsd:restriction>
</ xsd: si npl eType>

Description

xsd: ENTI TI ES is derived by a list from xsd: ENTI TY. It represents lists of unparsed entity
references. Each part of this entity reference is a nonqualified name (xsd: NCNane) and must be
declared as an unparsed entity in an internal or external DTD.

Restrictions

Unparsed entities have been defined in XML 1.0 as away to include non-XML content in a XML
document, but most of the applications prefer to define links (such as those defined in (X)HTML to
include images or other multimedia objects).

W3C XML Schema does not provide aternative ways to declare unparsed entities. A DTD is needed
to do so.

Datatype Reference Guide

Name
xsd:ENTITY — Reference to an unparsed entity.

Derived from:
xsd:NCName
Primary:
xsd:string
Known subtypes:

xsd:ENTITIES

Data parameters (facets):

enumer at i on, | engt h, maxLengt h, mi nLengt h, pattern.

Synopsis

<xsd: si npl eType name="ENTI TY" id="ENTITY">
<xsd:restriction base="xsd: NCNanme"/ >
</ xsd: si npl eType>

Description

xsd: ENTI TY isan entity reference, i.e., anonqualified name (xsd: NCNane) that has been declared
as an unparsed entity in an internal or external DTD.

Restrictions

Unparsed entities are defined in XML 1.0 as away to include non-XML content in XML document,
but most of the applications prefer to define links (such as those defined in (X)HTML to include
images or other multimedia objects).

W3C XML Schema does not provide aternative ways to declare unparsed entities. A DTD is needed
to do so.

Datatype Reference Guide

Name
xsd:float — |EEE 32 bit floating point.

Derived from:
xsd:anySimpleType
Primary:
xsd:float

Known subtypes:

none

Data parameters (facets):

enuner ati on, nmaxExcl usive, nmaxlncl usive, m nExclusive, m nlnclusive,
pattern.

Synopsis

<xsd: si npl eType name="float" id="float">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

The value space of xsd: f | oat is"float" (32 bits) floating-point numbers as defined by the IEEE.
The lexical space uses a decimal format with optional scientific notation. The match between lexical
(powers of 10) and value (powers of 2) spaces is approximate and is done on the closest value.

This datatype differentiates positive (0) and negative (-0) zeros, and includes the special values "-
INF" (negative infinity), "INF" (positive infinity), and "NaN" (Not a Number).

Note that the lexical spaces of xsd: fl oat and xsd: doubl e are exactly the same; the only
differenceis the precision used to convert the values in the value space.

Restrictions

The decimal separator is alwaysapoint (".") and no thousands separator may be added.

Example

Valid valuesinclude: " 123. 456", " +1234. 456", " - 1. 2344e56","-. 45E-6"," I NF", " -
I NF", or " NaN".

The following values would be invalid: " 1234. 4E 56" (spaces are forbidden), " 1E+2. 5" (the
power of 10 must be an integer), " +1 NF" (positive infinity doesn't expect a sign), or " NAN'
(capitalization mattersin special values).

Datatype Reference Guide

Name
xsd:gDay — Recurring period of time: monthly day.

Derived from:
xsd:anySimpleType
Primary:
xsd:gDay
Known subtypes:

none

Data parameters (facets):

enuner ati on, nmaxExcl usive, nmaxlncl usive, m nExclusive, m nlnclusive,
pattern.

Synopsis

<xsd: si npl eType name="gDay" id="gDay" >
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

Thevalue spaceof xsd: gDay isthe periods of one calendar day recurring each calendar month (such
as the third of the month); its lexical space follows the SO 8601 syntax for such periods (i.e., " -- -
DD") with an optional timezone.

When needed, days are reduced to fit in the length of the months, so - - - 31 would occur on the the
28th of February of nonleap years.

Restrictions

The period (one month) and the duration (one day) arefixed, and no calendars other than the Gregorian

are supported.

Example
Vaidvauesinclude"---01","---01Z2","---01+02: 00","---01- 04: 00","---15",0r
"o--31".
The following values would be invalid: " - - 30-" (the format must be " - --DD"), " - - - 35" (the
day isout of range), " - - - 5" (al the digits must be supplied), or " 15" (missing leading" - - - ").

446

Datatype Reference Guide

Name

xsd:gMonth — Recurring period of time: yearly month.

Derived from:

xsd:anySimpleType

Primary:

Know

xsd:gMonth

n subtypes:

none

Data parameters (facets):

enuner ati on, nmaxExcl usive, nmaxlncl usive, m nExclusive, m nlnclusive,
pattern.

Synopsis

Descr

Restri

<xsd: si npl eType name="gMont h" id="gMont h">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

iption

The value space of xsd: ghMont h isthe period of one calendar month recurring each calendar year
(such as the month of April); its lexical space should follow the 1SO 8601 syntax for such periods
(i.e, " -- MM") with an optional timezone. However, there is a typo in the W3C XML Schema
Recommendation where the format is defined as " -- MM -- -- . Even though an erratum should be
published to bring the W3C XML Schemainlinewith 1SO 8601, most of the current schemaprocessors
will expect the (bogus) format " -- MM -- -- . In the example, we follow the correct 1SO 8601 format.

ctions

Theperiod (oneyear) and the duration (one month) arefixed, and no calendars other than the Gregorian
are supported.

Because of the typo in the W3C XML Schema Specification, users must choose between a bogus
format, which works on the current version of the tools, or a correct format, which conforms to |SO
8601.

Example

Vaidvauesinclude" - - 05" ,"--112","--11+02: 00", "--11- 04: 00", or"--02".

The following valueswould beinvalid: " - 01- " (theformat must be" - - MM')," - - 13" (the month
isout of range), " - - 1" (both digits must be provided), or " 01" (leading " -- " are missing).

447

Datatype Reference Guide

Name
xsd:gMonthDay — Recurring period of time: yearly day.

Derived from:
xsd:anySimpleType

Primary:
xsd:gMonthDay

Known subtypes:

none

Data parameters (facets):

enuner ati on, nmaxExcl usive, nmaxlncl usive, m nExclusive, m nlnclusive,
pattern.

Synopsis

<xsd: si npl eType nanme="gMont hDay" i d="gMont hDay" >
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

The value space of xsd: ghvbnt hDay isthe period of one calendar day recurring each calendar year
(such as the third of April); its lexical space follows the SO 8601 syntax for such periods (i.e., " --
MM-DD") with an optional timezone.

When needed, days are reduced to fit in the length of the months, so - - 02- 29 would occur on the
the 28th of February of nonleap years.

Restrictions

The period (one year) and the duration (one day) are fixed, and no calendars other than the Gregorian
are supported.

Example

Valid values include " - - 05- 01", "--11-01Z", "--11- 01+02: 00", "--11- 01- 04: 00",
"--11-15",0r"--02-29".

The following values would be invalid: "-01-30-" (the format must be "-- MV DD"),
"--01- 35" (theday partisout of range), " - - 1- 5" (the leading zeros are missing), or " 01- 15"
(theleading " - - " are missing).

Datatype Reference Guide

Name
xsd:gY ear — Period of one year.

Derived from:
xsd:anySimpleType
Primary:
xsd:gY ear

Known subtypes:

none

Data parameters (facets):

enuner ati on, nmaxExcl usive, nmaxlncl usive, m nExclusive, m nlnclusive,
pattern.

Synopsis

<xsd: si npl eType name="gYear" id="gYear">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

Thevalue space of xsd: gYear isthe period of one calendar year (such asthe year 2002); itslexical
space follows the SO 8601 syntax for such periods (i.e., "YYYY") with an optional timezone.

Restrictions

The duration (one year) is fixed, and no calendars other than the Gregorian are supported.

Example

Valid values include "2001", "2001+02: 00", "2001Z", "2001+00: 00", "-2001", or
"-20000".

The following values would be invalid: " 01" (the century part is missing) or * 2001- 12" (month
parts are forbidden).

449

Datatype Reference Guide

Name
xsd:gY earMonth — Period of one month.

Derived from:
xsd:anySimpleType
Primary:
xsd:gY earMonth

Known subtypes:

none

Data parameters (facets):

enuner ati on, nmaxExcl usive, nmaxlncl usive, m nExclusive, m nlnclusive,
pattern.

Synopsis

<xsd: si npl eType name="gYear Mont h" i d="gYear Mont h" >
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

The value space of xsd: gYear Mont h is the period of one calendar month (such as the month of
February 2002); itslexical space follows the 1SO 8601 syntax for such periods (i.e., "YYYY-MM")
with an optional timezone.

Restrictions

The duration (one month) is fixed, and no calendars other than the Gregorian are supported.

Example

Valid values include " 2001- 10", " 2001- 10+02: 00", "2001- 102", "2001- 10+00: 00",
"-2001-10",0r"-20000-04".

Thefollowing valueswould beinvalid: " 2001" (themonth partismissing),” 2001- 13" (the month
part is out of range), " 2001- 13- 26+02: 00" (the month part is out of range), or " 01- 10" (the
century part is missing).

450

Datatype Reference Guide

Name

xsd:hexBinary — Binary contents coded in hexadecimal .

Derived from:
xsd:anySimpleType

Primary:
xsd:hexBinary

Known subtypes:

none

Data parameters (facets):

enumer at i on, | engt h, maxLengt h, mi nLengt h, pattern.

Synopsis

<xsd: si npl eType nanme="hexBi nary" id="hexBi nary">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

The value space of xsd: hexBi nary isthe set of all binary contents; its lexical spaceisasimple
coding of each octet as its hexadecimal value.

Restrictions

This datatype should not be confused with another encoding called BinHex that is not supported
by W3C XML Schema. Other popular binary text encodings (such as uuXXcode, Quote Printable,
BinHex, aencode, or base85, to name few) are not supported by the W3C XML Schema.

The expansion factor is high since each binary octet is coded as two characters (i.e., four octetsif the
document is encoded with UTF-16).

Example

A UTF-8 XML header such as;
"<?xm version="1.0" encodi ng="UTF-8"?>"
encoded would be:

" 3f3c6d78206c657673726f 693d6€3122302e20226e656f 636964676€223d54552d4622383e3f "

451

Datatype Reference Guide

xsd:ID — Definition of unique identifiers.

Derived from:

xsd:NCName

Primary:

xsd:string

Known subtypes:

none

Data parameters (facets):

enuner ati on, | engt h, maxLengt h, m nLengt h, pattern.

Synopsis

<xsd: si npl eType nane="ID"' id="ID"'>
<xsd:restriction base="xsd: NCNane"/ >
</ xsd: si npl eType>

Description

The purpose of the xsd: | D datatype is to define unique identifiers that are global to a document and
emulate the ID attribute type available in the XML DTDs.

Unlike their DTD counterparts, W3C XML Schema ID datatypes can be used to define not only
attributes, but also simple element content.

For both attributes and simple element content, the lexical domain of these datatypes is the lexical
domain of XML nonqualified names (xsd: NCNane).

| dentifiers defined using this datatype are global to adocument and provide away to uniquely identify
their containing element, whatever its type and name is.

The constraint added by this datatype beyond the xsd: NCNamne datatype from which it is derived is
that thevaluesof all the attributes and elementsthat have an | D datatypein adocument must be unique.

Note that this datatype is laxer than the ID datatype from the DTD compatibility datatype library and
does alow both using this datatypes for elements and defining multiple type assignment to attributes
defined as 1D depending on their location in the schema.

Restrictions

Applicationsthat need to maintain alevel of compatibility with DTDs should not use this datatype for
elements but should reserveit for attributes.

The lexica domain (xsd: NCNane) of this datatype doesn't allow the definition of numerical
identifiers or identifiers containing whitespaces.

452

Datatype Reference Guide

Example

<el enent nane="book" >
<el enent nane="isbn">
<data type="xsd:int"/>
</ el enent >
<el enment nane="title">
<data type="xsd:string"/>
</ el enent >
<el enent nane="aut hor-ref">
<attribute nanme="ref">
<data type="xsd: | DREF"/>
</attribute>
</ el enent >
<el enment nane="character-refs">
<data type="xsd: | DREFS"/ >
</ el enent >
<attribute nane="identifier">
<data type="xsd:1D'/>
</attribute>
</ el enent >

453

Datatype Reference Guide

Name

xsd:IDREF — Definition of references to unique identifiers.

Derived from:
xsd:NCName
Primary:
xsd:string
Known subtypes:

xst:IDREFS

Data parameters (facets):

enuner ati on, | engt h, maxLengt h, m nLengt h, pattern.

Synopsis

<xsd: si npl eType name="I|DREF" id="|DREF">
<xsd:restriction base="xsd: NCNane"/ >
</ xsd: si npl eType>

Description

The xsd: | DREF datatype defines references to the identifiers defined by the ID datatype and,
therefore, emulates the IDREF attribute type of the XML DTDs, even though it can be used for smple

content elements as well as for attributes.

The lexical space of xsd: | DREF is, like the lexical space of xsd: | D, nonqualified XML names

(NCName).

The constraint added by this datatype beyond the xsd: NCNane datatype from which it is derived
is the values of al the attributes and elements that have a xsd: | DREF datatype must match an ID

defined within the same document.

Restrictions

Applications that need to maintain alevel of compatibility with DTDs should not use this datatype for

elements but should reserve it for attributes.

The lexical domain (NCName) of this datatype doesn't allow definition of numerical key references

or references containing whitespaces.

Example

<el enent nane="book" >
<el enent nane="isbn">
<data type="xsd:int"/>
</ el enent >
<el enment nane="title">
<data type="xsd:string"/>

454

Datatype Reference Guide

</ el enent >

<el enment nane="aut hor-ref">
<attribute nanme="ref">

<data type="xsd: | DREF"/>

</attribute>

</ el enent >

<el enment nane="character-refs">
<data type="xsd: | DREFS"/ >

</ el enent >

<attribute nanme="identifier">
<data type="xsd:1D"'/>

</attribute>

</ el enent >

455

Datatype Reference Guide

Name

xsd:IDREFS — Definition of lists of references to unique identifiers.

Derived from:

xsd:IDREF
Primary:
none

Known subtypes:

none

Data parameters (facets):

enuner ati on, | engt h, maxLengt h, m nLengt h.

Synopsis

<xsd: si npl eType nane="I| DREFS" i d="|DREFS">
<xsd:restriction>
<xsd: si npl eType>
<xsd: list>
<xsd: si npl eType>
<xsd:restriction base="xsd: | DREF"/>
</ xsd: si npl eType>
</xsd:list>
</ xsd: si npl eType>
<xsd: mi nLengt h val ue="1"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

xsd: | DREFS isderived asalist from xsd: | DREF and, thus, represents whitespace-separated lists
of references to identifiers defined using the ID datatype.

The lexical space of xsd: | DREFS is the lexical space of alist of xsd: NCNane values with a
minimum length of one element (xsd: | DREFS cannot be empty lists).

xsd: | DREFS emulates the | DREFS attribute type of the XML DTDs, even though it can be used to
define simple content elements as well as attributes.

Restrictions

Applicationsthat need to maintain alevel of compatibility with DTDs should not use this datatype for
elements but should reserve it for attributes.

The lexical domain (lists of xsd: NCNane) of this datatype doesn't allow definition of lists of
numerical key references or references containing whitespaces.

Example

<el enent nane="book" >

456

Datatype Reference Guide

<el enment nane="isbn">
<data type="xsd:int"/>

</ el enent >

<el enment nane="title">
<data type="xsd:string"/>

</ el enent >

<el enment nane="aut hor-ref">
<attribute nanme="ref">

<data type="xsd: | DREF"/>

</attribute>

</ el enent >

<el enment nane="character-refs">
<data type="xsd: | DREFS"/ >

</ el enent >

<attribute nane="identifier">
<data type="xsd:1D"'/>

</attribute>

</ el enent >

457

Datatype Reference Guide

Name
xsd:int — 32 bit signed integers.

Derived from:
xsd:long

Primary:
xsd:decimal

Known subtypes:

xsd:short

Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="int" id="int">
<xsd:restriction base="xsd:|ong">
<xsd: m nl ncl usi ve val ue="-2147483648"/ >
<xsd: maxl ncl usi ve val ue="2147483647"/ >
</xsd:restriction>
</ xsd: si npl eType>

Description

The value space of xsd: i nt isthe set of common single size integers (32 hits), i.e., the integers
between -2147483648 and 2147483647, its lexical space allows any number of insignificant leading
zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

-0 and +0 are considered egual, which is different from the behavior of xsd: fl oat and
xsd: doubl e.

Example

Vaid values include "-2147483648", "0", "-0000000000000000000005", or
"2147483647" .

Invalid valuesinclude" - 2147483649" and" 1. ".

458

Datatype Reference Guide

Name
xsd:integer — Signed integers of arbitrary length.

Derived from:
xsd:decimal

Primary:
xsd:decimal

Known subtypes:

xsd:nonPositivel nteger, xsd:long, xsd:nonNegativel nteger

Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="integer" id="integer">
<xsd:restriction base="xsd: deci mal ">
<xsd:fractionDi gits val ue="0" fixed="true"/>
</xsd:restriction>
</ xsd: si npl eType>

Description

The value space of xsd: i nt eger includesthe set of all the signed integers, with no restriction on
range. Itslexical space allows any number of insignificant leading zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

-0 and +0 are considered equal, which is different from the behavior of xsd: fl oat and
xsd: doubl e.

Example

Vaid values for xsd:integer include "-123456789012345678901234567890",
"2147483647","0",or"-0000000000000000000005" .

Invalid valuesinclude" 1. " ," 2. 6" ,and " A".

459

Datatype Reference Guide

Name
xsd:language — RFC 1766 language codes.

Derived from:
xsd:token
Primary:
xsd:string
Known subtypes:

none

Data parameters (facets):

enumer at i on, | engt h, maxLengt h, mi nLengt h, pattern.

Synopsis

<xsd: si npl eType name="| anguage" id="I| anguage" >
<xsd:restriction base="xsd:token">
<xsd: pattern
value="([a-zA-Z]{2}|[il]-[a-zA-Z] +| [xX] -[a-zA-Z] {1,8})(-[a-zA-Z] {1,8})*"
/>
</xsd:restriction>
</ xsd: si npl eType>

Description

The lexical and value spaces of xsd: | anguage are the set of language codes defined by the RFC
1766.

Restrictions

Although the schema for schema defines a minimal test to perform expressed as patterns (see the
Definition), the lexical spaceisthe set of existing language codes.

Example

Somevalid values for thisdatatype are: " en" ,"en- US" ,"fr",or"fr- FR".

460

Datatype Reference Guide

Name
xsd:long — 64 bit signed integers.

Derived from:

xsd:integer

Primary:
xsd:decimal

Known subtypes:
xsd:int
Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,

m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="1|ong" id="1ong">

<xsd:restriction base="xsd:integer">
<xsd: m nl ncl usi ve val ue="-9223372036854775808"/ >

<xsd: maxl| ncl usi ve val ue="9223372036854775807"/ >

</ xsd:restriction>
</ xsd: si npl eType>

Description

The value space of xsd: | ong isthe set of common double-size integers (64 hits), i.e., the integers
between -9223372036854775808 and 9223372036854 775807; itslexical space allows any number of

insignificant leading zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example
"-9223372036854775808", "0"

Vaid vaues for xsd: |l ong include
"-0000000000000000000005", or " 9223372036854775807" .

Invalid valuesinclude" 9223372036854775808" and" 1. .

461

Datatype Reference Guide

Name
xsd:Name — XML 1.0 names.

Derived from:
xsd:token
Primary:
xsd:string
Known subtypes:

xsd:NCName

Data parameters (facets):

enumer at i on, | engt h, maxLengt h, mi nLengt h, pattern.

Synopsis

<xsd: si npl eType name="Nane" id="Name">
<xsd:restriction base="xsd:token">
<xsd: pattern value="\i\c*"/>
</xsd:restriction>
</ xsd: si npl eType>

Description

Thelexical and value spaces of xsd: Nane are the tokens (NMITOKEN) that conform to the definition
of anamein XML 1.0.

Restrictions

Following XML 1.0, those hames may contain colons (":"), but no special meaning is attached to
these characters. Another datatype (xsd: QNane) should be used for qualified names when they use
namespaces prefixes.

Example

Vaid valuesinclude" Snoopy" ," CM5",or " _1950- 10- 04_10: 00".

Invalid values include "0836217462" (a xsd: Name cannot start with a number) or
"bol d, br ash" (commas are forbidden).

462

Datatype Reference Guide

Name
xsd:NCName — Unqualified names.

Derived from:
xsd:Name
Primary:
xsd:string
Known subtypes:

xsd: 1D, xsd:IDREF, xsd:ENTITY

Data parameters (facets):

enumer at i on, | engt h, maxLengt h, mi nLengt h, pattern.

Synopsis

<xsd: si npl eType name="NCNane" i d="NCNane">
<xsd:restriction base="xsd: Name" >
<xsd:pattern value="[\i-[:]][\c-[:]]*"/>
</xsd:restriction>
</ xsd: si npl eType>

Description
The lexical and value spaces of xsd: NCNane are the names (Nane) that conform to the definition

of a NCNane in the Recommendation "Namespacesin XML 1.0"—i.e., al the XML 1.0 names that
do not contain colons (":").

Restrictions

This datatype allows characters such as"-" and may need additional constraints to match the notion
of name in your favorite programming language or database system.

Example

Valid valuesinclude" Snoopy" ," CM5"," _1950- 10- 04_10- 00", or " bol d_brash".

Invalid valuesinclude" 1950- 10- 04: 10- 00" or " bol d: br ash" (colons are forbidden).

463

Datatype Reference Guide

Name
xsd:negativel nteger — Strictly negative integers of arbitrary length.

Derived from:
xsd:nonPositivel nteger
Primary:
xsd:decimal

Known subtypes:

none

Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="negati vel nteger" id="negativel nteger">
<xsd:restriction base="xsd: nonPositivelnteger">
<xsd: max| ncl usi ve val ue="-1"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description
The value space of xsd: negat i vel nt eger includes the set of all the strictly negative integers

(excluding zero), with no restriction of range. Its lexical space alows any number of insignificant
leading zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid values for xsd: negati vel nt eger include
"-123456789012345678901234567890","- 1", or " - 0000000000000000000005" .

Invalid valuesinclude" 0" or"-1.".

464

Datatype Reference Guide

Name
xsd:NMTOKEN — XML 1.0 name token (NMTOKEN).

Derived from:
xsd:token
Primary:
xsd:string
Known subtypes:

xsd:NMTOKENS

Data parameters (facets):

enumer at i on, | engt h, maxLengt h, mi nLengt h, pattern.

Synopsis

<xsd: si npl eType name="NMIOKEN' i d="NMIOKEN' >
<xsd:restriction base="xsd:token">
<xsd: pattern val ue="\c+"/>
</xsd:restriction>
</ xsd: si npl eType>

Description
The lexical and value spaces of xsd: NMIOKEN are the set of XML 1.0 "name tokens," i.e.,

tokens composed of characters, digits, ".", ":", "-", and the characters defined by Unicode, such as
"combining" or "extender".

Restrictions

Thistypeisusualy called a"token."

Example

Valid valuesinclude " Snoopy", " CM5", " 1950- 10- 04", or " 0836217462" .

Invalid values include " br ought cl assi cal nmusic tothe Peanuts strip" (spaces are
forbidden) or " bol d, br ash" (commas are forbidden).

465

Datatype Reference Guide

Name
xsd:NMTOKENS — List of XML 1.0 name token (NMTOKEN).

Derived from:

xsd:NMTOKEN
Primary:
none

Known subtypes:

none

Data parameters (facets):

enumer at i on, | engt h, maxLengt h, m nLengt h.

Synopsis

<xsd: si npl eType name="NMIOKENS" i d="NMIOKENS" >
<xsd:restriction>
<xsd: si npl eType>
<xsd:list>
<xsd: si npl eType>
<xsd:restriction base="xsd: NMTOKEN'/ >
</ xsd: si npl eType>
</xsd:list>
</ xsd: si npl eType>
<xsd: m nLengt h val ue="1"/>
</xsd:restriction>
</ xsd: si npl eType>

Description

xsd: NMTOKENS is derived by list from xsd: NMTOKEN and represents whitespace-separated lists
of XML 1.0 name tokens.

Restrictions

None.

Example

Valid valuesinclude " Snoopy", " CMS", " 1950- 10- 04", " 0836217462 0836217463", or
"brought cl assi cal nusictothe Peanuts strip" (notethat, in this case, the sentence
isconsidered asalist of words).

Invalid valuesinclude " br ought cl assi cal nmusictothe "Peanuts" strip" (quotesare
forbidden) or " bol d, br ash" (commas are forbidden).

466

Datatype Reference Guide

Name

xsd:nonNegativel nteger — Integers of arbitrary length positive or equal to zero.

Derived from:
xsd:integer

Primary:
xsd:decimal

Known subtypes:

xsd:unsignedL ong, xsd:positivel nteger

Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="nonNegati vel nteger" id="nonNegativel nteger">
<xsd:restriction base="xsd:integer">
<xsd: m nl ncl usi ve val ue="0"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description
The value space of xsd: nonNegat i vel nt eger includes the set of all the integers greater than

or equal to zero, with no restriction of range. Its lexical space allows any number of insignificant
leading zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid values include "+123456789012345678901234567890", "o,
" 0000000000000000000005" ,0r"2147483647" .

Invalid valuesinclude" 1. " or"-1.".

467

Datatype Reference Guide

Name

xsd:nonPositivel nteger — Integers of arbitrary length negative or equal to zero.

Derived from:
xsd:integer

Primary:
xsd:decimal

Known subtypes:

xsd:negativel nteger

Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="nonPositivel nteger" id="nonPositivelnteger">
<xsd:restriction base="xsd:integer">
<xsd: max| ncl usi ve val ue="0"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description
The value space of xsd: nonPosi ti vel nt eger includes the set of all the integers less than or

equal to zero, with no restriction of range. Itslexical space allows any number of insignificant leading
zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid values include "-123456789012345678901234567890", "o,
"-0000000000000000000005" ,0r " -2147483647" .

Invalid valuesinclude"-1." or"1."

468

Datatype Reference Guide

Name
xsd:normalizedString — Whitespace-replaced strings.

Derived from:
xsd:string

Primary:
xsd:string

Known subtypes:

xsd:token

Data parameters (facets):

enuner ati on, | engt h, maxLengt h, m nLengt h, pattern.

Synopsis

<xsd: si npl eType name="nornal i zedString" id="normalizedString">
<xsd:restriction base="xsd:string">
<xsd: whi t eSpace val ue="repl ace"/ >
</ xsd:restriction>
</ xsd: si npl eType>

Description

Thelexica spaceof xsd: nor mal i zedSt ri ng isunconstrained (any valid XML character may be
used), and its value space is the set of strings after whitespace replacement (i.e., after any occurrence
of #x9 (tab), #x A (linefeed), and #x D (carriage return) have been replaced by an occurrence of #x20
(space) without any whitespace collapsing).

Restrictions

Thisisthe only datatype that performswhitespace replacement without collapsing. When whitespaces
are not significant, xsd: t oken is preferred.

This datatype corresponds to neither the XPath function nor mal i ze- space() (which performs
whitespace trimming and collapsing) nor to the DOM "normalize" method (which is a merge of
adjacent text objects).

Example

The value of the element:

<title I ang="en">
Being a Dog Is
a Full-Time Job

</title>"

isthestring:" Bei ngaDoglsakFull-Ti neJob",whereal thewhitespaces have been replaced
by spacesif thetitle element isatypexsd: nornal i zedSt ri ng.

469

Datatype Reference Guide

Name
xsd:NOTATION — Emulation of the XML 1.0 feature.

Derived from:
xsd:anySimpleType

Primary:
xsd:NOTATION

Known subtypes:

none

Data parameters (facets):

enuner ati on, | engt h, maxLengt h, m nLengt h, pattern.

Synopsis

<xsd: si npl eType name="NOTATI ON' i d="NOTATI ON'>
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

For W3C XML Schema, the value and lexical spaces of xsd: NOTATI ON are references to notations
declared though the xsd: not at i on element. This element doesn't exist in Relax NG where this
datatype can be seen as a synonym for xsd: QNane with backward compatibility for W3C XML
Schema.

Restrictions

Notations are very seldom used in real-world applications.

One cannot use xsd: not at i on directly, but must derive it as shown in the Example.

Example

<xsd: schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenma" >

<xsd: not ati on nane="j peg" public="imge/]j peg"
systene"file:///usr/bin/xv'/>

<xsd: notation nanme="gif" public="inmage/gif"
systene"file:///usr/bin/xv'/>

<xsd: not ati on name="png" public="image/ png"
systene"file:///usr/bin/xv'/>

<xsd: not ati on name="svg" public="inmge/svg"
systenme"file:///usr/bin/xsmles"/>

<xsd: not ati on name="pdf" public="application/pdf"
systene"file:///usr/bin/acroread"/>

470

Datatype Reference Guide

<xsd: si npl eType name="gr aphi cal For mat " >
<xsd:restriction base="xsd: NOTATI ON'>
<xsd: enumer ati on val ue="j peg"/>
<xsd: enunerati on val ue="gif"/>
<xsd: enuner ati on val ue="png"/ >
<xsd: enuner ati on val ue="svg"/ >
<xsd: enuner ati on val ue="pdf"/ >
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: el ement nane="picture">
<xsd: conpl exType>
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: base64Bi nary" >
<xsd:attribute nane="type" type="graphical Formt"/>
</ xsd: ext ensi on>
</ xsd: si mpl eCont ent >
</ xsd: conpl exType>
</ xsd: el enment >
</ xsd: schenma>

471

Datatype Reference Guide

Name
xsd:positivel nteger — Strictly positive integers of arbitrary length.

Derived from:
xsd:nonNegativel nteger
Primary:
xsd:decimal

Known subtypes:

none

Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="positivelnteger" id="positivelnteger">
<xsd:restriction base="xsd: nonNegati vel nt eger">
<xsd: m nl ncl usi ve val ue="1"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description
The value space of xsd: posi tivel nt eger includes the set of the strictly positive integers

(excluding zero), with no restriction of range. Its lexical space alows any number of insignificant
leading zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid values include "123456789012345678901234567890", "1, or
" 0000000000000000000005" .

Invalid valuesinclude" 0" or" 1. ".

472

Datatype Reference Guide

Name
xsd:QName — Namespacesin XML qualified names.

Derived from:
xsd:anySimpleType
Primary:
xsd:QName

Known subtypes:

none

Data parameters (facets):

enumer at i on, | engt h, maxLengt h, mi nLengt h, pattern.

Synopsis

<xsd: si npl eType name="QNane" id="QNane">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

The lexical space of xsd: QNane is the qualified names per Namespace in XML, i.e., alocal name
(whichisaxsd: NCNane) with an optional prefix (itself axsd: NCNane), separated by acolon (":"),
where the prefix is declared a namespace prefix in the scope of the element carrying the value. Its
value space comprises the pairs (namespace URI, local name) in which the namespace URI isthe URI
associated to the prefix in the namespace declaration.

Restrictions

It isimpossible to apply a pattern on the namespace URI.

Theusage of QNanes in elementsand attributesiscontroversia sinceit creates adependency between
the content of the document and its markup. However, the official position of the W3C doesn't
discourage this practice.

Example

W3C XML Schema itself has already given us some examples of QNames. When we wrote
"<xsd:attribute nane="lang" type="xsd:|anguage"/>", the type attribute was
a xsd: QNane and its value was the tuple {"ht t p: // ww. wW3. or g/ 2001/ XM_.Schema",
"l anguage"} because the URI "http://www wW3. or g/ 2001/ XM_.Schema" had been
assigned to the prefix " xsd: " . If there had been no namespace declaration for this prefix, the type
attribute would have been considered invalid.

473

Datatype Reference Guide

Name
xsd:short — 32 bit signed integers.

Derived from:
xsd:int
Primary:
xsd:decimal
Known subtypes:
xsd:byte
Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="short" id="short">
<xsd:restriction base="xsd:int">
<xsd: m nl ncl usi ve val ue="-32768"/ >
<xsd: max| ncl usi ve val ue="32767"/ >
</ xsd:restriction>
</ xsd: si npl eType>

Description

Thevaluespaceof xsd: shor t istheset of common short integers (16 hits), i.e., theintegersbetween
-32768 and 32767 its lexical space allows any number of insignificant leading zeros.

Restrictions
The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid valuesinclude" - 32768"," 0", " - 0000000000000000000005", or " 32767".

Invalid valuesinclude” 32768" and" 1. ".

474

Datatype Reference Guide

Name
xsd:string — Any string.

Derived from:
xsd:anySimpleType
Primary:
xsd:string
Known subtypes:

xsd:normalizedString

Data parameters (facets):

enumer at i on, | engt h, maxLengt h, mi nLengt h, pattern.

Synopsis

<xsd: si npl eType name="string" id="string">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="preserve"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

The lexical and value spaces of xsd: st ri ng are the set of all possible strings composed of any
character allowed in a XML 1.0 document without any treatment done on whitespaces.

Restrictions

This is the only datatype that leaves all the whitespaces. When whitespaces are not significant,
xsd: t oken ispreferred.

Example

The value of the following element:

<title lang="en">
Being a Dog Is
a Full-Tine Job

</title>

isthefull string " Bei ng a Dog | s a Ful | - Ti me Job", with all itstabulations and CR/LF if the
titleedementisaxsd: string type.

475

Datatype Reference Guide

Name

xsd:time — Point in time recurring each day.
Derived from:

xsd:anySimpleType
Primary:

xsd:time
Known subtypes:

none

Data parameters (facets):

enuner ati on, nmaxExcl usive, nmaxlncl usive, m nExclusive, m nlnclusive,
pattern.

Synopsis

<xsd: si npl eType name="tinme" id="time">
<xsd:restriction base="xsd: anySi npl eType" >
<xsd: whi t eSpace val ue="col | apse" fixed="true"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

The lexical space of xsd: ti me isidentica to the time part of xsd: dat eTi me ("hh:mm:sg[Z|
(+|-)hh:mm]"); and its value spaceis the set of pointsin time recurring daily.

Restrictions

The period (one day) is fixed and no calendars other than the Gregorian are supported.

Example

Valid values include "21:32: 52", "21:32:52+02: 00", "19: 32: 527",
"19:32: 52+00: 00", 0r"21: 32: 52. 12679".

Invalid values include " 21: 32" (all the parts must be specified), " 25: 25: 10" (the hour part is
out of range), " - 10: 00: 00" (the hour part is out of range), or " 1: 20: 10" (al the digits must
be supplied).

476

Datatype Reference Guide

Name
xsd:token — Whitespace-replaced and collapsed strings.

Derived from:

xsd:normalizedString
Primary:
xsd:string

Known subtypes:

xsd:language, xsd:NMTOKEN, xsd:Name

Data parameters (facets):

enuner ati on, | engt h, maxLengt h, m nLengt h, pattern.

Synopsis

<xsd: si npl eType name="t oken" id="token">
<xsd:restriction base="xsd: nornalizedString">
<xsd: whi t eSpace val ue="col | apse"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description

Thelexical and value spacesof xsd: t oken arethe setsof all the strings after whitespace replacement
—i.e., after any occurrence of #x9 (tab), #x A (linefeed), and #x D (carriage return) is replaced by an
occurrence of #x20 (space) and collapsing (i.e., the contiguous occurrences of spaces are replaced by
asingle space, and leading and trailing spaces are removed).

More simply said, xsd: t oken is the most appropriate datatype to use for strings that do not care
about whitespaces.

Restrictions

The name xsd:token is misleading since whitespaces are allowed within xsd: t oken.
xsd: NMTOKEN is the type corresponding to what is usually called "tokens."

Example

The element:

<title I ang="en">
Being a Dog Is
a Full-Time Job

</title>

isavalid xsd: t oken and itsvalue isthe string " Bei ng a Dog | s a Ful | - Ti me Job", where
all the whitespaces have been replaced by spaces, leading and trailing spaces have been removed and
contiguous sequences of spaces have been replaced by single spaces.

477

Datatype Reference Guide

Name
xsd:unsignedByte — Unsigned value of 8 bits.

Derived from:
xsd:unsignedShort
Primary:
xsd:decimal

Known subtypes:

none

Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType nanme="unsi gnedByte" id="unsi gnedBtype">
<xsd:restriction base="xsd: unsi gnedShort">
<xsd: max| ncl usi ve val ue="255"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description
Thevauespaceof xsd: unsi gnedByt e istheintegers between 0 and 255, i.e., the unsigned values

that can fit in aword of 8 bits. Itslexical space allows an optional "+" sign and leading zeros before
the significant digits.

Restrictions

The lexical space does not allow values expressed in other numeration bases (such as hexadecimal,
octal, or binary).

The decimal point (even when followed only by insignificant zeros) is forbidden.
Example

Valid valuesinclude " 255" ," 0", " +0000000000000000000005" , or " 1" .

Invalid valuesinclude" - 1" and" 1. ".

478

Datatype Reference Guide

Name
xsd:unsignedint — Unsigned integer of 32 bits.

Derived from:
xsd:unsignedLong
Primary:
xsd:decimal

Known subtypes:

xsd:unsignedShort

Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="unsi gnedl nt" id="unsi gnedl nt">
<xsd:restriction base="xsd: unsi gnedLong" >
<xsd: max| ncl usi ve val ue="4294967295"/ >
</ xsd:restriction>
</ xsd: si npl eType>

Description
Thevauespaceof xsd: unsi gnedl nt istheintegersbetween 0 and 4294967295, i.e., theunsigned

valuesthat can fit in aword of 32 bits. Itslexical space allows an optional "+" sign and leading zeros
before the significant digits.

Restrictions
The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid valuesinclude" 4294967295"," 0", " +0000000000000000000005" ,0r " 1"

Invalid valuesinclude™ - 1" and" 1. ".

479

Datatype Reference Guide

Name
xsd:unsignedL ong — Unsigned integer of 64 hits.

Derived from:
xsd:nonNegativel nteger
Primary:
xsd:decimal

Known subtypes:

xsd:unsignedint

Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="unsi gnedLong" i d="unsi gnedLong" >
<xsd:restriction base="xsd: nonNegati vel nt eger">
<xsd: max| ncl usi ve val ue="18446744073709551615"/ >
</ xsd:restriction>
</ xsd: si npl eType>

Description
The value space of xsd: unsi gnedLong is the integers between 0 and 18446744073709551615,

i.e., the unsigned values that can fit in aword of 64 bits. Itslexical space allows an optional "+" sign
and leading zeros before the significant digits.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid values include " 18446744073709551615", "0", "+0000000000000000000005",
or"1".

Invalid valuesinclude™ - 1" and" 1. ".

480

Datatype Reference Guide

Name
xsd:unsignedShort — Unsigned integer of 16 bits.

Derived from:
xsd:unsignedint

Primary:
xsd:decimal

Known subtypes:

xsd:unsignedByte

Data parameters (facets):

enuner ation, fractionDi gits, maxExcl usi ve, maxl ncl usi ve, m nExcl usi ve,
m nl ncl usi ve,pattern,total Digits.

Synopsis

<xsd: si npl eType name="unsi gnedShort" id="unsi gnedShort">
<xsd:restriction base="xsd: unsi gnedl nt">
<xsd: max| ncl usi ve val ue="65535"/>
</ xsd:restriction>
</ xsd: si npl eType>

Description
The value space of xsd: unsi gnedShor t isthe integers between 0 and 65535, i.e., the unsigned

valuesthat can fit in aword of 16 bits. Itslexical space allows an optional "+" sign and leading zeros
before the significant digits.

Restrictions
The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid valuesinclude " 65535"," 0", " +0000000000000000000005", or " 1".

Invalid valuesinclude™ - 1" and" 1. " .

481

Glossary
A

ambiguous

C

chameleon design

character class
classical Perl character class

compositor

content model

D

datatype
deterministic

DOM

DSDL

A pattern is ambiguous when a fragment of an instance document may be
valid through several dternativesin its choi ce patterns. Relax NG allows
ambiguous patterns but they can be a problem for annotation and datatype
assigment.

Specifying a namespace in i ncl ude, ext er nal Ref or par ent Ref to
give a hamespace to grammars or patterns defined without a namespace is
known as "chameleon design." This is because the imported grammar or
pattern takes the new namespace like a chameleon takes the color of the
environment in which it is placed.

In a regular expression, a character class is an atom matching a set of
characters. Character classes may be classical Perl character classes, Unicode
character classes, or user-defined character classes.

A set of character classes designated by a single letter, for which upper- and
lowercases of the same letter are complementary (for instance, "\d" is all the
decimal digits, and "\D" is all the characters that are not decimal digits).

A compositor isapattern which can be used combine other patterns. Relax NG
has three basic compositors: gr oup, choi ce andi nt er| eave. A fourth
compositor, m xed, whichisashortcupfori nt er | eave with anembedded
t ext pattern.

A description of the structure of children elementsand text nodes (independent
of attributes). The content model is"simpl€e" when there is atext node but no
elements, "complex" when there are element nodes but no text, "mixed" when
there are text and element nodes, and "empty" when there are neither text nor
element nodes.

A term used by Relax NG to qualify both the content of a simple content
element or attribute. Datatypes should not be confused with XML 1.0 element
types, which are called element names by Relax NG.

A pattern is deterministic if a schema processor can always determine which
aternative to follow looking only at the current element under validation.
Unlike W3C XML Schema, Relax NG does not require deterministic patterns.

Document Object Model. An object-oriented model of XML documents,
including the definition of the API alowing its manipulation. The third
version of DOM (DOM Level 3) will include an APl named "Abstract
Schemas' to facilitate schema-guided editions of XML documents (see
http://ww. w3. or g/ TR/ DOV Level - 3- Cor e).

Document Schema Definition Languages (DSDL) is a project undertaken by
the 1SO (ISO/IEC JTC 1/SC 34/WG 1, to be precise) whose objective is
"to create a framework within which multiple validation tasks of different
types can be applied to an XML document in order to achieve more complete

482

Glossary

DTD

element

element type

empty content

F

facet

Grammar

Infoset

instance document

L

lexical space

local name

validation results than just the application of a single technology" (see
http://dsdl. org).

Document Type Definition. XML 1.0 DTDs are inherited from SGML, in
which rules were included that allow the customization of the markup itself
and played avery central role. Because of the syntactical rulesincludedintheir
DTDs, SGML applicationsneed aDTD to beableto read an SGML document.
One of the simplifications of XML is to state that a XML parser should be
able to read a document without needing a DTD. DTDs have therefore been
simplified over their SGML ancestors and remain thefirst incarnation of what
istoday called a XML Schemalanguage.

One of the basic type of nodes in the tree represented by a XML document.
An element is delimited by start and end tags. In the corresponding tree, an
element is a nonterminal node, which may have subnodes of type element,
character (text), and namespace and attribute, as well as comment and
processing instruction nodes.

Term usedinthe XML 1.0 Recommendation, which isequivalent to the notion
of element namesin W3C XML Schema and should not be confused with the
simple or complex datatype of an element.

An element that has neither child element nor text nodes (with or without
attributes).

A constraint added to the lexical or value space of a simple datatype of
the W3C XML Schema datatype system. The list of facets that can be used
depends on the simple datatype. W3C XML Schema's facets can be used as
parametersin Relax NG dat a patterns.

A grammar isa pattern which isacontainer for astart pattern and any number
of named patterns.

XML Information Set. A formal description of the information that may be
found in awell-formed XML document.

A XML document that is a candidate to be validated by a schema. Any well-
formed XML 1.0 document that conforms to the Namespaces in XML 1.0
Recommendation can be considered avalid or invalid instance document.

The set of al representations (after parsing and whitespace processing)
allowed for a simple datatype.

The name of acomponent in its namespace, i.e., the part of the qualified name
that comes after the namespace prefix.

483

Glossary

M

mixed content

N

Named pattern

namespace

pattern

piece

Q

quaified name

R

Recursive content models

recursive patterns

regular expression

RELAX

RELAX NG

The content of an element that contains both child element and text nodes.

Named patterns are globally defined in a grammar and may be refered from
anywhere in this grammar or in the children grammars.

A unique identifier that can be associated with a set of XML elements and
attributes. Thisidentifier isa URI, which is not required to point to an actual
resource but must "belong" to the author of these elements and attributes.
Sincethisfull URI can't beincluded in the name of each element and attribute,
a namespace prefix is assigned to the namespace URI through a namespace
declaration. This prefix is added to the local name of the elements and
attributes to form a qualified name. Namespaces are optional and elements
and attributes may have no namespaces attached.

Any part of aRelax NG schemathat can be matched against a set of attributes
and a sequence of elements and strings is a pattern. With the exception of
name classes, all parts (including the whole schema) of a Relax NG schema
are patterns.

Regular expressions (or patterns) are composed of pieces. Each pieceisitself
composed of an atom describing a condition on a substring and an optional
quantifier defining the expected number of occurrences of the atom.

The complete name of a component, including the prefix associated to its
target namespaceif oneis defined.

Recursive content models are content models in which elements can be
included directly or indirectly within themselves (such as XHTML "div" or
"gpan" elements).

Recursive patterns are named patterns including directly or indirectly
references to themselves. Relax NG only allows recursive patterns which
describe recursive content models, i.e. for which the definition of the named
pattern is isolated from its reference by an element pattern.

A syntax to express conditions on strings. The syntax used by the W3C
XML Schema for its patterns is very close to the syntax introduced by the
Perl programming language. A regular expression is composed of elementary
"pieces.”

A grammar-based XML Schema language developed by Murata Makoto
and published in March 2000 as a Japanese 1SO Standard (see http://
www. xml . gr. j p/rel ax).

A grammar-based XML Schema language resulting from a merger between
RELAX and TREX (seehtt p: //rel axng. or g).

484

Glossary

Russian doll design

S

SAX

Schematron

SGML

simple content

Simplification

special character

Start pattern

TREX

U

unambiguous

Unicode block
Unicode category

Unicode character class

URI

A schema where the definitions of elements and attributes are embedded
one in each other without using named patterns is often refered as having a
"Russian doll design".

Simple API for XML. A streaming event-based APl used between parsersand
applications. Its streaming nature means that pipelines of XML processing
may be created using SAX (seeht t p: / / www. saxpr oj ect . or g).

A rule-based XML Schemalanguage, developed by Rick Jelliffe, using X Path
expressions to describe validation rules (see htt p: / / ww. ascc. net/
xm / resour ce/ schemat ron/ schenmat ron. ht m).

Standard Generalized Markup Language. Created in 1980, the ancestor of
XML. XML was designed as a simplified subset of SGML to be used on the
Web.

An element has a simple content model when it has a child text node only
(and no subelements). A simple content element has asimple typeif it hasno
attributes, and it has a complex type if it has any attributes.

Action of simplifying and normalizing a Relax NG schema to remove the
syntactical variationsand use afew number of basi c patternsand name classes.
The simplification of Relax NG is described in its specification to.

A character that may be used as an atom after a "\" to accept a specific
character, either for convenience or because this character is interpreted
differently in the context of aregular expression.

When a grammar is used to validate an instance document, its start pattern is
matched against the root element of the instance document. When a grammar
is embedded in another grammar, the embedded grammar is replaced by its
start pattern during the simplication of the schema.

A grammar-based XML Schema language developed by James Clark (see
http://ww. t hai opensour ce. coni trex).

A pattern is unambiguous when any fragment of instance document which is
valid per this patternisonly valid for one of each alternatives. Relax NG does
not require unambiguous patterns but they can be considered a good practice
for annotation and datatype assigment.

A set of characters classified by their "localization" (Latin, Arabic, Hebrew,
Tibetan, and even Gothic or musical symbols).

A set of characters classified by their usage (letters, uppercase, digit,
punctuation, etc.).

A set of character classes defined based on the Unicode blocks and categories.

Uniform Resource ldentifier. Defined by the RFCs 2396 and 2732. URIswere
created to extend the notion of URL s (Uniform Resource L ocators) to include
abstract identifiers that do not necessarily need to "locate" aresource.

485

Glossary

URL

vaid

value space

W3C

well-formed

whitespace

X

XlInclude

XML

XPath

XSLT

Uniform Resource Locator, acommon identifier used on the Web. URLs are
absolute when the full path to the resource is indicated, and relative when a
partial path is given that needs to be evaluated in relation with a base URL.

A XML document that is well-formed and conforms to a schema (Relax NG,
DTD, W3C XML Schema, etc.) of some kind.

The set of al the possible values for a simple datatype, independent of their
actual representation in the instance documents.

World Wide Web Consortium. Originally created to settle HTML and HTTP
as de facto standards. The main specification body for the core specifications
of the World Wide Web and the keeper of the core XML specifications (see
http://ww. w3. or g).

An XML document that meets the conditions defined in the XML 1.0
Recommendeation: it must be readable without ambiguity. Syntax errors will
be detected by a XML parser without schema of any type.

Characters #x9 (tab), #xA (linefeed), #xD (carriage return), and #x20
(space). These are often used to indent the XML documents to give them a
more readable aspect, and are filtered by an operation named "whitespace
processing."

A W3C specification defining a general purpose inclusion mechanism for
XML documents (seeht t p: / / www. W3. or g/ TR/ xi ncl ude).

Extensible Markup Language. A subset of SGML created to be used on the
Web. Its core specification (XML 1.0) was published by the W3C in February
1998. New specifications have been added since this date, and the W3C
considersthat, with the addition of W3C XML Schema, the core specifications
are now complete.

A query language used to identify a set of nodes within a XML document.
Originally defined to beused with XSL T, itisalso used by other specifications
such as Schematron, X Pointer, W3C XML Schemaor XForms(seeht t p: / /
www. W3. or g/ TR/ xpat h).

Extensible Stylesheet Language Transformations. A programming language
specialized for the transformation of XML documents (see http://
www. W3. or g/ TR/ xsl t).

486

Part IV. Appendixes

How does Relax NG fit in the DSDL family?

Chapter 21. Appendix A: DSDL
What's the problem?

Although Relax NG has been started as a standal one project under the auspice of the Organization for
the Advancement of Structured Information Standards (OASIS), Relax NG is now been standardized
at the ISO (ISO/IEC JTC1 SC34 WGL to be precise) as a part of a multi-part standard named DSDL
(see http://dsdl.org).

Standing for "Document Schema Definition Languages', DSDL is a recognition that the validation
of XML documents is a subject too wide and complex to be covered by a single language and that
the industry needs a set of simple and dedicated languages to perform different validation tasks and a
framework in which these languages may be used together.

There are many different aspects in validating (or schematizing) XML documents which can be
categorized into:

» Validating the structure of the document, i.e. checking the imbrication of elements and attributes
(thisisthe domain in which Relax NG is so good).

» Validating the content of each text node and attribute independently of each other (this is where
datatype libraries are needed).

 Validating integrity constraints between different elements and attributes.
 Validating any other rules (often called business rules).

All over this book, we've seen how Relax NG can help usto cover an important part of thisissue, but
we've also seen that Relax NG issimple and efficient because it has been kept focussed in solving one
and only one problem and there are huge gaps which cannot be covered by Relax NG. For instance, if
aXML vocabulary includes mixed content models, you can't restrict the content of your documentsto
be ASCII only, nor can you define that the content of your "modeling” element must be spell checked.
Thegoa of DSDL isto provide meanstofill out these gapsand to cover the whole domain of document
validation.

DSDL can be seen as aframework and set of languages to check the quality of XML documents and
thisissue appearsto be crucia for any XML based application. Recent works such hasthe presentation
given by Simon Riggs at XML Europe 2003 or the work of |sabelle Boydens about the quality of big
databases have shown that about 10% of XML documents (or data records) contain at least an error
and this level of quality is unacceptable for many applications. DSDL could thus be a technology
which isjust indispensable for most of XML applications.

A multi part standard

DSDL isstill work in progress. It isamulti-part specification, each of the parts presenting a different
schema language (except part 1 which is an introduction and part 10 which is the description of the
framework itself).

Part 1: Overview

Thisisakind of road map describing DSDL itself and introducing each of the parts.

Part 2. Regular-grammar-based Validation

ThispartisRelax NG itself. Itisarewriting of the Relax NG Oasis Technical Committee specification
to meet the requirements of |SO publications. Itswording is more formal than the Oasis specification

488

Appendix A: DSDL

but the features of the language is the same and any Relax NG implementation conform the one of
these two documents should also be conform to the other.

DSDL Part 2 isnow a"Final Draft International Standard” (FDIS), i.e. an official 1SO standard.

Part 3: Rule-based Validation

This part will describe the next release of the rule based schema language known as Schematron.
Schematron has been defined by Rick Jelliffe and other contributors and its home page is http://
www.ascc.het/xml/schematron/.

Thecurrent version of Schematronisalanguageto express sets of rules as X Path expressions (or mode
accurately as XSLT expressions since XSLT functions such as docunent () are also supported in
XPath expressions).

Without entering in the details of the language, let's say that a Schematron schemais composed of set
of rules named "patterns’ (these patterns shouldn't be confused with Relax NG patterns). Each pattern
includes one or more rules. Each rules sets the context nodes under which tests will be performed and
each testsis performed either asassert orasreport.Anassert isatest which raisesan error
if itisnot verified whilear eport isatest which raises an error if it is specified.

A partial schemafor our library could be:

<sch: schema xm ns:sch="http://ww. ascc. net/xm /schenmatron">
<sch:title>Schematron Schema for |ibrary</sch:title>
<sch: pattern>
<sch:rule context="/">

<sch:assert test="library">The docunent el enent should be "library".</sch:a

</sch:rul e>
<sch:rule context="/Ilibrary">

<sch: assert test="book">There should be at |east a book!</sch:assert>
<sch:assert test="not(@)">No attribute for library, please!</sch:assert>

</sch:rul e>
<sch:rul e context="/1Iibrary/ book">

<sch:report test="foll ow ng-sibling::book/ @d=@d">Duplicated ID for this b
<sch:assert test="@d=concat('_', isbn)">The id should be derived fromthe

</sch:rul e>
<sch:rule context="/Ilibrary/*">

<sch: assert test="self::book or self::author or self::character">This el enel

</ sch:rul e>
</ sch: pattern>
</ sch: schena>

We seefrom that simple example that it would be very verboseto write afull schemawith Schematron
since that would mean writing arule for each element and in this rule writing al the individual tests
checking the content model and eventually the relative order between children elements. We see al'so
that it cannot be beaten to express what is oftent called business rules such as:

<sch:assert test="@d=concat('_', isbn)">The id should be derived fromthe |ISB

which checks that the i d attribute of a book should be derived from its ISBN element by adding a
leading underscore.

DSDL Part 3, the next version of Schematron should keep this structure and add still more power by
allowing to use not only XPath 1.0 expressions but also expressions taken from other languages such
as EXSLT (astandard extension library for XSLT), XPath 2.0, XSLT 2.0 and even XQuery 1.0.

489

Appendix A: DSDL

Part 4: Selection of Validation Candidates

Although Relax NG providesaway to write and combine modular schemas, it is often the casethat you
need to validate a composite document against existing schemas which can be written using different
languages: you may want for instanceto validate XHTML documentswith embedded RDF statements.
In this case, you need to split your documents into pieces and validate each of these pieces against
its own schema.

The first contribution to Part 4 has been an ISO specification known as "Relax Namespace" by
Murata Makoto. This contribution has been followed by a couple of others, namely MNS by James
Clark and "Namespace Switchboard" by Rick Jelliffe. The latest contribution, "Namespace Routing
Language" (NRL) has been made by James Clark in June 2003 and builds on the previous proposals.
Althoughitistoo early to say if NRL will become DSDL Part 4, it will most likely influenceit heavily.
NRL isimplemented in the latest versions of Jing.

Thefirst example given in the specification (http://www.thai opensource.com/relaxng/nrl.html) shows
how NRL can be used to validate a SOAP message containing one or more XHTML document:

<rules xm ns="http://ww.thai opensource. com val i date/nrl">

<nanespace ns="http://schenmas. xnm soap. or g/ soap/ envel ope/ " >
<val i dat e schema="soap- envel ope. xsd"/ >

</ nanespace>

<nanespace ns="http://ww. w3. org/ 1999/ xhtnm ">
<val i dat e schema="xhtm .rng"/>

</ nanespace>

</rul es>

This would split the SOAP messages into its envelope validated against the W3C XML Schema
schema "soap-envelope.xsd" and one or more XHTML documents found in the body of the SOAP
message which will be validated against the Relax NG schema "xhtml.rng".

More advanced features are available including namespace wildcards, validation modes, open
schemas, transparent namespaces and NRL seems to be able to handle the most complex cases until
the basic assumption that instance documents may be split according to the namespaces of its elements
and attributes is met.

Part 5: Datatypes

The goal of this part is to define a set of primitive datatypes with their constraining facets and the
mechanisms to derive new datatypes from this set and it is fair to say that it's probably the least
advanced and more complex part of DSDL. While people agree on what shouldn't bedoneit isdifficult
to go beyond the criticism of existing systems such as W3C XML Schema datatypes and propose
something better.

Some interesting ideas have been raised during the last DSDL meeting in May 2003 which kind of
converge with threads discussed on the XML-DEV mailing list in June and we may hope that this
should lead to something more constructive in the next DSDL meeting in December 2003.

Part 6: Path-based Integrity Constraints

The goal of this part is basically to define a feature covering W3C XML Schema's xs:unique, xs:key
and xs:keyref. Part 6 hasn't seen any contribution yet.

Part 7. Character Repertoire Validation

This part will allow to specify which characters may be used in specific elements and attributes
or within entire XML documents. The W3C note "A Notation for Character Collections for the

490

Appendix A: DSDL

WWW" (http://www.w3.org/TR/charcol/) is used as an input for Part 7 and the first contribution
is "Character Repertoire Validation for XML" (CRVX) (http://dret.net/netdret/docs/wilde-crvx-
www2003.html).

A simple example of CRVX is:

<crvx xm ns="http://dret.net/xm ns/crvx10">
<restrict structure="enanme anane pitarget" charrep="\p{lsBasicLatin}"/>
<restrict structure="enanme anane" charrep="["0-9]"/>

</ crvx>

In this proposal, the structure attribute contains identifiers for "element names' (ename), "attribute
names (aname)", Processing Instruction targets "pitarget” and other XML constructions including
element and attribute contents. This example would thusimpose that element and attribute names and
Processing Instruction targets are all using characters from the BasicL atin block and that element and
attribute names do not use digits.

There is some overlap between Part 7 and other schema languages such as Part 2 (Relax NG) since
you'd just need to take care that your names match the rules defined there and can use dat a pattern
to check the content of attributes and simple content elements. However, Part 7 gives you a more
focused mean of expressing these rulesindependently of other schemasand isfilling somegapsin such
constraints: Relax NG cannot express such constrai nts on name classes nor on mixed content el ements.

Part 8: Declarative Document Architectures

This part is still the most mysterious to me. The idea hereisto alow to add information to documents
(such as default values) depending on the structure of the document and the only input considered
for Part 8 so far is known as "Architectural Forms', an old promising-but-never-used-that-much
technology.

Part 9: Namespace and Datatype-aware DTDs

There were plenty of good thingsin DTDs, especially in SGML DTDs and many people are still using
them and do challenge the need to put them to trash and define new schema languages to support
namespaces and datatypes. DSDL Part 9 is for these people who would like to rely on years of usage
of DTDs without loosing all of the goodies of newer schema languages. Despite a burst of discussion
in April 2002, this part hasn't really advanced yet.

Part 10: Validation Management

Last but not least, Part 10 (formerly known as Part 1: Interoperability Framework) isthe cement which
will let you use together the different parts from DSDL together with external tools such as XSLT,
W3C XML Schemaor your favorite spell checker to come back to an example givenintheintroduction
to this chapter.

Here again, different contributions have been made, including my own "XML Validation
Interoperability Framework" XVIF and Rick Jelliffe's Schemachine and the latest contribution is
know (and implemented) as "xvif/outie" (see http://downl oads.xmlschemata.org/python/xvif/outie/
about.xhtml).

A simple example of axvif/outie document is:

<?xm version="1.0" encodi ng="utf-8"?>Decl arative Docunent Architectures

491

Appendix A: DSDL

<f r amewor k>

<rul e>
<i nst ance>
<transformtransformati on="normalize.xslt"/>
</instance>
<assert>
<i sValid schema="schema.rng"/>
<isValid schema="schema. sch"/ >
</ assert >
</rul e>

</ f r amewor k>

This document is defining a rule to be checked on the result of the XSLT transformation
"normalize.xdt" applied on the instance document and this rule is that the result of the transformation
must be valid per both "schema.rng" and "schema.sch”.

What

DSDL should bring you

As a Relax NG user, DSDL should bring you all what's Relax NG has left behind to focus on the
validation of the structure of XML documents and even more;

You are already using Part 2 (Relax NG)
Part 3 (Schematron) gives you the ability to add highly flexible "business rules' to your schemas.

Part 4 (Selection of Validation Candidates) | etsyou write and reuse schemaswritten in any language
and combine them to validate composite documents.

Part 5 (Datatypes) should provide a better alternative to W3C XML Schema datatypes.

Part 6 (Path-based Integrity Constraints) will let you specify integrity constraints between elements
and attributes.

Part 7 (Character repertoire) will let you specify which characters may be used in your documents.

Part 8 (Declarative Document Architectures) will let you add the information which had been kept
implicit to your documents before validation.

Part 9 (Namespace and Datatype-aware DTDs) will let you upgrade and reuse your DTDs in the
context of newer applications.

Part 10 (Validation Management) will let you do all this together and plug other transformation
and validation tools.

If you like Relax NG, | am sure that you'll enjoy the other members of the DSDL family. They share
the same principles of focus to solving a specific issue and this focus keeps them both powerful and
easy to use.

492

	Relax NG XML
	Table of Contents
	Part I. Preface
	Chapter 1. Preface
	Who Should Read This Book?
	Who Should Not Read This Book?
	Organization of this book
	Acknowledgments
	Powered by WikiML
	By the way, why is it called Relax NG?

	Part II. User Guide
	Chapter 2. Chapter 1: Relax NG In Perspective
	XML is about diversity
	XML is about the independence of documents over applications
	There is more than one aspect in validation
	Relax NG is the best tool to validate the structure of XML documents
	Unexpected uses of Relax NG
	Relax NG as a pivot format
	Why should anyone use any other schema language?

	Chapter 3. Chapter 2: Simple Is Beautiful
	XML Infoset
	Different types of schema languages
	A simple example:
	A strong mathematical background
	And a strong experimental basis
	Patterns and only patterns

	Chapter 4. Chapter 3: First Schema
	Getting started
	Our first patterns
	<text/>
	<attribute/>
	<element/>
	<optional/>
	<oneOrMore/>
	<zeroOrMore/>

	Complete schema
	Constraining number of occurrences
	Russian doll schemas

	Chapter 5. Chapter 4: Non XML Syntax
	Getting started
	Our first compact patterns
	text
	attribute
	Element
	optional
	oneOrMore
	zeroOrMore

	Full schema
	XML or compact?

	Chapter 6. Chapter 5: Flattening Our First Schema
	Why do we need flat schemas?
	Defining named patterns
	Referencing named patterns
	Grammar and start elements
	All together
	Non restrictions
	Recursive models
	Escaping named patterns identifiers in the compact syntax

	Chapter 7. Chapter 6: More Patterns
	The group pattern
	The interleave pattern
	The choice pattern
	Pattern compositions
	The lack of order in a schema may be a source of information in instances
	Text and empty patterns, whitespaces and mixed contents
	Why is it called interleave instead of "unorderedGroup"?
	Ordered mixed content models
	Principal restriction related to interleave
	Missing pattern

	Chapter 8. Chapter 7: Constraining Text Values
	Values
	Co-occurrence constraints
	Enumerations
	Whitespaces and native datatypes
	Beware of string datatypes in attributes
	Rule of thumb about string datatypes
	Using different types in each value
	Exclusions
	Lists
	Data versus text

	Chapter 9. Chapter 8: Datatype Libraries
	W3C XML Schema type library
	The datatypes
	String datatypes
	URIs
	Qualified names
	Binary string-encoded datatypes
	Numeric datatypes
	Date and time formats
	Examples

	The facets

	DTD Compatibility
	Which library should we use?
	Native types versus W3C XML Schema datatypes
	DTD versus W3C XML Schema datatypes

	Chapter 10. Using Regular Expressions to Specify Simple Datatypes
	The Swiss Army Knife
	The Simplest Possible Pattern facets
	Quantifying
	More Atoms
	Special Characters
	Wildcard
	Character Classes
	Classical Perl character classes
	Unicode character classes
	User-defined character classes

	Oring and Grouping

	Common Patterns
	String Datatypes
	Unicode blocks
	Counting words
	URIs

	Numeric and Float Types
	Leading zeros
	Fixed format

	Datetimes
	Time zones

	Chapter 11. Chapter 10: Creating Building Blocks
	External references
	With Russian doll schemas
	With flat schemas
	Embedded grammars
	Reference to a pattern in the parent grammar

	Merging grammars
	Merging without redefinition
	Merging and replacing definitions
	Combining definitions
	Combining by choice
	Combining by interleave

	Why can't we combine definitions by group?

	A real world example: XHTML 2.0
	Other options
	A possible use case
	XML tools
	Text tools

	Chapter 12. Chapter 11: Namespaces
	A ten minutes guide to XML namespaces
	The two challenges of namespaces
	Namespace declarations
	Using default namespaces
	Using prefixes

	Accepting "foreign namespaces"
	Constructing our wildcard
	Using our wildcard
	Where should we allow foreign nodes?
	A couple of traps to avoid
	Adding foreign nodes through combination

	Namespaces and building blocks, chameleon design
	Back to XHTML 2.0
	Applicability to our library
	Good or evil?

	Chapter 13. Chapter 12: Writing Extensible Schemas
	Extensible schemas
	Fixed result
	Do provide a grammar and start element
	Provide a fine enough granularity
	Prefer to define named patterns for content rather than for elements

	Free format
	Be cautious about attributes
	Be liberal on the relative order between children elements
	Don't be shy with containers

	What about restricting existing schemas?

	The case for Open Schemas
	More name classes

	Extensible And Open?

	Chapter 14. Chapter 13: Annotating Schemas
	Common principles for annotating Relax NG schemas
	Annotation using the XML syntax
	Annotations using the compact syntax
	Grammar annotations
	Initial annotations
	Following annotations
	All together
	When initial annotations turn into following annotations

	Annotating Groups of Definitions
	Alternatives and Workarounds
	Why reinvent XML 1.0 comments and PIs?
	Annotation of the value and param patterns

	Documentation
	Comments
	Relax NG DTD Compatibility Comments
	XHTML Annotations
	DocBook Annotations
	Dublin Core Annotations
	SVG Annotations
	RDDL Annotations

	Annotation for applications
	Annotations for pre-processing
	Annotations for conversion
	Annotations to generate DTDs
	Annotations to generate W3C XML Schema schemas
	Schema Adjunct Framework

	Annotations for extension
	Embedded Schematron rules
	XVIF

	Chapter 15. Chapter 14: Generating Relax NG schemas
	Examplotron: the instance document is its own schema
	Ten minutes guide to Examplotron
	Use scenarios

	Literate Programming
	Out of the box
	Adding bells and whistles for RDDL

	UML
	Spreadsheets

	Chapter 16. Chapter 15: Simplification And Restrictions
	Simplification
	Whitespace and attribute normalization and inheritance
	Retrieval of external schemas
	Name classes normalization
	Pattern normalization
	First set of constraints
	Grammar merge
	Schema flattening
	Final cleanup

	Restrictions
	Constraints on the attributes
	Example: content model of attributes
	Example: duplication of attributes
	Example: name class overlap

	Constraints on lists
	Example: list and interleave

	Constraints on except patterns
	Constraints on start patterns.
	Constraints on content models
	Limitations on interleave.
	Example: at most one text pattern in interleave

	Chapter 17. Chapter 16: Determinism and Datatype Assignment
	What are we talking about?
	Ambiguity versus determinism
	Different types of ambiguities
	Regular expression ambiguities
	Ambiguous regular hedge grammars
	Name class ambiguity
	Ambiguous datatypes

	The downsides of ambiguous and non deterministic content models
	Instance annotations
	Compatibility with W3C XML Schema

	Some ideas to make disambiguation easier
	Generalized except pattern
	Explicit disambiguation rules
	Accepting ambiguity

	Part III. Short reference guide
	Chapter 18. Elements reference guide
	Elements
	anyName
	attribute
	choice (in the context of a name-class)
	choice (in the context of a pattern)
	data
	define
	div (in the context of a grammar-content)
	div (in the context of a include-content)
	element
	empty
	except (in the context of a except-name-class)
	except (in the context of a pattern)
	externalRef
	grammar
	group
	include
	interleave
	list
	mixed
	name
	notAllowed
	nsName
	oneOrMore
	optional
	param
	parentRef
	ref
	start
	text
	value
	zeroOrMore

	Chapter 19. Compact syntax reference guide
	Introduction
	EBNF production quick reference
	"""..."""
	"..."
	'''...'''
	'...'
	(nameClass)
	(pattern)
	*-nameClass
	-nameClass
	-pattern
	CName
	QuotedIdentifier
	Top level
	assignMethod
	attribute
	datatypeName
	datatypeName literal
	datatypeName param exceptPattern
	datatypes
	decl
	default namespace
	div
	element
	empty
	external
	grammar
	grammarContent
	identifier
	identifier assignMethod pattern
	identifierOrKeyword
	include
	includeContent
	inherit
	keyword
	list
	literal
	literalSegment
	mixed
	name
	nameClass
	nameClass|nameClass
	namespace
	namespaceURILiteral
	notAllowed
	nsName exceptNameClass
	param
	parent
	pattern
	pattern&pattern
	pattern*
	pattern+
	pattern,pattern
	pattern?
	pattern|pattern
	start
	text

	Chapter 20. Datatype Reference Guide
	xsd:anyURI
	xsd:base64Binary
	xsd:boolean
	xsd:byte
	xsd:date
	xsd:dateTime
	xsd:decimal
	xsd:double
	xsd:duration
	xsd:ENTITIES
	xsd:ENTITY
	xsd:float
	xsd:gDay
	xsd:gMonth
	xsd:gMonthDay
	xsd:gYear
	xsd:gYearMonth
	xsd:hexBinary
	xsd:ID
	xsd:IDREF
	xsd:IDREFS
	xsd:int
	xsd:integer
	xsd:language
	xsd:long
	xsd:Name
	xsd:NCName
	xsd:negativeInteger
	xsd:NMTOKEN
	xsd:NMTOKENS
	xsd:nonNegativeInteger
	xsd:nonPositiveInteger
	xsd:normalizedString
	xsd:NOTATION
	xsd:positiveInteger
	xsd:QName
	xsd:short
	xsd:string
	xsd:time
	xsd:token
	xsd:unsignedByte
	xsd:unsignedInt
	xsd:unsignedLong
	xsd:unsignedShort

	Glossary

	Part IV. Appendixes
	Chapter 21. Appendix A: DSDL
	What's the problem?
	A multi part standard
	Part 1: Overview
	Part 2: Regular-grammar-based Validation
	Part 3: Rule-based Validation
	Part 4: Selection of Validation Candidates
	Part 5: Datatypes
	Part 6: Path-based Integrity Constraints
	Part 7: Character Repertoire Validation
	Part 8: Declarative Document Architectures
	Part 9: Namespace and Datatype-aware DTDs
	Part 10: Validation Management

	What DSDL should bring you

