123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697 |
- /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
- /* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
- /* Smart pointer managing sole ownership of a resource. */
- #ifndef mozilla_UniquePtr_h
- #define mozilla_UniquePtr_h
- #include "mozilla/Assertions.h"
- #include "mozilla/Attributes.h"
- #include "mozilla/Compiler.h"
- #include "mozilla/Move.h"
- #include "mozilla/Pair.h"
- #include "mozilla/TypeTraits.h"
- namespace mozilla {
- template<typename T> class DefaultDelete;
- template<typename T, class D = DefaultDelete<T>> class UniquePtr;
- } // namespace mozilla
- namespace mozilla {
- namespace detail {
- struct HasPointerTypeHelper
- {
- template <class U> static double Test(...);
- template <class U> static char Test(typename U::pointer* = 0);
- };
- template <class T>
- class HasPointerType : public IntegralConstant<bool, sizeof(HasPointerTypeHelper::Test<T>(0)) == 1>
- {
- };
- template <class T, class D, bool = HasPointerType<D>::value>
- struct PointerTypeImpl
- {
- typedef typename D::pointer Type;
- };
- template <class T, class D>
- struct PointerTypeImpl<T, D, false>
- {
- typedef T* Type;
- };
- template <class T, class D>
- struct PointerType
- {
- typedef typename PointerTypeImpl<T, typename RemoveReference<D>::Type>::Type Type;
- };
- } // namespace detail
- /**
- * UniquePtr is a smart pointer that wholly owns a resource. Ownership may be
- * transferred out of a UniquePtr through explicit action, but otherwise the
- * resource is destroyed when the UniquePtr is destroyed.
- *
- * UniquePtr is similar to C++98's std::auto_ptr, but it improves upon auto_ptr
- * in one crucial way: it's impossible to copy a UniquePtr. Copying an auto_ptr
- * obviously *can't* copy ownership of its singly-owned resource. So what
- * happens if you try to copy one? Bizarrely, ownership is implicitly
- * *transferred*, preserving single ownership but breaking code that assumes a
- * copy of an object is identical to the original. (This is why auto_ptr is
- * prohibited in STL containers.)
- *
- * UniquePtr solves this problem by being *movable* rather than copyable.
- * Instead of passing a |UniquePtr u| directly to the constructor or assignment
- * operator, you pass |Move(u)|. In doing so you indicate that you're *moving*
- * ownership out of |u|, into the target of the construction/assignment. After
- * the transfer completes, |u| contains |nullptr| and may be safely destroyed.
- * This preserves single ownership but also allows UniquePtr to be moved by
- * algorithms that have been made move-safe. (Note: if |u| is instead a
- * temporary expression, don't use |Move()|: just pass the expression, because
- * it's already move-ready. For more information see Move.h.)
- *
- * UniquePtr is also better than std::auto_ptr in that the deletion operation is
- * customizable. An optional second template parameter specifies a class that
- * (through its operator()(T*)) implements the desired deletion policy. If no
- * policy is specified, mozilla::DefaultDelete<T> is used -- which will either
- * |delete| or |delete[]| the resource, depending whether the resource is an
- * array. Custom deletion policies ideally should be empty classes (no member
- * fields, no member fields in base classes, no virtual methods/inheritance),
- * because then UniquePtr can be just as efficient as a raw pointer.
- *
- * Use of UniquePtr proceeds like so:
- *
- * UniquePtr<int> g1; // initializes to nullptr
- * g1.reset(new int); // switch resources using reset()
- * g1 = nullptr; // clears g1, deletes the int
- *
- * UniquePtr<int> g2(new int); // owns that int
- * int* p = g2.release(); // g2 leaks its int -- still requires deletion
- * delete p; // now freed
- *
- * struct S { int x; S(int x) : x(x) {} };
- * UniquePtr<S> g3, g4(new S(5));
- * g3 = Move(g4); // g3 owns the S, g4 cleared
- * S* p = g3.get(); // g3 still owns |p|
- * assert(g3->x == 5); // operator-> works (if .get() != nullptr)
- * assert((*g3).x == 5); // also operator* (again, if not cleared)
- * Swap(g3, g4); // g4 now owns the S, g3 cleared
- * g3.swap(g4); // g3 now owns the S, g4 cleared
- * UniquePtr<S> g5(Move(g3)); // g5 owns the S, g3 cleared
- * g5.reset(); // deletes the S, g5 cleared
- *
- * struct FreePolicy { void operator()(void* p) { free(p); } };
- * UniquePtr<int, FreePolicy> g6(static_cast<int*>(malloc(sizeof(int))));
- * int* ptr = g6.get();
- * g6 = nullptr; // calls free(ptr)
- *
- * Now, carefully note a few things you *can't* do:
- *
- * UniquePtr<int> b1;
- * b1 = new int; // BAD: can only assign another UniquePtr
- * int* ptr = b1; // BAD: no auto-conversion to pointer, use get()
- *
- * UniquePtr<int> b2(b1); // BAD: can't copy a UniquePtr
- * UniquePtr<int> b3 = b1; // BAD: can't copy-assign a UniquePtr
- *
- * (Note that changing a UniquePtr to store a direct |new| expression is
- * permitted, but usually you should use MakeUnique, defined at the end of this
- * header.)
- *
- * A few miscellaneous notes:
- *
- * UniquePtr, when not instantiated for an array type, can be move-constructed
- * and move-assigned, not only from itself but from "derived" UniquePtr<U, E>
- * instantiations where U converts to T and E converts to D. If you want to use
- * this, you're going to have to specify a deletion policy for both UniquePtr
- * instantations, and T pretty much has to have a virtual destructor. In other
- * words, this doesn't work:
- *
- * struct Base { virtual ~Base() {} };
- * struct Derived : Base {};
- *
- * UniquePtr<Base> b1;
- * // BAD: DefaultDelete<Base> and DefaultDelete<Derived> don't interconvert
- * UniquePtr<Derived> d1(Move(b));
- *
- * UniquePtr<Base> b2;
- * UniquePtr<Derived, DefaultDelete<Base>> d2(Move(b2)); // okay
- *
- * UniquePtr is specialized for array types. Specializing with an array type
- * creates a smart-pointer version of that array -- not a pointer to such an
- * array.
- *
- * UniquePtr<int[]> arr(new int[5]);
- * arr[0] = 4;
- *
- * What else is different? Deletion of course uses |delete[]|. An operator[]
- * is provided. Functionality that doesn't make sense for arrays is removed.
- * The constructors and mutating methods only accept array pointers (not T*, U*
- * that converts to T*, or UniquePtr<U[]> or UniquePtr<U>) or |nullptr|.
- *
- * It's perfectly okay for a function to return a UniquePtr. This transfers
- * the UniquePtr's sole ownership of the data, to the fresh UniquePtr created
- * in the calling function, that will then solely own that data. Such functions
- * can return a local variable UniquePtr, |nullptr|, |UniquePtr(ptr)| where
- * |ptr| is a |T*|, or a UniquePtr |Move()|'d from elsewhere.
- *
- * UniquePtr will commonly be a member of a class, with lifetime equivalent to
- * that of that class. If you want to expose the related resource, you could
- * expose a raw pointer via |get()|, but ownership of a raw pointer is
- * inherently unclear. So it's better to expose a |const UniquePtr&| instead.
- * This prohibits mutation but still allows use of |get()| when needed (but
- * operator-> is preferred). Of course, you can only use this smart pointer as
- * long as the enclosing class instance remains live -- no different than if you
- * exposed the |get()| raw pointer.
- *
- * To pass a UniquePtr-managed resource as a pointer, use a |const UniquePtr&|
- * argument. To specify an inout parameter (where the method may or may not
- * take ownership of the resource, or reset it), or to specify an out parameter
- * (where simply returning a |UniquePtr| isn't possible), use a |UniquePtr&|
- * argument. To unconditionally transfer ownership of a UniquePtr
- * into a method, use a |UniquePtr| argument. To conditionally transfer
- * ownership of a resource into a method, should the method want it, use a
- * |UniquePtr&&| argument.
- */
- template<typename T, class D>
- class UniquePtr
- {
- public:
- typedef T ElementType;
- typedef D DeleterType;
- typedef typename detail::PointerType<T, DeleterType>::Type Pointer;
- private:
- Pair<Pointer, DeleterType> mTuple;
- Pointer& ptr() { return mTuple.first(); }
- const Pointer& ptr() const { return mTuple.first(); }
- DeleterType& del() { return mTuple.second(); }
- const DeleterType& del() const { return mTuple.second(); }
- public:
- /**
- * Construct a UniquePtr containing |nullptr|.
- */
- constexpr UniquePtr()
- : mTuple(static_cast<Pointer>(nullptr), DeleterType())
- {
- static_assert(!IsPointer<D>::value, "must provide a deleter instance");
- static_assert(!IsReference<D>::value, "must provide a deleter instance");
- }
- /**
- * Construct a UniquePtr containing |aPtr|.
- */
- explicit UniquePtr(Pointer aPtr)
- : mTuple(aPtr, DeleterType())
- {
- static_assert(!IsPointer<D>::value, "must provide a deleter instance");
- static_assert(!IsReference<D>::value, "must provide a deleter instance");
- }
- UniquePtr(Pointer aPtr,
- typename Conditional<IsReference<D>::value,
- D,
- const D&>::Type aD1)
- : mTuple(aPtr, aD1)
- {}
- // If you encounter an error with MSVC10 about RemoveReference below, along
- // the lines that "more than one partial specialization matches the template
- // argument list": don't use UniquePtr<T, reference to function>! Ideally
- // you should make deletion use the same function every time, using a
- // deleter policy:
- //
- // // BAD, won't compile with MSVC10, deleter doesn't need to be a
- // // variable at all
- // typedef void (&FreeSignature)(void*);
- // UniquePtr<int, FreeSignature> ptr((int*) malloc(sizeof(int)), free);
- //
- // // GOOD, compiles with MSVC10, deletion behavior statically known and
- // // optimizable
- // struct DeleteByFreeing
- // {
- // void operator()(void* aPtr) { free(aPtr); }
- // };
- //
- // If deletion really, truly, must be a variable: you might be able to work
- // around this with a deleter class that contains the function reference.
- // But this workaround is untried and untested, because variable deletion
- // behavior really isn't something you should use.
- UniquePtr(Pointer aPtr,
- typename RemoveReference<D>::Type&& aD2)
- : mTuple(aPtr, Move(aD2))
- {
- static_assert(!IsReference<D>::value,
- "rvalue deleter can't be stored by reference");
- }
- UniquePtr(UniquePtr&& aOther)
- : mTuple(aOther.release(), Forward<DeleterType>(aOther.get_deleter()))
- {}
- MOZ_IMPLICIT
- UniquePtr(decltype(nullptr))
- : mTuple(nullptr, DeleterType())
- {
- static_assert(!IsPointer<D>::value, "must provide a deleter instance");
- static_assert(!IsReference<D>::value, "must provide a deleter instance");
- }
- template<typename U, class E>
- MOZ_IMPLICIT
- UniquePtr(UniquePtr<U, E>&& aOther,
- typename EnableIf<IsConvertible<typename UniquePtr<U, E>::Pointer,
- Pointer>::value &&
- !IsArray<U>::value &&
- (IsReference<D>::value
- ? IsSame<D, E>::value
- : IsConvertible<E, D>::value),
- int>::Type aDummy = 0)
- : mTuple(aOther.release(), Forward<E>(aOther.get_deleter()))
- {
- }
- ~UniquePtr() { reset(nullptr); }
- UniquePtr& operator=(UniquePtr&& aOther)
- {
- reset(aOther.release());
- get_deleter() = Forward<DeleterType>(aOther.get_deleter());
- return *this;
- }
- template<typename U, typename E>
- UniquePtr& operator=(UniquePtr<U, E>&& aOther)
- {
- static_assert(IsConvertible<typename UniquePtr<U, E>::Pointer,
- Pointer>::value,
- "incompatible UniquePtr pointees");
- static_assert(!IsArray<U>::value,
- "can't assign from UniquePtr holding an array");
- reset(aOther.release());
- get_deleter() = Forward<E>(aOther.get_deleter());
- return *this;
- }
- UniquePtr& operator=(decltype(nullptr))
- {
- reset(nullptr);
- return *this;
- }
- typename AddLvalueReference<T>::Type operator*() const { return *get(); }
- Pointer operator->() const
- {
- MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr");
- return get();
- }
- explicit operator bool() const { return get() != nullptr; }
- Pointer get() const { return ptr(); }
- DeleterType& get_deleter() { return del(); }
- const DeleterType& get_deleter() const { return del(); }
- MOZ_MUST_USE Pointer release()
- {
- Pointer p = ptr();
- ptr() = nullptr;
- return p;
- }
- void reset(Pointer aPtr = Pointer())
- {
- Pointer old = ptr();
- ptr() = aPtr;
- if (old != nullptr) {
- get_deleter()(old);
- }
- }
- void swap(UniquePtr& aOther)
- {
- mTuple.swap(aOther.mTuple);
- }
- UniquePtr(const UniquePtr& aOther) = delete; // construct using Move()!
- void operator=(const UniquePtr& aOther) = delete; // assign using Move()!
- };
- // In case you didn't read the comment by the main definition (you should!): the
- // UniquePtr<T[]> specialization exists to manage array pointers. It deletes
- // such pointers using delete[], it will reject construction and modification
- // attempts using U* or U[]. Otherwise it works like the normal UniquePtr.
- template<typename T, class D>
- class UniquePtr<T[], D>
- {
- public:
- typedef T* Pointer;
- typedef T ElementType;
- typedef D DeleterType;
- private:
- Pair<Pointer, DeleterType> mTuple;
- public:
- /**
- * Construct a UniquePtr containing nullptr.
- */
- constexpr UniquePtr()
- : mTuple(static_cast<Pointer>(nullptr), DeleterType())
- {
- static_assert(!IsPointer<D>::value, "must provide a deleter instance");
- static_assert(!IsReference<D>::value, "must provide a deleter instance");
- }
- /**
- * Construct a UniquePtr containing |aPtr|.
- */
- explicit UniquePtr(Pointer aPtr)
- : mTuple(aPtr, DeleterType())
- {
- static_assert(!IsPointer<D>::value, "must provide a deleter instance");
- static_assert(!IsReference<D>::value, "must provide a deleter instance");
- }
- // delete[] knows how to handle *only* an array of a single class type. For
- // delete[] to work correctly, it must know the size of each element, the
- // fields and base classes of each element requiring destruction, and so on.
- // So forbid all overloads which would end up invoking delete[] on a pointer
- // of the wrong type.
- template<typename U>
- UniquePtr(U&& aU,
- typename EnableIf<IsPointer<U>::value &&
- IsConvertible<U, Pointer>::value,
- int>::Type aDummy = 0)
- = delete;
- UniquePtr(Pointer aPtr,
- typename Conditional<IsReference<D>::value,
- D,
- const D&>::Type aD1)
- : mTuple(aPtr, aD1)
- {}
- // If you encounter an error with MSVC10 about RemoveReference below, along
- // the lines that "more than one partial specialization matches the template
- // argument list": don't use UniquePtr<T[], reference to function>! See the
- // comment by this constructor in the non-T[] specialization above.
- UniquePtr(Pointer aPtr,
- typename RemoveReference<D>::Type&& aD2)
- : mTuple(aPtr, Move(aD2))
- {
- static_assert(!IsReference<D>::value,
- "rvalue deleter can't be stored by reference");
- }
- // Forbidden for the same reasons as stated above.
- template<typename U, typename V>
- UniquePtr(U&& aU, V&& aV,
- typename EnableIf<IsPointer<U>::value &&
- IsConvertible<U, Pointer>::value,
- int>::Type aDummy = 0)
- = delete;
- UniquePtr(UniquePtr&& aOther)
- : mTuple(aOther.release(), Forward<DeleterType>(aOther.get_deleter()))
- {}
- MOZ_IMPLICIT
- UniquePtr(decltype(nullptr))
- : mTuple(nullptr, DeleterType())
- {
- static_assert(!IsPointer<D>::value, "must provide a deleter instance");
- static_assert(!IsReference<D>::value, "must provide a deleter instance");
- }
- ~UniquePtr() { reset(nullptr); }
- UniquePtr& operator=(UniquePtr&& aOther)
- {
- reset(aOther.release());
- get_deleter() = Forward<DeleterType>(aOther.get_deleter());
- return *this;
- }
- UniquePtr& operator=(decltype(nullptr))
- {
- reset();
- return *this;
- }
- explicit operator bool() const { return get() != nullptr; }
- T& operator[](decltype(sizeof(int)) aIndex) const { return get()[aIndex]; }
- Pointer get() const { return mTuple.first(); }
- DeleterType& get_deleter() { return mTuple.second(); }
- const DeleterType& get_deleter() const { return mTuple.second(); }
- MOZ_MUST_USE Pointer release()
- {
- Pointer p = mTuple.first();
- mTuple.first() = nullptr;
- return p;
- }
- void reset(Pointer aPtr = Pointer())
- {
- Pointer old = mTuple.first();
- mTuple.first() = aPtr;
- if (old != nullptr) {
- mTuple.second()(old);
- }
- }
- void reset(decltype(nullptr))
- {
- Pointer old = mTuple.first();
- mTuple.first() = nullptr;
- if (old != nullptr) {
- mTuple.second()(old);
- }
- }
- template<typename U>
- void reset(U) = delete;
- void swap(UniquePtr& aOther) { mTuple.swap(aOther.mTuple); }
- UniquePtr(const UniquePtr& aOther) = delete; // construct using Move()!
- void operator=(const UniquePtr& aOther) = delete; // assign using Move()!
- };
- /**
- * A default deletion policy using plain old operator delete.
- *
- * Note that this type can be specialized, but authors should beware of the risk
- * that the specialization may at some point cease to match (either because it
- * gets moved to a different compilation unit or the signature changes). If the
- * non-specialized (|delete|-based) version compiles for that type but does the
- * wrong thing, bad things could happen.
- *
- * This is a non-issue for types which are always incomplete (i.e. opaque handle
- * types), since |delete|-ing such a type will always trigger a compilation
- * error.
- */
- template<typename T>
- class DefaultDelete
- {
- public:
- constexpr DefaultDelete() {}
- template<typename U>
- MOZ_IMPLICIT DefaultDelete(const DefaultDelete<U>& aOther,
- typename EnableIf<mozilla::IsConvertible<U*, T*>::value,
- int>::Type aDummy = 0)
- {}
- void operator()(T* aPtr) const
- {
- static_assert(sizeof(T) > 0, "T must be complete");
- delete aPtr;
- }
- };
- /** A default deletion policy using operator delete[]. */
- template<typename T>
- class DefaultDelete<T[]>
- {
- public:
- constexpr DefaultDelete() {}
- void operator()(T* aPtr) const
- {
- static_assert(sizeof(T) > 0, "T must be complete");
- delete[] aPtr;
- }
- template<typename U>
- void operator()(U* aPtr) const = delete;
- };
- template<typename T, class D>
- void
- Swap(UniquePtr<T, D>& aX, UniquePtr<T, D>& aY)
- {
- aX.swap(aY);
- }
- template<typename T, class D, typename U, class E>
- bool
- operator==(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY)
- {
- return aX.get() == aY.get();
- }
- template<typename T, class D, typename U, class E>
- bool
- operator!=(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY)
- {
- return aX.get() != aY.get();
- }
- template<typename T, class D>
- bool
- operator==(const UniquePtr<T, D>& aX, decltype(nullptr))
- {
- return !aX;
- }
- template<typename T, class D>
- bool
- operator==(decltype(nullptr), const UniquePtr<T, D>& aX)
- {
- return !aX;
- }
- template<typename T, class D>
- bool
- operator!=(const UniquePtr<T, D>& aX, decltype(nullptr))
- {
- return bool(aX);
- }
- template<typename T, class D>
- bool
- operator!=(decltype(nullptr), const UniquePtr<T, D>& aX)
- {
- return bool(aX);
- }
- // No operator<, operator>, operator<=, operator>= for now because simplicity.
- namespace detail {
- template<typename T>
- struct UniqueSelector
- {
- typedef UniquePtr<T> SingleObject;
- };
- template<typename T>
- struct UniqueSelector<T[]>
- {
- typedef UniquePtr<T[]> UnknownBound;
- };
- template<typename T, decltype(sizeof(int)) N>
- struct UniqueSelector<T[N]>
- {
- typedef UniquePtr<T[N]> KnownBound;
- };
- } // namespace detail
- /**
- * MakeUnique is a helper function for allocating new'd objects and arrays,
- * returning a UniquePtr containing the resulting pointer. The semantics of
- * MakeUnique<Type>(...) are as follows.
- *
- * If Type is an array T[n]:
- * Disallowed, deleted, no overload for you!
- * If Type is an array T[]:
- * MakeUnique<T[]>(size_t) is the only valid overload. The pointer returned
- * is as if by |new T[n]()|, which value-initializes each element. (If T
- * isn't a class type, this will zero each element. If T is a class type,
- * then roughly speaking, each element will be constructed using its default
- * constructor. See C++11 [dcl.init]p7 for the full gory details.)
- * If Type is non-array T:
- * The arguments passed to MakeUnique<T>(...) are forwarded into a
- * |new T(...)| call, initializing the T as would happen if executing
- * |T(...)|.
- *
- * There are various benefits to using MakeUnique instead of |new| expressions.
- *
- * First, MakeUnique eliminates use of |new| from code entirely. If objects are
- * only created through UniquePtr, then (assuming all explicit release() calls
- * are safe, including transitively, and no type-safety casting funniness)
- * correctly maintained ownership of the UniquePtr guarantees no leaks are
- * possible. (This pays off best if a class is only ever created through a
- * factory method on the class, using a private constructor.)
- *
- * Second, initializing a UniquePtr using a |new| expression requires repeating
- * the name of the new'd type, whereas MakeUnique in concert with the |auto|
- * keyword names it only once:
- *
- * UniquePtr<char> ptr1(new char()); // repetitive
- * auto ptr2 = MakeUnique<char>(); // shorter
- *
- * Of course this assumes the reader understands the operation MakeUnique
- * performs. In the long run this is probably a reasonable assumption. In the
- * short run you'll have to use your judgment about what readers can be expected
- * to know, or to quickly look up.
- *
- * Third, a call to MakeUnique can be assigned directly to a UniquePtr. In
- * contrast you can't assign a pointer into a UniquePtr without using the
- * cumbersome reset().
- *
- * UniquePtr<char> p;
- * p = new char; // ERROR
- * p.reset(new char); // works, but fugly
- * p = MakeUnique<char>(); // preferred
- *
- * (And third, although not relevant to Mozilla: MakeUnique is exception-safe.
- * An exception thrown after |new T| succeeds will leak that memory, unless the
- * pointer is assigned to an object that will manage its ownership. UniquePtr
- * ably serves this function.)
- */
- template<typename T, typename... Args>
- typename detail::UniqueSelector<T>::SingleObject
- MakeUnique(Args&&... aArgs)
- {
- return UniquePtr<T>(new T(Forward<Args>(aArgs)...));
- }
- template<typename T>
- typename detail::UniqueSelector<T>::UnknownBound
- MakeUnique(decltype(sizeof(int)) aN)
- {
- typedef typename RemoveExtent<T>::Type ArrayType;
- return UniquePtr<T>(new ArrayType[aN]());
- }
- template<typename T, typename... Args>
- typename detail::UniqueSelector<T>::KnownBound
- MakeUnique(Args&&... aArgs) = delete;
- } // namespace mozilla
- #endif /* mozilla_UniquePtr_h */
|