123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333 |
- /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
- /* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
- #include "mozilla/Assertions.h"
- #include "mozilla/EndianUtils.h"
- #include "mozilla/SHA1.h"
- #include <string.h>
- using mozilla::NativeEndian;
- using mozilla::SHA1Sum;
- static inline uint32_t
- SHA_ROTL(uint32_t aT, uint32_t aN)
- {
- MOZ_ASSERT(aN < 32);
- return (aT << aN) | (aT >> (32 - aN));
- }
- static void
- shaCompress(volatile unsigned* aX, const uint32_t* aBuf);
- #define SHA_F1(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z))
- #define SHA_F2(X, Y, Z) ((X) ^ (Y) ^ (Z))
- #define SHA_F3(X, Y, Z) (((X) & (Y)) | ((Z) & ((X) | (Y))))
- #define SHA_F4(X, Y, Z) ((X) ^ (Y) ^ (Z))
- #define SHA_MIX(n, a, b, c) XW(n) = SHA_ROTL(XW(a) ^ XW(b) ^ XW(c) ^XW(n), 1)
- SHA1Sum::SHA1Sum()
- : mSize(0), mDone(false)
- {
- // Initialize H with constants from FIPS180-1.
- mH[0] = 0x67452301L;
- mH[1] = 0xefcdab89L;
- mH[2] = 0x98badcfeL;
- mH[3] = 0x10325476L;
- mH[4] = 0xc3d2e1f0L;
- }
- /*
- * Explanation of H array and index values:
- *
- * The context's H array is actually the concatenation of two arrays
- * defined by SHA1, the H array of state variables (5 elements),
- * and the W array of intermediate values, of which there are 16 elements.
- * The W array starts at H[5], that is W[0] is H[5].
- * Although these values are defined as 32-bit values, we use 64-bit
- * variables to hold them because the AMD64 stores 64 bit values in
- * memory MUCH faster than it stores any smaller values.
- *
- * Rather than passing the context structure to shaCompress, we pass
- * this combined array of H and W values. We do not pass the address
- * of the first element of this array, but rather pass the address of an
- * element in the middle of the array, element X. Presently X[0] is H[11].
- * So we pass the address of H[11] as the address of array X to shaCompress.
- * Then shaCompress accesses the members of the array using positive AND
- * negative indexes.
- *
- * Pictorially: (each element is 8 bytes)
- * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
- * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
- *
- * The byte offset from X[0] to any member of H and W is always
- * representable in a signed 8-bit value, which will be encoded
- * as a single byte offset in the X86-64 instruction set.
- * If we didn't pass the address of H[11], and instead passed the
- * address of H[0], the offsets to elements H[16] and above would be
- * greater than 127, not representable in a signed 8-bit value, and the
- * x86-64 instruction set would encode every such offset as a 32-bit
- * signed number in each instruction that accessed element H[16] or
- * higher. This results in much bigger and slower code.
- */
- #define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
- #define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */
- /*
- * SHA: Add data to context.
- */
- void
- SHA1Sum::update(const void* aData, uint32_t aLen)
- {
- MOZ_ASSERT(!mDone, "SHA1Sum can only be used to compute a single hash.");
- const uint8_t* data = static_cast<const uint8_t*>(aData);
- if (aLen == 0) {
- return;
- }
- /* Accumulate the byte count. */
- unsigned int lenB = static_cast<unsigned int>(mSize) & 63U;
- mSize += aLen;
- /* Read the data into W and process blocks as they get full. */
- unsigned int togo;
- if (lenB > 0) {
- togo = 64U - lenB;
- if (aLen < togo) {
- togo = aLen;
- }
- memcpy(mU.mB + lenB, data, togo);
- aLen -= togo;
- data += togo;
- lenB = (lenB + togo) & 63U;
- if (!lenB) {
- shaCompress(&mH[H2X], mU.mW);
- }
- }
- while (aLen >= 64U) {
- aLen -= 64U;
- shaCompress(&mH[H2X], reinterpret_cast<const uint32_t*>(data));
- data += 64U;
- }
- if (aLen > 0) {
- memcpy(mU.mB, data, aLen);
- }
- }
- /*
- * SHA: Generate hash value
- */
- void
- SHA1Sum::finish(SHA1Sum::Hash& aHashOut)
- {
- MOZ_ASSERT(!mDone, "SHA1Sum can only be used to compute a single hash.");
- uint64_t size = mSize;
- uint32_t lenB = uint32_t(size) & 63;
- static const uint8_t bulk_pad[64] =
- { 0x80,0,0,0,0,0,0,0,0,0,
- 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
- 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
- /* Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits. */
- update(bulk_pad, (((55 + 64) - lenB) & 63) + 1);
- MOZ_ASSERT((uint32_t(mSize) & 63) == 56);
- /* Convert size from bytes to bits. */
- size <<= 3;
- mU.mW[14] = NativeEndian::swapToBigEndian(uint32_t(size >> 32));
- mU.mW[15] = NativeEndian::swapToBigEndian(uint32_t(size));
- shaCompress(&mH[H2X], mU.mW);
- /* Output hash. */
- mU.mW[0] = NativeEndian::swapToBigEndian(mH[0]);
- mU.mW[1] = NativeEndian::swapToBigEndian(mH[1]);
- mU.mW[2] = NativeEndian::swapToBigEndian(mH[2]);
- mU.mW[3] = NativeEndian::swapToBigEndian(mH[3]);
- mU.mW[4] = NativeEndian::swapToBigEndian(mH[4]);
- memcpy(aHashOut, mU.mW, 20);
- mDone = true;
- }
- /*
- * SHA: Compression function, unrolled.
- *
- * Some operations in shaCompress are done as 5 groups of 16 operations.
- * Others are done as 4 groups of 20 operations.
- * The code below shows that structure.
- *
- * The functions that compute the new values of the 5 state variables
- * A-E are done in 4 groups of 20 operations (or you may also think
- * of them as being done in 16 groups of 5 operations). They are
- * done by the SHA_RNDx macros below, in the right column.
- *
- * The functions that set the 16 values of the W array are done in
- * 5 groups of 16 operations. The first group is done by the
- * LOAD macros below, the latter 4 groups are done by SHA_MIX below,
- * in the left column.
- *
- * gcc's optimizer observes that each member of the W array is assigned
- * a value 5 times in this code. It reduces the number of store
- * operations done to the W array in the context (that is, in the X array)
- * by creating a W array on the stack, and storing the W values there for
- * the first 4 groups of operations on W, and storing the values in the
- * context's W array only in the fifth group. This is undesirable.
- * It is MUCH bigger code than simply using the context's W array, because
- * all the offsets to the W array in the stack are 32-bit signed offsets,
- * and it is no faster than storing the values in the context's W array.
- *
- * The original code for sha_fast.c prevented this creation of a separate
- * W array in the stack by creating a W array of 80 members, each of
- * whose elements is assigned only once. It also separated the computations
- * of the W array values and the computations of the values for the 5
- * state variables into two separate passes, W's, then A-E's so that the
- * second pass could be done all in registers (except for accessing the W
- * array) on machines with fewer registers. The method is suboptimal
- * for machines with enough registers to do it all in one pass, and it
- * necessitates using many instructions with 32-bit offsets.
- *
- * This code eliminates the separate W array on the stack by a completely
- * different means: by declaring the X array volatile. This prevents
- * the optimizer from trying to reduce the use of the X array by the
- * creation of a MORE expensive W array on the stack. The result is
- * that all instructions use signed 8-bit offsets and not 32-bit offsets.
- *
- * The combination of this code and the -O3 optimizer flag on GCC 3.4.3
- * results in code that is 3 times faster than the previous NSS sha_fast
- * code on AMD64.
- */
- static void
- shaCompress(volatile unsigned* aX, const uint32_t* aBuf)
- {
- unsigned A, B, C, D, E;
- #define XH(n) aX[n - H2X]
- #define XW(n) aX[n - W2X]
- #define K0 0x5a827999L
- #define K1 0x6ed9eba1L
- #define K2 0x8f1bbcdcL
- #define K3 0xca62c1d6L
- #define SHA_RND1(a, b, c, d, e, n) \
- a = SHA_ROTL(b, 5) + SHA_F1(c, d, e) + a + XW(n) + K0; c = SHA_ROTL(c, 30)
- #define SHA_RND2(a, b, c, d, e, n) \
- a = SHA_ROTL(b, 5) + SHA_F2(c, d, e) + a + XW(n) + K1; c = SHA_ROTL(c, 30)
- #define SHA_RND3(a, b, c, d, e, n) \
- a = SHA_ROTL(b, 5) + SHA_F3(c, d, e) + a + XW(n) + K2; c = SHA_ROTL(c, 30)
- #define SHA_RND4(a, b, c, d, e, n) \
- a = SHA_ROTL(b ,5) + SHA_F4(c, d, e) + a + XW(n) + K3; c = SHA_ROTL(c, 30)
- #define LOAD(n) XW(n) = NativeEndian::swapToBigEndian(aBuf[n])
- A = XH(0);
- B = XH(1);
- C = XH(2);
- D = XH(3);
- E = XH(4);
- LOAD(0); SHA_RND1(E,A,B,C,D, 0);
- LOAD(1); SHA_RND1(D,E,A,B,C, 1);
- LOAD(2); SHA_RND1(C,D,E,A,B, 2);
- LOAD(3); SHA_RND1(B,C,D,E,A, 3);
- LOAD(4); SHA_RND1(A,B,C,D,E, 4);
- LOAD(5); SHA_RND1(E,A,B,C,D, 5);
- LOAD(6); SHA_RND1(D,E,A,B,C, 6);
- LOAD(7); SHA_RND1(C,D,E,A,B, 7);
- LOAD(8); SHA_RND1(B,C,D,E,A, 8);
- LOAD(9); SHA_RND1(A,B,C,D,E, 9);
- LOAD(10); SHA_RND1(E,A,B,C,D,10);
- LOAD(11); SHA_RND1(D,E,A,B,C,11);
- LOAD(12); SHA_RND1(C,D,E,A,B,12);
- LOAD(13); SHA_RND1(B,C,D,E,A,13);
- LOAD(14); SHA_RND1(A,B,C,D,E,14);
- LOAD(15); SHA_RND1(E,A,B,C,D,15);
- SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0);
- SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1);
- SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2);
- SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3);
- SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4);
- SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5);
- SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6);
- SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7);
- SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8);
- SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9);
- SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10);
- SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11);
- SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12);
- SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13);
- SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14);
- SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15);
- SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0);
- SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1);
- SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2);
- SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3);
- SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4);
- SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5);
- SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6);
- SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7);
- SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8);
- SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9);
- SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10);
- SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11);
- SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12);
- SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13);
- SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14);
- SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15);
- SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0);
- SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1);
- SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2);
- SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3);
- SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4);
- SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5);
- SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6);
- SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7);
- SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8);
- SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9);
- SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10);
- SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11);
- SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12);
- SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13);
- SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14);
- SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15);
- SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0);
- SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1);
- SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2);
- SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3);
- SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4);
- SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5);
- SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6);
- SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7);
- SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8);
- SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9);
- SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10);
- SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11);
- SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12);
- SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13);
- SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14);
- SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15);
- XH(0) += A;
- XH(1) += B;
- XH(2) += C;
- XH(3) += D;
- XH(4) += E;
- }
|