jidctflt-sse.asm 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572
  1. ;
  2. ; jidctflt.asm - floating-point IDCT (SSE & MMX)
  3. ;
  4. ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
  5. ;
  6. ; Based on the x86 SIMD extension for IJG JPEG library
  7. ; Copyright (C) 1999-2006, MIYASAKA Masaru.
  8. ; For conditions of distribution and use, see copyright notice in jsimdext.inc
  9. ;
  10. ; This file should be assembled with NASM (Netwide Assembler),
  11. ; can *not* be assembled with Microsoft's MASM or any compatible
  12. ; assembler (including Borland's Turbo Assembler).
  13. ; NASM is available from http://nasm.sourceforge.net/ or
  14. ; http://sourceforge.net/project/showfiles.php?group_id=6208
  15. ;
  16. ; This file contains a floating-point implementation of the inverse DCT
  17. ; (Discrete Cosine Transform). The following code is based directly on
  18. ; the IJG's original jidctflt.c; see the jidctflt.c for more details.
  19. ;
  20. ; [TAB8]
  21. %include "jsimdext.inc"
  22. %include "jdct.inc"
  23. ; --------------------------------------------------------------------------
  24. %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5)
  25. shufps %1,%2,0x44
  26. %endmacro
  27. %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7)
  28. shufps %1,%2,0xEE
  29. %endmacro
  30. ; --------------------------------------------------------------------------
  31. SECTION SEG_CONST
  32. alignz 16
  33. global EXTN(jconst_idct_float_sse)
  34. EXTN(jconst_idct_float_sse):
  35. PD_1_414 times 4 dd 1.414213562373095048801689
  36. PD_1_847 times 4 dd 1.847759065022573512256366
  37. PD_1_082 times 4 dd 1.082392200292393968799446
  38. PD_M2_613 times 4 dd -2.613125929752753055713286
  39. PD_0_125 times 4 dd 0.125 ; 1/8
  40. PB_CENTERJSAMP times 8 db CENTERJSAMPLE
  41. alignz 16
  42. ; --------------------------------------------------------------------------
  43. SECTION SEG_TEXT
  44. BITS 32
  45. ;
  46. ; Perform dequantization and inverse DCT on one block of coefficients.
  47. ;
  48. ; GLOBAL(void)
  49. ; jsimd_idct_float_sse (void *dct_table, JCOEFPTR coef_block,
  50. ; JSAMPARRAY output_buf, JDIMENSION output_col)
  51. ;
  52. %define dct_table(b) (b)+8 ; void *dct_table
  53. %define coef_block(b) (b)+12 ; JCOEFPTR coef_block
  54. %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf
  55. %define output_col(b) (b)+20 ; JDIMENSION output_col
  56. %define original_ebp ebp+0
  57. %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM]
  58. %define WK_NUM 2
  59. %define workspace wk(0)-DCTSIZE2*SIZEOF_FAST_FLOAT
  60. ; FAST_FLOAT workspace[DCTSIZE2]
  61. align 16
  62. global EXTN(jsimd_idct_float_sse)
  63. EXTN(jsimd_idct_float_sse):
  64. push ebp
  65. mov eax,esp ; eax = original ebp
  66. sub esp, byte 4
  67. and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
  68. mov [esp],eax
  69. mov ebp,esp ; ebp = aligned ebp
  70. lea esp, [workspace]
  71. push ebx
  72. ; push ecx ; need not be preserved
  73. ; push edx ; need not be preserved
  74. push esi
  75. push edi
  76. get_GOT ebx ; get GOT address
  77. ; ---- Pass 1: process columns from input, store into work array.
  78. ; mov eax, [original_ebp]
  79. mov edx, POINTER [dct_table(eax)] ; quantptr
  80. mov esi, JCOEFPTR [coef_block(eax)] ; inptr
  81. lea edi, [workspace] ; FAST_FLOAT *wsptr
  82. mov ecx, DCTSIZE/4 ; ctr
  83. alignx 16,7
  84. .columnloop:
  85. %ifndef NO_ZERO_COLUMN_TEST_FLOAT_SSE
  86. mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)]
  87. or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)]
  88. jnz near .columnDCT
  89. movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
  90. movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
  91. por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
  92. por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
  93. por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
  94. por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
  95. por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
  96. por mm1,mm0
  97. packsswb mm1,mm1
  98. movd eax,mm1
  99. test eax,eax
  100. jnz short .columnDCT
  101. ; -- AC terms all zero
  102. movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
  103. punpckhwd mm1,mm0 ; mm1=(** 02 ** 03)
  104. punpcklwd mm0,mm0 ; mm0=(00 00 01 01)
  105. psrad mm1,(DWORD_BIT-WORD_BIT) ; mm1=in0H=(02 03)
  106. psrad mm0,(DWORD_BIT-WORD_BIT) ; mm0=in0L=(00 01)
  107. cvtpi2ps xmm3,mm1 ; xmm3=(02 03 ** **)
  108. cvtpi2ps xmm0,mm0 ; xmm0=(00 01 ** **)
  109. movlhps xmm0,xmm3 ; xmm0=in0=(00 01 02 03)
  110. mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
  111. movaps xmm1,xmm0
  112. movaps xmm2,xmm0
  113. movaps xmm3,xmm0
  114. shufps xmm0,xmm0,0x00 ; xmm0=(00 00 00 00)
  115. shufps xmm1,xmm1,0x55 ; xmm1=(01 01 01 01)
  116. shufps xmm2,xmm2,0xAA ; xmm2=(02 02 02 02)
  117. shufps xmm3,xmm3,0xFF ; xmm3=(03 03 03 03)
  118. movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm0
  119. movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm0
  120. movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm1
  121. movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm1
  122. movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm2
  123. movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm2
  124. movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm3
  125. movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3
  126. jmp near .nextcolumn
  127. alignx 16,7
  128. %endif
  129. .columnDCT:
  130. ; -- Even part
  131. movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
  132. movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
  133. movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
  134. movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
  135. punpckhwd mm4,mm0 ; mm4=(** 02 ** 03)
  136. punpcklwd mm0,mm0 ; mm0=(00 00 01 01)
  137. punpckhwd mm5,mm1 ; mm5=(** 22 ** 23)
  138. punpcklwd mm1,mm1 ; mm1=(20 20 21 21)
  139. psrad mm4,(DWORD_BIT-WORD_BIT) ; mm4=in0H=(02 03)
  140. psrad mm0,(DWORD_BIT-WORD_BIT) ; mm0=in0L=(00 01)
  141. cvtpi2ps xmm4,mm4 ; xmm4=(02 03 ** **)
  142. cvtpi2ps xmm0,mm0 ; xmm0=(00 01 ** **)
  143. psrad mm5,(DWORD_BIT-WORD_BIT) ; mm5=in2H=(22 23)
  144. psrad mm1,(DWORD_BIT-WORD_BIT) ; mm1=in2L=(20 21)
  145. cvtpi2ps xmm5,mm5 ; xmm5=(22 23 ** **)
  146. cvtpi2ps xmm1,mm1 ; xmm1=(20 21 ** **)
  147. punpckhwd mm6,mm2 ; mm6=(** 42 ** 43)
  148. punpcklwd mm2,mm2 ; mm2=(40 40 41 41)
  149. punpckhwd mm7,mm3 ; mm7=(** 62 ** 63)
  150. punpcklwd mm3,mm3 ; mm3=(60 60 61 61)
  151. psrad mm6,(DWORD_BIT-WORD_BIT) ; mm6=in4H=(42 43)
  152. psrad mm2,(DWORD_BIT-WORD_BIT) ; mm2=in4L=(40 41)
  153. cvtpi2ps xmm6,mm6 ; xmm6=(42 43 ** **)
  154. cvtpi2ps xmm2,mm2 ; xmm2=(40 41 ** **)
  155. psrad mm7,(DWORD_BIT-WORD_BIT) ; mm7=in6H=(62 63)
  156. psrad mm3,(DWORD_BIT-WORD_BIT) ; mm3=in6L=(60 61)
  157. cvtpi2ps xmm7,mm7 ; xmm7=(62 63 ** **)
  158. cvtpi2ps xmm3,mm3 ; xmm3=(60 61 ** **)
  159. movlhps xmm0,xmm4 ; xmm0=in0=(00 01 02 03)
  160. movlhps xmm1,xmm5 ; xmm1=in2=(20 21 22 23)
  161. mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
  162. mulps xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
  163. movlhps xmm2,xmm6 ; xmm2=in4=(40 41 42 43)
  164. movlhps xmm3,xmm7 ; xmm3=in6=(60 61 62 63)
  165. mulps xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
  166. mulps xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
  167. movaps xmm4,xmm0
  168. movaps xmm5,xmm1
  169. subps xmm0,xmm2 ; xmm0=tmp11
  170. subps xmm1,xmm3
  171. addps xmm4,xmm2 ; xmm4=tmp10
  172. addps xmm5,xmm3 ; xmm5=tmp13
  173. mulps xmm1,[GOTOFF(ebx,PD_1_414)]
  174. subps xmm1,xmm5 ; xmm1=tmp12
  175. movaps xmm6,xmm4
  176. movaps xmm7,xmm0
  177. subps xmm4,xmm5 ; xmm4=tmp3
  178. subps xmm0,xmm1 ; xmm0=tmp2
  179. addps xmm6,xmm5 ; xmm6=tmp0
  180. addps xmm7,xmm1 ; xmm7=tmp1
  181. movaps XMMWORD [wk(1)], xmm4 ; tmp3
  182. movaps XMMWORD [wk(0)], xmm0 ; tmp2
  183. ; -- Odd part
  184. movq mm4, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
  185. movq mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
  186. movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
  187. movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
  188. punpckhwd mm6,mm4 ; mm6=(** 12 ** 13)
  189. punpcklwd mm4,mm4 ; mm4=(10 10 11 11)
  190. punpckhwd mm2,mm0 ; mm2=(** 32 ** 33)
  191. punpcklwd mm0,mm0 ; mm0=(30 30 31 31)
  192. psrad mm6,(DWORD_BIT-WORD_BIT) ; mm6=in1H=(12 13)
  193. psrad mm4,(DWORD_BIT-WORD_BIT) ; mm4=in1L=(10 11)
  194. cvtpi2ps xmm4,mm6 ; xmm4=(12 13 ** **)
  195. cvtpi2ps xmm2,mm4 ; xmm2=(10 11 ** **)
  196. psrad mm2,(DWORD_BIT-WORD_BIT) ; mm2=in3H=(32 33)
  197. psrad mm0,(DWORD_BIT-WORD_BIT) ; mm0=in3L=(30 31)
  198. cvtpi2ps xmm0,mm2 ; xmm0=(32 33 ** **)
  199. cvtpi2ps xmm3,mm0 ; xmm3=(30 31 ** **)
  200. punpckhwd mm7,mm5 ; mm7=(** 52 ** 53)
  201. punpcklwd mm5,mm5 ; mm5=(50 50 51 51)
  202. punpckhwd mm3,mm1 ; mm3=(** 72 ** 73)
  203. punpcklwd mm1,mm1 ; mm1=(70 70 71 71)
  204. movlhps xmm2,xmm4 ; xmm2=in1=(10 11 12 13)
  205. movlhps xmm3,xmm0 ; xmm3=in3=(30 31 32 33)
  206. psrad mm7,(DWORD_BIT-WORD_BIT) ; mm7=in5H=(52 53)
  207. psrad mm5,(DWORD_BIT-WORD_BIT) ; mm5=in5L=(50 51)
  208. cvtpi2ps xmm4,mm7 ; xmm4=(52 53 ** **)
  209. cvtpi2ps xmm5,mm5 ; xmm5=(50 51 ** **)
  210. psrad mm3,(DWORD_BIT-WORD_BIT) ; mm3=in7H=(72 73)
  211. psrad mm1,(DWORD_BIT-WORD_BIT) ; mm1=in7L=(70 71)
  212. cvtpi2ps xmm0,mm3 ; xmm0=(72 73 ** **)
  213. cvtpi2ps xmm1,mm1 ; xmm1=(70 71 ** **)
  214. mulps xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
  215. mulps xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
  216. movlhps xmm5,xmm4 ; xmm5=in5=(50 51 52 53)
  217. movlhps xmm1,xmm0 ; xmm1=in7=(70 71 72 73)
  218. mulps xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
  219. mulps xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
  220. movaps xmm4,xmm2
  221. movaps xmm0,xmm5
  222. addps xmm2,xmm1 ; xmm2=z11
  223. addps xmm5,xmm3 ; xmm5=z13
  224. subps xmm4,xmm1 ; xmm4=z12
  225. subps xmm0,xmm3 ; xmm0=z10
  226. movaps xmm1,xmm2
  227. subps xmm2,xmm5
  228. addps xmm1,xmm5 ; xmm1=tmp7
  229. mulps xmm2,[GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11
  230. movaps xmm3,xmm0
  231. addps xmm0,xmm4
  232. mulps xmm0,[GOTOFF(ebx,PD_1_847)] ; xmm0=z5
  233. mulps xmm3,[GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930)
  234. mulps xmm4,[GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200)
  235. addps xmm3,xmm0 ; xmm3=tmp12
  236. subps xmm4,xmm0 ; xmm4=tmp10
  237. ; -- Final output stage
  238. subps xmm3,xmm1 ; xmm3=tmp6
  239. movaps xmm5,xmm6
  240. movaps xmm0,xmm7
  241. addps xmm6,xmm1 ; xmm6=data0=(00 01 02 03)
  242. addps xmm7,xmm3 ; xmm7=data1=(10 11 12 13)
  243. subps xmm5,xmm1 ; xmm5=data7=(70 71 72 73)
  244. subps xmm0,xmm3 ; xmm0=data6=(60 61 62 63)
  245. subps xmm2,xmm3 ; xmm2=tmp5
  246. movaps xmm1,xmm6 ; transpose coefficients(phase 1)
  247. unpcklps xmm6,xmm7 ; xmm6=(00 10 01 11)
  248. unpckhps xmm1,xmm7 ; xmm1=(02 12 03 13)
  249. movaps xmm3,xmm0 ; transpose coefficients(phase 1)
  250. unpcklps xmm0,xmm5 ; xmm0=(60 70 61 71)
  251. unpckhps xmm3,xmm5 ; xmm3=(62 72 63 73)
  252. movaps xmm7, XMMWORD [wk(0)] ; xmm7=tmp2
  253. movaps xmm5, XMMWORD [wk(1)] ; xmm5=tmp3
  254. movaps XMMWORD [wk(0)], xmm0 ; wk(0)=(60 70 61 71)
  255. movaps XMMWORD [wk(1)], xmm3 ; wk(1)=(62 72 63 73)
  256. addps xmm4,xmm2 ; xmm4=tmp4
  257. movaps xmm0,xmm7
  258. movaps xmm3,xmm5
  259. addps xmm7,xmm2 ; xmm7=data2=(20 21 22 23)
  260. addps xmm5,xmm4 ; xmm5=data4=(40 41 42 43)
  261. subps xmm0,xmm2 ; xmm0=data5=(50 51 52 53)
  262. subps xmm3,xmm4 ; xmm3=data3=(30 31 32 33)
  263. movaps xmm2,xmm7 ; transpose coefficients(phase 1)
  264. unpcklps xmm7,xmm3 ; xmm7=(20 30 21 31)
  265. unpckhps xmm2,xmm3 ; xmm2=(22 32 23 33)
  266. movaps xmm4,xmm5 ; transpose coefficients(phase 1)
  267. unpcklps xmm5,xmm0 ; xmm5=(40 50 41 51)
  268. unpckhps xmm4,xmm0 ; xmm4=(42 52 43 53)
  269. movaps xmm3,xmm6 ; transpose coefficients(phase 2)
  270. unpcklps2 xmm6,xmm7 ; xmm6=(00 10 20 30)
  271. unpckhps2 xmm3,xmm7 ; xmm3=(01 11 21 31)
  272. movaps xmm0,xmm1 ; transpose coefficients(phase 2)
  273. unpcklps2 xmm1,xmm2 ; xmm1=(02 12 22 32)
  274. unpckhps2 xmm0,xmm2 ; xmm0=(03 13 23 33)
  275. movaps xmm7, XMMWORD [wk(0)] ; xmm7=(60 70 61 71)
  276. movaps xmm2, XMMWORD [wk(1)] ; xmm2=(62 72 63 73)
  277. movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm6
  278. movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm3
  279. movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm1
  280. movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm0
  281. movaps xmm6,xmm5 ; transpose coefficients(phase 2)
  282. unpcklps2 xmm5,xmm7 ; xmm5=(40 50 60 70)
  283. unpckhps2 xmm6,xmm7 ; xmm6=(41 51 61 71)
  284. movaps xmm3,xmm4 ; transpose coefficients(phase 2)
  285. unpcklps2 xmm4,xmm2 ; xmm4=(42 52 62 72)
  286. unpckhps2 xmm3,xmm2 ; xmm3=(43 53 63 73)
  287. movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm5
  288. movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm6
  289. movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm4
  290. movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3
  291. .nextcolumn:
  292. add esi, byte 4*SIZEOF_JCOEF ; coef_block
  293. add edx, byte 4*SIZEOF_FLOAT_MULT_TYPE ; quantptr
  294. add edi, 4*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr
  295. dec ecx ; ctr
  296. jnz near .columnloop
  297. ; -- Prefetch the next coefficient block
  298. prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32]
  299. prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32]
  300. prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32]
  301. prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32]
  302. ; ---- Pass 2: process rows from work array, store into output array.
  303. mov eax, [original_ebp]
  304. lea esi, [workspace] ; FAST_FLOAT *wsptr
  305. mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *)
  306. mov eax, JDIMENSION [output_col(eax)]
  307. mov ecx, DCTSIZE/4 ; ctr
  308. alignx 16,7
  309. .rowloop:
  310. ; -- Even part
  311. movaps xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)]
  312. movaps xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_FAST_FLOAT)]
  313. movaps xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_FAST_FLOAT)]
  314. movaps xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_FAST_FLOAT)]
  315. movaps xmm4,xmm0
  316. movaps xmm5,xmm1
  317. subps xmm0,xmm2 ; xmm0=tmp11
  318. subps xmm1,xmm3
  319. addps xmm4,xmm2 ; xmm4=tmp10
  320. addps xmm5,xmm3 ; xmm5=tmp13
  321. mulps xmm1,[GOTOFF(ebx,PD_1_414)]
  322. subps xmm1,xmm5 ; xmm1=tmp12
  323. movaps xmm6,xmm4
  324. movaps xmm7,xmm0
  325. subps xmm4,xmm5 ; xmm4=tmp3
  326. subps xmm0,xmm1 ; xmm0=tmp2
  327. addps xmm6,xmm5 ; xmm6=tmp0
  328. addps xmm7,xmm1 ; xmm7=tmp1
  329. movaps XMMWORD [wk(1)], xmm4 ; tmp3
  330. movaps XMMWORD [wk(0)], xmm0 ; tmp2
  331. ; -- Odd part
  332. movaps xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)]
  333. movaps xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_FAST_FLOAT)]
  334. movaps xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_FAST_FLOAT)]
  335. movaps xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_FAST_FLOAT)]
  336. movaps xmm4,xmm2
  337. movaps xmm0,xmm5
  338. addps xmm2,xmm1 ; xmm2=z11
  339. addps xmm5,xmm3 ; xmm5=z13
  340. subps xmm4,xmm1 ; xmm4=z12
  341. subps xmm0,xmm3 ; xmm0=z10
  342. movaps xmm1,xmm2
  343. subps xmm2,xmm5
  344. addps xmm1,xmm5 ; xmm1=tmp7
  345. mulps xmm2,[GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11
  346. movaps xmm3,xmm0
  347. addps xmm0,xmm4
  348. mulps xmm0,[GOTOFF(ebx,PD_1_847)] ; xmm0=z5
  349. mulps xmm3,[GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930)
  350. mulps xmm4,[GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200)
  351. addps xmm3,xmm0 ; xmm3=tmp12
  352. subps xmm4,xmm0 ; xmm4=tmp10
  353. ; -- Final output stage
  354. subps xmm3,xmm1 ; xmm3=tmp6
  355. movaps xmm5,xmm6
  356. movaps xmm0,xmm7
  357. addps xmm6,xmm1 ; xmm6=data0=(00 10 20 30)
  358. addps xmm7,xmm3 ; xmm7=data1=(01 11 21 31)
  359. subps xmm5,xmm1 ; xmm5=data7=(07 17 27 37)
  360. subps xmm0,xmm3 ; xmm0=data6=(06 16 26 36)
  361. subps xmm2,xmm3 ; xmm2=tmp5
  362. movaps xmm1,[GOTOFF(ebx,PD_0_125)] ; xmm1=[PD_0_125]
  363. mulps xmm6,xmm1 ; descale(1/8)
  364. mulps xmm7,xmm1 ; descale(1/8)
  365. mulps xmm5,xmm1 ; descale(1/8)
  366. mulps xmm0,xmm1 ; descale(1/8)
  367. movhlps xmm3,xmm6
  368. movhlps xmm1,xmm7
  369. cvtps2pi mm0,xmm6 ; round to int32, mm0=data0L=(00 10)
  370. cvtps2pi mm1,xmm7 ; round to int32, mm1=data1L=(01 11)
  371. cvtps2pi mm2,xmm3 ; round to int32, mm2=data0H=(20 30)
  372. cvtps2pi mm3,xmm1 ; round to int32, mm3=data1H=(21 31)
  373. packssdw mm0,mm2 ; mm0=data0=(00 10 20 30)
  374. packssdw mm1,mm3 ; mm1=data1=(01 11 21 31)
  375. movhlps xmm6,xmm5
  376. movhlps xmm7,xmm0
  377. cvtps2pi mm4,xmm5 ; round to int32, mm4=data7L=(07 17)
  378. cvtps2pi mm5,xmm0 ; round to int32, mm5=data6L=(06 16)
  379. cvtps2pi mm6,xmm6 ; round to int32, mm6=data7H=(27 37)
  380. cvtps2pi mm7,xmm7 ; round to int32, mm7=data6H=(26 36)
  381. packssdw mm4,mm6 ; mm4=data7=(07 17 27 37)
  382. packssdw mm5,mm7 ; mm5=data6=(06 16 26 36)
  383. packsswb mm0,mm5 ; mm0=(00 10 20 30 06 16 26 36)
  384. packsswb mm1,mm4 ; mm1=(01 11 21 31 07 17 27 37)
  385. movaps xmm3, XMMWORD [wk(0)] ; xmm3=tmp2
  386. movaps xmm1, XMMWORD [wk(1)] ; xmm1=tmp3
  387. movaps xmm6,[GOTOFF(ebx,PD_0_125)] ; xmm6=[PD_0_125]
  388. addps xmm4,xmm2 ; xmm4=tmp4
  389. movaps xmm5,xmm3
  390. movaps xmm0,xmm1
  391. addps xmm3,xmm2 ; xmm3=data2=(02 12 22 32)
  392. addps xmm1,xmm4 ; xmm1=data4=(04 14 24 34)
  393. subps xmm5,xmm2 ; xmm5=data5=(05 15 25 35)
  394. subps xmm0,xmm4 ; xmm0=data3=(03 13 23 33)
  395. mulps xmm3,xmm6 ; descale(1/8)
  396. mulps xmm1,xmm6 ; descale(1/8)
  397. mulps xmm5,xmm6 ; descale(1/8)
  398. mulps xmm0,xmm6 ; descale(1/8)
  399. movhlps xmm7,xmm3
  400. movhlps xmm2,xmm1
  401. cvtps2pi mm2,xmm3 ; round to int32, mm2=data2L=(02 12)
  402. cvtps2pi mm3,xmm1 ; round to int32, mm3=data4L=(04 14)
  403. cvtps2pi mm6,xmm7 ; round to int32, mm6=data2H=(22 32)
  404. cvtps2pi mm7,xmm2 ; round to int32, mm7=data4H=(24 34)
  405. packssdw mm2,mm6 ; mm2=data2=(02 12 22 32)
  406. packssdw mm3,mm7 ; mm3=data4=(04 14 24 34)
  407. movhlps xmm4,xmm5
  408. movhlps xmm6,xmm0
  409. cvtps2pi mm5,xmm5 ; round to int32, mm5=data5L=(05 15)
  410. cvtps2pi mm4,xmm0 ; round to int32, mm4=data3L=(03 13)
  411. cvtps2pi mm6,xmm4 ; round to int32, mm6=data5H=(25 35)
  412. cvtps2pi mm7,xmm6 ; round to int32, mm7=data3H=(23 33)
  413. packssdw mm5,mm6 ; mm5=data5=(05 15 25 35)
  414. packssdw mm4,mm7 ; mm4=data3=(03 13 23 33)
  415. movq mm6,[GOTOFF(ebx,PB_CENTERJSAMP)] ; mm6=[PB_CENTERJSAMP]
  416. packsswb mm2,mm3 ; mm2=(02 12 22 32 04 14 24 34)
  417. packsswb mm4,mm5 ; mm4=(03 13 23 33 05 15 25 35)
  418. paddb mm0,mm6
  419. paddb mm1,mm6
  420. paddb mm2,mm6
  421. paddb mm4,mm6
  422. movq mm7,mm0 ; transpose coefficients(phase 1)
  423. punpcklbw mm0,mm1 ; mm0=(00 01 10 11 20 21 30 31)
  424. punpckhbw mm7,mm1 ; mm7=(06 07 16 17 26 27 36 37)
  425. movq mm3,mm2 ; transpose coefficients(phase 1)
  426. punpcklbw mm2,mm4 ; mm2=(02 03 12 13 22 23 32 33)
  427. punpckhbw mm3,mm4 ; mm3=(04 05 14 15 24 25 34 35)
  428. movq mm5,mm0 ; transpose coefficients(phase 2)
  429. punpcklwd mm0,mm2 ; mm0=(00 01 02 03 10 11 12 13)
  430. punpckhwd mm5,mm2 ; mm5=(20 21 22 23 30 31 32 33)
  431. movq mm6,mm3 ; transpose coefficients(phase 2)
  432. punpcklwd mm3,mm7 ; mm3=(04 05 06 07 14 15 16 17)
  433. punpckhwd mm6,mm7 ; mm6=(24 25 26 27 34 35 36 37)
  434. movq mm1,mm0 ; transpose coefficients(phase 3)
  435. punpckldq mm0,mm3 ; mm0=(00 01 02 03 04 05 06 07)
  436. punpckhdq mm1,mm3 ; mm1=(10 11 12 13 14 15 16 17)
  437. movq mm4,mm5 ; transpose coefficients(phase 3)
  438. punpckldq mm5,mm6 ; mm5=(20 21 22 23 24 25 26 27)
  439. punpckhdq mm4,mm6 ; mm4=(30 31 32 33 34 35 36 37)
  440. pushpic ebx ; save GOT address
  441. mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW]
  442. mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW]
  443. movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm0
  444. movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1
  445. mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW]
  446. mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW]
  447. movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5
  448. movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm4
  449. poppic ebx ; restore GOT address
  450. add esi, byte 4*SIZEOF_FAST_FLOAT ; wsptr
  451. add edi, byte 4*SIZEOF_JSAMPROW
  452. dec ecx ; ctr
  453. jnz near .rowloop
  454. emms ; empty MMX state
  455. pop edi
  456. pop esi
  457. ; pop edx ; need not be preserved
  458. ; pop ecx ; need not be preserved
  459. pop ebx
  460. mov esp,ebp ; esp <- aligned ebp
  461. pop esp ; esp <- original ebp
  462. pop ebp
  463. ret
  464. ; For some reason, the OS X linker does not honor the request to align the
  465. ; segment unless we do this.
  466. align 16