jfdctflt-sse-64.asm 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. ;
  2. ; jfdctflt.asm - floating-point FDCT (64-bit SSE)
  3. ;
  4. ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
  5. ; Copyright (C) 2009, D. R. Commander.
  6. ;
  7. ; Based on the x86 SIMD extension for IJG JPEG library
  8. ; Copyright (C) 1999-2006, MIYASAKA Masaru.
  9. ; For conditions of distribution and use, see copyright notice in jsimdext.inc
  10. ;
  11. ; This file should be assembled with NASM (Netwide Assembler),
  12. ; can *not* be assembled with Microsoft's MASM or any compatible
  13. ; assembler (including Borland's Turbo Assembler).
  14. ; NASM is available from http://nasm.sourceforge.net/ or
  15. ; http://sourceforge.net/project/showfiles.php?group_id=6208
  16. ;
  17. ; This file contains a floating-point implementation of the forward DCT
  18. ; (Discrete Cosine Transform). The following code is based directly on
  19. ; the IJG's original jfdctflt.c; see the jfdctflt.c for more details.
  20. ;
  21. ; [TAB8]
  22. %include "jsimdext.inc"
  23. %include "jdct.inc"
  24. ; --------------------------------------------------------------------------
  25. %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5)
  26. shufps %1,%2,0x44
  27. %endmacro
  28. %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7)
  29. shufps %1,%2,0xEE
  30. %endmacro
  31. ; --------------------------------------------------------------------------
  32. SECTION SEG_CONST
  33. alignz 16
  34. global EXTN(jconst_fdct_float_sse)
  35. EXTN(jconst_fdct_float_sse):
  36. PD_0_382 times 4 dd 0.382683432365089771728460
  37. PD_0_707 times 4 dd 0.707106781186547524400844
  38. PD_0_541 times 4 dd 0.541196100146196984399723
  39. PD_1_306 times 4 dd 1.306562964876376527856643
  40. alignz 16
  41. ; --------------------------------------------------------------------------
  42. SECTION SEG_TEXT
  43. BITS 64
  44. ;
  45. ; Perform the forward DCT on one block of samples.
  46. ;
  47. ; GLOBAL(void)
  48. ; jsimd_fdct_float_sse (FAST_FLOAT *data)
  49. ;
  50. ; r10 = FAST_FLOAT *data
  51. %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM]
  52. %define WK_NUM 2
  53. align 16
  54. global EXTN(jsimd_fdct_float_sse)
  55. EXTN(jsimd_fdct_float_sse):
  56. push rbp
  57. mov rax,rsp ; rax = original rbp
  58. sub rsp, byte 4
  59. and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
  60. mov [rsp],rax
  61. mov rbp,rsp ; rbp = aligned rbp
  62. lea rsp, [wk(0)]
  63. collect_args
  64. ; ---- Pass 1: process rows.
  65. mov rdx, r10 ; (FAST_FLOAT *)
  66. mov rcx, DCTSIZE/4
  67. .rowloop:
  68. movaps xmm0, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)]
  69. movaps xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)]
  70. movaps xmm2, XMMWORD [XMMBLOCK(2,1,rdx,SIZEOF_FAST_FLOAT)]
  71. movaps xmm3, XMMWORD [XMMBLOCK(3,1,rdx,SIZEOF_FAST_FLOAT)]
  72. ; xmm0=(20 21 22 23), xmm2=(24 25 26 27)
  73. ; xmm1=(30 31 32 33), xmm3=(34 35 36 37)
  74. movaps xmm4,xmm0 ; transpose coefficients(phase 1)
  75. unpcklps xmm0,xmm1 ; xmm0=(20 30 21 31)
  76. unpckhps xmm4,xmm1 ; xmm4=(22 32 23 33)
  77. movaps xmm5,xmm2 ; transpose coefficients(phase 1)
  78. unpcklps xmm2,xmm3 ; xmm2=(24 34 25 35)
  79. unpckhps xmm5,xmm3 ; xmm5=(26 36 27 37)
  80. movaps xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)]
  81. movaps xmm7, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)]
  82. movaps xmm1, XMMWORD [XMMBLOCK(0,1,rdx,SIZEOF_FAST_FLOAT)]
  83. movaps xmm3, XMMWORD [XMMBLOCK(1,1,rdx,SIZEOF_FAST_FLOAT)]
  84. ; xmm6=(00 01 02 03), xmm1=(04 05 06 07)
  85. ; xmm7=(10 11 12 13), xmm3=(14 15 16 17)
  86. movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 32 23 33)
  87. movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(24 34 25 35)
  88. movaps xmm4,xmm6 ; transpose coefficients(phase 1)
  89. unpcklps xmm6,xmm7 ; xmm6=(00 10 01 11)
  90. unpckhps xmm4,xmm7 ; xmm4=(02 12 03 13)
  91. movaps xmm2,xmm1 ; transpose coefficients(phase 1)
  92. unpcklps xmm1,xmm3 ; xmm1=(04 14 05 15)
  93. unpckhps xmm2,xmm3 ; xmm2=(06 16 07 17)
  94. movaps xmm7,xmm6 ; transpose coefficients(phase 2)
  95. unpcklps2 xmm6,xmm0 ; xmm6=(00 10 20 30)=data0
  96. unpckhps2 xmm7,xmm0 ; xmm7=(01 11 21 31)=data1
  97. movaps xmm3,xmm2 ; transpose coefficients(phase 2)
  98. unpcklps2 xmm2,xmm5 ; xmm2=(06 16 26 36)=data6
  99. unpckhps2 xmm3,xmm5 ; xmm3=(07 17 27 37)=data7
  100. movaps xmm0,xmm7
  101. movaps xmm5,xmm6
  102. subps xmm7,xmm2 ; xmm7=data1-data6=tmp6
  103. subps xmm6,xmm3 ; xmm6=data0-data7=tmp7
  104. addps xmm0,xmm2 ; xmm0=data1+data6=tmp1
  105. addps xmm5,xmm3 ; xmm5=data0+data7=tmp0
  106. movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 32 23 33)
  107. movaps xmm3, XMMWORD [wk(1)] ; xmm3=(24 34 25 35)
  108. movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6
  109. movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7
  110. movaps xmm7,xmm4 ; transpose coefficients(phase 2)
  111. unpcklps2 xmm4,xmm2 ; xmm4=(02 12 22 32)=data2
  112. unpckhps2 xmm7,xmm2 ; xmm7=(03 13 23 33)=data3
  113. movaps xmm6,xmm1 ; transpose coefficients(phase 2)
  114. unpcklps2 xmm1,xmm3 ; xmm1=(04 14 24 34)=data4
  115. unpckhps2 xmm6,xmm3 ; xmm6=(05 15 25 35)=data5
  116. movaps xmm2,xmm7
  117. movaps xmm3,xmm4
  118. addps xmm7,xmm1 ; xmm7=data3+data4=tmp3
  119. addps xmm4,xmm6 ; xmm4=data2+data5=tmp2
  120. subps xmm2,xmm1 ; xmm2=data3-data4=tmp4
  121. subps xmm3,xmm6 ; xmm3=data2-data5=tmp5
  122. ; -- Even part
  123. movaps xmm1,xmm5
  124. movaps xmm6,xmm0
  125. subps xmm5,xmm7 ; xmm5=tmp13
  126. subps xmm0,xmm4 ; xmm0=tmp12
  127. addps xmm1,xmm7 ; xmm1=tmp10
  128. addps xmm6,xmm4 ; xmm6=tmp11
  129. addps xmm0,xmm5
  130. mulps xmm0,[rel PD_0_707] ; xmm0=z1
  131. movaps xmm7,xmm1
  132. movaps xmm4,xmm5
  133. subps xmm1,xmm6 ; xmm1=data4
  134. subps xmm5,xmm0 ; xmm5=data6
  135. addps xmm7,xmm6 ; xmm7=data0
  136. addps xmm4,xmm0 ; xmm4=data2
  137. movaps XMMWORD [XMMBLOCK(0,1,rdx,SIZEOF_FAST_FLOAT)], xmm1
  138. movaps XMMWORD [XMMBLOCK(2,1,rdx,SIZEOF_FAST_FLOAT)], xmm5
  139. movaps XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)], xmm7
  140. movaps XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)], xmm4
  141. ; -- Odd part
  142. movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6
  143. movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7
  144. addps xmm2,xmm3 ; xmm2=tmp10
  145. addps xmm3,xmm6 ; xmm3=tmp11
  146. addps xmm6,xmm0 ; xmm6=tmp12, xmm0=tmp7
  147. mulps xmm3,[rel PD_0_707] ; xmm3=z3
  148. movaps xmm1,xmm2 ; xmm1=tmp10
  149. subps xmm2,xmm6
  150. mulps xmm2,[rel PD_0_382] ; xmm2=z5
  151. mulps xmm1,[rel PD_0_541] ; xmm1=MULTIPLY(tmp10,FIX_0_541196)
  152. mulps xmm6,[rel PD_1_306] ; xmm6=MULTIPLY(tmp12,FIX_1_306562)
  153. addps xmm1,xmm2 ; xmm1=z2
  154. addps xmm6,xmm2 ; xmm6=z4
  155. movaps xmm5,xmm0
  156. subps xmm0,xmm3 ; xmm0=z13
  157. addps xmm5,xmm3 ; xmm5=z11
  158. movaps xmm7,xmm0
  159. movaps xmm4,xmm5
  160. subps xmm0,xmm1 ; xmm0=data3
  161. subps xmm5,xmm6 ; xmm5=data7
  162. addps xmm7,xmm1 ; xmm7=data5
  163. addps xmm4,xmm6 ; xmm4=data1
  164. movaps XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)], xmm0
  165. movaps XMMWORD [XMMBLOCK(3,1,rdx,SIZEOF_FAST_FLOAT)], xmm5
  166. movaps XMMWORD [XMMBLOCK(1,1,rdx,SIZEOF_FAST_FLOAT)], xmm7
  167. movaps XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)], xmm4
  168. add rdx, 4*DCTSIZE*SIZEOF_FAST_FLOAT
  169. dec rcx
  170. jnz near .rowloop
  171. ; ---- Pass 2: process columns.
  172. mov rdx, r10 ; (FAST_FLOAT *)
  173. mov rcx, DCTSIZE/4
  174. .columnloop:
  175. movaps xmm0, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)]
  176. movaps xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)]
  177. movaps xmm2, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_FAST_FLOAT)]
  178. movaps xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_FAST_FLOAT)]
  179. ; xmm0=(02 12 22 32), xmm2=(42 52 62 72)
  180. ; xmm1=(03 13 23 33), xmm3=(43 53 63 73)
  181. movaps xmm4,xmm0 ; transpose coefficients(phase 1)
  182. unpcklps xmm0,xmm1 ; xmm0=(02 03 12 13)
  183. unpckhps xmm4,xmm1 ; xmm4=(22 23 32 33)
  184. movaps xmm5,xmm2 ; transpose coefficients(phase 1)
  185. unpcklps xmm2,xmm3 ; xmm2=(42 43 52 53)
  186. unpckhps xmm5,xmm3 ; xmm5=(62 63 72 73)
  187. movaps xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)]
  188. movaps xmm7, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)]
  189. movaps xmm1, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_FAST_FLOAT)]
  190. movaps xmm3, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_FAST_FLOAT)]
  191. ; xmm6=(00 10 20 30), xmm1=(40 50 60 70)
  192. ; xmm7=(01 11 21 31), xmm3=(41 51 61 71)
  193. movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 23 32 33)
  194. movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(42 43 52 53)
  195. movaps xmm4,xmm6 ; transpose coefficients(phase 1)
  196. unpcklps xmm6,xmm7 ; xmm6=(00 01 10 11)
  197. unpckhps xmm4,xmm7 ; xmm4=(20 21 30 31)
  198. movaps xmm2,xmm1 ; transpose coefficients(phase 1)
  199. unpcklps xmm1,xmm3 ; xmm1=(40 41 50 51)
  200. unpckhps xmm2,xmm3 ; xmm2=(60 61 70 71)
  201. movaps xmm7,xmm6 ; transpose coefficients(phase 2)
  202. unpcklps2 xmm6,xmm0 ; xmm6=(00 01 02 03)=data0
  203. unpckhps2 xmm7,xmm0 ; xmm7=(10 11 12 13)=data1
  204. movaps xmm3,xmm2 ; transpose coefficients(phase 2)
  205. unpcklps2 xmm2,xmm5 ; xmm2=(60 61 62 63)=data6
  206. unpckhps2 xmm3,xmm5 ; xmm3=(70 71 72 73)=data7
  207. movaps xmm0,xmm7
  208. movaps xmm5,xmm6
  209. subps xmm7,xmm2 ; xmm7=data1-data6=tmp6
  210. subps xmm6,xmm3 ; xmm6=data0-data7=tmp7
  211. addps xmm0,xmm2 ; xmm0=data1+data6=tmp1
  212. addps xmm5,xmm3 ; xmm5=data0+data7=tmp0
  213. movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 23 32 33)
  214. movaps xmm3, XMMWORD [wk(1)] ; xmm3=(42 43 52 53)
  215. movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6
  216. movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7
  217. movaps xmm7,xmm4 ; transpose coefficients(phase 2)
  218. unpcklps2 xmm4,xmm2 ; xmm4=(20 21 22 23)=data2
  219. unpckhps2 xmm7,xmm2 ; xmm7=(30 31 32 33)=data3
  220. movaps xmm6,xmm1 ; transpose coefficients(phase 2)
  221. unpcklps2 xmm1,xmm3 ; xmm1=(40 41 42 43)=data4
  222. unpckhps2 xmm6,xmm3 ; xmm6=(50 51 52 53)=data5
  223. movaps xmm2,xmm7
  224. movaps xmm3,xmm4
  225. addps xmm7,xmm1 ; xmm7=data3+data4=tmp3
  226. addps xmm4,xmm6 ; xmm4=data2+data5=tmp2
  227. subps xmm2,xmm1 ; xmm2=data3-data4=tmp4
  228. subps xmm3,xmm6 ; xmm3=data2-data5=tmp5
  229. ; -- Even part
  230. movaps xmm1,xmm5
  231. movaps xmm6,xmm0
  232. subps xmm5,xmm7 ; xmm5=tmp13
  233. subps xmm0,xmm4 ; xmm0=tmp12
  234. addps xmm1,xmm7 ; xmm1=tmp10
  235. addps xmm6,xmm4 ; xmm6=tmp11
  236. addps xmm0,xmm5
  237. mulps xmm0,[rel PD_0_707] ; xmm0=z1
  238. movaps xmm7,xmm1
  239. movaps xmm4,xmm5
  240. subps xmm1,xmm6 ; xmm1=data4
  241. subps xmm5,xmm0 ; xmm5=data6
  242. addps xmm7,xmm6 ; xmm7=data0
  243. addps xmm4,xmm0 ; xmm4=data2
  244. movaps XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_FAST_FLOAT)], xmm1
  245. movaps XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_FAST_FLOAT)], xmm5
  246. movaps XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)], xmm7
  247. movaps XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)], xmm4
  248. ; -- Odd part
  249. movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6
  250. movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7
  251. addps xmm2,xmm3 ; xmm2=tmp10
  252. addps xmm3,xmm6 ; xmm3=tmp11
  253. addps xmm6,xmm0 ; xmm6=tmp12, xmm0=tmp7
  254. mulps xmm3,[rel PD_0_707] ; xmm3=z3
  255. movaps xmm1,xmm2 ; xmm1=tmp10
  256. subps xmm2,xmm6
  257. mulps xmm2,[rel PD_0_382] ; xmm2=z5
  258. mulps xmm1,[rel PD_0_541] ; xmm1=MULTIPLY(tmp10,FIX_0_541196)
  259. mulps xmm6,[rel PD_1_306] ; xmm6=MULTIPLY(tmp12,FIX_1_306562)
  260. addps xmm1,xmm2 ; xmm1=z2
  261. addps xmm6,xmm2 ; xmm6=z4
  262. movaps xmm5,xmm0
  263. subps xmm0,xmm3 ; xmm0=z13
  264. addps xmm5,xmm3 ; xmm5=z11
  265. movaps xmm7,xmm0
  266. movaps xmm4,xmm5
  267. subps xmm0,xmm1 ; xmm0=data3
  268. subps xmm5,xmm6 ; xmm5=data7
  269. addps xmm7,xmm1 ; xmm7=data5
  270. addps xmm4,xmm6 ; xmm4=data1
  271. movaps XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)], xmm0
  272. movaps XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_FAST_FLOAT)], xmm5
  273. movaps XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_FAST_FLOAT)], xmm7
  274. movaps XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)], xmm4
  275. add rdx, byte 4*SIZEOF_FAST_FLOAT
  276. dec rcx
  277. jnz near .columnloop
  278. uncollect_args
  279. mov rsp,rbp ; rsp <- aligned rbp
  280. pop rsp ; rsp <- original rbp
  281. pop rbp
  282. ret
  283. ; For some reason, the OS X linker does not honor the request to align the
  284. ; segment unless we do this.
  285. align 16