123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146 |
- /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- * This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
- #ifndef js_UbiNode_h
- #define js_UbiNode_h
- #include "mozilla/Alignment.h"
- #include "mozilla/Assertions.h"
- #include "mozilla/Attributes.h"
- #include "mozilla/Maybe.h"
- #include "mozilla/MemoryReporting.h"
- #include "mozilla/Move.h"
- #include "mozilla/RangedPtr.h"
- #include "mozilla/TypeTraits.h"
- #include "mozilla/Variant.h"
- #include "jspubtd.h"
- #include "js/GCAPI.h"
- #include "js/HashTable.h"
- #include "js/RootingAPI.h"
- #include "js/TracingAPI.h"
- #include "js/TypeDecls.h"
- #include "js/UniquePtr.h"
- #include "js/Value.h"
- #include "js/Vector.h"
- // JS::ubi::Node
- //
- // JS::ubi::Node is a pointer-like type designed for internal use by heap
- // analysis tools. A ubi::Node can refer to:
- //
- // - a JS value, like a string, object, or symbol;
- // - an internal SpiderMonkey structure, like a shape or a scope chain object
- // - an instance of some embedding-provided type: in Firefox, an XPCOM
- // object, or an internal DOM node class instance
- //
- // A ubi::Node instance provides metadata about its referent, and can
- // enumerate its referent's outgoing edges, so you can implement heap analysis
- // algorithms that walk the graph - finding paths between objects, or
- // computing heap dominator trees, say - using ubi::Node, while remaining
- // ignorant of the details of the types you're operating on.
- //
- // Of course, when it comes to presenting the results in a developer-facing
- // tool, you'll need to stop being ignorant of those details, because you have
- // to discuss the ubi::Nodes' referents with the developer. Here, ubi::Node
- // can hand you dynamically checked, properly typed pointers to the original
- // objects via the as<T> method, or generate descriptions of the referent
- // itself.
- //
- // ubi::Node instances are lightweight (two-word) value types. Instances:
- // - compare equal if and only if they refer to the same object;
- // - have hash values that respect their equality relation; and
- // - have serializations that are only equal if the ubi::Nodes are equal.
- //
- // A ubi::Node is only valid for as long as its referent is alive; if its
- // referent goes away, the ubi::Node becomes a dangling pointer. A ubi::Node
- // that refers to a GC-managed object is not automatically a GC root; if the
- // GC frees or relocates its referent, the ubi::Node becomes invalid. A
- // ubi::Node that refers to a reference-counted object does not bump the
- // reference count.
- //
- // ubi::Node values require no supporting data structures, making them
- // feasible for use in memory-constrained devices --- ideally, the memory
- // requirements of the algorithm which uses them will be the limiting factor,
- // not the demands of ubi::Node itself.
- //
- // One can construct a ubi::Node value given a pointer to a type that ubi::Node
- // supports. In the other direction, one can convert a ubi::Node back to a
- // pointer; these downcasts are checked dynamically. In particular, one can
- // convert a 'JSContext*' to a ubi::Node, yielding a node with an outgoing edge
- // for every root registered with the runtime; starting from this, one can walk
- // the entire heap. (Of course, one could also start traversal at any other kind
- // of type to which one has a pointer.)
- //
- //
- // Extending ubi::Node To Handle Your Embedding's Types
- //
- // To add support for a new ubi::Node referent type R, you must define a
- // specialization of the ubi::Concrete template, ubi::Concrete<R>, which
- // inherits from ubi::Base. ubi::Node itself uses the specialization for
- // compile-time information (i.e. the checked conversions between R * and
- // ubi::Node), and the inheritance for run-time dispatching.
- //
- //
- // ubi::Node Exposes Implementation Details
- //
- // In many cases, a JavaScript developer's view of their data differs
- // substantially from its actual implementation. For example, while the
- // ECMAScript specification describes objects as maps from property names to
- // sets of attributes (like ECMAScript's [[Value]]), in practice many objects
- // have only a pointer to a shape, shared with other similar objects, and
- // indexed slots that contain the [[Value]] attributes. As another example, a
- // string produced by concatenating two other strings may sometimes be
- // represented by a "rope", a structure that points to the two original
- // strings.
- //
- // We intend to use ubi::Node to write tools that report memory usage, so it's
- // important that ubi::Node accurately portray how much memory nodes consume.
- // Thus, for example, when data that apparently belongs to multiple nodes is
- // in fact shared in a common structure, ubi::Node's graph uses a separate
- // node for that shared structure, and presents edges to it from the data's
- // apparent owners. For example, ubi::Node exposes SpiderMonkey objects'
- // shapes and base shapes, and exposes rope string and substring structure,
- // because these optimizations become visible when a tool reports how much
- // memory a structure consumes.
- //
- // However, fine granularity is not a goal. When a particular object is the
- // exclusive owner of a separate block of memory, ubi::Node may present the
- // object and its block as a single node, and add their sizes together when
- // reporting the node's size, as there is no meaningful loss of data in this
- // case. Thus, for example, a ubi::Node referring to a JavaScript object, when
- // asked for the object's size in bytes, includes the object's slot and
- // element arrays' sizes in the total. There is no separate ubi::Node value
- // representing the slot and element arrays, since they are owned exclusively
- // by the object.
- //
- //
- // Presenting Analysis Results To JavaScript Developers
- //
- // If an analysis provides its results in terms of ubi::Node values, a user
- // interface presenting those results will generally need to clean them up
- // before they can be understood by JavaScript developers. For example,
- // JavaScript developers should not need to understand shapes, only JavaScript
- // objects. Similarly, they should not need to understand the distinction
- // between DOM nodes and the JavaScript shadow objects that represent them.
- //
- //
- // Rooting Restrictions
- //
- // At present there is no way to root ubi::Node instances, so instances can't be
- // live across any operation that might GC. Analyses using ubi::Node must either
- // run to completion and convert their results to some other rootable type, or
- // save their intermediate state in some rooted structure if they must GC before
- // they complete. (For algorithms like path-finding and dominator tree
- // computation, we implement the algorithm avoiding any operation that could
- // cause a GC --- and use AutoCheckCannotGC to verify this.)
- //
- // If this restriction prevents us from implementing interesting tools, we may
- // teach the GC how to root ubi::Nodes, fix up hash tables that use them as
- // keys, etc.
- //
- //
- // Hostile Graph Structure
- //
- // Analyses consuming ubi::Node graphs must be robust when presented with graphs
- // that are deliberately constructed to exploit their weaknesses. When operating
- // on live graphs, web content has control over the object graph, and less
- // direct control over shape and string structure, and analyses should be
- // prepared to handle extreme cases gracefully. For example, if an analysis were
- // to use the C++ stack in a depth-first traversal, carefully constructed
- // content could cause the analysis to overflow the stack.
- //
- // When ubi::Nodes refer to nodes deserialized from a heap snapshot, analyses
- // must be even more careful: since snapshots often come from potentially
- // compromised e10s content processes, even properties normally guaranteed by
- // the platform (the proper linking of DOM nodes, for example) might be
- // corrupted. While it is the deserializer's responsibility to check the basic
- // structure of the snapshot file, the analyses should be prepared for ubi::Node
- // graphs constructed from snapshots to be even more bizarre.
- class JSAtom;
- namespace JS {
- namespace ubi {
- class Edge;
- class EdgeRange;
- class StackFrame;
- } // namespace ubi
- } // namespace JS
- namespace JS {
- namespace ubi {
- using mozilla::Forward;
- using mozilla::Maybe;
- using mozilla::Move;
- using mozilla::RangedPtr;
- using mozilla::Variant;
- template <typename T>
- using Vector = mozilla::Vector<T, 0, js::SystemAllocPolicy>;
- /*** ubi::StackFrame ******************************************************************************/
- // Concrete JS::ubi::StackFrame instances backed by a live SavedFrame object
- // store their strings as JSAtom*, while deserialized stack frames from offline
- // heap snapshots store their strings as const char16_t*. In order to provide
- // zero-cost accessors to these strings in a single interface that works with
- // both cases, we use this variant type.
- class JS_PUBLIC_API(AtomOrTwoByteChars) : public Variant<JSAtom*, const char16_t*> {
- using Base = Variant<JSAtom*, const char16_t*>;
- public:
- template<typename T>
- MOZ_IMPLICIT AtomOrTwoByteChars(T&& rhs) : Base(Forward<T>(rhs)) { }
- template<typename T>
- AtomOrTwoByteChars& operator=(T&& rhs) {
- MOZ_ASSERT(this != &rhs, "self-move disallowed");
- this->~AtomOrTwoByteChars();
- new (this) AtomOrTwoByteChars(Forward<T>(rhs));
- return *this;
- }
- // Return the length of the given AtomOrTwoByteChars string.
- size_t length();
- // Copy the given AtomOrTwoByteChars string into the destination buffer,
- // inflating if necessary. Does NOT null terminate. Returns the number of
- // characters written to destination.
- size_t copyToBuffer(RangedPtr<char16_t> destination, size_t length);
- };
- // The base class implemented by each ConcreteStackFrame<T> type. Subclasses
- // must not add data members to this class.
- class BaseStackFrame {
- friend class StackFrame;
- BaseStackFrame(const StackFrame&) = delete;
- BaseStackFrame& operator=(const StackFrame&) = delete;
- protected:
- void* ptr;
- explicit BaseStackFrame(void* ptr) : ptr(ptr) { }
- public:
- // This is a value type that should not have a virtual destructor. Don't add
- // destructors in subclasses!
- // Get a unique identifier for this StackFrame. The identifier is not valid
- // across garbage collections.
- virtual uint64_t identifier() const { return uint64_t(uintptr_t(ptr)); }
- // Get this frame's parent frame.
- virtual StackFrame parent() const = 0;
- // Get this frame's line number.
- virtual uint32_t line() const = 0;
- // Get this frame's column number.
- virtual uint32_t column() const = 0;
- // Get this frame's source name. Never null.
- virtual AtomOrTwoByteChars source() const = 0;
- // Return this frame's function name if named, otherwise the inferred
- // display name. Can be null.
- virtual AtomOrTwoByteChars functionDisplayName() const = 0;
- // Returns true if this frame's function is system JavaScript running with
- // trusted principals, false otherwise.
- virtual bool isSystem() const = 0;
- // Return true if this frame's function is a self-hosted JavaScript builtin,
- // false otherwise.
- virtual bool isSelfHosted(JSContext* cx) const = 0;
- // Construct a SavedFrame stack for the stack starting with this frame and
- // containing all of its parents. The SavedFrame objects will be placed into
- // cx's current compartment.
- //
- // Note that the process of
- //
- // SavedFrame
- // |
- // V
- // JS::ubi::StackFrame
- // |
- // V
- // offline heap snapshot
- // |
- // V
- // JS::ubi::StackFrame
- // |
- // V
- // SavedFrame
- //
- // is lossy because we cannot serialize and deserialize the SavedFrame's
- // principals in the offline heap snapshot, so JS::ubi::StackFrame
- // simplifies the principals check into the boolean isSystem() state. This
- // is fine because we only expose JS::ubi::Stack to devtools and chrome
- // code, and not to the web platform.
- virtual MOZ_MUST_USE bool constructSavedFrameStack(JSContext* cx,
- MutableHandleObject outSavedFrameStack)
- const = 0;
- // Trace the concrete implementation of JS::ubi::StackFrame.
- virtual void trace(JSTracer* trc) = 0;
- };
- // A traits template with a specialization for each backing type that implements
- // the ubi::BaseStackFrame interface. Each specialization must be the a subclass
- // of ubi::BaseStackFrame.
- template<typename T> class ConcreteStackFrame;
- // A JS::ubi::StackFrame represents a frame in a recorded stack. It can be
- // backed either by a live SavedFrame object or by a structure deserialized from
- // an offline heap snapshot.
- //
- // It is a value type that may be memcpy'd hither and thither without worrying
- // about constructors or destructors, similar to POD types.
- //
- // Its lifetime is the same as the lifetime of the graph that is being analyzed
- // by the JS::ubi::Node that the JS::ubi::StackFrame came from. That is, if the
- // graph being analyzed is the live heap graph, the JS::ubi::StackFrame is only
- // valid within the scope of an AutoCheckCannotGC; if the graph being analyzed
- // is an offline heap snapshot, the JS::ubi::StackFrame is valid as long as the
- // offline heap snapshot is alive.
- class StackFrame {
- // Storage in which we allocate BaseStackFrame subclasses.
- mozilla::AlignedStorage2<BaseStackFrame> storage;
- BaseStackFrame* base() { return storage.addr(); }
- const BaseStackFrame* base() const { return storage.addr(); }
- template<typename T>
- void construct(T* ptr) {
- static_assert(mozilla::IsBaseOf<BaseStackFrame, ConcreteStackFrame<T>>::value,
- "ConcreteStackFrame<T> must inherit from BaseStackFrame");
- static_assert(sizeof(ConcreteStackFrame<T>) == sizeof(*base()),
- "ubi::ConcreteStackFrame<T> specializations must be the same size as "
- "ubi::BaseStackFrame");
- ConcreteStackFrame<T>::construct(base(), ptr);
- }
- struct ConstructFunctor;
- public:
- StackFrame() { construct<void>(nullptr); }
- template<typename T>
- MOZ_IMPLICIT StackFrame(T* ptr) {
- construct(ptr);
- }
- template<typename T>
- StackFrame& operator=(T* ptr) {
- construct(ptr);
- return *this;
- }
- // Constructors accepting SpiderMonkey's generic-pointer-ish types.
- template<typename T>
- explicit StackFrame(const JS::Handle<T*>& handle) {
- construct(handle.get());
- }
- template<typename T>
- StackFrame& operator=(const JS::Handle<T*>& handle) {
- construct(handle.get());
- return *this;
- }
- template<typename T>
- explicit StackFrame(const JS::Rooted<T*>& root) {
- construct(root.get());
- }
- template<typename T>
- StackFrame& operator=(const JS::Rooted<T*>& root) {
- construct(root.get());
- return *this;
- }
- // Because StackFrame is just a vtable pointer and an instance pointer, we
- // can memcpy everything around instead of making concrete classes define
- // virtual constructors. See the comment above Node's copy constructor for
- // more details; that comment applies here as well.
- StackFrame(const StackFrame& rhs) {
- memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
- }
- StackFrame& operator=(const StackFrame& rhs) {
- memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
- return *this;
- }
- bool operator==(const StackFrame& rhs) const { return base()->ptr == rhs.base()->ptr; }
- bool operator!=(const StackFrame& rhs) const { return !(*this == rhs); }
- explicit operator bool() const {
- return base()->ptr != nullptr;
- }
- // Copy this StackFrame's source name into the given |destination|
- // buffer. Copy no more than |length| characters. The result is *not* null
- // terminated. Returns how many characters were written into the buffer.
- size_t source(RangedPtr<char16_t> destination, size_t length) const;
- // Copy this StackFrame's function display name into the given |destination|
- // buffer. Copy no more than |length| characters. The result is *not* null
- // terminated. Returns how many characters were written into the buffer.
- size_t functionDisplayName(RangedPtr<char16_t> destination, size_t length) const;
- // Get the size of the respective strings. 0 is returned for null strings.
- size_t sourceLength();
- size_t functionDisplayNameLength();
- // Methods that forward to virtual calls through BaseStackFrame.
- void trace(JSTracer* trc) { base()->trace(trc); }
- uint64_t identifier() const {
- auto id = base()->identifier();
- MOZ_ASSERT(JS::Value::isNumberRepresentable(id));
- return id;
- }
- uint32_t line() const { return base()->line(); }
- uint32_t column() const { return base()->column(); }
- AtomOrTwoByteChars source() const { return base()->source(); }
- AtomOrTwoByteChars functionDisplayName() const { return base()->functionDisplayName(); }
- StackFrame parent() const { return base()->parent(); }
- bool isSystem() const { return base()->isSystem(); }
- bool isSelfHosted(JSContext* cx) const { return base()->isSelfHosted(cx); }
- MOZ_MUST_USE bool constructSavedFrameStack(JSContext* cx,
- MutableHandleObject outSavedFrameStack) const {
- return base()->constructSavedFrameStack(cx, outSavedFrameStack);
- }
- struct HashPolicy {
- using Lookup = JS::ubi::StackFrame;
- static js::HashNumber hash(const Lookup& lookup) {
- return lookup.identifier();
- }
- static bool match(const StackFrame& key, const Lookup& lookup) {
- return key == lookup;
- }
- static void rekey(StackFrame& k, const StackFrame& newKey) {
- k = newKey;
- }
- };
- };
- // The ubi::StackFrame null pointer. Any attempt to operate on a null
- // ubi::StackFrame crashes.
- template<>
- class ConcreteStackFrame<void> : public BaseStackFrame {
- explicit ConcreteStackFrame(void* ptr) : BaseStackFrame(ptr) { }
- public:
- static void construct(void* storage, void*) { new (storage) ConcreteStackFrame(nullptr); }
- uint64_t identifier() const override { return 0; }
- void trace(JSTracer* trc) override { }
- MOZ_MUST_USE bool constructSavedFrameStack(JSContext* cx, MutableHandleObject out)
- const override
- {
- out.set(nullptr);
- return true;
- }
- uint32_t line() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
- uint32_t column() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
- AtomOrTwoByteChars source() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
- AtomOrTwoByteChars functionDisplayName() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
- StackFrame parent() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
- bool isSystem() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
- bool isSelfHosted(JSContext* cx) const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
- };
- MOZ_MUST_USE JS_PUBLIC_API(bool)
- ConstructSavedFrameStackSlow(JSContext* cx,
- JS::ubi::StackFrame& frame,
- MutableHandleObject outSavedFrameStack);
- /*** ubi::Node ************************************************************************************/
- // A concrete node specialization can claim its referent is a member of a
- // particular "coarse type" which is less specific than the actual
- // implementation type but generally more palatable for web developers. For
- // example, JitCode can be considered to have a coarse type of "Script". This is
- // used by some analyses for putting nodes into different buckets. The default,
- // if a concrete specialization does not provide its own mapping to a CoarseType
- // variant, is "Other".
- //
- // NB: the values associated with a particular enum variant must not change or
- // be reused for new variants. Doing so will cause inspecting ubi::Nodes backed
- // by an offline heap snapshot from an older SpiderMonkey/Firefox version to
- // break. Consider this enum append only.
- enum class CoarseType: uint32_t {
- Other = 0,
- Object = 1,
- Script = 2,
- String = 3,
- FIRST = Other,
- LAST = String
- };
- inline uint32_t
- CoarseTypeToUint32(CoarseType type)
- {
- return static_cast<uint32_t>(type);
- }
- inline bool
- Uint32IsValidCoarseType(uint32_t n)
- {
- auto first = static_cast<uint32_t>(CoarseType::FIRST);
- auto last = static_cast<uint32_t>(CoarseType::LAST);
- MOZ_ASSERT(first < last);
- return first <= n && n <= last;
- }
- inline CoarseType
- Uint32ToCoarseType(uint32_t n)
- {
- MOZ_ASSERT(Uint32IsValidCoarseType(n));
- return static_cast<CoarseType>(n);
- }
- // The base class implemented by each ubi::Node referent type. Subclasses must
- // not add data members to this class.
- class JS_PUBLIC_API(Base) {
- friend class Node;
- // For performance's sake, we'd prefer to avoid a virtual destructor; and
- // an empty constructor seems consistent with the 'lightweight value type'
- // visible behavior we're trying to achieve. But if the destructor isn't
- // virtual, and a subclass overrides it, the subclass's destructor will be
- // ignored. Is there a way to make the compiler catch that error?
- protected:
- // Space for the actual pointer. Concrete subclasses should define a
- // properly typed 'get' member function to access this.
- void* ptr;
- explicit Base(void* ptr) : ptr(ptr) { }
- public:
- bool operator==(const Base& rhs) const {
- // Some compilers will indeed place objects of different types at
- // the same address, so technically, we should include the vtable
- // in this comparison. But it seems unlikely to cause problems in
- // practice.
- return ptr == rhs.ptr;
- }
- bool operator!=(const Base& rhs) const { return !(*this == rhs); }
- // An identifier for this node, guaranteed to be stable and unique for as
- // long as this ubi::Node's referent is alive and at the same address.
- //
- // This is probably suitable for use in serializations, as it is an integral
- // type. It may also help save memory when constructing HashSets of
- // ubi::Nodes: since a uint64_t will always be smaller-or-equal-to the size
- // of a ubi::Node, a HashSet<ubi::Node::Id> may use less space per element
- // than a HashSet<ubi::Node>.
- //
- // (Note that 'unique' only means 'up to equality on ubi::Node'; see the
- // caveats about multiple objects allocated at the same address for
- // 'ubi::Node::operator=='.)
- using Id = uint64_t;
- virtual Id identifier() const { return Id(uintptr_t(ptr)); }
- // Returns true if this node is pointing to something on the live heap, as
- // opposed to something from a deserialized core dump. Returns false,
- // otherwise.
- virtual bool isLive() const { return true; };
- // Return the coarse-grained type-of-thing that this node represents.
- virtual CoarseType coarseType() const { return CoarseType::Other; }
- // Return a human-readable name for the referent's type. The result should
- // be statically allocated. (You can use u"strings" for this.)
- //
- // This must always return Concrete<T>::concreteTypeName; we use that
- // pointer as a tag for this particular referent type.
- virtual const char16_t* typeName() const = 0;
- // Return the size of this node, in bytes. Include any structures that this
- // node owns exclusively that are not exposed as their own ubi::Nodes.
- // |mallocSizeOf| should be a malloc block sizing function; see
- // |mfbt/MemoryReporting.h|.
- //
- // Because we can use |JS::ubi::Node|s backed by a snapshot that was taken
- // on a 64-bit platform when we are currently on a 32-bit platform, we
- // cannot rely on |size_t| for node sizes. Instead, |Size| is uint64_t on
- // all platforms.
- using Size = uint64_t;
- virtual Size size(mozilla::MallocSizeOf mallocSizeof) const { return 1; }
- // Return an EdgeRange that initially contains all the referent's outgoing
- // edges. The caller takes ownership of the EdgeRange.
- //
- // If wantNames is true, compute names for edges. Doing so can be expensive
- // in time and memory.
- virtual js::UniquePtr<EdgeRange> edges(JSContext* cx, bool wantNames) const = 0;
- // Return the Zone to which this node's referent belongs, or nullptr if the
- // referent is not of a type allocated in SpiderMonkey Zones.
- virtual JS::Zone* zone() const { return nullptr; }
- // Return the compartment for this node. Some ubi::Node referents are not
- // associated with JSCompartments, such as JSStrings (which are associated
- // with Zones). When the referent is not associated with a compartment,
- // nullptr is returned.
- virtual JSCompartment* compartment() const { return nullptr; }
- // Return whether this node's referent's allocation stack was captured.
- virtual bool hasAllocationStack() const { return false; }
- // Get the stack recorded at the time this node's referent was
- // allocated. This must only be called when hasAllocationStack() is true.
- virtual StackFrame allocationStack() const {
- MOZ_CRASH("Concrete classes that have an allocation stack must override both "
- "hasAllocationStack and allocationStack.");
- }
- // Methods for JSObject Referents
- //
- // These methods are only semantically valid if the referent is either a
- // JSObject in the live heap, or represents a previously existing JSObject
- // from some deserialized heap snapshot.
- // Return the object's [[Class]]'s name.
- virtual const char* jsObjectClassName() const { return nullptr; }
- // If this object was constructed with `new` and we have the data available,
- // place the contructor function's display name in the out parameter.
- // Otherwise, place nullptr in the out parameter. Caller maintains ownership
- // of the out parameter. True is returned on success, false is returned on
- // OOM.
- virtual MOZ_MUST_USE bool jsObjectConstructorName(JSContext* cx, UniqueTwoByteChars& outName)
- const
- {
- outName.reset(nullptr);
- return true;
- }
- // Methods for CoarseType::Script referents
- // Return the script's source's filename if available. If unavailable,
- // return nullptr.
- virtual const char* scriptFilename() const { return nullptr; }
- private:
- Base(const Base& rhs) = delete;
- Base& operator=(const Base& rhs) = delete;
- };
- // A traits template with a specialization for each referent type that
- // ubi::Node supports. The specialization must be the concrete subclass of Base
- // that represents a pointer to the referent type. It must include these
- // members:
- //
- // // The specific char16_t array returned by Concrete<T>::typeName().
- // static const char16_t concreteTypeName[];
- //
- // // Construct an instance of this concrete class in |storage| referring
- // // to |referent|. Implementations typically use a placement 'new'.
- // //
- // // In some cases, |referent| will contain dynamic type information that
- // // identifies it a some more specific subclass of |Referent|. For
- // // example, when |Referent| is |JSObject|, then |referent->getClass()|
- // // could tell us that it's actually a JSFunction. Similarly, if
- // // |Referent| is |nsISupports|, we would like a ubi::Node that knows its
- // // final implementation type.
- // //
- // // So we delegate the actual construction to this specialization, which
- // // knows Referent's details.
- // static void construct(void* storage, Referent* referent);
- template<typename Referent>
- class Concrete;
- // A container for a Base instance; all members simply forward to the contained
- // instance. This container allows us to pass ubi::Node instances by value.
- class Node {
- // Storage in which we allocate Base subclasses.
- mozilla::AlignedStorage2<Base> storage;
- Base* base() { return storage.addr(); }
- const Base* base() const { return storage.addr(); }
- template<typename T>
- void construct(T* ptr) {
- static_assert(sizeof(Concrete<T>) == sizeof(*base()),
- "ubi::Base specializations must be the same size as ubi::Base");
- static_assert(mozilla::IsBaseOf<Base, Concrete<T>>::value,
- "ubi::Concrete<T> must inherit from ubi::Base");
- Concrete<T>::construct(base(), ptr);
- }
- struct ConstructFunctor;
- public:
- Node() { construct<void>(nullptr); }
- template<typename T>
- MOZ_IMPLICIT Node(T* ptr) {
- construct(ptr);
- }
- template<typename T>
- Node& operator=(T* ptr) {
- construct(ptr);
- return *this;
- }
- // We can construct and assign from rooted forms of pointers.
- template<typename T>
- MOZ_IMPLICIT Node(const Rooted<T*>& root) {
- construct(root.get());
- }
- template<typename T>
- Node& operator=(const Rooted<T*>& root) {
- construct(root.get());
- return *this;
- }
- // Constructors accepting SpiderMonkey's other generic-pointer-ish types.
- // Note that we *do* want an implicit constructor here: JS::Value and
- // JS::ubi::Node are both essentially tagged references to other sorts of
- // objects, so letting conversions happen automatically is appropriate.
- MOZ_IMPLICIT Node(JS::HandleValue value);
- explicit Node(const JS::GCCellPtr& thing);
- // copy construction and copy assignment just use memcpy, since we know
- // instances contain nothing but a vtable pointer and a data pointer.
- //
- // To be completely correct, concrete classes could provide a virtual
- // 'construct' member function, which we could invoke on rhs to construct an
- // instance in our storage. But this is good enough; there's no need to jump
- // through vtables for copying and assignment that are just going to move
- // two words around. The compiler knows how to optimize memcpy.
- Node(const Node& rhs) {
- memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
- }
- Node& operator=(const Node& rhs) {
- memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
- return *this;
- }
- bool operator==(const Node& rhs) const { return *base() == *rhs.base(); }
- bool operator!=(const Node& rhs) const { return *base() != *rhs.base(); }
- explicit operator bool() const {
- return base()->ptr != nullptr;
- }
- bool isLive() const { return base()->isLive(); }
- // Get the canonical type name for the given type T.
- template<typename T>
- static const char16_t* canonicalTypeName() { return Concrete<T>::concreteTypeName; }
- template<typename T>
- bool is() const {
- return base()->typeName() == canonicalTypeName<T>();
- }
- template<typename T>
- T* as() const {
- MOZ_ASSERT(isLive());
- MOZ_ASSERT(is<T>());
- return static_cast<T*>(base()->ptr);
- }
- template<typename T>
- T* asOrNull() const {
- MOZ_ASSERT(isLive());
- return is<T>() ? static_cast<T*>(base()->ptr) : nullptr;
- }
- // If this node refers to something that can be represented as a JavaScript
- // value that is safe to expose to JavaScript code, return that value.
- // Otherwise return UndefinedValue(). JSStrings, JS::Symbols, and some (but
- // not all!) JSObjects can be exposed.
- JS::Value exposeToJS() const;
- CoarseType coarseType() const { return base()->coarseType(); }
- const char16_t* typeName() const { return base()->typeName(); }
- JS::Zone* zone() const { return base()->zone(); }
- JSCompartment* compartment() const { return base()->compartment(); }
- const char* jsObjectClassName() const { return base()->jsObjectClassName(); }
- MOZ_MUST_USE bool jsObjectConstructorName(JSContext* cx, UniqueTwoByteChars& outName) const {
- return base()->jsObjectConstructorName(cx, outName);
- }
- const char* scriptFilename() const { return base()->scriptFilename(); }
- using Size = Base::Size;
- Size size(mozilla::MallocSizeOf mallocSizeof) const {
- auto size = base()->size(mallocSizeof);
- MOZ_ASSERT(size > 0,
- "C++ does not have zero-sized types! Choose 1 if you just need a "
- "conservative default.");
- return size;
- }
- js::UniquePtr<EdgeRange> edges(JSContext* cx, bool wantNames = true) const {
- return base()->edges(cx, wantNames);
- }
- bool hasAllocationStack() const { return base()->hasAllocationStack(); }
- StackFrame allocationStack() const {
- return base()->allocationStack();
- }
- using Id = Base::Id;
- Id identifier() const {
- auto id = base()->identifier();
- MOZ_ASSERT(JS::Value::isNumberRepresentable(id));
- return id;
- }
- // A hash policy for ubi::Nodes.
- // This simply uses the stock PointerHasher on the ubi::Node's pointer.
- // We specialize DefaultHasher below to make this the default.
- class HashPolicy {
- typedef js::PointerHasher<void*, mozilla::tl::FloorLog2<sizeof(void*)>::value> PtrHash;
- public:
- typedef Node Lookup;
- static js::HashNumber hash(const Lookup& l) { return PtrHash::hash(l.base()->ptr); }
- static bool match(const Node& k, const Lookup& l) { return k == l; }
- static void rekey(Node& k, const Node& newKey) { k = newKey; }
- };
- };
- using NodeSet = js::HashSet<Node, js::DefaultHasher<Node>, js::SystemAllocPolicy>;
- using NodeSetPtr = mozilla::UniquePtr<NodeSet, JS::DeletePolicy<NodeSet>>;
- /*** Edge and EdgeRange ***************************************************************************/
- using EdgeName = UniqueTwoByteChars;
- // An outgoing edge to a referent node.
- class Edge {
- public:
- Edge() : name(nullptr), referent() { }
- // Construct an initialized Edge, taking ownership of |name|.
- Edge(char16_t* name, const Node& referent)
- : name(name)
- , referent(referent)
- { }
- // Move construction and assignment.
- Edge(Edge&& rhs)
- : name(mozilla::Move(rhs.name))
- , referent(rhs.referent)
- { }
- Edge& operator=(Edge&& rhs) {
- MOZ_ASSERT(&rhs != this);
- this->~Edge();
- new (this) Edge(mozilla::Move(rhs));
- return *this;
- }
- Edge(const Edge&) = delete;
- Edge& operator=(const Edge&) = delete;
- // This edge's name. This may be nullptr, if Node::edges was called with
- // false as the wantNames parameter.
- //
- // The storage is owned by this Edge, and will be freed when this Edge is
- // destructed. You may take ownership of the name by `mozilla::Move`ing it
- // out of the edge; it is just a UniquePtr.
- //
- // (In real life we'll want a better representation for names, to avoid
- // creating tons of strings when the names follow a pattern; and we'll need
- // to think about lifetimes carefully to ensure traversal stays cheap.)
- EdgeName name;
- // This edge's referent.
- Node referent;
- };
- // EdgeRange is an abstract base class for iterating over a node's outgoing
- // edges. (This is modeled after js::HashTable<K,V>::Range.)
- //
- // Concrete instances of this class need not be as lightweight as Node itself,
- // since they're usually only instantiated while iterating over a particular
- // object's edges. For example, a dumb implementation for JS Cells might use
- // JS::TraceChildren to to get the outgoing edges, and then store them in an
- // array internal to the EdgeRange.
- class EdgeRange {
- protected:
- // The current front edge of this range, or nullptr if this range is empty.
- Edge* front_;
- EdgeRange() : front_(nullptr) { }
- public:
- virtual ~EdgeRange() { }
- // True if there are no more edges in this range.
- bool empty() const { return !front_; }
- // The front edge of this range. This is owned by the EdgeRange, and is
- // only guaranteed to live until the next call to popFront, or until
- // the EdgeRange is destructed.
- const Edge& front() const { return *front_; }
- Edge& front() { return *front_; }
- // Remove the front edge from this range. This should only be called if
- // !empty().
- virtual void popFront() = 0;
- private:
- EdgeRange(const EdgeRange&) = delete;
- EdgeRange& operator=(const EdgeRange&) = delete;
- };
- typedef mozilla::Vector<Edge, 8, js::SystemAllocPolicy> EdgeVector;
- // An EdgeRange concrete class that holds a pre-existing vector of
- // Edges. A PreComputedEdgeRange does not take ownership of its
- // EdgeVector; it is up to the PreComputedEdgeRange's consumer to manage
- // that lifetime.
- class PreComputedEdgeRange : public EdgeRange {
- EdgeVector& edges;
- size_t i;
- void settle() {
- front_ = i < edges.length() ? &edges[i] : nullptr;
- }
- public:
- explicit PreComputedEdgeRange(EdgeVector& edges)
- : edges(edges),
- i(0)
- {
- settle();
- }
- void popFront() override {
- MOZ_ASSERT(!empty());
- i++;
- settle();
- }
- };
- /*** RootList *************************************************************************************/
- // RootList is a class that can be pointed to by a |ubi::Node|, creating a
- // fictional root-of-roots which has edges to every GC root in the JS
- // runtime. Having a single root |ubi::Node| is useful for algorithms written
- // with the assumption that there aren't multiple roots (such as computing
- // dominator trees) and you want a single point of entry. It also ensures that
- // the roots themselves get visited by |ubi::BreadthFirst| (they would otherwise
- // only be used as starting points).
- //
- // RootList::init itself causes a minor collection, but once the list of roots
- // has been created, GC must not occur, as the referent ubi::Nodes are not
- // stable across GC. The init calls emplace on |noGC|'s AutoCheckCannotGC, whose
- // lifetime must extend at least as long as the RootList itself.
- //
- // Example usage:
- //
- // {
- // mozilla::Maybe<JS::AutoCheckCannotGC> maybeNoGC;
- // JS::ubi::RootList rootList(cx, maybeNoGC);
- // if (!rootList.init())
- // return false;
- //
- // // The AutoCheckCannotGC is guaranteed to exist if init returned true.
- // MOZ_ASSERT(maybeNoGC.isSome());
- //
- // JS::ubi::Node root(&rootList);
- //
- // ...
- // }
- class MOZ_STACK_CLASS JS_PUBLIC_API(RootList) {
- Maybe<AutoCheckCannotGC>& noGC;
- public:
- JSContext* cx;
- EdgeVector edges;
- bool wantNames;
- RootList(JSContext* cx, Maybe<AutoCheckCannotGC>& noGC, bool wantNames = false);
- // Find all GC roots.
- MOZ_MUST_USE bool init();
- // Find only GC roots in the provided set of |JSCompartment|s.
- MOZ_MUST_USE bool init(CompartmentSet& debuggees);
- // Find only GC roots in the given Debugger object's set of debuggee
- // compartments.
- MOZ_MUST_USE bool init(HandleObject debuggees);
- // Returns true if the RootList has been initialized successfully, false
- // otherwise.
- bool initialized() { return noGC.isSome(); }
- // Explicitly add the given Node as a root in this RootList. If wantNames is
- // true, you must pass an edgeName. The RootList does not take ownership of
- // edgeName.
- MOZ_MUST_USE bool addRoot(Node node, const char16_t* edgeName = nullptr);
- };
- /*** Concrete classes for ubi::Node referent types ************************************************/
- template<>
- class JS_PUBLIC_API(Concrete<RootList>) : public Base {
- protected:
- explicit Concrete(RootList* ptr) : Base(ptr) { }
- RootList& get() const { return *static_cast<RootList*>(ptr); }
- public:
- static void construct(void* storage, RootList* ptr) { new (storage) Concrete(ptr); }
- js::UniquePtr<EdgeRange> edges(JSContext* cx, bool wantNames) const override;
- const char16_t* typeName() const override { return concreteTypeName; }
- static const char16_t concreteTypeName[];
- };
- // A reusable ubi::Concrete specialization base class for types supported by
- // JS::TraceChildren.
- template<typename Referent>
- class JS_PUBLIC_API(TracerConcrete) : public Base {
- js::UniquePtr<EdgeRange> edges(JSContext* cx, bool wantNames) const override;
- JS::Zone* zone() const override;
- protected:
- explicit TracerConcrete(Referent* ptr) : Base(ptr) { }
- Referent& get() const { return *static_cast<Referent*>(ptr); }
- };
- // For JS::TraceChildren-based types that have a 'compartment' method.
- template<typename Referent>
- class JS_PUBLIC_API(TracerConcreteWithCompartment) : public TracerConcrete<Referent> {
- typedef TracerConcrete<Referent> TracerBase;
- JSCompartment* compartment() const override;
- protected:
- explicit TracerConcreteWithCompartment(Referent* ptr) : TracerBase(ptr) { }
- };
- // Define specializations for some commonly-used public JSAPI types.
- // These can use the generic templates above.
- template<>
- class JS_PUBLIC_API(Concrete<JS::Symbol>) : TracerConcrete<JS::Symbol> {
- protected:
- explicit Concrete(JS::Symbol* ptr) : TracerConcrete(ptr) { }
- public:
- static void construct(void* storage, JS::Symbol* ptr) {
- new (storage) Concrete(ptr);
- }
- Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
- const char16_t* typeName() const override { return concreteTypeName; }
- static const char16_t concreteTypeName[];
- };
- template<>
- class JS_PUBLIC_API(Concrete<JSScript>) : TracerConcreteWithCompartment<JSScript> {
- protected:
- explicit Concrete(JSScript *ptr) : TracerConcreteWithCompartment<JSScript>(ptr) { }
- public:
- static void construct(void *storage, JSScript *ptr) { new (storage) Concrete(ptr); }
- CoarseType coarseType() const final { return CoarseType::Script; }
- Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
- const char* scriptFilename() const final;
- const char16_t* typeName() const override { return concreteTypeName; }
- static const char16_t concreteTypeName[];
- };
- // The JSObject specialization.
- template<>
- class JS_PUBLIC_API(Concrete<JSObject>) : public TracerConcreteWithCompartment<JSObject> {
- protected:
- explicit Concrete(JSObject* ptr) : TracerConcreteWithCompartment(ptr) { }
- public:
- static void construct(void* storage, JSObject* ptr) {
- new (storage) Concrete(ptr);
- }
- const char* jsObjectClassName() const override;
- MOZ_MUST_USE bool jsObjectConstructorName(JSContext* cx, UniqueTwoByteChars& outName)
- const override;
- Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
- bool hasAllocationStack() const override;
- StackFrame allocationStack() const override;
- CoarseType coarseType() const final { return CoarseType::Object; }
- const char16_t* typeName() const override { return concreteTypeName; }
- static const char16_t concreteTypeName[];
- };
- // For JSString, we extend the generic template with a 'size' implementation.
- template<>
- class JS_PUBLIC_API(Concrete<JSString>) : TracerConcrete<JSString> {
- protected:
- explicit Concrete(JSString *ptr) : TracerConcrete<JSString>(ptr) { }
- public:
- static void construct(void *storage, JSString *ptr) { new (storage) Concrete(ptr); }
- Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
- CoarseType coarseType() const final { return CoarseType::String; }
- const char16_t* typeName() const override { return concreteTypeName; }
- static const char16_t concreteTypeName[];
- };
- // The ubi::Node null pointer. Any attempt to operate on a null ubi::Node asserts.
- template<>
- class JS_PUBLIC_API(Concrete<void>) : public Base {
- const char16_t* typeName() const override;
- Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
- js::UniquePtr<EdgeRange> edges(JSContext* cx, bool wantNames) const override;
- JS::Zone* zone() const override;
- JSCompartment* compartment() const override;
- CoarseType coarseType() const final;
- explicit Concrete(void* ptr) : Base(ptr) { }
- public:
- static void construct(void* storage, void* ptr) { new (storage) Concrete(ptr); }
- };
- } // namespace ubi
- } // namespace JS
- namespace js {
- // Make ubi::Node::HashPolicy the default hash policy for ubi::Node.
- template<> struct DefaultHasher<JS::ubi::Node> : JS::ubi::Node::HashPolicy { };
- template<> struct DefaultHasher<JS::ubi::StackFrame> : JS::ubi::StackFrame::HashPolicy { };
- } // namespace js
- #endif // js_UbiNode_h
|