123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581 |
- /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- * This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
- /* ECMAScript conversion operations. */
- #ifndef js_Conversions_h
- #define js_Conversions_h
- #include "mozilla/Casting.h"
- #include "mozilla/FloatingPoint.h"
- #include "mozilla/TypeTraits.h"
- #include <math.h>
- #include "jspubtd.h"
- #include "js/RootingAPI.h"
- #include "js/Value.h"
- struct JSContext;
- namespace js {
- /* DO NOT CALL THIS. Use JS::ToBoolean. */
- extern JS_PUBLIC_API(bool)
- ToBooleanSlow(JS::HandleValue v);
- /* DO NOT CALL THIS. Use JS::ToNumber. */
- extern JS_PUBLIC_API(bool)
- ToNumberSlow(JSContext* cx, JS::HandleValue v, double* dp);
- /* DO NOT CALL THIS. Use JS::ToInt8. */
- extern JS_PUBLIC_API(bool)
- ToInt8Slow(JSContext *cx, JS::HandleValue v, int8_t *out);
- /* DO NOT CALL THIS. Use JS::ToUint8. */
- extern JS_PUBLIC_API(bool)
- ToUint8Slow(JSContext *cx, JS::HandleValue v, uint8_t *out);
- /* DO NOT CALL THIS. Use JS::ToInt16. */
- extern JS_PUBLIC_API(bool)
- ToInt16Slow(JSContext *cx, JS::HandleValue v, int16_t *out);
- /* DO NOT CALL THIS. Use JS::ToInt32. */
- extern JS_PUBLIC_API(bool)
- ToInt32Slow(JSContext* cx, JS::HandleValue v, int32_t* out);
- /* DO NOT CALL THIS. Use JS::ToUint32. */
- extern JS_PUBLIC_API(bool)
- ToUint32Slow(JSContext* cx, JS::HandleValue v, uint32_t* out);
- /* DO NOT CALL THIS. Use JS::ToUint16. */
- extern JS_PUBLIC_API(bool)
- ToUint16Slow(JSContext* cx, JS::HandleValue v, uint16_t* out);
- /* DO NOT CALL THIS. Use JS::ToInt64. */
- extern JS_PUBLIC_API(bool)
- ToInt64Slow(JSContext* cx, JS::HandleValue v, int64_t* out);
- /* DO NOT CALL THIS. Use JS::ToUint64. */
- extern JS_PUBLIC_API(bool)
- ToUint64Slow(JSContext* cx, JS::HandleValue v, uint64_t* out);
- /* DO NOT CALL THIS. Use JS::ToString. */
- extern JS_PUBLIC_API(JSString*)
- ToStringSlow(JSContext* cx, JS::HandleValue v);
- /* DO NOT CALL THIS. Use JS::ToObject. */
- extern JS_PUBLIC_API(JSObject*)
- ToObjectSlow(JSContext* cx, JS::HandleValue v, bool reportScanStack);
- } // namespace js
- namespace JS {
- namespace detail {
- #ifdef JS_DEBUG
- /**
- * Assert that we're not doing GC on cx, that we're in a request as
- * needed, and that the compartments for cx and v are correct.
- * Also check that GC would be safe at this point.
- */
- extern JS_PUBLIC_API(void)
- AssertArgumentsAreSane(JSContext* cx, HandleValue v);
- #else
- inline void AssertArgumentsAreSane(JSContext* cx, HandleValue v)
- {}
- #endif /* JS_DEBUG */
- } // namespace detail
- /**
- * ES6 draft 20141224, 7.1.1, second algorithm.
- *
- * Most users shouldn't call this -- use JS::ToBoolean, ToNumber, or ToString
- * instead. This will typically only be called from custom convert hooks that
- * wish to fall back to the ES6 default conversion behavior shared by most
- * objects in JS, codified as OrdinaryToPrimitive.
- */
- extern JS_PUBLIC_API(bool)
- OrdinaryToPrimitive(JSContext* cx, HandleObject obj, JSType type, MutableHandleValue vp);
- /* ES6 draft 20141224, 7.1.2. */
- MOZ_ALWAYS_INLINE bool
- ToBoolean(HandleValue v)
- {
- if (v.isBoolean())
- return v.toBoolean();
- if (v.isInt32())
- return v.toInt32() != 0;
- if (v.isNullOrUndefined())
- return false;
- if (v.isDouble()) {
- double d = v.toDouble();
- return !mozilla::IsNaN(d) && d != 0;
- }
- if (v.isSymbol())
- return true;
- /* The slow path handles strings and objects. */
- return js::ToBooleanSlow(v);
- }
- /* ES6 draft 20141224, 7.1.3. */
- MOZ_ALWAYS_INLINE bool
- ToNumber(JSContext* cx, HandleValue v, double* out)
- {
- detail::AssertArgumentsAreSane(cx, v);
- if (v.isNumber()) {
- *out = v.toNumber();
- return true;
- }
- return js::ToNumberSlow(cx, v, out);
- }
- /* ES6 draft 20141224, ToInteger (specialized for doubles). */
- inline double
- ToInteger(double d)
- {
- if (d == 0)
- return d;
- if (!mozilla::IsFinite(d)) {
- if (mozilla::IsNaN(d))
- return 0;
- return d;
- }
- return d < 0 ? ceil(d) : floor(d);
- }
- /* ES6 draft 20141224, 7.1.5. */
- MOZ_ALWAYS_INLINE bool
- ToInt32(JSContext* cx, JS::HandleValue v, int32_t* out)
- {
- detail::AssertArgumentsAreSane(cx, v);
- if (v.isInt32()) {
- *out = v.toInt32();
- return true;
- }
- return js::ToInt32Slow(cx, v, out);
- }
- /* ES6 draft 20141224, 7.1.6. */
- MOZ_ALWAYS_INLINE bool
- ToUint32(JSContext* cx, HandleValue v, uint32_t* out)
- {
- detail::AssertArgumentsAreSane(cx, v);
- if (v.isInt32()) {
- *out = uint32_t(v.toInt32());
- return true;
- }
- return js::ToUint32Slow(cx, v, out);
- }
- /* ES6 draft 20141224, 7.1.7. */
- MOZ_ALWAYS_INLINE bool
- ToInt16(JSContext *cx, JS::HandleValue v, int16_t *out)
- {
- detail::AssertArgumentsAreSane(cx, v);
- if (v.isInt32()) {
- *out = int16_t(v.toInt32());
- return true;
- }
- return js::ToInt16Slow(cx, v, out);
- }
- /* ES6 draft 20141224, 7.1.8. */
- MOZ_ALWAYS_INLINE bool
- ToUint16(JSContext* cx, HandleValue v, uint16_t* out)
- {
- detail::AssertArgumentsAreSane(cx, v);
- if (v.isInt32()) {
- *out = uint16_t(v.toInt32());
- return true;
- }
- return js::ToUint16Slow(cx, v, out);
- }
- /* ES6 draft 20141224, 7.1.9 */
- MOZ_ALWAYS_INLINE bool
- ToInt8(JSContext *cx, JS::HandleValue v, int8_t *out)
- {
- detail::AssertArgumentsAreSane(cx, v);
- if (v.isInt32()) {
- *out = int8_t(v.toInt32());
- return true;
- }
- return js::ToInt8Slow(cx, v, out);
- }
- /* ES6 ECMA-262, 7.1.10 */
- MOZ_ALWAYS_INLINE bool
- ToUint8(JSContext *cx, JS::HandleValue v, uint8_t *out)
- {
- detail::AssertArgumentsAreSane(cx, v);
- if (v.isInt32()) {
- *out = uint8_t(v.toInt32());
- return true;
- }
- return js::ToUint8Slow(cx, v, out);
- }
- /*
- * Non-standard, with behavior similar to that of ToInt32, except in its
- * producing an int64_t.
- */
- MOZ_ALWAYS_INLINE bool
- ToInt64(JSContext* cx, HandleValue v, int64_t* out)
- {
- detail::AssertArgumentsAreSane(cx, v);
- if (v.isInt32()) {
- *out = int64_t(v.toInt32());
- return true;
- }
- return js::ToInt64Slow(cx, v, out);
- }
- /*
- * Non-standard, with behavior similar to that of ToUint32, except in its
- * producing a uint64_t.
- */
- MOZ_ALWAYS_INLINE bool
- ToUint64(JSContext* cx, HandleValue v, uint64_t* out)
- {
- detail::AssertArgumentsAreSane(cx, v);
- if (v.isInt32()) {
- *out = uint64_t(v.toInt32());
- return true;
- }
- return js::ToUint64Slow(cx, v, out);
- }
- /* ES6 draft 20141224, 7.1.12. */
- MOZ_ALWAYS_INLINE JSString*
- ToString(JSContext* cx, HandleValue v)
- {
- detail::AssertArgumentsAreSane(cx, v);
- if (v.isString())
- return v.toString();
- return js::ToStringSlow(cx, v);
- }
- /* ES6 draft 20141224, 7.1.13. */
- inline JSObject*
- ToObject(JSContext* cx, HandleValue v)
- {
- detail::AssertArgumentsAreSane(cx, v);
- if (v.isObject())
- return &v.toObject();
- return js::ToObjectSlow(cx, v, false);
- }
- namespace detail {
- /*
- * Convert a double value to ResultType (an unsigned integral type) using
- * ECMAScript-style semantics (that is, in like manner to how ECMAScript's
- * ToInt32 converts to int32_t).
- *
- * If d is infinite or NaN, return 0.
- * Otherwise compute d2 = sign(d) * floor(abs(d)), and return the ResultType
- * value congruent to d2 mod 2**(bit width of ResultType).
- *
- * The algorithm below is inspired by that found in
- * <http://trac.webkit.org/changeset/67825/trunk/JavaScriptCore/runtime/JSValue.cpp>
- * but has been generalized to all integer widths.
- */
- template<typename ResultType>
- inline ResultType
- ToUintWidth(double d)
- {
- static_assert(mozilla::IsUnsigned<ResultType>::value,
- "ResultType must be an unsigned type");
- uint64_t bits = mozilla::BitwiseCast<uint64_t>(d);
- unsigned DoubleExponentShift = mozilla::FloatingPoint<double>::kExponentShift;
- // Extract the exponent component. (Be careful here! It's not technically
- // the exponent in NaN, infinities, and subnormals.)
- int_fast16_t exp =
- int_fast16_t((bits & mozilla::FloatingPoint<double>::kExponentBits) >> DoubleExponentShift) -
- int_fast16_t(mozilla::FloatingPoint<double>::kExponentBias);
- // If the exponent's less than zero, abs(d) < 1, so the result is 0. (This
- // also handles subnormals.)
- if (exp < 0)
- return 0;
- uint_fast16_t exponent = mozilla::AssertedCast<uint_fast16_t>(exp);
- // If the exponent is greater than or equal to the bits of precision of a
- // double plus ResultType's width, the number is either infinite, NaN, or
- // too large to have lower-order bits in the congruent value. (Example:
- // 2**84 is exactly representable as a double. The next exact double is
- // 2**84 + 2**32. Thus if ResultType is int32_t, an exponent >= 84 implies
- // floor(abs(d)) == 0 mod 2**32.) Return 0 in all these cases.
- const size_t ResultWidth = CHAR_BIT * sizeof(ResultType);
- if (exponent >= DoubleExponentShift + ResultWidth)
- return 0;
- // The significand contains the bits that will determine the final result.
- // Shift those bits left or right, according to the exponent, to their
- // locations in the unsigned binary representation of floor(abs(d)).
- static_assert(sizeof(ResultType) <= sizeof(uint64_t),
- "Left-shifting below would lose upper bits");
- ResultType result = (exponent > DoubleExponentShift)
- ? ResultType(bits << (exponent - DoubleExponentShift))
- : ResultType(bits >> (DoubleExponentShift - exponent));
- // Two further complications remain. First, |result| may contain bogus
- // sign/exponent bits. Second, IEEE-754 numbers' significands (excluding
- // subnormals, but we already handled those) have an implicit leading 1
- // which may affect the final result.
- //
- // It may appear that there's complexity here depending on how ResultWidth
- // and DoubleExponentShift relate, but it turns out there's not.
- //
- // Assume ResultWidth < DoubleExponentShift:
- // Only right-shifts leave bogus bits in |result|. For this to happen,
- // we must right-shift by > |DoubleExponentShift - ResultWidth|, implying
- // |exponent < ResultWidth|.
- // The implicit leading bit only matters if it appears in the final
- // result -- if |2**exponent mod 2**ResultWidth != 0|. This implies
- // |exponent < ResultWidth|.
- // Otherwise assume ResultWidth >= DoubleExponentShift:
- // Any left-shift less than |ResultWidth - DoubleExponentShift| leaves
- // bogus bits in |result|. This implies |exponent < ResultWidth|. Any
- // right-shift less than |ResultWidth| does too, which implies
- // |DoubleExponentShift - ResultWidth < exponent|. By assumption, then,
- // |exponent| is negative, but we excluded that above. So bogus bits
- // need only |exponent < ResultWidth|.
- // The implicit leading bit matters identically to the other case, so
- // again, |exponent < ResultWidth|.
- if (exponent < ResultWidth) {
- ResultType implicitOne = ResultType(1) << exponent;
- result &= implicitOne - 1; // remove bogus bits
- result += implicitOne; // add the implicit bit
- }
- // Compute the congruent value in the signed range.
- return (bits & mozilla::FloatingPoint<double>::kSignBit) ? ~result + 1 : result;
- }
- template<typename ResultType>
- inline ResultType
- ToIntWidth(double d)
- {
- static_assert(mozilla::IsSigned<ResultType>::value,
- "ResultType must be a signed type");
- const ResultType MaxValue = (1ULL << (CHAR_BIT * sizeof(ResultType) - 1)) - 1;
- const ResultType MinValue = -MaxValue - 1;
- typedef typename mozilla::MakeUnsigned<ResultType>::Type UnsignedResult;
- UnsignedResult u = ToUintWidth<UnsignedResult>(d);
- if (u <= UnsignedResult(MaxValue))
- return static_cast<ResultType>(u);
- return (MinValue + static_cast<ResultType>(u - MaxValue)) - 1;
- }
- } // namespace detail
- /* ES5 9.5 ToInt32 (specialized for doubles). */
- inline int32_t
- ToInt32(double d)
- {
- // clang crashes compiling this when targeting arm:
- // https://llvm.org/bugs/show_bug.cgi?id=22974
- #if defined (__arm__) && defined (__GNUC__) && !defined(__clang__)
- int32_t i;
- uint32_t tmp0;
- uint32_t tmp1;
- uint32_t tmp2;
- asm (
- // We use a pure integer solution here. In the 'softfp' ABI, the argument
- // will start in r0 and r1, and VFP can't do all of the necessary ECMA
- // conversions by itself so some integer code will be required anyway. A
- // hybrid solution is faster on A9, but this pure integer solution is
- // notably faster for A8.
- // %0 is the result register, and may alias either of the %[QR]1 registers.
- // %Q4 holds the lower part of the mantissa.
- // %R4 holds the sign, exponent, and the upper part of the mantissa.
- // %1, %2 and %3 are used as temporary values.
- // Extract the exponent.
- " mov %1, %R4, LSR #20\n"
- " bic %1, %1, #(1 << 11)\n" // Clear the sign.
- // Set the implicit top bit of the mantissa. This clobbers a bit of the
- // exponent, but we have already extracted that.
- " orr %R4, %R4, #(1 << 20)\n"
- // Special Cases
- // We should return zero in the following special cases:
- // - Exponent is 0x000 - 1023: +/-0 or subnormal.
- // - Exponent is 0x7ff - 1023: +/-INFINITY or NaN
- // - This case is implicitly handled by the standard code path anyway,
- // as shifting the mantissa up by the exponent will result in '0'.
- //
- // The result is composed of the mantissa, prepended with '1' and
- // bit-shifted left by the (decoded) exponent. Note that because the r1[20]
- // is the bit with value '1', r1 is effectively already shifted (left) by
- // 20 bits, and r0 is already shifted by 52 bits.
- // Adjust the exponent to remove the encoding offset. If the decoded
- // exponent is negative, quickly bail out with '0' as such values round to
- // zero anyway. This also catches +/-0 and subnormals.
- " sub %1, %1, #0xff\n"
- " subs %1, %1, #0x300\n"
- " bmi 8f\n"
- // %1 = (decoded) exponent >= 0
- // %R4 = upper mantissa and sign
- // ---- Lower Mantissa ----
- " subs %3, %1, #52\n" // Calculate exp-52
- " bmi 1f\n"
- // Shift r0 left by exp-52.
- // Ensure that we don't overflow ARM's 8-bit shift operand range.
- // We need to handle anything up to an 11-bit value here as we know that
- // 52 <= exp <= 1024 (0x400). Any shift beyond 31 bits results in zero
- // anyway, so as long as we don't touch the bottom 5 bits, we can use
- // a logical OR to push long shifts into the 32 <= (exp&0xff) <= 255 range.
- " bic %2, %3, #0xff\n"
- " orr %3, %3, %2, LSR #3\n"
- // We can now perform a straight shift, avoiding the need for any
- // conditional instructions or extra branches.
- " mov %Q4, %Q4, LSL %3\n"
- " b 2f\n"
- "1:\n" // Shift r0 right by 52-exp.
- // We know that 0 <= exp < 52, and we can shift up to 255 bits so 52-exp
- // will always be a valid shift and we can sk%3 the range check for this case.
- " rsb %3, %1, #52\n"
- " mov %Q4, %Q4, LSR %3\n"
- // %1 = (decoded) exponent
- // %R4 = upper mantissa and sign
- // %Q4 = partially-converted integer
- "2:\n"
- // ---- Upper Mantissa ----
- // This is much the same as the lower mantissa, with a few different
- // boundary checks and some masking to hide the exponent & sign bit in the
- // upper word.
- // Note that the upper mantissa is pre-shifted by 20 in %R4, but we shift
- // it left more to remove the sign and exponent so it is effectively
- // pre-shifted by 31 bits.
- " subs %3, %1, #31\n" // Calculate exp-31
- " mov %1, %R4, LSL #11\n" // Re-use %1 as a temporary register.
- " bmi 3f\n"
- // Shift %R4 left by exp-31.
- // Avoid overflowing the 8-bit shift range, as before.
- " bic %2, %3, #0xff\n"
- " orr %3, %3, %2, LSR #3\n"
- // Perform the shift.
- " mov %2, %1, LSL %3\n"
- " b 4f\n"
- "3:\n" // Shift r1 right by 31-exp.
- // We know that 0 <= exp < 31, and we can shift up to 255 bits so 31-exp
- // will always be a valid shift and we can skip the range check for this case.
- " rsb %3, %3, #0\n" // Calculate 31-exp from -(exp-31)
- " mov %2, %1, LSR %3\n" // Thumb-2 can't do "LSR %3" in "orr".
- // %Q4 = partially-converted integer (lower)
- // %R4 = upper mantissa and sign
- // %2 = partially-converted integer (upper)
- "4:\n"
- // Combine the converted parts.
- " orr %Q4, %Q4, %2\n"
- // Negate the result if we have to, and move it to %0 in the process. To
- // avoid conditionals, we can do this by inverting on %R4[31], then adding
- // %R4[31]>>31.
- " eor %Q4, %Q4, %R4, ASR #31\n"
- " add %0, %Q4, %R4, LSR #31\n"
- " b 9f\n"
- "8:\n"
- // +/-INFINITY, +/-0, subnormals, NaNs, and anything else out-of-range that
- // will result in a conversion of '0'.
- " mov %0, #0\n"
- "9:\n"
- : "=r" (i), "=&r" (tmp0), "=&r" (tmp1), "=&r" (tmp2), "=&r" (d)
- : "4" (d)
- : "cc"
- );
- return i;
- #else
- return detail::ToIntWidth<int32_t>(d);
- #endif
- }
- /* ES5 9.6 (specialized for doubles). */
- inline uint32_t
- ToUint32(double d)
- {
- return detail::ToUintWidth<uint32_t>(d);
- }
- /* WEBIDL 4.2.4 */
- inline int8_t
- ToInt8(double d)
- {
- return detail::ToIntWidth<int8_t>(d);
- }
- /* ECMA-262 7.1.10 ToUInt8() specialized for doubles. */
- inline int8_t
- ToUint8(double d)
- {
- return detail::ToUintWidth<uint8_t>(d);
- }
- /* WEBIDL 4.2.6 */
- inline int16_t
- ToInt16(double d)
- {
- return detail::ToIntWidth<int16_t>(d);
- }
- inline uint16_t
- ToUint16(double d)
- {
- return detail::ToUintWidth<uint16_t>(d);
- }
- /* WEBIDL 4.2.10 */
- inline int64_t
- ToInt64(double d)
- {
- return detail::ToIntWidth<int64_t>(d);
- }
- /* WEBIDL 4.2.11 */
- inline uint64_t
- ToUint64(double d)
- {
- return detail::ToUintWidth<uint64_t>(d);
- }
- } // namespace JS
- #endif /* js_Conversions_h */
|