123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551 |
- /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
- * This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
- #include "2D.h"
- #include "PathAnalysis.h"
- #include "PathHelpers.h"
- namespace mozilla {
- namespace gfx {
- static double CubicRoot(double aValue) {
- if (aValue < 0.0) {
- return -CubicRoot(-aValue);
- }
- else {
- return pow(aValue, 1.0 / 3.0);
- }
- }
- struct PointD : public BasePoint<double, PointD> {
- typedef BasePoint<double, PointD> Super;
- PointD() : Super() {}
- PointD(double aX, double aY) : Super(aX, aY) {}
- MOZ_IMPLICIT PointD(const Point& aPoint) : Super(aPoint.x, aPoint.y) {}
- Point ToPoint() const {
- return Point(static_cast<Float>(x), static_cast<Float>(y));
- }
- };
- struct BezierControlPoints
- {
- BezierControlPoints() {}
- BezierControlPoints(const PointD &aCP1, const PointD &aCP2,
- const PointD &aCP3, const PointD &aCP4)
- : mCP1(aCP1), mCP2(aCP2), mCP3(aCP3), mCP4(aCP4)
- {
- }
- PointD mCP1, mCP2, mCP3, mCP4;
- };
- void
- FlattenBezier(const BezierControlPoints &aPoints,
- PathSink *aSink, double aTolerance);
- Path::Path()
- {
- }
- Path::~Path()
- {
- }
- Float
- Path::ComputeLength()
- {
- EnsureFlattenedPath();
- return mFlattenedPath->ComputeLength();
- }
- Point
- Path::ComputePointAtLength(Float aLength, Point* aTangent)
- {
- EnsureFlattenedPath();
- return mFlattenedPath->ComputePointAtLength(aLength, aTangent);
- }
- void
- Path::EnsureFlattenedPath()
- {
- if (!mFlattenedPath) {
- mFlattenedPath = new FlattenedPath();
- StreamToSink(mFlattenedPath);
- }
- }
- // This is the maximum deviation we allow (with an additional ~20% margin of
- // error) of the approximation from the actual Bezier curve.
- const Float kFlatteningTolerance = 0.0001f;
- void
- FlattenedPath::MoveTo(const Point &aPoint)
- {
- MOZ_ASSERT(!mCalculatedLength);
- FlatPathOp op;
- op.mType = FlatPathOp::OP_MOVETO;
- op.mPoint = aPoint;
- mPathOps.push_back(op);
- mLastMove = aPoint;
- }
- void
- FlattenedPath::LineTo(const Point &aPoint)
- {
- MOZ_ASSERT(!mCalculatedLength);
- FlatPathOp op;
- op.mType = FlatPathOp::OP_LINETO;
- op.mPoint = aPoint;
- mPathOps.push_back(op);
- }
- void
- FlattenedPath::BezierTo(const Point &aCP1,
- const Point &aCP2,
- const Point &aCP3)
- {
- MOZ_ASSERT(!mCalculatedLength);
- FlattenBezier(BezierControlPoints(CurrentPoint(), aCP1, aCP2, aCP3), this, kFlatteningTolerance);
- }
- void
- FlattenedPath::QuadraticBezierTo(const Point &aCP1,
- const Point &aCP2)
- {
- MOZ_ASSERT(!mCalculatedLength);
- // We need to elevate the degree of this quadratic B�zier to cubic, so we're
- // going to add an intermediate control point, and recompute control point 1.
- // The first and last control points remain the same.
- // This formula can be found on http://fontforge.sourceforge.net/bezier.html
- Point CP0 = CurrentPoint();
- Point CP1 = (CP0 + aCP1 * 2.0) / 3.0;
- Point CP2 = (aCP2 + aCP1 * 2.0) / 3.0;
- Point CP3 = aCP2;
- BezierTo(CP1, CP2, CP3);
- }
- void
- FlattenedPath::Close()
- {
- MOZ_ASSERT(!mCalculatedLength);
- LineTo(mLastMove);
- }
- void
- FlattenedPath::Arc(const Point &aOrigin, float aRadius, float aStartAngle,
- float aEndAngle, bool aAntiClockwise)
- {
- ArcToBezier(this, aOrigin, Size(aRadius, aRadius), aStartAngle, aEndAngle, aAntiClockwise);
- }
- Float
- FlattenedPath::ComputeLength()
- {
- if (!mCalculatedLength) {
- Point currentPoint;
- for (uint32_t i = 0; i < mPathOps.size(); i++) {
- if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) {
- currentPoint = mPathOps[i].mPoint;
- } else {
- mCachedLength += Distance(currentPoint, mPathOps[i].mPoint);
- currentPoint = mPathOps[i].mPoint;
- }
- }
- mCalculatedLength = true;
- }
- return mCachedLength;
- }
- Point
- FlattenedPath::ComputePointAtLength(Float aLength, Point *aTangent)
- {
- // We track the last point that -wasn't- in the same place as the current
- // point so if we pass the edge of the path with a bunch of zero length
- // paths we still get the correct tangent vector.
- Point lastPointSinceMove;
- Point currentPoint;
- for (uint32_t i = 0; i < mPathOps.size(); i++) {
- if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) {
- if (Distance(currentPoint, mPathOps[i].mPoint)) {
- lastPointSinceMove = currentPoint;
- }
- currentPoint = mPathOps[i].mPoint;
- } else {
- Float segmentLength = Distance(currentPoint, mPathOps[i].mPoint);
- if (segmentLength) {
- lastPointSinceMove = currentPoint;
- if (segmentLength > aLength) {
- Point currentVector = mPathOps[i].mPoint - currentPoint;
- Point tangent = currentVector / segmentLength;
- if (aTangent) {
- *aTangent = tangent;
- }
- return currentPoint + tangent * aLength;
- }
- }
- aLength -= segmentLength;
- currentPoint = mPathOps[i].mPoint;
- }
- }
- Point currentVector = currentPoint - lastPointSinceMove;
- if (aTangent) {
- if (hypotf(currentVector.x, currentVector.y)) {
- *aTangent = currentVector / hypotf(currentVector.x, currentVector.y);
- } else {
- *aTangent = Point();
- }
- }
- return currentPoint;
- }
- // This function explicitly permits aControlPoints to refer to the same object
- // as either of the other arguments.
- static void
- SplitBezier(const BezierControlPoints &aControlPoints,
- BezierControlPoints *aFirstSegmentControlPoints,
- BezierControlPoints *aSecondSegmentControlPoints,
- double t)
- {
- MOZ_ASSERT(aSecondSegmentControlPoints);
-
- *aSecondSegmentControlPoints = aControlPoints;
- PointD cp1a = aControlPoints.mCP1 + (aControlPoints.mCP2 - aControlPoints.mCP1) * t;
- PointD cp2a = aControlPoints.mCP2 + (aControlPoints.mCP3 - aControlPoints.mCP2) * t;
- PointD cp1aa = cp1a + (cp2a - cp1a) * t;
- PointD cp3a = aControlPoints.mCP3 + (aControlPoints.mCP4 - aControlPoints.mCP3) * t;
- PointD cp2aa = cp2a + (cp3a - cp2a) * t;
- PointD cp1aaa = cp1aa + (cp2aa - cp1aa) * t;
- aSecondSegmentControlPoints->mCP4 = aControlPoints.mCP4;
- if(aFirstSegmentControlPoints) {
- aFirstSegmentControlPoints->mCP1 = aControlPoints.mCP1;
- aFirstSegmentControlPoints->mCP2 = cp1a;
- aFirstSegmentControlPoints->mCP3 = cp1aa;
- aFirstSegmentControlPoints->mCP4 = cp1aaa;
- }
- aSecondSegmentControlPoints->mCP1 = cp1aaa;
- aSecondSegmentControlPoints->mCP2 = cp2aa;
- aSecondSegmentControlPoints->mCP3 = cp3a;
- }
- static void
- FlattenBezierCurveSegment(const BezierControlPoints &aControlPoints,
- PathSink *aSink,
- double aTolerance)
- {
- /* The algorithm implemented here is based on:
- * http://cis.usouthal.edu/~hain/general/Publications/Bezier/Bezier%20Offset%20Curves.pdf
- *
- * The basic premise is that for a small t the third order term in the
- * equation of a cubic bezier curve is insignificantly small. This can
- * then be approximated by a quadratic equation for which the maximum
- * difference from a linear approximation can be much more easily determined.
- */
- BezierControlPoints currentCP = aControlPoints;
- double t = 0;
- while (t < 1.0) {
- PointD cp21 = currentCP.mCP2 - currentCP.mCP1;
- PointD cp31 = currentCP.mCP3 - currentCP.mCP1;
- /* To remove divisions and check for divide-by-zero, this is optimized from:
- * Float s3 = (cp31.x * cp21.y - cp31.y * cp21.x) / hypotf(cp21.x, cp21.y);
- * t = 2 * Float(sqrt(aTolerance / (3. * std::abs(s3))));
- */
- double cp21x31 = cp31.x * cp21.y - cp31.y * cp21.x;
- double h = hypot(cp21.x, cp21.y);
- if (cp21x31 * h == 0) {
- break;
- }
- double s3inv = h / cp21x31;
- t = 2 * sqrt(aTolerance * std::abs(s3inv) / 3.);
- if (t >= 1.0) {
- break;
- }
- SplitBezier(currentCP, nullptr, ¤tCP, t);
- aSink->LineTo(currentCP.mCP1.ToPoint());
- }
- aSink->LineTo(currentCP.mCP4.ToPoint());
- }
- static inline void
- FindInflectionApproximationRange(BezierControlPoints aControlPoints,
- double *aMin, double *aMax, double aT,
- double aTolerance)
- {
- SplitBezier(aControlPoints, nullptr, &aControlPoints, aT);
- PointD cp21 = aControlPoints.mCP2 - aControlPoints.mCP1;
- PointD cp41 = aControlPoints.mCP4 - aControlPoints.mCP1;
- if (cp21.x == 0. && cp21.y == 0.) {
- // In this case s3 becomes lim[n->0] (cp41.x * n) / n - (cp41.y * n) / n = cp41.x - cp41.y.
- // Use the absolute value so that Min and Max will correspond with the
- // minimum and maximum of the range.
- *aMin = aT - CubicRoot(std::abs(aTolerance / (cp41.x - cp41.y)));
- *aMax = aT + CubicRoot(std::abs(aTolerance / (cp41.x - cp41.y)));
- return;
- }
- double s3 = (cp41.x * cp21.y - cp41.y * cp21.x) / hypot(cp21.x, cp21.y);
- if (s3 == 0) {
- // This means within the precision we have it can be approximated
- // infinitely by a linear segment. Deal with this by specifying the
- // approximation range as extending beyond the entire curve.
- *aMin = -1.0;
- *aMax = 2.0;
- return;
- }
- double tf = CubicRoot(std::abs(aTolerance / s3));
- *aMin = aT - tf * (1 - aT);
- *aMax = aT + tf * (1 - aT);
- }
- /* Find the inflection points of a bezier curve. Will return false if the
- * curve is degenerate in such a way that it is best approximated by a straight
- * line.
- *
- * The below algorithm was written by Jeff Muizelaar <jmuizelaar@mozilla.com>, explanation follows:
- *
- * The lower inflection point is returned in aT1, the higher one in aT2. In the
- * case of a single inflection point this will be in aT1.
- *
- * The method is inspired by the algorithm in "analysis of in?ection points for planar cubic bezier curve"
- *
- * Here are some differences between this algorithm and versions discussed elsewhere in the literature:
- *
- * zhang et. al compute a0, d0 and e0 incrementally using the follow formula:
- *
- * Point a0 = CP2 - CP1
- * Point a1 = CP3 - CP2
- * Point a2 = CP4 - CP1
- *
- * Point d0 = a1 - a0
- * Point d1 = a2 - a1
-
- * Point e0 = d1 - d0
- *
- * this avoids any multiplications and may or may not be faster than the approach take below.
- *
- * "fast, precise flattening of cubic bezier path and ofset curves" by hain et. al
- * Point a = CP1 + 3 * CP2 - 3 * CP3 + CP4
- * Point b = 3 * CP1 - 6 * CP2 + 3 * CP3
- * Point c = -3 * CP1 + 3 * CP2
- * Point d = CP1
- * the a, b, c, d can be expressed in terms of a0, d0 and e0 defined above as:
- * c = 3 * a0
- * b = 3 * d0
- * a = e0
- *
- *
- * a = 3a = a.y * b.x - a.x * b.y
- * b = 3b = a.y * c.x - a.x * c.y
- * c = 9c = b.y * c.x - b.x * c.y
- *
- * The additional multiples of 3 cancel each other out as show below:
- *
- * x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a)
- * x = (-3 * b + sqrt(3 * b * 3 * b - 4 * a * 3 * 9 * c / 3)) / (2 * 3 * a)
- * x = 3 * (-b + sqrt(b * b - 4 * a * c)) / (2 * 3 * a)
- * x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a)
- *
- * I haven't looked into whether the formulation of the quadratic formula in
- * hain has any numerical advantages over the one used below.
- */
- static inline void
- FindInflectionPoints(const BezierControlPoints &aControlPoints,
- double *aT1, double *aT2, uint32_t *aCount)
- {
- // Find inflection points.
- // See www.faculty.idc.ac.il/arik/quality/appendixa.html for an explanation
- // of this approach.
- PointD A = aControlPoints.mCP2 - aControlPoints.mCP1;
- PointD B = aControlPoints.mCP3 - (aControlPoints.mCP2 * 2) + aControlPoints.mCP1;
- PointD C = aControlPoints.mCP4 - (aControlPoints.mCP3 * 3) + (aControlPoints.mCP2 * 3) - aControlPoints.mCP1;
- double a = B.x * C.y - B.y * C.x;
- double b = A.x * C.y - A.y * C.x;
- double c = A.x * B.y - A.y * B.x;
- if (a == 0) {
- // Not a quadratic equation.
- if (b == 0) {
- // Instead of a linear acceleration change we have a constant
- // acceleration change. This means the equation has no solution
- // and there are no inflection points, unless the constant is 0.
- // In that case the curve is a straight line, essentially that means
- // the easiest way to deal with is is by saying there's an inflection
- // point at t == 0. The inflection point approximation range found will
- // automatically extend into infinity.
- if (c == 0) {
- *aCount = 1;
- *aT1 = 0;
- return;
- }
- *aCount = 0;
- return;
- }
- *aT1 = -c / b;
- *aCount = 1;
- return;
- } else {
- double discriminant = b * b - 4 * a * c;
- if (discriminant < 0) {
- // No inflection points.
- *aCount = 0;
- } else if (discriminant == 0) {
- *aCount = 1;
- *aT1 = -b / (2 * a);
- } else {
- /* Use the following formula for computing the roots:
- *
- * q = -1/2 * (b + sign(b) * sqrt(b^2 - 4ac))
- * t1 = q / a
- * t2 = c / q
- */
- double q = sqrt(discriminant);
- if (b < 0) {
- q = b - q;
- } else {
- q = b + q;
- }
- q *= -1./2;
- *aT1 = q / a;
- *aT2 = c / q;
- if (*aT1 > *aT2) {
- std::swap(*aT1, *aT2);
- }
- *aCount = 2;
- }
- }
- return;
- }
- void
- FlattenBezier(const BezierControlPoints &aControlPoints,
- PathSink *aSink, double aTolerance)
- {
- double t1;
- double t2;
- uint32_t count;
- FindInflectionPoints(aControlPoints, &t1, &t2, &count);
- // Check that at least one of the inflection points is inside [0..1]
- if (count == 0 || ((t1 < 0.0 || t1 >= 1.0) && (count == 1 || (t2 < 0.0 || t2 >= 1.0))) ) {
- FlattenBezierCurveSegment(aControlPoints, aSink, aTolerance);
- return;
- }
- double t1min = t1, t1max = t1, t2min = t2, t2max = t2;
- BezierControlPoints remainingCP = aControlPoints;
- // For both inflection points, calulate the range where they can be linearly
- // approximated if they are positioned within [0,1]
- if (count > 0 && t1 >= 0 && t1 < 1.0) {
- FindInflectionApproximationRange(aControlPoints, &t1min, &t1max, t1, aTolerance);
- }
- if (count > 1 && t2 >= 0 && t2 < 1.0) {
- FindInflectionApproximationRange(aControlPoints, &t2min, &t2max, t2, aTolerance);
- }
- BezierControlPoints nextCPs = aControlPoints;
- BezierControlPoints prevCPs;
- // Process ranges. [t1min, t1max] and [t2min, t2max] are approximated by line
- // segments.
- if (count == 1 && t1min <= 0 && t1max >= 1.0) {
- // The whole range can be approximated by a line segment.
- aSink->LineTo(aControlPoints.mCP4.ToPoint());
- return;
- }
- if (t1min > 0) {
- // Flatten the Bezier up until the first inflection point's approximation
- // point.
- SplitBezier(aControlPoints, &prevCPs,
- &remainingCP, t1min);
- FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
- }
- if (t1max >= 0 && t1max < 1.0 && (count == 1 || t2min > t1max)) {
- // The second inflection point's approximation range begins after the end
- // of the first, approximate the first inflection point by a line and
- // subsequently flatten up until the end or the next inflection point.
- SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
- aSink->LineTo(nextCPs.mCP1.ToPoint());
- if (count == 1 || (count > 1 && t2min >= 1.0)) {
- // No more inflection points to deal with, flatten the rest of the curve.
- FlattenBezierCurveSegment(nextCPs, aSink, aTolerance);
- }
- } else if (count > 1 && t2min > 1.0) {
- // We've already concluded t2min <= t1max, so if this is true the
- // approximation range for the first inflection point runs past the
- // end of the curve, draw a line to the end and we're done.
- aSink->LineTo(aControlPoints.mCP4.ToPoint());
- return;
- }
- if (count > 1 && t2min < 1.0 && t2max > 0) {
- if (t2min > 0 && t2min < t1max) {
- // In this case the t2 approximation range starts inside the t1
- // approximation range.
- SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
- aSink->LineTo(nextCPs.mCP1.ToPoint());
- } else if (t2min > 0 && t1max > 0) {
- SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
- // Find a control points describing the portion of the curve between t1max and t2min.
- double t2mina = (t2min - t1max) / (1 - t1max);
- SplitBezier(nextCPs, &prevCPs, &nextCPs, t2mina);
- FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
- } else if (t2min > 0) {
- // We have nothing interesting before t2min, find that bit and flatten it.
- SplitBezier(aControlPoints, &prevCPs, &nextCPs, t2min);
- FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
- }
- if (t2max < 1.0) {
- // Flatten the portion of the curve after t2max
- SplitBezier(aControlPoints, nullptr, &nextCPs, t2max);
- // Draw a line to the start, this is the approximation between t2min and
- // t2max.
- aSink->LineTo(nextCPs.mCP1.ToPoint());
- FlattenBezierCurveSegment(nextCPs, aSink, aTolerance);
- } else {
- // Our approximation range extends beyond the end of the curve.
- aSink->LineTo(aControlPoints.mCP4.ToPoint());
- return;
- }
- }
- }
- } // namespace gfx
- } // namespace mozilla
|