123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389 |
- /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
- /* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
- /* Utilities for hashing. */
- /*
- * This file exports functions for hashing data down to a 32-bit value,
- * including:
- *
- * - HashString Hash a char* or char16_t/wchar_t* of known or unknown
- * length.
- *
- * - HashBytes Hash a byte array of known length.
- *
- * - HashGeneric Hash one or more values. Currently, we support uint32_t,
- * types which can be implicitly cast to uint32_t, data
- * pointers, and function pointers.
- *
- * - AddToHash Add one or more values to the given hash. This supports the
- * same list of types as HashGeneric.
- *
- *
- * You can chain these functions together to hash complex objects. For example:
- *
- * class ComplexObject
- * {
- * char* mStr;
- * uint32_t mUint1, mUint2;
- * void (*mCallbackFn)();
- *
- * public:
- * uint32_t hash()
- * {
- * uint32_t hash = HashString(mStr);
- * hash = AddToHash(hash, mUint1, mUint2);
- * return AddToHash(hash, mCallbackFn);
- * }
- * };
- *
- * If you want to hash an nsAString or nsACString, use the HashString functions
- * in nsHashKeys.h.
- */
- #ifndef mozilla_HashFunctions_h
- #define mozilla_HashFunctions_h
- #include "mozilla/Assertions.h"
- #include "mozilla/Attributes.h"
- #include "mozilla/Char16.h"
- #include "mozilla/MathAlgorithms.h"
- #include "mozilla/Types.h"
- #include <stdint.h>
- #ifdef __cplusplus
- namespace mozilla {
- /**
- * The golden ratio as a 32-bit fixed-point value.
- */
- static const uint32_t kGoldenRatioU32 = 0x9E3779B9U;
- inline uint32_t
- RotateBitsLeft32(uint32_t aValue, uint8_t aBits)
- {
- MOZ_ASSERT(aBits < 32);
- return (aValue << aBits) | (aValue >> (32 - aBits));
- }
- namespace detail {
- inline uint32_t
- AddU32ToHash(uint32_t aHash, uint32_t aValue)
- {
- /*
- * This is the meat of all our hash routines. This hash function is not
- * particularly sophisticated, but it seems to work well for our mostly
- * plain-text inputs. Implementation notes follow.
- *
- * Our use of the golden ratio here is arbitrary; we could pick almost any
- * number which:
- *
- * * is odd (because otherwise, all our hash values will be even)
- *
- * * has a reasonably-even mix of 1's and 0's (consider the extreme case
- * where we multiply by 0x3 or 0xeffffff -- this will not produce good
- * mixing across all bits of the hash).
- *
- * The rotation length of 5 is also arbitrary, although an odd number is again
- * preferable so our hash explores the whole universe of possible rotations.
- *
- * Finally, we multiply by the golden ratio *after* xor'ing, not before.
- * Otherwise, if |aHash| is 0 (as it often is for the beginning of a
- * message), the expression
- *
- * (kGoldenRatioU32 * RotateBitsLeft(aHash, 5)) |xor| aValue
- *
- * evaluates to |aValue|.
- *
- * (Number-theoretic aside: Because any odd number |m| is relatively prime to
- * our modulus (2^32), the list
- *
- * [x * m (mod 2^32) for 0 <= x < 2^32]
- *
- * has no duplicate elements. This means that multiplying by |m| does not
- * cause us to skip any possible hash values.
- *
- * It's also nice if |m| has large-ish order mod 2^32 -- that is, if the
- * smallest k such that m^k == 1 (mod 2^32) is large -- so we can safely
- * multiply our hash value by |m| a few times without negating the
- * multiplicative effect. Our golden ratio constant has order 2^29, which is
- * more than enough for our purposes.)
- */
- return kGoldenRatioU32 * (RotateBitsLeft32(aHash, 5) ^ aValue);
- }
- /**
- * AddUintptrToHash takes sizeof(uintptr_t) as a template parameter.
- */
- template<size_t PtrSize>
- inline uint32_t
- AddUintptrToHash(uint32_t aHash, uintptr_t aValue);
- template<>
- inline uint32_t
- AddUintptrToHash<4>(uint32_t aHash, uintptr_t aValue)
- {
- return AddU32ToHash(aHash, static_cast<uint32_t>(aValue));
- }
- template<>
- inline uint32_t
- AddUintptrToHash<8>(uint32_t aHash, uintptr_t aValue)
- {
- /*
- * The static cast to uint64_t below is necessary because this function
- * sometimes gets compiled on 32-bit platforms (yes, even though it's a
- * template and we never call this particular override in a 32-bit build). If
- * we do aValue >> 32 on a 32-bit machine, we're shifting a 32-bit uintptr_t
- * right 32 bits, and the compiler throws an error.
- */
- uint32_t v1 = static_cast<uint32_t>(aValue);
- uint32_t v2 = static_cast<uint32_t>(static_cast<uint64_t>(aValue) >> 32);
- return AddU32ToHash(AddU32ToHash(aHash, v1), v2);
- }
- } /* namespace detail */
- /**
- * AddToHash takes a hash and some values and returns a new hash based on the
- * inputs.
- *
- * Currently, we support hashing uint32_t's, values which we can implicitly
- * convert to uint32_t, data pointers, and function pointers.
- */
- template<typename A>
- MOZ_MUST_USE inline uint32_t
- AddToHash(uint32_t aHash, A aA)
- {
- /*
- * Try to convert |A| to uint32_t implicitly. If this works, great. If not,
- * we'll error out.
- */
- return detail::AddU32ToHash(aHash, aA);
- }
- template<typename A>
- MOZ_MUST_USE inline uint32_t
- AddToHash(uint32_t aHash, A* aA)
- {
- /*
- * You might think this function should just take a void*. But then we'd only
- * catch data pointers and couldn't handle function pointers.
- */
- static_assert(sizeof(aA) == sizeof(uintptr_t), "Strange pointer!");
- return detail::AddUintptrToHash<sizeof(uintptr_t)>(aHash, uintptr_t(aA));
- }
- template<>
- MOZ_MUST_USE inline uint32_t
- AddToHash(uint32_t aHash, uintptr_t aA)
- {
- return detail::AddUintptrToHash<sizeof(uintptr_t)>(aHash, aA);
- }
- template<typename A, typename... Args>
- MOZ_MUST_USE uint32_t
- AddToHash(uint32_t aHash, A aArg, Args... aArgs)
- {
- return AddToHash(AddToHash(aHash, aArg), aArgs...);
- }
- /**
- * The HashGeneric class of functions let you hash one or more values.
- *
- * If you want to hash together two values x and y, calling HashGeneric(x, y) is
- * much better than calling AddToHash(x, y), because AddToHash(x, y) assumes
- * that x has already been hashed.
- */
- template<typename... Args>
- MOZ_MUST_USE inline uint32_t
- HashGeneric(Args... aArgs)
- {
- return AddToHash(0, aArgs...);
- }
- namespace detail {
- template<typename T>
- uint32_t
- HashUntilZero(const T* aStr)
- {
- uint32_t hash = 0;
- for (T c; (c = *aStr); aStr++) {
- hash = AddToHash(hash, c);
- }
- return hash;
- }
- template<typename T>
- uint32_t
- HashKnownLength(const T* aStr, size_t aLength)
- {
- uint32_t hash = 0;
- for (size_t i = 0; i < aLength; i++) {
- hash = AddToHash(hash, aStr[i]);
- }
- return hash;
- }
- } /* namespace detail */
- /**
- * The HashString overloads below do just what you'd expect.
- *
- * If you have the string's length, you might as well call the overload which
- * includes the length. It may be marginally faster.
- */
- MOZ_MUST_USE inline uint32_t
- HashString(const char* aStr)
- {
- return detail::HashUntilZero(reinterpret_cast<const unsigned char*>(aStr));
- }
- MOZ_MUST_USE inline uint32_t
- HashString(const char* aStr, size_t aLength)
- {
- return detail::HashKnownLength(reinterpret_cast<const unsigned char*>(aStr), aLength);
- }
- MOZ_MUST_USE
- inline uint32_t
- HashString(const unsigned char* aStr, size_t aLength)
- {
- return detail::HashKnownLength(aStr, aLength);
- }
- MOZ_MUST_USE inline uint32_t
- HashString(const char16_t* aStr)
- {
- return detail::HashUntilZero(aStr);
- }
- MOZ_MUST_USE inline uint32_t
- HashString(const char16_t* aStr, size_t aLength)
- {
- return detail::HashKnownLength(aStr, aLength);
- }
- /*
- * On Windows, wchar_t is not the same as char16_t, even though it's
- * the same width!
- */
- #ifdef WIN32
- MOZ_MUST_USE inline uint32_t
- HashString(const wchar_t* aStr)
- {
- return detail::HashUntilZero(aStr);
- }
- MOZ_MUST_USE inline uint32_t
- HashString(const wchar_t* aStr, size_t aLength)
- {
- return detail::HashKnownLength(aStr, aLength);
- }
- #endif
- /**
- * Hash some number of bytes.
- *
- * This hash walks word-by-word, rather than byte-by-byte, so you won't get the
- * same result out of HashBytes as you would out of HashString.
- */
- MOZ_MUST_USE extern MFBT_API uint32_t
- HashBytes(const void* bytes, size_t aLength);
- /**
- * A pseudorandom function mapping 32-bit integers to 32-bit integers.
- *
- * This is for when you're feeding private data (like pointer values or credit
- * card numbers) to a non-crypto hash function (like HashBytes) and then using
- * the hash code for something that untrusted parties could observe (like a JS
- * Map). Plug in a HashCodeScrambler before that last step to avoid leaking the
- * private data.
- *
- * By itself, this does not prevent hash-flooding DoS attacks, because an
- * attacker can still generate many values with exactly equal hash codes by
- * attacking the non-crypto hash function alone. Equal hash codes will, of
- * course, still be equal however much you scramble them.
- *
- * The algorithm is SipHash-1-3. See <https://131002.net/siphash/>.
- */
- class HashCodeScrambler
- {
- struct SipHasher;
- uint64_t mK0, mK1;
- public:
- /** Creates a new scrambler with the given 128-bit key. */
- constexpr HashCodeScrambler(uint64_t aK0, uint64_t aK1) : mK0(aK0), mK1(aK1) {}
- /**
- * Scramble a hash code. Always produces the same result for the same
- * combination of key and hash code.
- */
- uint32_t scramble(uint32_t aHashCode) const
- {
- SipHasher hasher(mK0, mK1);
- return uint32_t(hasher.sipHash(aHashCode));
- }
- private:
- struct SipHasher
- {
- SipHasher(uint64_t aK0, uint64_t aK1)
- {
- // 1. Initialization.
- mV0 = aK0 ^ UINT64_C(0x736f6d6570736575);
- mV1 = aK1 ^ UINT64_C(0x646f72616e646f6d);
- mV2 = aK0 ^ UINT64_C(0x6c7967656e657261);
- mV3 = aK1 ^ UINT64_C(0x7465646279746573);
- }
- uint64_t sipHash(uint64_t aM)
- {
- // 2. Compression.
- mV3 ^= aM;
- sipRound();
- mV0 ^= aM;
- // 3. Finalization.
- mV2 ^= 0xff;
- for (int i = 0; i < 3; i++)
- sipRound();
- return mV0 ^ mV1 ^ mV2 ^ mV3;
- }
- void sipRound()
- {
- mV0 += mV1;
- mV1 = RotateLeft(mV1, 13);
- mV1 ^= mV0;
- mV0 = RotateLeft(mV0, 32);
- mV2 += mV3;
- mV3 = RotateLeft(mV3, 16);
- mV3 ^= mV2;
- mV0 += mV3;
- mV3 = RotateLeft(mV3, 21);
- mV3 ^= mV0;
- mV2 += mV1;
- mV1 = RotateLeft(mV1, 17);
- mV1 ^= mV2;
- mV2 = RotateLeft(mV2, 32);
- }
- uint64_t mV0, mV1, mV2, mV3;
- };
- };
- } /* namespace mozilla */
- #endif /* __cplusplus */
- #endif /* mozilla_HashFunctions_h */
|