vp9_rd.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665
  1. /*
  2. * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
  3. *
  4. * Use of this source code is governed by a BSD-style license
  5. * that can be found in the LICENSE file in the root of the source
  6. * tree. An additional intellectual property rights grant can be found
  7. * in the file PATENTS. All contributing project authors may
  8. * be found in the AUTHORS file in the root of the source tree.
  9. */
  10. #include <assert.h>
  11. #include <math.h>
  12. #include <stdio.h>
  13. #include "./vp9_rtcd.h"
  14. #include "vpx_mem/vpx_mem.h"
  15. #include "vpx_ports/mem.h"
  16. #include "vp9/common/vp9_common.h"
  17. #include "vp9/common/vp9_entropy.h"
  18. #include "vp9/common/vp9_entropymode.h"
  19. #include "vp9/common/vp9_mvref_common.h"
  20. #include "vp9/common/vp9_pred_common.h"
  21. #include "vp9/common/vp9_quant_common.h"
  22. #include "vp9/common/vp9_reconinter.h"
  23. #include "vp9/common/vp9_reconintra.h"
  24. #include "vp9/common/vp9_seg_common.h"
  25. #include "vp9/common/vp9_systemdependent.h"
  26. #include "vp9/encoder/vp9_cost.h"
  27. #include "vp9/encoder/vp9_encodemb.h"
  28. #include "vp9/encoder/vp9_encodemv.h"
  29. #include "vp9/encoder/vp9_encoder.h"
  30. #include "vp9/encoder/vp9_mcomp.h"
  31. #include "vp9/encoder/vp9_quantize.h"
  32. #include "vp9/encoder/vp9_ratectrl.h"
  33. #include "vp9/encoder/vp9_rd.h"
  34. #include "vp9/encoder/vp9_tokenize.h"
  35. #include "vp9/encoder/vp9_variance.h"
  36. #define RD_THRESH_POW 1.25
  37. #define RD_MULT_EPB_RATIO 64
  38. // Factor to weigh the rate for switchable interp filters.
  39. #define SWITCHABLE_INTERP_RATE_FACTOR 1
  40. void vp9_rd_cost_reset(RD_COST *rd_cost) {
  41. rd_cost->rate = INT_MAX;
  42. rd_cost->dist = INT64_MAX;
  43. rd_cost->rdcost = INT64_MAX;
  44. }
  45. void vp9_rd_cost_init(RD_COST *rd_cost) {
  46. rd_cost->rate = 0;
  47. rd_cost->dist = 0;
  48. rd_cost->rdcost = 0;
  49. }
  50. // The baseline rd thresholds for breaking out of the rd loop for
  51. // certain modes are assumed to be based on 8x8 blocks.
  52. // This table is used to correct for block size.
  53. // The factors here are << 2 (2 = x0.5, 32 = x8 etc).
  54. static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = {
  55. 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32
  56. };
  57. static void fill_mode_costs(VP9_COMP *cpi) {
  58. const FRAME_CONTEXT *const fc = cpi->common.fc;
  59. int i, j;
  60. for (i = 0; i < INTRA_MODES; ++i)
  61. for (j = 0; j < INTRA_MODES; ++j)
  62. vp9_cost_tokens(cpi->y_mode_costs[i][j], vp9_kf_y_mode_prob[i][j],
  63. vp9_intra_mode_tree);
  64. vp9_cost_tokens(cpi->mbmode_cost, fc->y_mode_prob[1], vp9_intra_mode_tree);
  65. vp9_cost_tokens(cpi->intra_uv_mode_cost[KEY_FRAME],
  66. vp9_kf_uv_mode_prob[TM_PRED], vp9_intra_mode_tree);
  67. vp9_cost_tokens(cpi->intra_uv_mode_cost[INTER_FRAME],
  68. fc->uv_mode_prob[TM_PRED], vp9_intra_mode_tree);
  69. for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
  70. vp9_cost_tokens(cpi->switchable_interp_costs[i],
  71. fc->switchable_interp_prob[i], vp9_switchable_interp_tree);
  72. }
  73. static void fill_token_costs(vp9_coeff_cost *c,
  74. vp9_coeff_probs_model (*p)[PLANE_TYPES]) {
  75. int i, j, k, l;
  76. TX_SIZE t;
  77. for (t = TX_4X4; t <= TX_32X32; ++t)
  78. for (i = 0; i < PLANE_TYPES; ++i)
  79. for (j = 0; j < REF_TYPES; ++j)
  80. for (k = 0; k < COEF_BANDS; ++k)
  81. for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
  82. vp9_prob probs[ENTROPY_NODES];
  83. vp9_model_to_full_probs(p[t][i][j][k][l], probs);
  84. vp9_cost_tokens((int *)c[t][i][j][k][0][l], probs,
  85. vp9_coef_tree);
  86. vp9_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs,
  87. vp9_coef_tree);
  88. assert(c[t][i][j][k][0][l][EOB_TOKEN] ==
  89. c[t][i][j][k][1][l][EOB_TOKEN]);
  90. }
  91. }
  92. // Values are now correlated to quantizer.
  93. static int sad_per_bit16lut_8[QINDEX_RANGE];
  94. static int sad_per_bit4lut_8[QINDEX_RANGE];
  95. #if CONFIG_VP9_HIGHBITDEPTH
  96. static int sad_per_bit16lut_10[QINDEX_RANGE];
  97. static int sad_per_bit4lut_10[QINDEX_RANGE];
  98. static int sad_per_bit16lut_12[QINDEX_RANGE];
  99. static int sad_per_bit4lut_12[QINDEX_RANGE];
  100. #endif
  101. static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range,
  102. vpx_bit_depth_t bit_depth) {
  103. int i;
  104. // Initialize the sad lut tables using a formulaic calculation for now.
  105. // This is to make it easier to resolve the impact of experimental changes
  106. // to the quantizer tables.
  107. for (i = 0; i < range; i++) {
  108. const double q = vp9_convert_qindex_to_q(i, bit_depth);
  109. bit16lut[i] = (int)(0.0418 * q + 2.4107);
  110. bit4lut[i] = (int)(0.063 * q + 2.742);
  111. }
  112. }
  113. void vp9_init_me_luts(void) {
  114. init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE,
  115. VPX_BITS_8);
  116. #if CONFIG_VP9_HIGHBITDEPTH
  117. init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE,
  118. VPX_BITS_10);
  119. init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE,
  120. VPX_BITS_12);
  121. #endif
  122. }
  123. static const int rd_boost_factor[16] = {
  124. 64, 32, 32, 32, 24, 16, 12, 12,
  125. 8, 8, 4, 4, 2, 2, 1, 0
  126. };
  127. static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = {
  128. 128, 144, 128, 128, 144
  129. };
  130. int vp9_compute_rd_mult(const VP9_COMP *cpi, int qindex) {
  131. const int64_t q = vp9_dc_quant(qindex, 0, cpi->common.bit_depth);
  132. #if CONFIG_VP9_HIGHBITDEPTH
  133. int64_t rdmult = 0;
  134. switch (cpi->common.bit_depth) {
  135. case VPX_BITS_8:
  136. rdmult = 88 * q * q / 24;
  137. break;
  138. case VPX_BITS_10:
  139. rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 4);
  140. break;
  141. case VPX_BITS_12:
  142. rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 8);
  143. break;
  144. default:
  145. assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
  146. return -1;
  147. }
  148. #else
  149. int64_t rdmult = 88 * q * q / 24;
  150. #endif // CONFIG_VP9_HIGHBITDEPTH
  151. if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
  152. const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
  153. const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index];
  154. const int boost_index = MIN(15, (cpi->rc.gfu_boost / 100));
  155. rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7;
  156. rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7);
  157. }
  158. return (int)rdmult;
  159. }
  160. static int compute_rd_thresh_factor(int qindex, vpx_bit_depth_t bit_depth) {
  161. double q;
  162. #if CONFIG_VP9_HIGHBITDEPTH
  163. switch (bit_depth) {
  164. case VPX_BITS_8:
  165. q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0;
  166. break;
  167. case VPX_BITS_10:
  168. q = vp9_dc_quant(qindex, 0, VPX_BITS_10) / 16.0;
  169. break;
  170. case VPX_BITS_12:
  171. q = vp9_dc_quant(qindex, 0, VPX_BITS_12) / 64.0;
  172. break;
  173. default:
  174. assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
  175. return -1;
  176. }
  177. #else
  178. (void) bit_depth;
  179. q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0;
  180. #endif // CONFIG_VP9_HIGHBITDEPTH
  181. // TODO(debargha): Adjust the function below.
  182. return MAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
  183. }
  184. void vp9_initialize_me_consts(VP9_COMP *cpi, MACROBLOCK *x, int qindex) {
  185. #if CONFIG_VP9_HIGHBITDEPTH
  186. switch (cpi->common.bit_depth) {
  187. case VPX_BITS_8:
  188. x->sadperbit16 = sad_per_bit16lut_8[qindex];
  189. x->sadperbit4 = sad_per_bit4lut_8[qindex];
  190. break;
  191. case VPX_BITS_10:
  192. x->sadperbit16 = sad_per_bit16lut_10[qindex];
  193. x->sadperbit4 = sad_per_bit4lut_10[qindex];
  194. break;
  195. case VPX_BITS_12:
  196. x->sadperbit16 = sad_per_bit16lut_12[qindex];
  197. x->sadperbit4 = sad_per_bit4lut_12[qindex];
  198. break;
  199. default:
  200. assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
  201. }
  202. #else
  203. (void)cpi;
  204. x->sadperbit16 = sad_per_bit16lut_8[qindex];
  205. x->sadperbit4 = sad_per_bit4lut_8[qindex];
  206. #endif // CONFIG_VP9_HIGHBITDEPTH
  207. }
  208. static void set_block_thresholds(const VP9_COMMON *cm, RD_OPT *rd) {
  209. int i, bsize, segment_id;
  210. for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) {
  211. const int qindex =
  212. clamp(vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex) +
  213. cm->y_dc_delta_q, 0, MAXQ);
  214. const int q = compute_rd_thresh_factor(qindex, cm->bit_depth);
  215. for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) {
  216. // Threshold here seems unnecessarily harsh but fine given actual
  217. // range of values used for cpi->sf.thresh_mult[].
  218. const int t = q * rd_thresh_block_size_factor[bsize];
  219. const int thresh_max = INT_MAX / t;
  220. if (bsize >= BLOCK_8X8) {
  221. for (i = 0; i < MAX_MODES; ++i)
  222. rd->threshes[segment_id][bsize][i] =
  223. rd->thresh_mult[i] < thresh_max
  224. ? rd->thresh_mult[i] * t / 4
  225. : INT_MAX;
  226. } else {
  227. for (i = 0; i < MAX_REFS; ++i)
  228. rd->threshes[segment_id][bsize][i] =
  229. rd->thresh_mult_sub8x8[i] < thresh_max
  230. ? rd->thresh_mult_sub8x8[i] * t / 4
  231. : INT_MAX;
  232. }
  233. }
  234. }
  235. }
  236. void vp9_initialize_rd_consts(VP9_COMP *cpi) {
  237. VP9_COMMON *const cm = &cpi->common;
  238. MACROBLOCK *const x = &cpi->td.mb;
  239. RD_OPT *const rd = &cpi->rd;
  240. int i;
  241. vp9_clear_system_state();
  242. rd->RDDIV = RDDIV_BITS; // In bits (to multiply D by 128).
  243. rd->RDMULT = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
  244. x->errorperbit = rd->RDMULT / RD_MULT_EPB_RATIO;
  245. x->errorperbit += (x->errorperbit == 0);
  246. x->select_tx_size = (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
  247. cm->frame_type != KEY_FRAME) ? 0 : 1;
  248. set_block_thresholds(cm, rd);
  249. if (!cpi->sf.use_nonrd_pick_mode || cm->frame_type == KEY_FRAME)
  250. fill_token_costs(x->token_costs, cm->fc->coef_probs);
  251. if (cpi->sf.partition_search_type != VAR_BASED_PARTITION ||
  252. cm->frame_type == KEY_FRAME) {
  253. for (i = 0; i < PARTITION_CONTEXTS; ++i)
  254. vp9_cost_tokens(cpi->partition_cost[i], get_partition_probs(cm, i),
  255. vp9_partition_tree);
  256. }
  257. if (!cpi->sf.use_nonrd_pick_mode || (cm->current_video_frame & 0x07) == 1 ||
  258. cm->frame_type == KEY_FRAME) {
  259. fill_mode_costs(cpi);
  260. if (!frame_is_intra_only(cm)) {
  261. vp9_build_nmv_cost_table(x->nmvjointcost,
  262. cm->allow_high_precision_mv ? x->nmvcost_hp
  263. : x->nmvcost,
  264. &cm->fc->nmvc, cm->allow_high_precision_mv);
  265. for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
  266. vp9_cost_tokens((int *)cpi->inter_mode_cost[i],
  267. cm->fc->inter_mode_probs[i], vp9_inter_mode_tree);
  268. }
  269. }
  270. }
  271. static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) {
  272. // NOTE: The tables below must be of the same size.
  273. // The functions described below are sampled at the four most significant
  274. // bits of x^2 + 8 / 256.
  275. // Normalized rate:
  276. // This table models the rate for a Laplacian source with given variance
  277. // when quantized with a uniform quantizer with given stepsize. The
  278. // closed form expression is:
  279. // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
  280. // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
  281. // and H(x) is the binary entropy function.
  282. static const int rate_tab_q10[] = {
  283. 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651,
  284. 4553, 4389, 4255, 4142, 4044, 3958, 3881, 3811,
  285. 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186,
  286. 3133, 3037, 2952, 2877, 2809, 2747, 2690, 2638,
  287. 2589, 2501, 2423, 2353, 2290, 2232, 2179, 2130,
  288. 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651,
  289. 1608, 1530, 1460, 1398, 1342, 1290, 1243, 1199,
  290. 1159, 1086, 1021, 963, 911, 864, 821, 781,
  291. 745, 680, 623, 574, 530, 490, 455, 424,
  292. 395, 345, 304, 269, 239, 213, 190, 171,
  293. 154, 126, 104, 87, 73, 61, 52, 44,
  294. 38, 28, 21, 16, 12, 10, 8, 6,
  295. 5, 3, 2, 1, 1, 1, 0, 0,
  296. };
  297. // Normalized distortion:
  298. // This table models the normalized distortion for a Laplacian source
  299. // with given variance when quantized with a uniform quantizer
  300. // with given stepsize. The closed form expression is:
  301. // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
  302. // where x = qpstep / sqrt(variance).
  303. // Note the actual distortion is Dn * variance.
  304. static const int dist_tab_q10[] = {
  305. 0, 0, 1, 1, 1, 2, 2, 2,
  306. 3, 3, 4, 5, 5, 6, 7, 7,
  307. 8, 9, 11, 12, 13, 15, 16, 17,
  308. 18, 21, 24, 26, 29, 31, 34, 36,
  309. 39, 44, 49, 54, 59, 64, 69, 73,
  310. 78, 88, 97, 106, 115, 124, 133, 142,
  311. 151, 167, 184, 200, 215, 231, 245, 260,
  312. 274, 301, 327, 351, 375, 397, 418, 439,
  313. 458, 495, 528, 559, 587, 613, 637, 659,
  314. 680, 717, 749, 777, 801, 823, 842, 859,
  315. 874, 899, 919, 936, 949, 960, 969, 977,
  316. 983, 994, 1001, 1006, 1010, 1013, 1015, 1017,
  317. 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024,
  318. };
  319. static const int xsq_iq_q10[] = {
  320. 0, 4, 8, 12, 16, 20, 24, 28,
  321. 32, 40, 48, 56, 64, 72, 80, 88,
  322. 96, 112, 128, 144, 160, 176, 192, 208,
  323. 224, 256, 288, 320, 352, 384, 416, 448,
  324. 480, 544, 608, 672, 736, 800, 864, 928,
  325. 992, 1120, 1248, 1376, 1504, 1632, 1760, 1888,
  326. 2016, 2272, 2528, 2784, 3040, 3296, 3552, 3808,
  327. 4064, 4576, 5088, 5600, 6112, 6624, 7136, 7648,
  328. 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328,
  329. 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688,
  330. 32736, 36832, 40928, 45024, 49120, 53216, 57312, 61408,
  331. 65504, 73696, 81888, 90080, 98272, 106464, 114656, 122848,
  332. 131040, 147424, 163808, 180192, 196576, 212960, 229344, 245728,
  333. };
  334. const int tmp = (xsq_q10 >> 2) + 8;
  335. const int k = get_msb(tmp) - 3;
  336. const int xq = (k << 3) + ((tmp >> k) & 0x7);
  337. const int one_q10 = 1 << 10;
  338. const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k);
  339. const int b_q10 = one_q10 - a_q10;
  340. *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
  341. *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
  342. }
  343. void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n_log2,
  344. unsigned int qstep, int *rate,
  345. int64_t *dist) {
  346. // This function models the rate and distortion for a Laplacian
  347. // source with given variance when quantized with a uniform quantizer
  348. // with given stepsize. The closed form expressions are in:
  349. // Hang and Chen, "Source Model for transform video coder and its
  350. // application - Part I: Fundamental Theory", IEEE Trans. Circ.
  351. // Sys. for Video Tech., April 1997.
  352. if (var == 0) {
  353. *rate = 0;
  354. *dist = 0;
  355. } else {
  356. int d_q10, r_q10;
  357. static const uint32_t MAX_XSQ_Q10 = 245727;
  358. const uint64_t xsq_q10_64 =
  359. (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
  360. const int xsq_q10 = (int)MIN(xsq_q10_64, MAX_XSQ_Q10);
  361. model_rd_norm(xsq_q10, &r_q10, &d_q10);
  362. *rate = ((r_q10 << n_log2) + 2) >> 2;
  363. *dist = (var * (int64_t)d_q10 + 512) >> 10;
  364. }
  365. }
  366. void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
  367. const struct macroblockd_plane *pd,
  368. ENTROPY_CONTEXT t_above[16],
  369. ENTROPY_CONTEXT t_left[16]) {
  370. const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
  371. const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
  372. const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
  373. const ENTROPY_CONTEXT *const above = pd->above_context;
  374. const ENTROPY_CONTEXT *const left = pd->left_context;
  375. int i;
  376. switch (tx_size) {
  377. case TX_4X4:
  378. memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
  379. memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
  380. break;
  381. case TX_8X8:
  382. for (i = 0; i < num_4x4_w; i += 2)
  383. t_above[i] = !!*(const uint16_t *)&above[i];
  384. for (i = 0; i < num_4x4_h; i += 2)
  385. t_left[i] = !!*(const uint16_t *)&left[i];
  386. break;
  387. case TX_16X16:
  388. for (i = 0; i < num_4x4_w; i += 4)
  389. t_above[i] = !!*(const uint32_t *)&above[i];
  390. for (i = 0; i < num_4x4_h; i += 4)
  391. t_left[i] = !!*(const uint32_t *)&left[i];
  392. break;
  393. case TX_32X32:
  394. for (i = 0; i < num_4x4_w; i += 8)
  395. t_above[i] = !!*(const uint64_t *)&above[i];
  396. for (i = 0; i < num_4x4_h; i += 8)
  397. t_left[i] = !!*(const uint64_t *)&left[i];
  398. break;
  399. default:
  400. assert(0 && "Invalid transform size.");
  401. break;
  402. }
  403. }
  404. void vp9_mv_pred(VP9_COMP *cpi, MACROBLOCK *x,
  405. uint8_t *ref_y_buffer, int ref_y_stride,
  406. int ref_frame, BLOCK_SIZE block_size) {
  407. MACROBLOCKD *xd = &x->e_mbd;
  408. MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
  409. int i;
  410. int zero_seen = 0;
  411. int best_index = 0;
  412. int best_sad = INT_MAX;
  413. int this_sad = INT_MAX;
  414. int max_mv = 0;
  415. int near_same_nearest;
  416. uint8_t *src_y_ptr = x->plane[0].src.buf;
  417. uint8_t *ref_y_ptr;
  418. const int num_mv_refs = MAX_MV_REF_CANDIDATES +
  419. (cpi->sf.adaptive_motion_search &&
  420. block_size < x->max_partition_size);
  421. MV pred_mv[3];
  422. pred_mv[0] = mbmi->ref_mvs[ref_frame][0].as_mv;
  423. pred_mv[1] = mbmi->ref_mvs[ref_frame][1].as_mv;
  424. pred_mv[2] = x->pred_mv[ref_frame];
  425. assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0])));
  426. near_same_nearest =
  427. mbmi->ref_mvs[ref_frame][0].as_int == mbmi->ref_mvs[ref_frame][1].as_int;
  428. // Get the sad for each candidate reference mv.
  429. for (i = 0; i < num_mv_refs; ++i) {
  430. const MV *this_mv = &pred_mv[i];
  431. int fp_row, fp_col;
  432. if (i == 1 && near_same_nearest)
  433. continue;
  434. fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
  435. fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
  436. max_mv = MAX(max_mv, MAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
  437. if (fp_row ==0 && fp_col == 0 && zero_seen)
  438. continue;
  439. zero_seen |= (fp_row ==0 && fp_col == 0);
  440. ref_y_ptr =&ref_y_buffer[ref_y_stride * fp_row + fp_col];
  441. // Find sad for current vector.
  442. this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride,
  443. ref_y_ptr, ref_y_stride);
  444. // Note if it is the best so far.
  445. if (this_sad < best_sad) {
  446. best_sad = this_sad;
  447. best_index = i;
  448. }
  449. }
  450. // Note the index of the mv that worked best in the reference list.
  451. x->mv_best_ref_index[ref_frame] = best_index;
  452. x->max_mv_context[ref_frame] = max_mv;
  453. x->pred_mv_sad[ref_frame] = best_sad;
  454. }
  455. void vp9_setup_pred_block(const MACROBLOCKD *xd,
  456. struct buf_2d dst[MAX_MB_PLANE],
  457. const YV12_BUFFER_CONFIG *src,
  458. int mi_row, int mi_col,
  459. const struct scale_factors *scale,
  460. const struct scale_factors *scale_uv) {
  461. int i;
  462. dst[0].buf = src->y_buffer;
  463. dst[0].stride = src->y_stride;
  464. dst[1].buf = src->u_buffer;
  465. dst[2].buf = src->v_buffer;
  466. dst[1].stride = dst[2].stride = src->uv_stride;
  467. for (i = 0; i < MAX_MB_PLANE; ++i) {
  468. setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col,
  469. i ? scale_uv : scale,
  470. xd->plane[i].subsampling_x, xd->plane[i].subsampling_y);
  471. }
  472. }
  473. int vp9_raster_block_offset(BLOCK_SIZE plane_bsize,
  474. int raster_block, int stride) {
  475. const int bw = b_width_log2_lookup[plane_bsize];
  476. const int y = 4 * (raster_block >> bw);
  477. const int x = 4 * (raster_block & ((1 << bw) - 1));
  478. return y * stride + x;
  479. }
  480. int16_t* vp9_raster_block_offset_int16(BLOCK_SIZE plane_bsize,
  481. int raster_block, int16_t *base) {
  482. const int stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
  483. return base + vp9_raster_block_offset(plane_bsize, raster_block, stride);
  484. }
  485. YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const VP9_COMP *cpi,
  486. int ref_frame) {
  487. const VP9_COMMON *const cm = &cpi->common;
  488. const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1];
  489. const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame);
  490. return
  491. (scaled_idx != ref_idx && scaled_idx != INVALID_IDX) ?
  492. &cm->buffer_pool->frame_bufs[scaled_idx].buf : NULL;
  493. }
  494. int vp9_get_switchable_rate(const VP9_COMP *cpi, const MACROBLOCKD *const xd) {
  495. const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
  496. const int ctx = vp9_get_pred_context_switchable_interp(xd);
  497. return SWITCHABLE_INTERP_RATE_FACTOR *
  498. cpi->switchable_interp_costs[ctx][mbmi->interp_filter];
  499. }
  500. void vp9_set_rd_speed_thresholds(VP9_COMP *cpi) {
  501. int i;
  502. RD_OPT *const rd = &cpi->rd;
  503. SPEED_FEATURES *const sf = &cpi->sf;
  504. // Set baseline threshold values.
  505. for (i = 0; i < MAX_MODES; ++i)
  506. rd->thresh_mult[i] = cpi->oxcf.mode == BEST ? -500 : 0;
  507. if (sf->adaptive_rd_thresh) {
  508. rd->thresh_mult[THR_NEARESTMV] = 300;
  509. rd->thresh_mult[THR_NEARESTG] = 300;
  510. rd->thresh_mult[THR_NEARESTA] = 300;
  511. } else {
  512. rd->thresh_mult[THR_NEARESTMV] = 0;
  513. rd->thresh_mult[THR_NEARESTG] = 0;
  514. rd->thresh_mult[THR_NEARESTA] = 0;
  515. }
  516. rd->thresh_mult[THR_DC] += 1000;
  517. rd->thresh_mult[THR_NEWMV] += 1000;
  518. rd->thresh_mult[THR_NEWA] += 1000;
  519. rd->thresh_mult[THR_NEWG] += 1000;
  520. rd->thresh_mult[THR_NEARMV] += 1000;
  521. rd->thresh_mult[THR_NEARA] += 1000;
  522. rd->thresh_mult[THR_COMP_NEARESTLA] += 1000;
  523. rd->thresh_mult[THR_COMP_NEARESTGA] += 1000;
  524. rd->thresh_mult[THR_TM] += 1000;
  525. rd->thresh_mult[THR_COMP_NEARLA] += 1500;
  526. rd->thresh_mult[THR_COMP_NEWLA] += 2000;
  527. rd->thresh_mult[THR_NEARG] += 1000;
  528. rd->thresh_mult[THR_COMP_NEARGA] += 1500;
  529. rd->thresh_mult[THR_COMP_NEWGA] += 2000;
  530. rd->thresh_mult[THR_ZEROMV] += 2000;
  531. rd->thresh_mult[THR_ZEROG] += 2000;
  532. rd->thresh_mult[THR_ZEROA] += 2000;
  533. rd->thresh_mult[THR_COMP_ZEROLA] += 2500;
  534. rd->thresh_mult[THR_COMP_ZEROGA] += 2500;
  535. rd->thresh_mult[THR_H_PRED] += 2000;
  536. rd->thresh_mult[THR_V_PRED] += 2000;
  537. rd->thresh_mult[THR_D45_PRED ] += 2500;
  538. rd->thresh_mult[THR_D135_PRED] += 2500;
  539. rd->thresh_mult[THR_D117_PRED] += 2500;
  540. rd->thresh_mult[THR_D153_PRED] += 2500;
  541. rd->thresh_mult[THR_D207_PRED] += 2500;
  542. rd->thresh_mult[THR_D63_PRED] += 2500;
  543. }
  544. void vp9_set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi) {
  545. static const int thresh_mult[2][MAX_REFS] =
  546. {{2500, 2500, 2500, 4500, 4500, 2500},
  547. {2000, 2000, 2000, 4000, 4000, 2000}};
  548. RD_OPT *const rd = &cpi->rd;
  549. const int idx = cpi->oxcf.mode == BEST;
  550. memcpy(rd->thresh_mult_sub8x8, thresh_mult[idx], sizeof(thresh_mult[idx]));
  551. }
  552. void vp9_update_rd_thresh_fact(int (*factor_buf)[MAX_MODES], int rd_thresh,
  553. int bsize, int best_mode_index) {
  554. if (rd_thresh > 0) {
  555. const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES;
  556. int mode;
  557. for (mode = 0; mode < top_mode; ++mode) {
  558. const BLOCK_SIZE min_size = MAX(bsize - 1, BLOCK_4X4);
  559. const BLOCK_SIZE max_size = MIN(bsize + 2, BLOCK_64X64);
  560. BLOCK_SIZE bs;
  561. for (bs = min_size; bs <= max_size; ++bs) {
  562. int *const fact = &factor_buf[bs][mode];
  563. if (mode == best_mode_index) {
  564. *fact -= (*fact >> 4);
  565. } else {
  566. *fact = MIN(*fact + RD_THRESH_INC,
  567. rd_thresh * RD_THRESH_MAX_FACT);
  568. }
  569. }
  570. }
  571. }
  572. }
  573. int vp9_get_intra_cost_penalty(int qindex, int qdelta,
  574. vpx_bit_depth_t bit_depth) {
  575. const int q = vp9_dc_quant(qindex, qdelta, bit_depth);
  576. #if CONFIG_VP9_HIGHBITDEPTH
  577. switch (bit_depth) {
  578. case VPX_BITS_8:
  579. return 20 * q;
  580. case VPX_BITS_10:
  581. return 5 * q;
  582. case VPX_BITS_12:
  583. return ROUND_POWER_OF_TWO(5 * q, 2);
  584. default:
  585. assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
  586. return -1;
  587. }
  588. #else
  589. return 20 * q;
  590. #endif // CONFIG_VP9_HIGHBITDEPTH
  591. }