123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- /*
- * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
- * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice including the dates of first publication and
- * either this permission notice or a reference to
- * http://oss.sgi.com/projects/FreeB/
- * shall be included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
- * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
- * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- *
- * Except as contained in this notice, the name of Silicon Graphics, Inc.
- * shall not be used in advertising or otherwise to promote the sale, use or
- * other dealings in this Software without prior written authorization from
- * Silicon Graphics, Inc.
- */
- /*
- ** Author: Eric Veach, July 1994.
- **
- */
- #include "../prboom/SDL_opengl.h" // JDC
- //#include "gluos.h"
- #include <assert.h>
- #include "mesh.h"
- #include "geom.h"
- int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
- {
- /* Returns TRUE if u is lexicographically <= v. */
- return VertLeq( u, v );
- }
- GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
- {
- /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
- * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
- * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
- * If uw is vertical (and thus passes thru v), the result is zero.
- *
- * The calculation is extremely accurate and stable, even when v
- * is very close to u or w. In particular if we set v->t = 0 and
- * let r be the negated result (this evaluates (uw)(v->s)), then
- * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
- */
- GLdouble gapL, gapR;
- assert( VertLeq( u, v ) && VertLeq( v, w ));
-
- gapL = v->s - u->s;
- gapR = w->s - v->s;
- if( gapL + gapR > 0 ) {
- if( gapL < gapR ) {
- return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
- } else {
- return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
- }
- }
- /* vertical line */
- return 0;
- }
- GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
- {
- /* Returns a number whose sign matches EdgeEval(u,v,w) but which
- * is cheaper to evaluate. Returns > 0, == 0 , or < 0
- * as v is above, on, or below the edge uw.
- */
- GLdouble gapL, gapR;
- assert( VertLeq( u, v ) && VertLeq( v, w ));
-
- gapL = v->s - u->s;
- gapR = w->s - v->s;
- if( gapL + gapR > 0 ) {
- return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
- }
- /* vertical line */
- return 0;
- }
- /***********************************************************************
- * Define versions of EdgeSign, EdgeEval with s and t transposed.
- */
- GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
- {
- /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
- * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
- * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
- * If uw is vertical (and thus passes thru v), the result is zero.
- *
- * The calculation is extremely accurate and stable, even when v
- * is very close to u or w. In particular if we set v->s = 0 and
- * let r be the negated result (this evaluates (uw)(v->t)), then
- * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
- */
- GLdouble gapL, gapR;
- assert( TransLeq( u, v ) && TransLeq( v, w ));
-
- gapL = v->t - u->t;
- gapR = w->t - v->t;
- if( gapL + gapR > 0 ) {
- if( gapL < gapR ) {
- return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
- } else {
- return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
- }
- }
- /* vertical line */
- return 0;
- }
- GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
- {
- /* Returns a number whose sign matches TransEval(u,v,w) but which
- * is cheaper to evaluate. Returns > 0, == 0 , or < 0
- * as v is above, on, or below the edge uw.
- */
- GLdouble gapL, gapR;
- assert( TransLeq( u, v ) && TransLeq( v, w ));
-
- gapL = v->t - u->t;
- gapR = w->t - v->t;
- if( gapL + gapR > 0 ) {
- return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
- }
- /* vertical line */
- return 0;
- }
- int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
- {
- /* For almost-degenerate situations, the results are not reliable.
- * Unless the floating-point arithmetic can be performed without
- * rounding errors, *any* implementation will give incorrect results
- * on some degenerate inputs, so the client must have some way to
- * handle this situation.
- */
- return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
- }
- /* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
- * or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces
- * this in the rare case that one argument is slightly negative.
- * The implementation is extremely stable numerically.
- * In particular it guarantees that the result r satisfies
- * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
- * even when a and b differ greatly in magnitude.
- */
- #define RealInterpolate(a,x,b,y) \
- (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \
- ((a <= b) ? ((b == 0) ? ((x+y) / 2) \
- : (x + (y-x) * (a/(a+b)))) \
- : (y + (x-y) * (b/(a+b)))))
- #ifndef FOR_TRITE_TEST_PROGRAM
- #define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y)
- #else
- /* Claim: the ONLY property the sweep algorithm relies on is that
- * MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that.
- */
- #include <stdlib.h>
- extern int RandomInterpolate;
- GLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
- {
- printf("*********************%d\n",RandomInterpolate);
- if( RandomInterpolate ) {
- a = 1.2 * drand48() - 0.1;
- a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
- b = 1.0 - a;
- }
- return RealInterpolate(a,x,b,y);
- }
- #endif
- #define Swap(a,b) if (1) { GLUvertex *t = a; a = b; b = t; } else
- void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
- GLUvertex *o2, GLUvertex *d2,
- GLUvertex *v )
- /* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
- * The computed point is guaranteed to lie in the intersection of the
- * bounding rectangles defined by each edge.
- */
- {
- GLdouble z1, z2;
- /* This is certainly not the most efficient way to find the intersection
- * of two line segments, but it is very numerically stable.
- *
- * Strategy: find the two middle vertices in the VertLeq ordering,
- * and interpolate the intersection s-value from these. Then repeat
- * using the TransLeq ordering to find the intersection t-value.
- */
- if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
- if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
- if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
- if( ! VertLeq( o2, d1 )) {
- /* Technically, no intersection -- do our best */
- v->s = (o2->s + d1->s) / 2;
- } else if( VertLeq( d1, d2 )) {
- /* Interpolate between o2 and d1 */
- z1 = EdgeEval( o1, o2, d1 );
- z2 = EdgeEval( o2, d1, d2 );
- if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
- v->s = Interpolate( z1, o2->s, z2, d1->s );
- } else {
- /* Interpolate between o2 and d2 */
- z1 = EdgeSign( o1, o2, d1 );
- z2 = -EdgeSign( o1, d2, d1 );
- if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
- v->s = Interpolate( z1, o2->s, z2, d2->s );
- }
- /* Now repeat the process for t */
- if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
- if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
- if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
- if( ! TransLeq( o2, d1 )) {
- /* Technically, no intersection -- do our best */
- v->t = (o2->t + d1->t) / 2;
- } else if( TransLeq( d1, d2 )) {
- /* Interpolate between o2 and d1 */
- z1 = TransEval( o1, o2, d1 );
- z2 = TransEval( o2, d1, d2 );
- if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
- v->t = Interpolate( z1, o2->t, z2, d1->t );
- } else {
- /* Interpolate between o2 and d2 */
- z1 = TransSign( o1, o2, d1 );
- z2 = -TransSign( o1, d2, d1 );
- if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
- v->t = Interpolate( z1, o2->t, z2, d2->t );
- }
- }
|