security.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. #include <linux/integrity.h>
  19. #include <linux/ima.h>
  20. #include <linux/evm.h>
  21. #include <linux/fsnotify.h>
  22. #include <linux/mman.h>
  23. #include <linux/mount.h>
  24. #include <linux/personality.h>
  25. #include <net/flow.h>
  26. #define MAX_LSM_EVM_XATTR 2
  27. /* Boot-time LSM user choice */
  28. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  29. CONFIG_DEFAULT_SECURITY;
  30. static struct security_operations *security_ops;
  31. static struct security_operations default_security_ops = {
  32. .name = "default",
  33. };
  34. static inline int __init verify(struct security_operations *ops)
  35. {
  36. /* verify the security_operations structure exists */
  37. if (!ops)
  38. return -EINVAL;
  39. security_fixup_ops(ops);
  40. return 0;
  41. }
  42. static void __init do_security_initcalls(void)
  43. {
  44. initcall_t *call;
  45. call = __security_initcall_start;
  46. while (call < __security_initcall_end) {
  47. (*call) ();
  48. call++;
  49. }
  50. }
  51. /**
  52. * security_init - initializes the security framework
  53. *
  54. * This should be called early in the kernel initialization sequence.
  55. */
  56. int __init security_init(void)
  57. {
  58. printk(KERN_INFO "Security Framework initialized\n");
  59. security_fixup_ops(&default_security_ops);
  60. security_ops = &default_security_ops;
  61. do_security_initcalls();
  62. return 0;
  63. }
  64. void reset_security_ops(void)
  65. {
  66. security_ops = &default_security_ops;
  67. }
  68. /* Save user chosen LSM */
  69. static int __init choose_lsm(char *str)
  70. {
  71. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  72. return 1;
  73. }
  74. __setup("security=", choose_lsm);
  75. /**
  76. * security_module_enable - Load given security module on boot ?
  77. * @ops: a pointer to the struct security_operations that is to be checked.
  78. *
  79. * Each LSM must pass this method before registering its own operations
  80. * to avoid security registration races. This method may also be used
  81. * to check if your LSM is currently loaded during kernel initialization.
  82. *
  83. * Return true if:
  84. * -The passed LSM is the one chosen by user at boot time,
  85. * -or the passed LSM is configured as the default and the user did not
  86. * choose an alternate LSM at boot time.
  87. * Otherwise, return false.
  88. */
  89. int __init security_module_enable(struct security_operations *ops)
  90. {
  91. return !strcmp(ops->name, chosen_lsm);
  92. }
  93. /**
  94. * register_security - registers a security framework with the kernel
  95. * @ops: a pointer to the struct security_options that is to be registered
  96. *
  97. * This function allows a security module to register itself with the
  98. * kernel security subsystem. Some rudimentary checking is done on the @ops
  99. * value passed to this function. You'll need to check first if your LSM
  100. * is allowed to register its @ops by calling security_module_enable(@ops).
  101. *
  102. * If there is already a security module registered with the kernel,
  103. * an error will be returned. Otherwise %0 is returned on success.
  104. */
  105. int __init register_security(struct security_operations *ops)
  106. {
  107. if (verify(ops)) {
  108. printk(KERN_DEBUG "%s could not verify "
  109. "security_operations structure.\n", __func__);
  110. return -EINVAL;
  111. }
  112. if (security_ops != &default_security_ops)
  113. return -EAGAIN;
  114. security_ops = ops;
  115. return 0;
  116. }
  117. /* Security operations */
  118. int security_binder_set_context_mgr(struct task_struct *mgr)
  119. {
  120. return security_ops->binder_set_context_mgr(mgr);
  121. }
  122. int security_binder_transaction(struct task_struct *from, struct task_struct *to)
  123. {
  124. return security_ops->binder_transaction(from, to);
  125. }
  126. int security_binder_transfer_binder(struct task_struct *from, struct task_struct *to)
  127. {
  128. return security_ops->binder_transfer_binder(from, to);
  129. }
  130. int security_binder_transfer_file(struct task_struct *from, struct task_struct *to, struct file *file)
  131. {
  132. return security_ops->binder_transfer_file(from, to, file);
  133. }
  134. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  135. {
  136. return security_ops->ptrace_access_check(child, mode);
  137. }
  138. int security_ptrace_traceme(struct task_struct *parent)
  139. {
  140. return security_ops->ptrace_traceme(parent);
  141. }
  142. int security_capget(struct task_struct *target,
  143. kernel_cap_t *effective,
  144. kernel_cap_t *inheritable,
  145. kernel_cap_t *permitted)
  146. {
  147. return security_ops->capget(target, effective, inheritable, permitted);
  148. }
  149. int security_capset(struct cred *new, const struct cred *old,
  150. const kernel_cap_t *effective,
  151. const kernel_cap_t *inheritable,
  152. const kernel_cap_t *permitted)
  153. {
  154. return security_ops->capset(new, old,
  155. effective, inheritable, permitted);
  156. }
  157. int security_capable(const struct cred *cred, struct user_namespace *ns,
  158. int cap)
  159. {
  160. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  161. }
  162. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  163. int cap)
  164. {
  165. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  166. }
  167. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  168. {
  169. return security_ops->quotactl(cmds, type, id, sb);
  170. }
  171. int security_quota_on(struct dentry *dentry)
  172. {
  173. return security_ops->quota_on(dentry);
  174. }
  175. int security_syslog(int type)
  176. {
  177. return security_ops->syslog(type);
  178. }
  179. int security_settime(const struct timespec *ts, const struct timezone *tz)
  180. {
  181. return security_ops->settime(ts, tz);
  182. }
  183. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  184. {
  185. return security_ops->vm_enough_memory(mm, pages);
  186. }
  187. int security_bprm_set_creds(struct linux_binprm *bprm)
  188. {
  189. return security_ops->bprm_set_creds(bprm);
  190. }
  191. int security_bprm_check(struct linux_binprm *bprm)
  192. {
  193. int ret;
  194. ret = security_ops->bprm_check_security(bprm);
  195. if (ret)
  196. return ret;
  197. return ima_bprm_check(bprm);
  198. }
  199. void security_bprm_committing_creds(struct linux_binprm *bprm)
  200. {
  201. security_ops->bprm_committing_creds(bprm);
  202. }
  203. void security_bprm_committed_creds(struct linux_binprm *bprm)
  204. {
  205. security_ops->bprm_committed_creds(bprm);
  206. }
  207. int security_bprm_secureexec(struct linux_binprm *bprm)
  208. {
  209. return security_ops->bprm_secureexec(bprm);
  210. }
  211. int security_sb_alloc(struct super_block *sb)
  212. {
  213. return security_ops->sb_alloc_security(sb);
  214. }
  215. void security_sb_free(struct super_block *sb)
  216. {
  217. security_ops->sb_free_security(sb);
  218. }
  219. int security_sb_copy_data(char *orig, char *copy)
  220. {
  221. return security_ops->sb_copy_data(orig, copy);
  222. }
  223. EXPORT_SYMBOL(security_sb_copy_data);
  224. int security_sb_remount(struct super_block *sb, void *data)
  225. {
  226. return security_ops->sb_remount(sb, data);
  227. }
  228. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  229. {
  230. return security_ops->sb_kern_mount(sb, flags, data);
  231. }
  232. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  233. {
  234. return security_ops->sb_show_options(m, sb);
  235. }
  236. int security_sb_statfs(struct dentry *dentry)
  237. {
  238. return security_ops->sb_statfs(dentry);
  239. }
  240. int security_sb_mount(const char *dev_name, struct path *path,
  241. const char *type, unsigned long flags, void *data)
  242. {
  243. return security_ops->sb_mount(dev_name, path, type, flags, data);
  244. }
  245. int security_sb_umount(struct vfsmount *mnt, int flags)
  246. {
  247. return security_ops->sb_umount(mnt, flags);
  248. }
  249. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  250. {
  251. return security_ops->sb_pivotroot(old_path, new_path);
  252. }
  253. int security_sb_set_mnt_opts(struct super_block *sb,
  254. struct security_mnt_opts *opts)
  255. {
  256. return security_ops->sb_set_mnt_opts(sb, opts);
  257. }
  258. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  259. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  260. struct super_block *newsb)
  261. {
  262. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  263. }
  264. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  265. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  266. {
  267. return security_ops->sb_parse_opts_str(options, opts);
  268. }
  269. EXPORT_SYMBOL(security_sb_parse_opts_str);
  270. int security_inode_alloc(struct inode *inode)
  271. {
  272. inode->i_security = NULL;
  273. return security_ops->inode_alloc_security(inode);
  274. }
  275. void security_inode_free(struct inode *inode)
  276. {
  277. integrity_inode_free(inode);
  278. security_ops->inode_free_security(inode);
  279. }
  280. int security_inode_init_security(struct inode *inode, struct inode *dir,
  281. const struct qstr *qstr,
  282. const initxattrs initxattrs, void *fs_data)
  283. {
  284. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  285. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  286. int ret;
  287. if (unlikely(IS_PRIVATE(inode)))
  288. return 0;
  289. memset(new_xattrs, 0, sizeof new_xattrs);
  290. if (!initxattrs)
  291. return security_ops->inode_init_security(inode, dir, qstr,
  292. NULL, NULL, NULL);
  293. lsm_xattr = new_xattrs;
  294. ret = security_ops->inode_init_security(inode, dir, qstr,
  295. &lsm_xattr->name,
  296. &lsm_xattr->value,
  297. &lsm_xattr->value_len);
  298. if (ret)
  299. goto out;
  300. evm_xattr = lsm_xattr + 1;
  301. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  302. if (ret)
  303. goto out;
  304. ret = initxattrs(inode, new_xattrs, fs_data);
  305. out:
  306. for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
  307. kfree(xattr->name);
  308. kfree(xattr->value);
  309. }
  310. return (ret == -EOPNOTSUPP) ? 0 : ret;
  311. }
  312. EXPORT_SYMBOL(security_inode_init_security);
  313. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  314. const struct qstr *qstr, char **name,
  315. void **value, size_t *len)
  316. {
  317. if (unlikely(IS_PRIVATE(inode)))
  318. return -EOPNOTSUPP;
  319. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  320. len);
  321. }
  322. EXPORT_SYMBOL(security_old_inode_init_security);
  323. #ifdef CONFIG_SECURITY_PATH
  324. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  325. unsigned int dev)
  326. {
  327. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  328. return 0;
  329. return security_ops->path_mknod(dir, dentry, mode, dev);
  330. }
  331. EXPORT_SYMBOL(security_path_mknod);
  332. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  333. {
  334. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  335. return 0;
  336. return security_ops->path_mkdir(dir, dentry, mode);
  337. }
  338. EXPORT_SYMBOL(security_path_mkdir);
  339. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  340. {
  341. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  342. return 0;
  343. return security_ops->path_rmdir(dir, dentry);
  344. }
  345. int security_path_unlink(struct path *dir, struct dentry *dentry)
  346. {
  347. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  348. return 0;
  349. return security_ops->path_unlink(dir, dentry);
  350. }
  351. EXPORT_SYMBOL(security_path_unlink);
  352. int security_path_symlink(struct path *dir, struct dentry *dentry,
  353. const char *old_name)
  354. {
  355. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  356. return 0;
  357. return security_ops->path_symlink(dir, dentry, old_name);
  358. }
  359. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  360. struct dentry *new_dentry)
  361. {
  362. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  363. return 0;
  364. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  365. }
  366. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  367. struct path *new_dir, struct dentry *new_dentry)
  368. {
  369. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  370. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  371. return 0;
  372. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  373. new_dentry);
  374. }
  375. EXPORT_SYMBOL(security_path_rename);
  376. int security_path_truncate(struct path *path)
  377. {
  378. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  379. return 0;
  380. return security_ops->path_truncate(path);
  381. }
  382. int security_path_chmod(struct path *path, umode_t mode)
  383. {
  384. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  385. return 0;
  386. return security_ops->path_chmod(path, mode);
  387. }
  388. int security_path_chown(struct path *path, uid_t uid, gid_t gid)
  389. {
  390. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  391. return 0;
  392. return security_ops->path_chown(path, uid, gid);
  393. }
  394. int security_path_chroot(struct path *path)
  395. {
  396. return security_ops->path_chroot(path);
  397. }
  398. #endif
  399. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  400. {
  401. if (unlikely(IS_PRIVATE(dir)))
  402. return 0;
  403. return security_ops->inode_create(dir, dentry, mode);
  404. }
  405. EXPORT_SYMBOL_GPL(security_inode_create);
  406. int security_inode_post_create(struct inode *dir, struct dentry *dentry,
  407. umode_t mode)
  408. {
  409. if (unlikely(IS_PRIVATE(dir)))
  410. return 0;
  411. if (security_ops->inode_post_create == NULL)
  412. return 0;
  413. return security_ops->inode_post_create(dir, dentry, mode);
  414. }
  415. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  416. struct dentry *new_dentry)
  417. {
  418. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  419. return 0;
  420. return security_ops->inode_link(old_dentry, dir, new_dentry);
  421. }
  422. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  423. {
  424. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  425. return 0;
  426. return security_ops->inode_unlink(dir, dentry);
  427. }
  428. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  429. const char *old_name)
  430. {
  431. if (unlikely(IS_PRIVATE(dir)))
  432. return 0;
  433. return security_ops->inode_symlink(dir, dentry, old_name);
  434. }
  435. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  436. {
  437. if (unlikely(IS_PRIVATE(dir)))
  438. return 0;
  439. return security_ops->inode_mkdir(dir, dentry, mode);
  440. }
  441. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  442. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  443. {
  444. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  445. return 0;
  446. return security_ops->inode_rmdir(dir, dentry);
  447. }
  448. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  449. {
  450. if (unlikely(IS_PRIVATE(dir)))
  451. return 0;
  452. return security_ops->inode_mknod(dir, dentry, mode, dev);
  453. }
  454. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  455. struct inode *new_dir, struct dentry *new_dentry)
  456. {
  457. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  458. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  459. return 0;
  460. return security_ops->inode_rename(old_dir, old_dentry,
  461. new_dir, new_dentry);
  462. }
  463. int security_inode_readlink(struct dentry *dentry)
  464. {
  465. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  466. return 0;
  467. return security_ops->inode_readlink(dentry);
  468. }
  469. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  470. {
  471. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  472. return 0;
  473. return security_ops->inode_follow_link(dentry, nd);
  474. }
  475. int security_inode_permission(struct inode *inode, int mask)
  476. {
  477. if (unlikely(IS_PRIVATE(inode)))
  478. return 0;
  479. return security_ops->inode_permission(inode, mask);
  480. }
  481. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  482. {
  483. int ret;
  484. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  485. return 0;
  486. ret = security_ops->inode_setattr(dentry, attr);
  487. if (ret)
  488. return ret;
  489. return evm_inode_setattr(dentry, attr);
  490. }
  491. EXPORT_SYMBOL_GPL(security_inode_setattr);
  492. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  493. {
  494. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  495. return 0;
  496. return security_ops->inode_getattr(mnt, dentry);
  497. }
  498. int security_inode_setxattr(struct dentry *dentry, const char *name,
  499. const void *value, size_t size, int flags)
  500. {
  501. int ret;
  502. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  503. return 0;
  504. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  505. if (ret)
  506. return ret;
  507. return evm_inode_setxattr(dentry, name, value, size);
  508. }
  509. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  510. const void *value, size_t size, int flags)
  511. {
  512. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  513. return;
  514. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  515. evm_inode_post_setxattr(dentry, name, value, size);
  516. }
  517. int security_inode_getxattr(struct dentry *dentry, const char *name)
  518. {
  519. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  520. return 0;
  521. return security_ops->inode_getxattr(dentry, name);
  522. }
  523. int security_inode_listxattr(struct dentry *dentry)
  524. {
  525. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  526. return 0;
  527. return security_ops->inode_listxattr(dentry);
  528. }
  529. int security_inode_removexattr(struct dentry *dentry, const char *name)
  530. {
  531. int ret;
  532. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  533. return 0;
  534. ret = security_ops->inode_removexattr(dentry, name);
  535. if (ret)
  536. return ret;
  537. return evm_inode_removexattr(dentry, name);
  538. }
  539. int security_inode_need_killpriv(struct dentry *dentry)
  540. {
  541. return security_ops->inode_need_killpriv(dentry);
  542. }
  543. int security_inode_killpriv(struct dentry *dentry)
  544. {
  545. return security_ops->inode_killpriv(dentry);
  546. }
  547. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  548. {
  549. if (unlikely(IS_PRIVATE(inode)))
  550. return -EOPNOTSUPP;
  551. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  552. }
  553. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  554. {
  555. if (unlikely(IS_PRIVATE(inode)))
  556. return -EOPNOTSUPP;
  557. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  558. }
  559. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  560. {
  561. if (unlikely(IS_PRIVATE(inode)))
  562. return 0;
  563. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  564. }
  565. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  566. {
  567. security_ops->inode_getsecid(inode, secid);
  568. }
  569. int security_file_permission(struct file *file, int mask)
  570. {
  571. int ret;
  572. ret = security_ops->file_permission(file, mask);
  573. if (ret)
  574. return ret;
  575. return fsnotify_perm(file, mask);
  576. }
  577. #if defined(CONFIG_VMWARE_MVP)
  578. EXPORT_SYMBOL_GPL(security_file_permission);
  579. #endif
  580. int security_file_alloc(struct file *file)
  581. {
  582. return security_ops->file_alloc_security(file);
  583. }
  584. void security_file_free(struct file *file)
  585. {
  586. security_ops->file_free_security(file);
  587. }
  588. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  589. {
  590. return security_ops->file_ioctl(file, cmd, arg);
  591. }
  592. static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
  593. {
  594. /*
  595. * Does we have PROT_READ and does the application expect
  596. * it to imply PROT_EXEC? If not, nothing to talk about...
  597. */
  598. if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
  599. return prot;
  600. if (!(current->personality & READ_IMPLIES_EXEC))
  601. return prot;
  602. /*
  603. * if that's an anonymous mapping, let it.
  604. */
  605. if (!file)
  606. return prot | PROT_EXEC;
  607. /*
  608. * ditto if it's not on noexec mount, except that on !MMU we need
  609. * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
  610. */
  611. if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
  612. #ifndef CONFIG_MMU
  613. unsigned long caps = 0;
  614. struct address_space *mapping = file->f_mapping;
  615. if (mapping && mapping->backing_dev_info)
  616. caps = mapping->backing_dev_info->capabilities;
  617. if (!(caps & BDI_CAP_EXEC_MAP))
  618. return prot;
  619. #endif
  620. return prot | PROT_EXEC;
  621. }
  622. /* anything on noexec mount won't get PROT_EXEC */
  623. return prot;
  624. }
  625. int security_mmap_file(struct file *file, unsigned long prot,
  626. unsigned long flags)
  627. {
  628. int ret;
  629. ret = security_ops->mmap_file(file, prot,
  630. mmap_prot(file, prot), flags);
  631. if (ret)
  632. return ret;
  633. return ima_file_mmap(file, prot);
  634. }
  635. int security_mmap_addr(unsigned long addr)
  636. {
  637. return security_ops->mmap_addr(addr);
  638. }
  639. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  640. unsigned long prot)
  641. {
  642. return security_ops->file_mprotect(vma, reqprot, prot);
  643. }
  644. int security_file_lock(struct file *file, unsigned int cmd)
  645. {
  646. return security_ops->file_lock(file, cmd);
  647. }
  648. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  649. {
  650. return security_ops->file_fcntl(file, cmd, arg);
  651. }
  652. int security_file_set_fowner(struct file *file)
  653. {
  654. return security_ops->file_set_fowner(file);
  655. }
  656. int security_file_send_sigiotask(struct task_struct *tsk,
  657. struct fown_struct *fown, int sig)
  658. {
  659. return security_ops->file_send_sigiotask(tsk, fown, sig);
  660. }
  661. int security_file_receive(struct file *file)
  662. {
  663. return security_ops->file_receive(file);
  664. }
  665. int security_file_open(struct file *file, const struct cred *cred)
  666. {
  667. int ret;
  668. ret = security_ops->file_open(file, cred);
  669. if (ret)
  670. return ret;
  671. return fsnotify_perm(file, MAY_OPEN);
  672. }
  673. int security_file_close(struct file *file)
  674. {
  675. if (security_ops->file_close)
  676. return security_ops->file_close(file);
  677. return 0;
  678. }
  679. bool security_allow_merge_bio(struct bio *bio1, struct bio *bio2)
  680. {
  681. if (security_ops->allow_merge_bio)
  682. return security_ops->allow_merge_bio(bio1, bio2);
  683. return true;
  684. }
  685. int security_task_create(unsigned long clone_flags)
  686. {
  687. return security_ops->task_create(clone_flags);
  688. }
  689. void security_task_free(struct task_struct *task)
  690. {
  691. security_ops->task_free(task);
  692. }
  693. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  694. {
  695. return security_ops->cred_alloc_blank(cred, gfp);
  696. }
  697. void security_cred_free(struct cred *cred)
  698. {
  699. security_ops->cred_free(cred);
  700. }
  701. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  702. {
  703. return security_ops->cred_prepare(new, old, gfp);
  704. }
  705. void security_transfer_creds(struct cred *new, const struct cred *old)
  706. {
  707. security_ops->cred_transfer(new, old);
  708. }
  709. void security_cred_getsecid(const struct cred *c, u32 *secid)
  710. {
  711. *secid = 0;
  712. security_ops->cred_getsecid(c, secid);
  713. }
  714. EXPORT_SYMBOL(security_cred_getsecid);
  715. int security_kernel_act_as(struct cred *new, u32 secid)
  716. {
  717. return security_ops->kernel_act_as(new, secid);
  718. }
  719. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  720. {
  721. return security_ops->kernel_create_files_as(new, inode);
  722. }
  723. int security_kernel_module_request(char *kmod_name)
  724. {
  725. return security_ops->kernel_module_request(kmod_name);
  726. }
  727. int security_kernel_module_from_file(struct file *file)
  728. {
  729. return security_ops->kernel_module_from_file(file);
  730. }
  731. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  732. int flags)
  733. {
  734. return security_ops->task_fix_setuid(new, old, flags);
  735. }
  736. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  737. {
  738. return security_ops->task_setpgid(p, pgid);
  739. }
  740. int security_task_getpgid(struct task_struct *p)
  741. {
  742. return security_ops->task_getpgid(p);
  743. }
  744. int security_task_getsid(struct task_struct *p)
  745. {
  746. return security_ops->task_getsid(p);
  747. }
  748. void security_task_getsecid(struct task_struct *p, u32 *secid)
  749. {
  750. security_ops->task_getsecid(p, secid);
  751. }
  752. EXPORT_SYMBOL(security_task_getsecid);
  753. int security_task_setnice(struct task_struct *p, int nice)
  754. {
  755. return security_ops->task_setnice(p, nice);
  756. }
  757. int security_task_setioprio(struct task_struct *p, int ioprio)
  758. {
  759. return security_ops->task_setioprio(p, ioprio);
  760. }
  761. int security_task_getioprio(struct task_struct *p)
  762. {
  763. return security_ops->task_getioprio(p);
  764. }
  765. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  766. struct rlimit *new_rlim)
  767. {
  768. return security_ops->task_setrlimit(p, resource, new_rlim);
  769. }
  770. int security_task_setscheduler(struct task_struct *p)
  771. {
  772. return security_ops->task_setscheduler(p);
  773. }
  774. int security_task_getscheduler(struct task_struct *p)
  775. {
  776. return security_ops->task_getscheduler(p);
  777. }
  778. int security_task_movememory(struct task_struct *p)
  779. {
  780. return security_ops->task_movememory(p);
  781. }
  782. int security_task_kill(struct task_struct *p, struct siginfo *info,
  783. int sig, u32 secid)
  784. {
  785. return security_ops->task_kill(p, info, sig, secid);
  786. }
  787. int security_task_wait(struct task_struct *p)
  788. {
  789. return security_ops->task_wait(p);
  790. }
  791. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  792. unsigned long arg4, unsigned long arg5)
  793. {
  794. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  795. }
  796. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  797. {
  798. security_ops->task_to_inode(p, inode);
  799. }
  800. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  801. {
  802. return security_ops->ipc_permission(ipcp, flag);
  803. }
  804. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  805. {
  806. security_ops->ipc_getsecid(ipcp, secid);
  807. }
  808. int security_msg_msg_alloc(struct msg_msg *msg)
  809. {
  810. return security_ops->msg_msg_alloc_security(msg);
  811. }
  812. void security_msg_msg_free(struct msg_msg *msg)
  813. {
  814. security_ops->msg_msg_free_security(msg);
  815. }
  816. int security_msg_queue_alloc(struct msg_queue *msq)
  817. {
  818. return security_ops->msg_queue_alloc_security(msq);
  819. }
  820. void security_msg_queue_free(struct msg_queue *msq)
  821. {
  822. security_ops->msg_queue_free_security(msq);
  823. }
  824. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  825. {
  826. return security_ops->msg_queue_associate(msq, msqflg);
  827. }
  828. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  829. {
  830. return security_ops->msg_queue_msgctl(msq, cmd);
  831. }
  832. int security_msg_queue_msgsnd(struct msg_queue *msq,
  833. struct msg_msg *msg, int msqflg)
  834. {
  835. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  836. }
  837. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  838. struct task_struct *target, long type, int mode)
  839. {
  840. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  841. }
  842. int security_shm_alloc(struct shmid_kernel *shp)
  843. {
  844. return security_ops->shm_alloc_security(shp);
  845. }
  846. void security_shm_free(struct shmid_kernel *shp)
  847. {
  848. security_ops->shm_free_security(shp);
  849. }
  850. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  851. {
  852. return security_ops->shm_associate(shp, shmflg);
  853. }
  854. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  855. {
  856. return security_ops->shm_shmctl(shp, cmd);
  857. }
  858. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  859. {
  860. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  861. }
  862. int security_sem_alloc(struct sem_array *sma)
  863. {
  864. return security_ops->sem_alloc_security(sma);
  865. }
  866. void security_sem_free(struct sem_array *sma)
  867. {
  868. security_ops->sem_free_security(sma);
  869. }
  870. int security_sem_associate(struct sem_array *sma, int semflg)
  871. {
  872. return security_ops->sem_associate(sma, semflg);
  873. }
  874. int security_sem_semctl(struct sem_array *sma, int cmd)
  875. {
  876. return security_ops->sem_semctl(sma, cmd);
  877. }
  878. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  879. unsigned nsops, int alter)
  880. {
  881. return security_ops->sem_semop(sma, sops, nsops, alter);
  882. }
  883. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  884. {
  885. if (unlikely(inode && IS_PRIVATE(inode)))
  886. return;
  887. security_ops->d_instantiate(dentry, inode);
  888. }
  889. EXPORT_SYMBOL(security_d_instantiate);
  890. int security_getprocattr(struct task_struct *p, char *name, char **value)
  891. {
  892. return security_ops->getprocattr(p, name, value);
  893. }
  894. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  895. {
  896. return security_ops->setprocattr(p, name, value, size);
  897. }
  898. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  899. {
  900. return security_ops->netlink_send(sk, skb);
  901. }
  902. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  903. {
  904. return security_ops->secid_to_secctx(secid, secdata, seclen);
  905. }
  906. EXPORT_SYMBOL(security_secid_to_secctx);
  907. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  908. {
  909. return security_ops->secctx_to_secid(secdata, seclen, secid);
  910. }
  911. EXPORT_SYMBOL(security_secctx_to_secid);
  912. void security_release_secctx(char *secdata, u32 seclen)
  913. {
  914. security_ops->release_secctx(secdata, seclen);
  915. }
  916. EXPORT_SYMBOL(security_release_secctx);
  917. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  918. {
  919. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  920. }
  921. EXPORT_SYMBOL(security_inode_notifysecctx);
  922. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  923. {
  924. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  925. }
  926. EXPORT_SYMBOL(security_inode_setsecctx);
  927. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  928. {
  929. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  930. }
  931. EXPORT_SYMBOL(security_inode_getsecctx);
  932. #ifdef CONFIG_SECURITY_NETWORK
  933. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  934. {
  935. return security_ops->unix_stream_connect(sock, other, newsk);
  936. }
  937. EXPORT_SYMBOL(security_unix_stream_connect);
  938. int security_unix_may_send(struct socket *sock, struct socket *other)
  939. {
  940. return security_ops->unix_may_send(sock, other);
  941. }
  942. EXPORT_SYMBOL(security_unix_may_send);
  943. int security_socket_create(int family, int type, int protocol, int kern)
  944. {
  945. return security_ops->socket_create(family, type, protocol, kern);
  946. }
  947. int security_socket_post_create(struct socket *sock, int family,
  948. int type, int protocol, int kern)
  949. {
  950. return security_ops->socket_post_create(sock, family, type,
  951. protocol, kern);
  952. }
  953. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  954. {
  955. return security_ops->socket_bind(sock, address, addrlen);
  956. }
  957. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  958. {
  959. return security_ops->socket_connect(sock, address, addrlen);
  960. }
  961. int security_socket_listen(struct socket *sock, int backlog)
  962. {
  963. return security_ops->socket_listen(sock, backlog);
  964. }
  965. int security_socket_accept(struct socket *sock, struct socket *newsock)
  966. {
  967. return security_ops->socket_accept(sock, newsock);
  968. }
  969. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  970. {
  971. return security_ops->socket_sendmsg(sock, msg, size);
  972. }
  973. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  974. int size, int flags)
  975. {
  976. return security_ops->socket_recvmsg(sock, msg, size, flags);
  977. }
  978. int security_socket_getsockname(struct socket *sock)
  979. {
  980. return security_ops->socket_getsockname(sock);
  981. }
  982. int security_socket_getpeername(struct socket *sock)
  983. {
  984. return security_ops->socket_getpeername(sock);
  985. }
  986. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  987. {
  988. return security_ops->socket_getsockopt(sock, level, optname);
  989. }
  990. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  991. {
  992. return security_ops->socket_setsockopt(sock, level, optname);
  993. }
  994. int security_socket_shutdown(struct socket *sock, int how)
  995. {
  996. return security_ops->socket_shutdown(sock, how);
  997. }
  998. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  999. {
  1000. return security_ops->socket_sock_rcv_skb(sk, skb);
  1001. }
  1002. EXPORT_SYMBOL(security_sock_rcv_skb);
  1003. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  1004. int __user *optlen, unsigned len)
  1005. {
  1006. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  1007. }
  1008. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  1009. {
  1010. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  1011. }
  1012. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  1013. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  1014. {
  1015. return security_ops->sk_alloc_security(sk, family, priority);
  1016. }
  1017. void security_sk_free(struct sock *sk)
  1018. {
  1019. security_ops->sk_free_security(sk);
  1020. }
  1021. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  1022. {
  1023. security_ops->sk_clone_security(sk, newsk);
  1024. }
  1025. EXPORT_SYMBOL(security_sk_clone);
  1026. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  1027. {
  1028. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  1029. }
  1030. EXPORT_SYMBOL(security_sk_classify_flow);
  1031. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  1032. {
  1033. security_ops->req_classify_flow(req, fl);
  1034. }
  1035. EXPORT_SYMBOL(security_req_classify_flow);
  1036. void security_sock_graft(struct sock *sk, struct socket *parent)
  1037. {
  1038. security_ops->sock_graft(sk, parent);
  1039. }
  1040. EXPORT_SYMBOL(security_sock_graft);
  1041. int security_inet_conn_request(struct sock *sk,
  1042. struct sk_buff *skb, struct request_sock *req)
  1043. {
  1044. return security_ops->inet_conn_request(sk, skb, req);
  1045. }
  1046. EXPORT_SYMBOL(security_inet_conn_request);
  1047. void security_inet_csk_clone(struct sock *newsk,
  1048. const struct request_sock *req)
  1049. {
  1050. security_ops->inet_csk_clone(newsk, req);
  1051. }
  1052. void security_inet_conn_established(struct sock *sk,
  1053. struct sk_buff *skb)
  1054. {
  1055. security_ops->inet_conn_established(sk, skb);
  1056. }
  1057. int security_secmark_relabel_packet(u32 secid)
  1058. {
  1059. return security_ops->secmark_relabel_packet(secid);
  1060. }
  1061. EXPORT_SYMBOL(security_secmark_relabel_packet);
  1062. void security_secmark_refcount_inc(void)
  1063. {
  1064. security_ops->secmark_refcount_inc();
  1065. }
  1066. EXPORT_SYMBOL(security_secmark_refcount_inc);
  1067. void security_secmark_refcount_dec(void)
  1068. {
  1069. security_ops->secmark_refcount_dec();
  1070. }
  1071. EXPORT_SYMBOL(security_secmark_refcount_dec);
  1072. int security_tun_dev_create(void)
  1073. {
  1074. return security_ops->tun_dev_create();
  1075. }
  1076. EXPORT_SYMBOL(security_tun_dev_create);
  1077. void security_tun_dev_post_create(struct sock *sk)
  1078. {
  1079. return security_ops->tun_dev_post_create(sk);
  1080. }
  1081. EXPORT_SYMBOL(security_tun_dev_post_create);
  1082. int security_tun_dev_attach(struct sock *sk)
  1083. {
  1084. return security_ops->tun_dev_attach(sk);
  1085. }
  1086. EXPORT_SYMBOL(security_tun_dev_attach);
  1087. #endif /* CONFIG_SECURITY_NETWORK */
  1088. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1089. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  1090. {
  1091. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  1092. }
  1093. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1094. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1095. struct xfrm_sec_ctx **new_ctxp)
  1096. {
  1097. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1098. }
  1099. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1100. {
  1101. security_ops->xfrm_policy_free_security(ctx);
  1102. }
  1103. EXPORT_SYMBOL(security_xfrm_policy_free);
  1104. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1105. {
  1106. return security_ops->xfrm_policy_delete_security(ctx);
  1107. }
  1108. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  1109. {
  1110. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  1111. }
  1112. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1113. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1114. struct xfrm_sec_ctx *polsec, u32 secid)
  1115. {
  1116. if (!polsec)
  1117. return 0;
  1118. /*
  1119. * We want the context to be taken from secid which is usually
  1120. * from the sock.
  1121. */
  1122. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  1123. }
  1124. int security_xfrm_state_delete(struct xfrm_state *x)
  1125. {
  1126. return security_ops->xfrm_state_delete_security(x);
  1127. }
  1128. EXPORT_SYMBOL(security_xfrm_state_delete);
  1129. void security_xfrm_state_free(struct xfrm_state *x)
  1130. {
  1131. security_ops->xfrm_state_free_security(x);
  1132. }
  1133. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1134. {
  1135. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1136. }
  1137. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1138. struct xfrm_policy *xp,
  1139. const struct flowi *fl)
  1140. {
  1141. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1142. }
  1143. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1144. {
  1145. return security_ops->xfrm_decode_session(skb, secid, 1);
  1146. }
  1147. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1148. {
  1149. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1150. BUG_ON(rc);
  1151. }
  1152. EXPORT_SYMBOL(security_skb_classify_flow);
  1153. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1154. #ifdef CONFIG_KEYS
  1155. int security_key_alloc(struct key *key, const struct cred *cred,
  1156. unsigned long flags)
  1157. {
  1158. return security_ops->key_alloc(key, cred, flags);
  1159. }
  1160. void security_key_free(struct key *key)
  1161. {
  1162. security_ops->key_free(key);
  1163. }
  1164. int security_key_permission(key_ref_t key_ref,
  1165. const struct cred *cred, key_perm_t perm)
  1166. {
  1167. return security_ops->key_permission(key_ref, cred, perm);
  1168. }
  1169. int security_key_getsecurity(struct key *key, char **_buffer)
  1170. {
  1171. return security_ops->key_getsecurity(key, _buffer);
  1172. }
  1173. #endif /* CONFIG_KEYS */
  1174. #ifdef CONFIG_AUDIT
  1175. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1176. {
  1177. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1178. }
  1179. int security_audit_rule_known(struct audit_krule *krule)
  1180. {
  1181. return security_ops->audit_rule_known(krule);
  1182. }
  1183. void security_audit_rule_free(void *lsmrule)
  1184. {
  1185. security_ops->audit_rule_free(lsmrule);
  1186. }
  1187. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1188. struct audit_context *actx)
  1189. {
  1190. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1191. }
  1192. #endif /* CONFIG_AUDIT */