snapshot.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356
  1. /*
  2. * linux/kernel/power/snapshot.c
  3. *
  4. * This file provides system snapshot/restore functionality for swsusp.
  5. *
  6. * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
  7. * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  8. *
  9. * This file is released under the GPLv2.
  10. *
  11. */
  12. #include <linux/version.h>
  13. #include <linux/module.h>
  14. #include <linux/mm.h>
  15. #include <linux/suspend.h>
  16. #include <linux/delay.h>
  17. #include <linux/bitops.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kernel.h>
  20. #include <linux/pm.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/syscalls.h>
  25. #include <linux/console.h>
  26. #include <linux/highmem.h>
  27. #include <linux/list.h>
  28. #include <linux/slab.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/mmu_context.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/tlbflush.h>
  33. #include <asm/io.h>
  34. #include "power.h"
  35. static int swsusp_page_is_free(struct page *);
  36. static void swsusp_set_page_forbidden(struct page *);
  37. static void swsusp_unset_page_forbidden(struct page *);
  38. /*
  39. * Number of bytes to reserve for memory allocations made by device drivers
  40. * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  41. * cause image creation to fail (tunable via /sys/power/reserved_size).
  42. */
  43. unsigned long reserved_size;
  44. void __init hibernate_reserved_size_init(void)
  45. {
  46. reserved_size = SPARE_PAGES * PAGE_SIZE;
  47. }
  48. /*
  49. * Preferred image size in bytes (tunable via /sys/power/image_size).
  50. * When it is set to N, swsusp will do its best to ensure the image
  51. * size will not exceed N bytes, but if that is impossible, it will
  52. * try to create the smallest image possible.
  53. */
  54. unsigned long image_size;
  55. void __init hibernate_image_size_init(void)
  56. {
  57. image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
  58. }
  59. /* List of PBEs needed for restoring the pages that were allocated before
  60. * the suspend and included in the suspend image, but have also been
  61. * allocated by the "resume" kernel, so their contents cannot be written
  62. * directly to their "original" page frames.
  63. */
  64. struct pbe *restore_pblist;
  65. /* Pointer to an auxiliary buffer (1 page) */
  66. static void *buffer;
  67. /**
  68. * @safe_needed - on resume, for storing the PBE list and the image,
  69. * we can only use memory pages that do not conflict with the pages
  70. * used before suspend. The unsafe pages have PageNosaveFree set
  71. * and we count them using unsafe_pages.
  72. *
  73. * Each allocated image page is marked as PageNosave and PageNosaveFree
  74. * so that swsusp_free() can release it.
  75. */
  76. #define PG_ANY 0
  77. #define PG_SAFE 1
  78. #define PG_UNSAFE_CLEAR 1
  79. #define PG_UNSAFE_KEEP 0
  80. static unsigned int allocated_unsafe_pages;
  81. static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  82. {
  83. void *res;
  84. res = (void *)get_zeroed_page(gfp_mask);
  85. if (safe_needed)
  86. while (res && swsusp_page_is_free(virt_to_page(res))) {
  87. /* The page is unsafe, mark it for swsusp_free() */
  88. swsusp_set_page_forbidden(virt_to_page(res));
  89. allocated_unsafe_pages++;
  90. res = (void *)get_zeroed_page(gfp_mask);
  91. }
  92. if (res) {
  93. swsusp_set_page_forbidden(virt_to_page(res));
  94. swsusp_set_page_free(virt_to_page(res));
  95. }
  96. return res;
  97. }
  98. unsigned long get_safe_page(gfp_t gfp_mask)
  99. {
  100. return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
  101. }
  102. static struct page *alloc_image_page(gfp_t gfp_mask)
  103. {
  104. struct page *page;
  105. page = alloc_page(gfp_mask);
  106. if (page) {
  107. swsusp_set_page_forbidden(page);
  108. swsusp_set_page_free(page);
  109. }
  110. return page;
  111. }
  112. /**
  113. * free_image_page - free page represented by @addr, allocated with
  114. * get_image_page (page flags set by it must be cleared)
  115. */
  116. static inline void free_image_page(void *addr, int clear_nosave_free)
  117. {
  118. struct page *page;
  119. BUG_ON(!virt_addr_valid(addr));
  120. page = virt_to_page(addr);
  121. swsusp_unset_page_forbidden(page);
  122. if (clear_nosave_free)
  123. swsusp_unset_page_free(page);
  124. __free_page(page);
  125. }
  126. /* struct linked_page is used to build chains of pages */
  127. #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
  128. struct linked_page {
  129. struct linked_page *next;
  130. char data[LINKED_PAGE_DATA_SIZE];
  131. } __attribute__((packed));
  132. static inline void
  133. free_list_of_pages(struct linked_page *list, int clear_page_nosave)
  134. {
  135. while (list) {
  136. struct linked_page *lp = list->next;
  137. free_image_page(list, clear_page_nosave);
  138. list = lp;
  139. }
  140. }
  141. /**
  142. * struct chain_allocator is used for allocating small objects out of
  143. * a linked list of pages called 'the chain'.
  144. *
  145. * The chain grows each time when there is no room for a new object in
  146. * the current page. The allocated objects cannot be freed individually.
  147. * It is only possible to free them all at once, by freeing the entire
  148. * chain.
  149. *
  150. * NOTE: The chain allocator may be inefficient if the allocated objects
  151. * are not much smaller than PAGE_SIZE.
  152. */
  153. struct chain_allocator {
  154. struct linked_page *chain; /* the chain */
  155. unsigned int used_space; /* total size of objects allocated out
  156. * of the current page
  157. */
  158. gfp_t gfp_mask; /* mask for allocating pages */
  159. int safe_needed; /* if set, only "safe" pages are allocated */
  160. };
  161. static void
  162. chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
  163. {
  164. ca->chain = NULL;
  165. ca->used_space = LINKED_PAGE_DATA_SIZE;
  166. ca->gfp_mask = gfp_mask;
  167. ca->safe_needed = safe_needed;
  168. }
  169. static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
  170. {
  171. void *ret;
  172. if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
  173. struct linked_page *lp;
  174. lp = get_image_page(ca->gfp_mask, ca->safe_needed);
  175. if (!lp)
  176. return NULL;
  177. lp->next = ca->chain;
  178. ca->chain = lp;
  179. ca->used_space = 0;
  180. }
  181. ret = ca->chain->data + ca->used_space;
  182. ca->used_space += size;
  183. return ret;
  184. }
  185. /**
  186. * Data types related to memory bitmaps.
  187. *
  188. * Memory bitmap is a structure consiting of many linked lists of
  189. * objects. The main list's elements are of type struct zone_bitmap
  190. * and each of them corresonds to one zone. For each zone bitmap
  191. * object there is a list of objects of type struct bm_block that
  192. * represent each blocks of bitmap in which information is stored.
  193. *
  194. * struct memory_bitmap contains a pointer to the main list of zone
  195. * bitmap objects, a struct bm_position used for browsing the bitmap,
  196. * and a pointer to the list of pages used for allocating all of the
  197. * zone bitmap objects and bitmap block objects.
  198. *
  199. * NOTE: It has to be possible to lay out the bitmap in memory
  200. * using only allocations of order 0. Additionally, the bitmap is
  201. * designed to work with arbitrary number of zones (this is over the
  202. * top for now, but let's avoid making unnecessary assumptions ;-).
  203. *
  204. * struct zone_bitmap contains a pointer to a list of bitmap block
  205. * objects and a pointer to the bitmap block object that has been
  206. * most recently used for setting bits. Additionally, it contains the
  207. * pfns that correspond to the start and end of the represented zone.
  208. *
  209. * struct bm_block contains a pointer to the memory page in which
  210. * information is stored (in the form of a block of bitmap)
  211. * It also contains the pfns that correspond to the start and end of
  212. * the represented memory area.
  213. */
  214. #define BM_END_OF_MAP (~0UL)
  215. #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
  216. struct bm_block {
  217. struct list_head hook; /* hook into a list of bitmap blocks */
  218. unsigned long start_pfn; /* pfn represented by the first bit */
  219. unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
  220. unsigned long *data; /* bitmap representing pages */
  221. };
  222. static inline unsigned long bm_block_bits(struct bm_block *bb)
  223. {
  224. return bb->end_pfn - bb->start_pfn;
  225. }
  226. /* strcut bm_position is used for browsing memory bitmaps */
  227. struct bm_position {
  228. struct bm_block *block;
  229. int bit;
  230. };
  231. struct memory_bitmap {
  232. struct list_head blocks; /* list of bitmap blocks */
  233. struct linked_page *p_list; /* list of pages used to store zone
  234. * bitmap objects and bitmap block
  235. * objects
  236. */
  237. struct bm_position cur; /* most recently used bit position */
  238. };
  239. /* Functions that operate on memory bitmaps */
  240. static void memory_bm_position_reset(struct memory_bitmap *bm)
  241. {
  242. bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
  243. bm->cur.bit = 0;
  244. }
  245. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
  246. /**
  247. * create_bm_block_list - create a list of block bitmap objects
  248. * @pages - number of pages to track
  249. * @list - list to put the allocated blocks into
  250. * @ca - chain allocator to be used for allocating memory
  251. */
  252. static int create_bm_block_list(unsigned long pages,
  253. struct list_head *list,
  254. struct chain_allocator *ca)
  255. {
  256. unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
  257. while (nr_blocks-- > 0) {
  258. struct bm_block *bb;
  259. bb = chain_alloc(ca, sizeof(struct bm_block));
  260. if (!bb)
  261. return -ENOMEM;
  262. list_add(&bb->hook, list);
  263. }
  264. return 0;
  265. }
  266. struct mem_extent {
  267. struct list_head hook;
  268. unsigned long start;
  269. unsigned long end;
  270. };
  271. /**
  272. * free_mem_extents - free a list of memory extents
  273. * @list - list of extents to empty
  274. */
  275. static void free_mem_extents(struct list_head *list)
  276. {
  277. struct mem_extent *ext, *aux;
  278. list_for_each_entry_safe(ext, aux, list, hook) {
  279. list_del(&ext->hook);
  280. kfree(ext);
  281. }
  282. }
  283. /**
  284. * create_mem_extents - create a list of memory extents representing
  285. * contiguous ranges of PFNs
  286. * @list - list to put the extents into
  287. * @gfp_mask - mask to use for memory allocations
  288. */
  289. static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
  290. {
  291. struct zone *zone;
  292. INIT_LIST_HEAD(list);
  293. for_each_populated_zone(zone) {
  294. unsigned long zone_start, zone_end;
  295. struct mem_extent *ext, *cur, *aux;
  296. zone_start = zone->zone_start_pfn;
  297. zone_end = zone->zone_start_pfn + zone->spanned_pages;
  298. list_for_each_entry(ext, list, hook)
  299. if (zone_start <= ext->end)
  300. break;
  301. if (&ext->hook == list || zone_end < ext->start) {
  302. /* New extent is necessary */
  303. struct mem_extent *new_ext;
  304. new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
  305. if (!new_ext) {
  306. free_mem_extents(list);
  307. return -ENOMEM;
  308. }
  309. new_ext->start = zone_start;
  310. new_ext->end = zone_end;
  311. list_add_tail(&new_ext->hook, &ext->hook);
  312. continue;
  313. }
  314. /* Merge this zone's range of PFNs with the existing one */
  315. if (zone_start < ext->start)
  316. ext->start = zone_start;
  317. if (zone_end > ext->end)
  318. ext->end = zone_end;
  319. /* More merging may be possible */
  320. cur = ext;
  321. list_for_each_entry_safe_continue(cur, aux, list, hook) {
  322. if (zone_end < cur->start)
  323. break;
  324. if (zone_end < cur->end)
  325. ext->end = cur->end;
  326. list_del(&cur->hook);
  327. kfree(cur);
  328. }
  329. }
  330. return 0;
  331. }
  332. /**
  333. * memory_bm_create - allocate memory for a memory bitmap
  334. */
  335. static int
  336. memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
  337. {
  338. struct chain_allocator ca;
  339. struct list_head mem_extents;
  340. struct mem_extent *ext;
  341. int error;
  342. chain_init(&ca, gfp_mask, safe_needed);
  343. INIT_LIST_HEAD(&bm->blocks);
  344. error = create_mem_extents(&mem_extents, gfp_mask);
  345. if (error)
  346. return error;
  347. list_for_each_entry(ext, &mem_extents, hook) {
  348. struct bm_block *bb;
  349. unsigned long pfn = ext->start;
  350. unsigned long pages = ext->end - ext->start;
  351. bb = list_entry(bm->blocks.prev, struct bm_block, hook);
  352. error = create_bm_block_list(pages, bm->blocks.prev, &ca);
  353. if (error)
  354. goto Error;
  355. list_for_each_entry_continue(bb, &bm->blocks, hook) {
  356. bb->data = get_image_page(gfp_mask, safe_needed);
  357. if (!bb->data) {
  358. error = -ENOMEM;
  359. goto Error;
  360. }
  361. bb->start_pfn = pfn;
  362. if (pages >= BM_BITS_PER_BLOCK) {
  363. pfn += BM_BITS_PER_BLOCK;
  364. pages -= BM_BITS_PER_BLOCK;
  365. } else {
  366. /* This is executed only once in the loop */
  367. pfn += pages;
  368. }
  369. bb->end_pfn = pfn;
  370. }
  371. }
  372. bm->p_list = ca.chain;
  373. memory_bm_position_reset(bm);
  374. Exit:
  375. free_mem_extents(&mem_extents);
  376. return error;
  377. Error:
  378. bm->p_list = ca.chain;
  379. memory_bm_free(bm, PG_UNSAFE_CLEAR);
  380. goto Exit;
  381. }
  382. /**
  383. * memory_bm_free - free memory occupied by the memory bitmap @bm
  384. */
  385. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
  386. {
  387. struct bm_block *bb;
  388. list_for_each_entry(bb, &bm->blocks, hook)
  389. if (bb->data)
  390. free_image_page(bb->data, clear_nosave_free);
  391. free_list_of_pages(bm->p_list, clear_nosave_free);
  392. INIT_LIST_HEAD(&bm->blocks);
  393. }
  394. /**
  395. * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
  396. * to given pfn. The cur_zone_bm member of @bm and the cur_block member
  397. * of @bm->cur_zone_bm are updated.
  398. */
  399. static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
  400. void **addr, unsigned int *bit_nr)
  401. {
  402. struct bm_block *bb;
  403. /*
  404. * Check if the pfn corresponds to the current bitmap block and find
  405. * the block where it fits if this is not the case.
  406. */
  407. bb = bm->cur.block;
  408. if (pfn < bb->start_pfn)
  409. list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
  410. if (pfn >= bb->start_pfn)
  411. break;
  412. if (pfn >= bb->end_pfn)
  413. list_for_each_entry_continue(bb, &bm->blocks, hook)
  414. if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
  415. break;
  416. if (&bb->hook == &bm->blocks)
  417. return -EFAULT;
  418. /* The block has been found */
  419. bm->cur.block = bb;
  420. pfn -= bb->start_pfn;
  421. bm->cur.bit = pfn + 1;
  422. *bit_nr = pfn;
  423. *addr = bb->data;
  424. return 0;
  425. }
  426. static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
  427. {
  428. void *addr;
  429. unsigned int bit;
  430. int error;
  431. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  432. BUG_ON(error);
  433. set_bit(bit, addr);
  434. }
  435. static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
  436. {
  437. void *addr;
  438. unsigned int bit;
  439. int error;
  440. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  441. if (!error)
  442. set_bit(bit, addr);
  443. return error;
  444. }
  445. static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
  446. {
  447. void *addr;
  448. unsigned int bit;
  449. int error;
  450. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  451. BUG_ON(error);
  452. clear_bit(bit, addr);
  453. }
  454. static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
  455. {
  456. void *addr;
  457. unsigned int bit;
  458. int error;
  459. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  460. BUG_ON(error);
  461. return test_bit(bit, addr);
  462. }
  463. static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
  464. {
  465. void *addr;
  466. unsigned int bit;
  467. return !memory_bm_find_bit(bm, pfn, &addr, &bit);
  468. }
  469. /**
  470. * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
  471. * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
  472. * returned.
  473. *
  474. * It is required to run memory_bm_position_reset() before the first call to
  475. * this function.
  476. */
  477. static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
  478. {
  479. struct bm_block *bb;
  480. int bit;
  481. bb = bm->cur.block;
  482. do {
  483. bit = bm->cur.bit;
  484. bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
  485. if (bit < bm_block_bits(bb))
  486. goto Return_pfn;
  487. bb = list_entry(bb->hook.next, struct bm_block, hook);
  488. bm->cur.block = bb;
  489. bm->cur.bit = 0;
  490. } while (&bb->hook != &bm->blocks);
  491. memory_bm_position_reset(bm);
  492. return BM_END_OF_MAP;
  493. Return_pfn:
  494. bm->cur.bit = bit + 1;
  495. return bb->start_pfn + bit;
  496. }
  497. /**
  498. * This structure represents a range of page frames the contents of which
  499. * should not be saved during the suspend.
  500. */
  501. struct nosave_region {
  502. struct list_head list;
  503. unsigned long start_pfn;
  504. unsigned long end_pfn;
  505. };
  506. static LIST_HEAD(nosave_regions);
  507. /**
  508. * register_nosave_region - register a range of page frames the contents
  509. * of which should not be saved during the suspend (to be used in the early
  510. * initialization code)
  511. */
  512. void __init
  513. __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
  514. int use_kmalloc)
  515. {
  516. struct nosave_region *region;
  517. if (start_pfn >= end_pfn)
  518. return;
  519. if (!list_empty(&nosave_regions)) {
  520. /* Try to extend the previous region (they should be sorted) */
  521. region = list_entry(nosave_regions.prev,
  522. struct nosave_region, list);
  523. if (region->end_pfn == start_pfn) {
  524. region->end_pfn = end_pfn;
  525. goto Report;
  526. }
  527. }
  528. if (use_kmalloc) {
  529. /* during init, this shouldn't fail */
  530. region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
  531. BUG_ON(!region);
  532. } else
  533. /* This allocation cannot fail */
  534. region = alloc_bootmem(sizeof(struct nosave_region));
  535. region->start_pfn = start_pfn;
  536. region->end_pfn = end_pfn;
  537. list_add_tail(&region->list, &nosave_regions);
  538. Report:
  539. printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
  540. start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
  541. }
  542. /*
  543. * Set bits in this map correspond to the page frames the contents of which
  544. * should not be saved during the suspend.
  545. */
  546. static struct memory_bitmap *forbidden_pages_map;
  547. /* Set bits in this map correspond to free page frames. */
  548. static struct memory_bitmap *free_pages_map;
  549. /*
  550. * Each page frame allocated for creating the image is marked by setting the
  551. * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
  552. */
  553. void swsusp_set_page_free(struct page *page)
  554. {
  555. if (free_pages_map)
  556. memory_bm_set_bit(free_pages_map, page_to_pfn(page));
  557. }
  558. static int swsusp_page_is_free(struct page *page)
  559. {
  560. return free_pages_map ?
  561. memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
  562. }
  563. void swsusp_unset_page_free(struct page *page)
  564. {
  565. if (free_pages_map)
  566. memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
  567. }
  568. static void swsusp_set_page_forbidden(struct page *page)
  569. {
  570. if (forbidden_pages_map)
  571. memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
  572. }
  573. int swsusp_page_is_forbidden(struct page *page)
  574. {
  575. return forbidden_pages_map ?
  576. memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
  577. }
  578. static void swsusp_unset_page_forbidden(struct page *page)
  579. {
  580. if (forbidden_pages_map)
  581. memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
  582. }
  583. /**
  584. * mark_nosave_pages - set bits corresponding to the page frames the
  585. * contents of which should not be saved in a given bitmap.
  586. */
  587. static void mark_nosave_pages(struct memory_bitmap *bm)
  588. {
  589. struct nosave_region *region;
  590. if (list_empty(&nosave_regions))
  591. return;
  592. list_for_each_entry(region, &nosave_regions, list) {
  593. unsigned long pfn;
  594. pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
  595. (unsigned long long) region->start_pfn << PAGE_SHIFT,
  596. ((unsigned long long) region->end_pfn << PAGE_SHIFT)
  597. - 1);
  598. for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
  599. if (pfn_valid(pfn)) {
  600. /*
  601. * It is safe to ignore the result of
  602. * mem_bm_set_bit_check() here, since we won't
  603. * touch the PFNs for which the error is
  604. * returned anyway.
  605. */
  606. mem_bm_set_bit_check(bm, pfn);
  607. }
  608. }
  609. }
  610. /**
  611. * create_basic_memory_bitmaps - create bitmaps needed for marking page
  612. * frames that should not be saved and free page frames. The pointers
  613. * forbidden_pages_map and free_pages_map are only modified if everything
  614. * goes well, because we don't want the bits to be used before both bitmaps
  615. * are set up.
  616. */
  617. int create_basic_memory_bitmaps(void)
  618. {
  619. struct memory_bitmap *bm1, *bm2;
  620. int error = 0;
  621. BUG_ON(forbidden_pages_map || free_pages_map);
  622. bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  623. if (!bm1)
  624. return -ENOMEM;
  625. error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
  626. if (error)
  627. goto Free_first_object;
  628. bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  629. if (!bm2)
  630. goto Free_first_bitmap;
  631. error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
  632. if (error)
  633. goto Free_second_object;
  634. forbidden_pages_map = bm1;
  635. free_pages_map = bm2;
  636. mark_nosave_pages(forbidden_pages_map);
  637. pr_debug("PM: Basic memory bitmaps created\n");
  638. return 0;
  639. Free_second_object:
  640. kfree(bm2);
  641. Free_first_bitmap:
  642. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  643. Free_first_object:
  644. kfree(bm1);
  645. return -ENOMEM;
  646. }
  647. /**
  648. * free_basic_memory_bitmaps - free memory bitmaps allocated by
  649. * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
  650. * so that the bitmaps themselves are not referred to while they are being
  651. * freed.
  652. */
  653. void free_basic_memory_bitmaps(void)
  654. {
  655. struct memory_bitmap *bm1, *bm2;
  656. BUG_ON(!(forbidden_pages_map && free_pages_map));
  657. bm1 = forbidden_pages_map;
  658. bm2 = free_pages_map;
  659. forbidden_pages_map = NULL;
  660. free_pages_map = NULL;
  661. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  662. kfree(bm1);
  663. memory_bm_free(bm2, PG_UNSAFE_CLEAR);
  664. kfree(bm2);
  665. pr_debug("PM: Basic memory bitmaps freed\n");
  666. }
  667. /**
  668. * snapshot_additional_pages - estimate the number of additional pages
  669. * be needed for setting up the suspend image data structures for given
  670. * zone (usually the returned value is greater than the exact number)
  671. */
  672. unsigned int snapshot_additional_pages(struct zone *zone)
  673. {
  674. unsigned int res;
  675. res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
  676. res += DIV_ROUND_UP(res * sizeof(struct bm_block),
  677. LINKED_PAGE_DATA_SIZE);
  678. return 2 * res;
  679. }
  680. #ifdef CONFIG_HIGHMEM
  681. /**
  682. * count_free_highmem_pages - compute the total number of free highmem
  683. * pages, system-wide.
  684. */
  685. static unsigned int count_free_highmem_pages(void)
  686. {
  687. struct zone *zone;
  688. unsigned int cnt = 0;
  689. for_each_populated_zone(zone)
  690. if (is_highmem(zone))
  691. cnt += zone_page_state(zone, NR_FREE_PAGES);
  692. return cnt;
  693. }
  694. /**
  695. * saveable_highmem_page - Determine whether a highmem page should be
  696. * included in the suspend image.
  697. *
  698. * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
  699. * and it isn't a part of a free chunk of pages.
  700. */
  701. static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
  702. {
  703. struct page *page;
  704. if (!pfn_valid(pfn))
  705. return NULL;
  706. page = pfn_to_page(pfn);
  707. if (page_zone(page) != zone)
  708. return NULL;
  709. BUG_ON(!PageHighMem(page));
  710. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
  711. PageReserved(page))
  712. return NULL;
  713. if (page_is_guard(page))
  714. return NULL;
  715. return page;
  716. }
  717. /**
  718. * count_highmem_pages - compute the total number of saveable highmem
  719. * pages.
  720. */
  721. static unsigned int count_highmem_pages(void)
  722. {
  723. struct zone *zone;
  724. unsigned int n = 0;
  725. for_each_populated_zone(zone) {
  726. unsigned long pfn, max_zone_pfn;
  727. if (!is_highmem(zone))
  728. continue;
  729. mark_free_pages(zone);
  730. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  731. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  732. if (saveable_highmem_page(zone, pfn))
  733. n++;
  734. }
  735. return n;
  736. }
  737. #else
  738. static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
  739. {
  740. return NULL;
  741. }
  742. #endif /* CONFIG_HIGHMEM */
  743. /**
  744. * saveable_page - Determine whether a non-highmem page should be included
  745. * in the suspend image.
  746. *
  747. * We should save the page if it isn't Nosave, and is not in the range
  748. * of pages statically defined as 'unsaveable', and it isn't a part of
  749. * a free chunk of pages.
  750. */
  751. static struct page *saveable_page(struct zone *zone, unsigned long pfn)
  752. {
  753. struct page *page;
  754. if (!pfn_valid(pfn))
  755. return NULL;
  756. page = pfn_to_page(pfn);
  757. if (page_zone(page) != zone)
  758. return NULL;
  759. BUG_ON(PageHighMem(page));
  760. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
  761. return NULL;
  762. if (PageReserved(page)
  763. && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
  764. return NULL;
  765. if (page_is_guard(page))
  766. return NULL;
  767. return page;
  768. }
  769. /**
  770. * count_data_pages - compute the total number of saveable non-highmem
  771. * pages.
  772. */
  773. static unsigned int count_data_pages(void)
  774. {
  775. struct zone *zone;
  776. unsigned long pfn, max_zone_pfn;
  777. unsigned int n = 0;
  778. for_each_populated_zone(zone) {
  779. if (is_highmem(zone))
  780. continue;
  781. mark_free_pages(zone);
  782. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  783. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  784. if (saveable_page(zone, pfn))
  785. n++;
  786. }
  787. return n;
  788. }
  789. /* This is needed, because copy_page and memcpy are not usable for copying
  790. * task structs.
  791. */
  792. static inline void do_copy_page(long *dst, long *src)
  793. {
  794. int n;
  795. for (n = PAGE_SIZE / sizeof(long); n; n--)
  796. *dst++ = *src++;
  797. }
  798. /**
  799. * safe_copy_page - check if the page we are going to copy is marked as
  800. * present in the kernel page tables (this always is the case if
  801. * CONFIG_DEBUG_PAGEALLOC is not set and in that case
  802. * kernel_page_present() always returns 'true').
  803. */
  804. static void safe_copy_page(void *dst, struct page *s_page)
  805. {
  806. if (kernel_page_present(s_page)) {
  807. do_copy_page(dst, page_address(s_page));
  808. } else {
  809. kernel_map_pages(s_page, 1, 1);
  810. do_copy_page(dst, page_address(s_page));
  811. kernel_map_pages(s_page, 1, 0);
  812. }
  813. }
  814. #ifdef CONFIG_HIGHMEM
  815. static inline struct page *
  816. page_is_saveable(struct zone *zone, unsigned long pfn)
  817. {
  818. return is_highmem(zone) ?
  819. saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
  820. }
  821. static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  822. {
  823. struct page *s_page, *d_page;
  824. void *src, *dst;
  825. s_page = pfn_to_page(src_pfn);
  826. d_page = pfn_to_page(dst_pfn);
  827. if (PageHighMem(s_page)) {
  828. src = kmap_atomic(s_page);
  829. dst = kmap_atomic(d_page);
  830. do_copy_page(dst, src);
  831. kunmap_atomic(dst);
  832. kunmap_atomic(src);
  833. } else {
  834. if (PageHighMem(d_page)) {
  835. /* Page pointed to by src may contain some kernel
  836. * data modified by kmap_atomic()
  837. */
  838. safe_copy_page(buffer, s_page);
  839. dst = kmap_atomic(d_page);
  840. copy_page(dst, buffer);
  841. kunmap_atomic(dst);
  842. } else {
  843. safe_copy_page(page_address(d_page), s_page);
  844. }
  845. }
  846. }
  847. #else
  848. #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
  849. static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  850. {
  851. safe_copy_page(page_address(pfn_to_page(dst_pfn)),
  852. pfn_to_page(src_pfn));
  853. }
  854. #endif /* CONFIG_HIGHMEM */
  855. static void
  856. copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
  857. {
  858. struct zone *zone;
  859. unsigned long pfn;
  860. for_each_populated_zone(zone) {
  861. unsigned long max_zone_pfn;
  862. mark_free_pages(zone);
  863. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  864. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  865. if (page_is_saveable(zone, pfn))
  866. memory_bm_set_bit(orig_bm, pfn);
  867. }
  868. memory_bm_position_reset(orig_bm);
  869. memory_bm_position_reset(copy_bm);
  870. for(;;) {
  871. pfn = memory_bm_next_pfn(orig_bm);
  872. if (unlikely(pfn == BM_END_OF_MAP))
  873. break;
  874. copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
  875. }
  876. }
  877. /* Total number of image pages */
  878. static unsigned int nr_copy_pages;
  879. /* Number of pages needed for saving the original pfns of the image pages */
  880. static unsigned int nr_meta_pages;
  881. /*
  882. * Numbers of normal and highmem page frames allocated for hibernation image
  883. * before suspending devices.
  884. */
  885. unsigned int alloc_normal, alloc_highmem;
  886. /*
  887. * Memory bitmap used for marking saveable pages (during hibernation) or
  888. * hibernation image pages (during restore)
  889. */
  890. static struct memory_bitmap orig_bm;
  891. /*
  892. * Memory bitmap used during hibernation for marking allocated page frames that
  893. * will contain copies of saveable pages. During restore it is initially used
  894. * for marking hibernation image pages, but then the set bits from it are
  895. * duplicated in @orig_bm and it is released. On highmem systems it is next
  896. * used for marking "safe" highmem pages, but it has to be reinitialized for
  897. * this purpose.
  898. */
  899. static struct memory_bitmap copy_bm;
  900. /**
  901. * swsusp_free - free pages allocated for the suspend.
  902. *
  903. * Suspend pages are alocated before the atomic copy is made, so we
  904. * need to release them after the resume.
  905. */
  906. void swsusp_free(void)
  907. {
  908. struct zone *zone;
  909. unsigned long pfn, max_zone_pfn;
  910. for_each_populated_zone(zone) {
  911. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  912. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  913. if (pfn_valid(pfn)) {
  914. struct page *page = pfn_to_page(pfn);
  915. if (swsusp_page_is_forbidden(page) &&
  916. swsusp_page_is_free(page)) {
  917. swsusp_unset_page_forbidden(page);
  918. swsusp_unset_page_free(page);
  919. __free_page(page);
  920. }
  921. }
  922. }
  923. nr_copy_pages = 0;
  924. nr_meta_pages = 0;
  925. restore_pblist = NULL;
  926. buffer = NULL;
  927. alloc_normal = 0;
  928. alloc_highmem = 0;
  929. }
  930. /* Helper functions used for the shrinking of memory. */
  931. #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
  932. /**
  933. * preallocate_image_pages - Allocate a number of pages for hibernation image
  934. * @nr_pages: Number of page frames to allocate.
  935. * @mask: GFP flags to use for the allocation.
  936. *
  937. * Return value: Number of page frames actually allocated
  938. */
  939. static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
  940. {
  941. unsigned long nr_alloc = 0;
  942. while (nr_pages > 0) {
  943. struct page *page;
  944. page = alloc_image_page(mask);
  945. if (!page)
  946. break;
  947. memory_bm_set_bit(&copy_bm, page_to_pfn(page));
  948. if (PageHighMem(page))
  949. alloc_highmem++;
  950. else
  951. alloc_normal++;
  952. nr_pages--;
  953. nr_alloc++;
  954. }
  955. return nr_alloc;
  956. }
  957. static unsigned long preallocate_image_memory(unsigned long nr_pages,
  958. unsigned long avail_normal)
  959. {
  960. unsigned long alloc;
  961. if (avail_normal <= alloc_normal)
  962. return 0;
  963. alloc = avail_normal - alloc_normal;
  964. if (nr_pages < alloc)
  965. alloc = nr_pages;
  966. return preallocate_image_pages(alloc, GFP_IMAGE);
  967. }
  968. #ifdef CONFIG_HIGHMEM
  969. static unsigned long preallocate_image_highmem(unsigned long nr_pages)
  970. {
  971. return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
  972. }
  973. /**
  974. * __fraction - Compute (an approximation of) x * (multiplier / base)
  975. */
  976. static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
  977. {
  978. x *= multiplier;
  979. do_div(x, base);
  980. return (unsigned long)x;
  981. }
  982. static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
  983. unsigned long highmem,
  984. unsigned long total)
  985. {
  986. unsigned long alloc = __fraction(nr_pages, highmem, total);
  987. return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
  988. }
  989. #else /* CONFIG_HIGHMEM */
  990. static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
  991. {
  992. return 0;
  993. }
  994. static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
  995. unsigned long highmem,
  996. unsigned long total)
  997. {
  998. return 0;
  999. }
  1000. #endif /* CONFIG_HIGHMEM */
  1001. /**
  1002. * free_unnecessary_pages - Release preallocated pages not needed for the image
  1003. */
  1004. static void free_unnecessary_pages(void)
  1005. {
  1006. unsigned long save, to_free_normal, to_free_highmem;
  1007. save = count_data_pages();
  1008. if (alloc_normal >= save) {
  1009. to_free_normal = alloc_normal - save;
  1010. save = 0;
  1011. } else {
  1012. to_free_normal = 0;
  1013. save -= alloc_normal;
  1014. }
  1015. save += count_highmem_pages();
  1016. if (alloc_highmem >= save) {
  1017. to_free_highmem = alloc_highmem - save;
  1018. } else {
  1019. to_free_highmem = 0;
  1020. save -= alloc_highmem;
  1021. if (to_free_normal > save)
  1022. to_free_normal -= save;
  1023. else
  1024. to_free_normal = 0;
  1025. }
  1026. memory_bm_position_reset(&copy_bm);
  1027. while (to_free_normal > 0 || to_free_highmem > 0) {
  1028. unsigned long pfn = memory_bm_next_pfn(&copy_bm);
  1029. struct page *page = pfn_to_page(pfn);
  1030. if (PageHighMem(page)) {
  1031. if (!to_free_highmem)
  1032. continue;
  1033. to_free_highmem--;
  1034. alloc_highmem--;
  1035. } else {
  1036. if (!to_free_normal)
  1037. continue;
  1038. to_free_normal--;
  1039. alloc_normal--;
  1040. }
  1041. memory_bm_clear_bit(&copy_bm, pfn);
  1042. swsusp_unset_page_forbidden(page);
  1043. swsusp_unset_page_free(page);
  1044. __free_page(page);
  1045. }
  1046. }
  1047. /**
  1048. * minimum_image_size - Estimate the minimum acceptable size of an image
  1049. * @saveable: Number of saveable pages in the system.
  1050. *
  1051. * We want to avoid attempting to free too much memory too hard, so estimate the
  1052. * minimum acceptable size of a hibernation image to use as the lower limit for
  1053. * preallocating memory.
  1054. *
  1055. * We assume that the minimum image size should be proportional to
  1056. *
  1057. * [number of saveable pages] - [number of pages that can be freed in theory]
  1058. *
  1059. * where the second term is the sum of (1) reclaimable slab pages, (2) active
  1060. * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
  1061. * minus mapped file pages.
  1062. */
  1063. static unsigned long minimum_image_size(unsigned long saveable)
  1064. {
  1065. unsigned long size;
  1066. size = global_page_state(NR_SLAB_RECLAIMABLE)
  1067. + global_page_state(NR_ACTIVE_ANON)
  1068. + global_page_state(NR_INACTIVE_ANON)
  1069. + global_page_state(NR_ACTIVE_FILE)
  1070. + global_page_state(NR_INACTIVE_FILE)
  1071. - global_page_state(NR_FILE_MAPPED);
  1072. return saveable <= size ? 0 : saveable - size;
  1073. }
  1074. /**
  1075. * hibernate_preallocate_memory - Preallocate memory for hibernation image
  1076. *
  1077. * To create a hibernation image it is necessary to make a copy of every page
  1078. * frame in use. We also need a number of page frames to be free during
  1079. * hibernation for allocations made while saving the image and for device
  1080. * drivers, in case they need to allocate memory from their hibernation
  1081. * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
  1082. * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
  1083. * /sys/power/reserved_size, respectively). To make this happen, we compute the
  1084. * total number of available page frames and allocate at least
  1085. *
  1086. * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
  1087. * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
  1088. *
  1089. * of them, which corresponds to the maximum size of a hibernation image.
  1090. *
  1091. * If image_size is set below the number following from the above formula,
  1092. * the preallocation of memory is continued until the total number of saveable
  1093. * pages in the system is below the requested image size or the minimum
  1094. * acceptable image size returned by minimum_image_size(), whichever is greater.
  1095. */
  1096. int hibernate_preallocate_memory(void)
  1097. {
  1098. struct zone *zone;
  1099. unsigned long saveable, size, max_size, count, highmem, pages = 0;
  1100. unsigned long alloc, save_highmem, pages_highmem, avail_normal;
  1101. struct timeval start, stop;
  1102. int error;
  1103. printk(KERN_INFO "PM: Preallocating image memory... ");
  1104. do_gettimeofday(&start);
  1105. error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
  1106. if (error)
  1107. goto err_out;
  1108. error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
  1109. if (error)
  1110. goto err_out;
  1111. alloc_normal = 0;
  1112. alloc_highmem = 0;
  1113. /* Count the number of saveable data pages. */
  1114. save_highmem = count_highmem_pages();
  1115. saveable = count_data_pages();
  1116. /*
  1117. * Compute the total number of page frames we can use (count) and the
  1118. * number of pages needed for image metadata (size).
  1119. */
  1120. count = saveable;
  1121. saveable += save_highmem;
  1122. highmem = save_highmem;
  1123. size = 0;
  1124. for_each_populated_zone(zone) {
  1125. size += snapshot_additional_pages(zone);
  1126. if (is_highmem(zone))
  1127. highmem += zone_page_state(zone, NR_FREE_PAGES);
  1128. else
  1129. count += zone_page_state(zone, NR_FREE_PAGES);
  1130. }
  1131. avail_normal = count;
  1132. count += highmem;
  1133. count -= totalreserve_pages;
  1134. /* Add number of pages required for page keys (s390 only). */
  1135. size += page_key_additional_pages(saveable);
  1136. /* Compute the maximum number of saveable pages to leave in memory. */
  1137. max_size = (count - (size + PAGES_FOR_IO)) / 2
  1138. - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
  1139. /* Compute the desired number of image pages specified by image_size. */
  1140. size = DIV_ROUND_UP(image_size, PAGE_SIZE);
  1141. if (size > max_size)
  1142. size = max_size;
  1143. /*
  1144. * If the desired number of image pages is at least as large as the
  1145. * current number of saveable pages in memory, allocate page frames for
  1146. * the image and we're done.
  1147. */
  1148. if (size >= saveable) {
  1149. pages = preallocate_image_highmem(save_highmem);
  1150. pages += preallocate_image_memory(saveable - pages, avail_normal);
  1151. goto out;
  1152. }
  1153. /* Estimate the minimum size of the image. */
  1154. pages = minimum_image_size(saveable);
  1155. /*
  1156. * To avoid excessive pressure on the normal zone, leave room in it to
  1157. * accommodate an image of the minimum size (unless it's already too
  1158. * small, in which case don't preallocate pages from it at all).
  1159. */
  1160. if (avail_normal > pages)
  1161. avail_normal -= pages;
  1162. else
  1163. avail_normal = 0;
  1164. if (size < pages)
  1165. size = min_t(unsigned long, pages, max_size);
  1166. /*
  1167. * Let the memory management subsystem know that we're going to need a
  1168. * large number of page frames to allocate and make it free some memory.
  1169. * NOTE: If this is not done, performance will be hurt badly in some
  1170. * test cases.
  1171. */
  1172. shrink_all_memory(saveable - size);
  1173. /*
  1174. * The number of saveable pages in memory was too high, so apply some
  1175. * pressure to decrease it. First, make room for the largest possible
  1176. * image and fail if that doesn't work. Next, try to decrease the size
  1177. * of the image as much as indicated by 'size' using allocations from
  1178. * highmem and non-highmem zones separately.
  1179. */
  1180. pages_highmem = preallocate_image_highmem(highmem / 2);
  1181. alloc = count - max_size;
  1182. if (alloc > pages_highmem)
  1183. alloc -= pages_highmem;
  1184. else
  1185. alloc = 0;
  1186. pages = preallocate_image_memory(alloc, avail_normal);
  1187. if (pages < alloc) {
  1188. /* We have exhausted non-highmem pages, try highmem. */
  1189. alloc -= pages;
  1190. pages += pages_highmem;
  1191. pages_highmem = preallocate_image_highmem(alloc);
  1192. if (pages_highmem < alloc)
  1193. goto err_out;
  1194. pages += pages_highmem;
  1195. /*
  1196. * size is the desired number of saveable pages to leave in
  1197. * memory, so try to preallocate (all memory - size) pages.
  1198. */
  1199. alloc = (count - pages) - size;
  1200. pages += preallocate_image_highmem(alloc);
  1201. } else {
  1202. /*
  1203. * There are approximately max_size saveable pages at this point
  1204. * and we want to reduce this number down to size.
  1205. */
  1206. alloc = max_size - size;
  1207. size = preallocate_highmem_fraction(alloc, highmem, count);
  1208. pages_highmem += size;
  1209. alloc -= size;
  1210. size = preallocate_image_memory(alloc, avail_normal);
  1211. pages_highmem += preallocate_image_highmem(alloc - size);
  1212. pages += pages_highmem + size;
  1213. }
  1214. /*
  1215. * We only need as many page frames for the image as there are saveable
  1216. * pages in memory, but we have allocated more. Release the excessive
  1217. * ones now.
  1218. */
  1219. free_unnecessary_pages();
  1220. out:
  1221. do_gettimeofday(&stop);
  1222. printk(KERN_CONT "done (allocated %lu pages)\n", pages);
  1223. swsusp_show_speed(&start, &stop, pages, "Allocated");
  1224. return 0;
  1225. err_out:
  1226. printk(KERN_CONT "\n");
  1227. swsusp_free();
  1228. return -ENOMEM;
  1229. }
  1230. #ifdef CONFIG_HIGHMEM
  1231. /**
  1232. * count_pages_for_highmem - compute the number of non-highmem pages
  1233. * that will be necessary for creating copies of highmem pages.
  1234. */
  1235. static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
  1236. {
  1237. unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
  1238. if (free_highmem >= nr_highmem)
  1239. nr_highmem = 0;
  1240. else
  1241. nr_highmem -= free_highmem;
  1242. return nr_highmem;
  1243. }
  1244. #else
  1245. static unsigned int
  1246. count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
  1247. #endif /* CONFIG_HIGHMEM */
  1248. /**
  1249. * enough_free_mem - Make sure we have enough free memory for the
  1250. * snapshot image.
  1251. */
  1252. static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
  1253. {
  1254. struct zone *zone;
  1255. unsigned int free = alloc_normal;
  1256. for_each_populated_zone(zone)
  1257. if (!is_highmem(zone))
  1258. free += zone_page_state(zone, NR_FREE_PAGES);
  1259. nr_pages += count_pages_for_highmem(nr_highmem);
  1260. pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
  1261. nr_pages, PAGES_FOR_IO, free);
  1262. return free > nr_pages + PAGES_FOR_IO;
  1263. }
  1264. #ifdef CONFIG_HIGHMEM
  1265. /**
  1266. * get_highmem_buffer - if there are some highmem pages in the suspend
  1267. * image, we may need the buffer to copy them and/or load their data.
  1268. */
  1269. static inline int get_highmem_buffer(int safe_needed)
  1270. {
  1271. buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
  1272. return buffer ? 0 : -ENOMEM;
  1273. }
  1274. /**
  1275. * alloc_highmem_image_pages - allocate some highmem pages for the image.
  1276. * Try to allocate as many pages as needed, but if the number of free
  1277. * highmem pages is lesser than that, allocate them all.
  1278. */
  1279. static inline unsigned int
  1280. alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
  1281. {
  1282. unsigned int to_alloc = count_free_highmem_pages();
  1283. if (to_alloc > nr_highmem)
  1284. to_alloc = nr_highmem;
  1285. nr_highmem -= to_alloc;
  1286. while (to_alloc-- > 0) {
  1287. struct page *page;
  1288. page = alloc_image_page(__GFP_HIGHMEM);
  1289. memory_bm_set_bit(bm, page_to_pfn(page));
  1290. }
  1291. return nr_highmem;
  1292. }
  1293. #else
  1294. static inline int get_highmem_buffer(int safe_needed) { return 0; }
  1295. static inline unsigned int
  1296. alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
  1297. #endif /* CONFIG_HIGHMEM */
  1298. /**
  1299. * swsusp_alloc - allocate memory for the suspend image
  1300. *
  1301. * We first try to allocate as many highmem pages as there are
  1302. * saveable highmem pages in the system. If that fails, we allocate
  1303. * non-highmem pages for the copies of the remaining highmem ones.
  1304. *
  1305. * In this approach it is likely that the copies of highmem pages will
  1306. * also be located in the high memory, because of the way in which
  1307. * copy_data_pages() works.
  1308. */
  1309. static int
  1310. swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
  1311. unsigned int nr_pages, unsigned int nr_highmem)
  1312. {
  1313. if (nr_highmem > 0) {
  1314. if (get_highmem_buffer(PG_ANY))
  1315. goto err_out;
  1316. if (nr_highmem > alloc_highmem) {
  1317. nr_highmem -= alloc_highmem;
  1318. nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
  1319. }
  1320. }
  1321. if (nr_pages > alloc_normal) {
  1322. nr_pages -= alloc_normal;
  1323. while (nr_pages-- > 0) {
  1324. struct page *page;
  1325. page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
  1326. if (!page)
  1327. goto err_out;
  1328. memory_bm_set_bit(copy_bm, page_to_pfn(page));
  1329. }
  1330. }
  1331. return 0;
  1332. err_out:
  1333. swsusp_free();
  1334. return -ENOMEM;
  1335. }
  1336. asmlinkage int swsusp_save(void)
  1337. {
  1338. unsigned int nr_pages, nr_highmem;
  1339. printk(KERN_INFO "PM: Creating hibernation image:\n");
  1340. drain_local_pages(NULL);
  1341. nr_pages = count_data_pages();
  1342. nr_highmem = count_highmem_pages();
  1343. printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
  1344. if (!enough_free_mem(nr_pages, nr_highmem)) {
  1345. printk(KERN_ERR "PM: Not enough free memory\n");
  1346. return -ENOMEM;
  1347. }
  1348. if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
  1349. printk(KERN_ERR "PM: Memory allocation failed\n");
  1350. return -ENOMEM;
  1351. }
  1352. /* During allocating of suspend pagedir, new cold pages may appear.
  1353. * Kill them.
  1354. */
  1355. drain_local_pages(NULL);
  1356. copy_data_pages(&copy_bm, &orig_bm);
  1357. /*
  1358. * End of critical section. From now on, we can write to memory,
  1359. * but we should not touch disk. This specially means we must _not_
  1360. * touch swap space! Except we must write out our image of course.
  1361. */
  1362. nr_pages += nr_highmem;
  1363. nr_copy_pages = nr_pages;
  1364. nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
  1365. printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
  1366. nr_pages);
  1367. return 0;
  1368. }
  1369. #ifndef CONFIG_ARCH_HIBERNATION_HEADER
  1370. static int init_header_complete(struct swsusp_info *info)
  1371. {
  1372. memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
  1373. info->version_code = LINUX_VERSION_CODE;
  1374. return 0;
  1375. }
  1376. static char *check_image_kernel(struct swsusp_info *info)
  1377. {
  1378. if (info->version_code != LINUX_VERSION_CODE)
  1379. return "kernel version";
  1380. if (strcmp(info->uts.sysname,init_utsname()->sysname))
  1381. return "system type";
  1382. if (strcmp(info->uts.release,init_utsname()->release))
  1383. return "kernel release";
  1384. if (strcmp(info->uts.version,init_utsname()->version))
  1385. return "version";
  1386. if (strcmp(info->uts.machine,init_utsname()->machine))
  1387. return "machine";
  1388. return NULL;
  1389. }
  1390. #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
  1391. unsigned long snapshot_get_image_size(void)
  1392. {
  1393. return nr_copy_pages + nr_meta_pages + 1;
  1394. }
  1395. static int init_header(struct swsusp_info *info)
  1396. {
  1397. memset(info, 0, sizeof(struct swsusp_info));
  1398. info->num_physpages = num_physpages;
  1399. info->image_pages = nr_copy_pages;
  1400. info->pages = snapshot_get_image_size();
  1401. info->size = info->pages;
  1402. info->size <<= PAGE_SHIFT;
  1403. return init_header_complete(info);
  1404. }
  1405. /**
  1406. * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
  1407. * are stored in the array @buf[] (1 page at a time)
  1408. */
  1409. static inline void
  1410. pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1411. {
  1412. int j;
  1413. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1414. buf[j] = memory_bm_next_pfn(bm);
  1415. if (unlikely(buf[j] == BM_END_OF_MAP))
  1416. break;
  1417. /* Save page key for data page (s390 only). */
  1418. page_key_read(buf + j);
  1419. }
  1420. }
  1421. /**
  1422. * snapshot_read_next - used for reading the system memory snapshot.
  1423. *
  1424. * On the first call to it @handle should point to a zeroed
  1425. * snapshot_handle structure. The structure gets updated and a pointer
  1426. * to it should be passed to this function every next time.
  1427. *
  1428. * On success the function returns a positive number. Then, the caller
  1429. * is allowed to read up to the returned number of bytes from the memory
  1430. * location computed by the data_of() macro.
  1431. *
  1432. * The function returns 0 to indicate the end of data stream condition,
  1433. * and a negative number is returned on error. In such cases the
  1434. * structure pointed to by @handle is not updated and should not be used
  1435. * any more.
  1436. */
  1437. int snapshot_read_next(struct snapshot_handle *handle)
  1438. {
  1439. if (handle->cur > nr_meta_pages + nr_copy_pages)
  1440. return 0;
  1441. if (!buffer) {
  1442. /* This makes the buffer be freed by swsusp_free() */
  1443. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1444. if (!buffer)
  1445. return -ENOMEM;
  1446. }
  1447. if (!handle->cur) {
  1448. int error;
  1449. error = init_header((struct swsusp_info *)buffer);
  1450. if (error)
  1451. return error;
  1452. handle->buffer = buffer;
  1453. memory_bm_position_reset(&orig_bm);
  1454. memory_bm_position_reset(&copy_bm);
  1455. } else if (handle->cur <= nr_meta_pages) {
  1456. clear_page(buffer);
  1457. pack_pfns(buffer, &orig_bm);
  1458. } else {
  1459. struct page *page;
  1460. page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
  1461. if (PageHighMem(page)) {
  1462. /* Highmem pages are copied to the buffer,
  1463. * because we can't return with a kmapped
  1464. * highmem page (we may not be called again).
  1465. */
  1466. void *kaddr;
  1467. kaddr = kmap_atomic(page);
  1468. copy_page(buffer, kaddr);
  1469. kunmap_atomic(kaddr);
  1470. handle->buffer = buffer;
  1471. } else {
  1472. handle->buffer = page_address(page);
  1473. }
  1474. }
  1475. handle->cur++;
  1476. return PAGE_SIZE;
  1477. }
  1478. /**
  1479. * mark_unsafe_pages - mark the pages that cannot be used for storing
  1480. * the image during resume, because they conflict with the pages that
  1481. * had been used before suspend
  1482. */
  1483. static int mark_unsafe_pages(struct memory_bitmap *bm)
  1484. {
  1485. struct zone *zone;
  1486. unsigned long pfn, max_zone_pfn;
  1487. /* Clear page flags */
  1488. for_each_populated_zone(zone) {
  1489. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1490. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1491. if (pfn_valid(pfn))
  1492. swsusp_unset_page_free(pfn_to_page(pfn));
  1493. }
  1494. /* Mark pages that correspond to the "original" pfns as "unsafe" */
  1495. memory_bm_position_reset(bm);
  1496. do {
  1497. pfn = memory_bm_next_pfn(bm);
  1498. if (likely(pfn != BM_END_OF_MAP)) {
  1499. if (likely(pfn_valid(pfn)))
  1500. swsusp_set_page_free(pfn_to_page(pfn));
  1501. else
  1502. return -EFAULT;
  1503. }
  1504. } while (pfn != BM_END_OF_MAP);
  1505. allocated_unsafe_pages = 0;
  1506. return 0;
  1507. }
  1508. static void
  1509. duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
  1510. {
  1511. unsigned long pfn;
  1512. memory_bm_position_reset(src);
  1513. pfn = memory_bm_next_pfn(src);
  1514. while (pfn != BM_END_OF_MAP) {
  1515. memory_bm_set_bit(dst, pfn);
  1516. pfn = memory_bm_next_pfn(src);
  1517. }
  1518. }
  1519. static int check_header(struct swsusp_info *info)
  1520. {
  1521. char *reason;
  1522. reason = check_image_kernel(info);
  1523. if (!reason && info->num_physpages != num_physpages)
  1524. reason = "memory size";
  1525. if (reason) {
  1526. printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
  1527. return -EPERM;
  1528. }
  1529. return 0;
  1530. }
  1531. /**
  1532. * load header - check the image header and copy data from it
  1533. */
  1534. static int
  1535. load_header(struct swsusp_info *info)
  1536. {
  1537. int error;
  1538. restore_pblist = NULL;
  1539. error = check_header(info);
  1540. if (!error) {
  1541. nr_copy_pages = info->image_pages;
  1542. nr_meta_pages = info->pages - info->image_pages - 1;
  1543. }
  1544. return error;
  1545. }
  1546. /**
  1547. * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
  1548. * the corresponding bit in the memory bitmap @bm
  1549. */
  1550. static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1551. {
  1552. int j;
  1553. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1554. if (unlikely(buf[j] == BM_END_OF_MAP))
  1555. break;
  1556. /* Extract and buffer page key for data page (s390 only). */
  1557. page_key_memorize(buf + j);
  1558. if (memory_bm_pfn_present(bm, buf[j]))
  1559. memory_bm_set_bit(bm, buf[j]);
  1560. else
  1561. return -EFAULT;
  1562. }
  1563. return 0;
  1564. }
  1565. /* List of "safe" pages that may be used to store data loaded from the suspend
  1566. * image
  1567. */
  1568. static struct linked_page *safe_pages_list;
  1569. #ifdef CONFIG_HIGHMEM
  1570. /* struct highmem_pbe is used for creating the list of highmem pages that
  1571. * should be restored atomically during the resume from disk, because the page
  1572. * frames they have occupied before the suspend are in use.
  1573. */
  1574. struct highmem_pbe {
  1575. struct page *copy_page; /* data is here now */
  1576. struct page *orig_page; /* data was here before the suspend */
  1577. struct highmem_pbe *next;
  1578. };
  1579. /* List of highmem PBEs needed for restoring the highmem pages that were
  1580. * allocated before the suspend and included in the suspend image, but have
  1581. * also been allocated by the "resume" kernel, so their contents cannot be
  1582. * written directly to their "original" page frames.
  1583. */
  1584. static struct highmem_pbe *highmem_pblist;
  1585. /**
  1586. * count_highmem_image_pages - compute the number of highmem pages in the
  1587. * suspend image. The bits in the memory bitmap @bm that correspond to the
  1588. * image pages are assumed to be set.
  1589. */
  1590. static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
  1591. {
  1592. unsigned long pfn;
  1593. unsigned int cnt = 0;
  1594. memory_bm_position_reset(bm);
  1595. pfn = memory_bm_next_pfn(bm);
  1596. while (pfn != BM_END_OF_MAP) {
  1597. if (PageHighMem(pfn_to_page(pfn)))
  1598. cnt++;
  1599. pfn = memory_bm_next_pfn(bm);
  1600. }
  1601. return cnt;
  1602. }
  1603. /**
  1604. * prepare_highmem_image - try to allocate as many highmem pages as
  1605. * there are highmem image pages (@nr_highmem_p points to the variable
  1606. * containing the number of highmem image pages). The pages that are
  1607. * "safe" (ie. will not be overwritten when the suspend image is
  1608. * restored) have the corresponding bits set in @bm (it must be
  1609. * unitialized).
  1610. *
  1611. * NOTE: This function should not be called if there are no highmem
  1612. * image pages.
  1613. */
  1614. static unsigned int safe_highmem_pages;
  1615. static struct memory_bitmap *safe_highmem_bm;
  1616. static int
  1617. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1618. {
  1619. unsigned int to_alloc;
  1620. if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
  1621. return -ENOMEM;
  1622. if (get_highmem_buffer(PG_SAFE))
  1623. return -ENOMEM;
  1624. to_alloc = count_free_highmem_pages();
  1625. if (to_alloc > *nr_highmem_p)
  1626. to_alloc = *nr_highmem_p;
  1627. else
  1628. *nr_highmem_p = to_alloc;
  1629. safe_highmem_pages = 0;
  1630. while (to_alloc-- > 0) {
  1631. struct page *page;
  1632. page = alloc_page(__GFP_HIGHMEM);
  1633. if (!swsusp_page_is_free(page)) {
  1634. /* The page is "safe", set its bit the bitmap */
  1635. memory_bm_set_bit(bm, page_to_pfn(page));
  1636. safe_highmem_pages++;
  1637. }
  1638. /* Mark the page as allocated */
  1639. swsusp_set_page_forbidden(page);
  1640. swsusp_set_page_free(page);
  1641. }
  1642. memory_bm_position_reset(bm);
  1643. safe_highmem_bm = bm;
  1644. return 0;
  1645. }
  1646. /**
  1647. * get_highmem_page_buffer - for given highmem image page find the buffer
  1648. * that suspend_write_next() should set for its caller to write to.
  1649. *
  1650. * If the page is to be saved to its "original" page frame or a copy of
  1651. * the page is to be made in the highmem, @buffer is returned. Otherwise,
  1652. * the copy of the page is to be made in normal memory, so the address of
  1653. * the copy is returned.
  1654. *
  1655. * If @buffer is returned, the caller of suspend_write_next() will write
  1656. * the page's contents to @buffer, so they will have to be copied to the
  1657. * right location on the next call to suspend_write_next() and it is done
  1658. * with the help of copy_last_highmem_page(). For this purpose, if
  1659. * @buffer is returned, @last_highmem page is set to the page to which
  1660. * the data will have to be copied from @buffer.
  1661. */
  1662. static struct page *last_highmem_page;
  1663. static void *
  1664. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1665. {
  1666. struct highmem_pbe *pbe;
  1667. void *kaddr;
  1668. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
  1669. /* We have allocated the "original" page frame and we can
  1670. * use it directly to store the loaded page.
  1671. */
  1672. last_highmem_page = page;
  1673. return buffer;
  1674. }
  1675. /* The "original" page frame has not been allocated and we have to
  1676. * use a "safe" page frame to store the loaded page.
  1677. */
  1678. pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
  1679. if (!pbe) {
  1680. swsusp_free();
  1681. return ERR_PTR(-ENOMEM);
  1682. }
  1683. pbe->orig_page = page;
  1684. if (safe_highmem_pages > 0) {
  1685. struct page *tmp;
  1686. /* Copy of the page will be stored in high memory */
  1687. kaddr = buffer;
  1688. tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
  1689. safe_highmem_pages--;
  1690. last_highmem_page = tmp;
  1691. pbe->copy_page = tmp;
  1692. } else {
  1693. /* Copy of the page will be stored in normal memory */
  1694. kaddr = safe_pages_list;
  1695. safe_pages_list = safe_pages_list->next;
  1696. pbe->copy_page = virt_to_page(kaddr);
  1697. }
  1698. pbe->next = highmem_pblist;
  1699. highmem_pblist = pbe;
  1700. return kaddr;
  1701. }
  1702. /**
  1703. * copy_last_highmem_page - copy the contents of a highmem image from
  1704. * @buffer, where the caller of snapshot_write_next() has place them,
  1705. * to the right location represented by @last_highmem_page .
  1706. */
  1707. static void copy_last_highmem_page(void)
  1708. {
  1709. if (last_highmem_page) {
  1710. void *dst;
  1711. dst = kmap_atomic(last_highmem_page);
  1712. copy_page(dst, buffer);
  1713. kunmap_atomic(dst);
  1714. last_highmem_page = NULL;
  1715. }
  1716. }
  1717. static inline int last_highmem_page_copied(void)
  1718. {
  1719. return !last_highmem_page;
  1720. }
  1721. static inline void free_highmem_data(void)
  1722. {
  1723. if (safe_highmem_bm)
  1724. memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
  1725. if (buffer)
  1726. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1727. }
  1728. #else
  1729. static inline int get_safe_write_buffer(void) { return 0; }
  1730. static unsigned int
  1731. count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
  1732. static inline int
  1733. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1734. {
  1735. return 0;
  1736. }
  1737. static inline void *
  1738. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1739. {
  1740. return ERR_PTR(-EINVAL);
  1741. }
  1742. static inline void copy_last_highmem_page(void) {}
  1743. static inline int last_highmem_page_copied(void) { return 1; }
  1744. static inline void free_highmem_data(void) {}
  1745. #endif /* CONFIG_HIGHMEM */
  1746. /**
  1747. * prepare_image - use the memory bitmap @bm to mark the pages that will
  1748. * be overwritten in the process of restoring the system memory state
  1749. * from the suspend image ("unsafe" pages) and allocate memory for the
  1750. * image.
  1751. *
  1752. * The idea is to allocate a new memory bitmap first and then allocate
  1753. * as many pages as needed for the image data, but not to assign these
  1754. * pages to specific tasks initially. Instead, we just mark them as
  1755. * allocated and create a lists of "safe" pages that will be used
  1756. * later. On systems with high memory a list of "safe" highmem pages is
  1757. * also created.
  1758. */
  1759. #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
  1760. static int
  1761. prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
  1762. {
  1763. unsigned int nr_pages, nr_highmem;
  1764. struct linked_page *sp_list, *lp;
  1765. int error;
  1766. /* If there is no highmem, the buffer will not be necessary */
  1767. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1768. buffer = NULL;
  1769. nr_highmem = count_highmem_image_pages(bm);
  1770. error = mark_unsafe_pages(bm);
  1771. if (error)
  1772. goto Free;
  1773. error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
  1774. if (error)
  1775. goto Free;
  1776. duplicate_memory_bitmap(new_bm, bm);
  1777. memory_bm_free(bm, PG_UNSAFE_KEEP);
  1778. if (nr_highmem > 0) {
  1779. error = prepare_highmem_image(bm, &nr_highmem);
  1780. if (error)
  1781. goto Free;
  1782. }
  1783. /* Reserve some safe pages for potential later use.
  1784. *
  1785. * NOTE: This way we make sure there will be enough safe pages for the
  1786. * chain_alloc() in get_buffer(). It is a bit wasteful, but
  1787. * nr_copy_pages cannot be greater than 50% of the memory anyway.
  1788. */
  1789. sp_list = NULL;
  1790. /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
  1791. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1792. nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
  1793. while (nr_pages > 0) {
  1794. lp = get_image_page(GFP_ATOMIC, PG_SAFE);
  1795. if (!lp) {
  1796. error = -ENOMEM;
  1797. goto Free;
  1798. }
  1799. lp->next = sp_list;
  1800. sp_list = lp;
  1801. nr_pages--;
  1802. }
  1803. /* Preallocate memory for the image */
  1804. safe_pages_list = NULL;
  1805. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1806. while (nr_pages > 0) {
  1807. lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
  1808. if (!lp) {
  1809. error = -ENOMEM;
  1810. goto Free;
  1811. }
  1812. if (!swsusp_page_is_free(virt_to_page(lp))) {
  1813. /* The page is "safe", add it to the list */
  1814. lp->next = safe_pages_list;
  1815. safe_pages_list = lp;
  1816. }
  1817. /* Mark the page as allocated */
  1818. swsusp_set_page_forbidden(virt_to_page(lp));
  1819. swsusp_set_page_free(virt_to_page(lp));
  1820. nr_pages--;
  1821. }
  1822. /* Free the reserved safe pages so that chain_alloc() can use them */
  1823. while (sp_list) {
  1824. lp = sp_list->next;
  1825. free_image_page(sp_list, PG_UNSAFE_CLEAR);
  1826. sp_list = lp;
  1827. }
  1828. return 0;
  1829. Free:
  1830. swsusp_free();
  1831. return error;
  1832. }
  1833. /**
  1834. * get_buffer - compute the address that snapshot_write_next() should
  1835. * set for its caller to write to.
  1836. */
  1837. static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
  1838. {
  1839. struct pbe *pbe;
  1840. struct page *page;
  1841. unsigned long pfn = memory_bm_next_pfn(bm);
  1842. if (pfn == BM_END_OF_MAP)
  1843. return ERR_PTR(-EFAULT);
  1844. page = pfn_to_page(pfn);
  1845. if (PageHighMem(page))
  1846. return get_highmem_page_buffer(page, ca);
  1847. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
  1848. /* We have allocated the "original" page frame and we can
  1849. * use it directly to store the loaded page.
  1850. */
  1851. return page_address(page);
  1852. /* The "original" page frame has not been allocated and we have to
  1853. * use a "safe" page frame to store the loaded page.
  1854. */
  1855. pbe = chain_alloc(ca, sizeof(struct pbe));
  1856. if (!pbe) {
  1857. swsusp_free();
  1858. return ERR_PTR(-ENOMEM);
  1859. }
  1860. pbe->orig_address = page_address(page);
  1861. pbe->address = safe_pages_list;
  1862. safe_pages_list = safe_pages_list->next;
  1863. pbe->next = restore_pblist;
  1864. restore_pblist = pbe;
  1865. return pbe->address;
  1866. }
  1867. /**
  1868. * snapshot_write_next - used for writing the system memory snapshot.
  1869. *
  1870. * On the first call to it @handle should point to a zeroed
  1871. * snapshot_handle structure. The structure gets updated and a pointer
  1872. * to it should be passed to this function every next time.
  1873. *
  1874. * On success the function returns a positive number. Then, the caller
  1875. * is allowed to write up to the returned number of bytes to the memory
  1876. * location computed by the data_of() macro.
  1877. *
  1878. * The function returns 0 to indicate the "end of file" condition,
  1879. * and a negative number is returned on error. In such cases the
  1880. * structure pointed to by @handle is not updated and should not be used
  1881. * any more.
  1882. */
  1883. int snapshot_write_next(struct snapshot_handle *handle)
  1884. {
  1885. static struct chain_allocator ca;
  1886. int error = 0;
  1887. /* Check if we have already loaded the entire image */
  1888. if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
  1889. return 0;
  1890. handle->sync_read = 1;
  1891. if (!handle->cur) {
  1892. if (!buffer)
  1893. /* This makes the buffer be freed by swsusp_free() */
  1894. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1895. if (!buffer)
  1896. return -ENOMEM;
  1897. handle->buffer = buffer;
  1898. } else if (handle->cur == 1) {
  1899. error = load_header(buffer);
  1900. if (error)
  1901. return error;
  1902. error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
  1903. if (error)
  1904. return error;
  1905. /* Allocate buffer for page keys. */
  1906. error = page_key_alloc(nr_copy_pages);
  1907. if (error)
  1908. return error;
  1909. } else if (handle->cur <= nr_meta_pages + 1) {
  1910. error = unpack_orig_pfns(buffer, &copy_bm);
  1911. if (error)
  1912. return error;
  1913. if (handle->cur == nr_meta_pages + 1) {
  1914. error = prepare_image(&orig_bm, &copy_bm);
  1915. if (error)
  1916. return error;
  1917. chain_init(&ca, GFP_ATOMIC, PG_SAFE);
  1918. memory_bm_position_reset(&orig_bm);
  1919. restore_pblist = NULL;
  1920. handle->buffer = get_buffer(&orig_bm, &ca);
  1921. handle->sync_read = 0;
  1922. if (IS_ERR(handle->buffer))
  1923. return PTR_ERR(handle->buffer);
  1924. }
  1925. } else {
  1926. copy_last_highmem_page();
  1927. /* Restore page key for data page (s390 only). */
  1928. page_key_write(handle->buffer);
  1929. handle->buffer = get_buffer(&orig_bm, &ca);
  1930. if (IS_ERR(handle->buffer))
  1931. return PTR_ERR(handle->buffer);
  1932. if (handle->buffer != buffer)
  1933. handle->sync_read = 0;
  1934. }
  1935. handle->cur++;
  1936. return PAGE_SIZE;
  1937. }
  1938. /**
  1939. * snapshot_write_finalize - must be called after the last call to
  1940. * snapshot_write_next() in case the last page in the image happens
  1941. * to be a highmem page and its contents should be stored in the
  1942. * highmem. Additionally, it releases the memory that will not be
  1943. * used any more.
  1944. */
  1945. void snapshot_write_finalize(struct snapshot_handle *handle)
  1946. {
  1947. copy_last_highmem_page();
  1948. /* Restore page key for data page (s390 only). */
  1949. page_key_write(handle->buffer);
  1950. page_key_free();
  1951. /* Free only if we have loaded the image entirely */
  1952. if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
  1953. memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
  1954. free_highmem_data();
  1955. }
  1956. }
  1957. int snapshot_image_loaded(struct snapshot_handle *handle)
  1958. {
  1959. return !(!nr_copy_pages || !last_highmem_page_copied() ||
  1960. handle->cur <= nr_meta_pages + nr_copy_pages);
  1961. }
  1962. #ifdef CONFIG_HIGHMEM
  1963. /* Assumes that @buf is ready and points to a "safe" page */
  1964. static inline void
  1965. swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
  1966. {
  1967. void *kaddr1, *kaddr2;
  1968. kaddr1 = kmap_atomic(p1);
  1969. kaddr2 = kmap_atomic(p2);
  1970. copy_page(buf, kaddr1);
  1971. copy_page(kaddr1, kaddr2);
  1972. copy_page(kaddr2, buf);
  1973. kunmap_atomic(kaddr2);
  1974. kunmap_atomic(kaddr1);
  1975. }
  1976. /**
  1977. * restore_highmem - for each highmem page that was allocated before
  1978. * the suspend and included in the suspend image, and also has been
  1979. * allocated by the "resume" kernel swap its current (ie. "before
  1980. * resume") contents with the previous (ie. "before suspend") one.
  1981. *
  1982. * If the resume eventually fails, we can call this function once
  1983. * again and restore the "before resume" highmem state.
  1984. */
  1985. int restore_highmem(void)
  1986. {
  1987. struct highmem_pbe *pbe = highmem_pblist;
  1988. void *buf;
  1989. if (!pbe)
  1990. return 0;
  1991. buf = get_image_page(GFP_ATOMIC, PG_SAFE);
  1992. if (!buf)
  1993. return -ENOMEM;
  1994. while (pbe) {
  1995. swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
  1996. pbe = pbe->next;
  1997. }
  1998. free_image_page(buf, PG_UNSAFE_CLEAR);
  1999. return 0;
  2000. }
  2001. #endif /* CONFIG_HIGHMEM */