mv_94xx.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063
  1. /*
  2. * Marvell 88SE94xx hardware specific
  3. *
  4. * Copyright 2007 Red Hat, Inc.
  5. * Copyright 2008 Marvell. <kewei@marvell.com>
  6. * Copyright 2009-2011 Marvell. <yuxiangl@marvell.com>
  7. *
  8. * This file is licensed under GPLv2.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; version 2 of the
  13. * License.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
  23. * USA
  24. */
  25. #include "mv_sas.h"
  26. #include "mv_94xx.h"
  27. #include "mv_chips.h"
  28. static void mvs_94xx_detect_porttype(struct mvs_info *mvi, int i)
  29. {
  30. u32 reg;
  31. struct mvs_phy *phy = &mvi->phy[i];
  32. u32 phy_status;
  33. mvs_write_port_vsr_addr(mvi, i, VSR_PHY_MODE3);
  34. reg = mvs_read_port_vsr_data(mvi, i);
  35. phy_status = ((reg & 0x3f0000) >> 16) & 0xff;
  36. phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
  37. switch (phy_status) {
  38. case 0x10:
  39. phy->phy_type |= PORT_TYPE_SAS;
  40. break;
  41. case 0x1d:
  42. default:
  43. phy->phy_type |= PORT_TYPE_SATA;
  44. break;
  45. }
  46. }
  47. void set_phy_tuning(struct mvs_info *mvi, int phy_id,
  48. struct phy_tuning phy_tuning)
  49. {
  50. u32 tmp, setting_0 = 0, setting_1 = 0;
  51. u8 i;
  52. /* Remap information for B0 chip:
  53. *
  54. * R0Ch -> R118h[15:0] (Adapted DFE F3 - F5 coefficient)
  55. * R0Dh -> R118h[31:16] (Generation 1 Setting 0)
  56. * R0Eh -> R11Ch[15:0] (Generation 1 Setting 1)
  57. * R0Fh -> R11Ch[31:16] (Generation 2 Setting 0)
  58. * R10h -> R120h[15:0] (Generation 2 Setting 1)
  59. * R11h -> R120h[31:16] (Generation 3 Setting 0)
  60. * R12h -> R124h[15:0] (Generation 3 Setting 1)
  61. * R13h -> R124h[31:16] (Generation 4 Setting 0 (Reserved))
  62. */
  63. /* A0 has a different set of registers */
  64. if (mvi->pdev->revision == VANIR_A0_REV)
  65. return;
  66. for (i = 0; i < 3; i++) {
  67. /* loop 3 times, set Gen 1, Gen 2, Gen 3 */
  68. switch (i) {
  69. case 0:
  70. setting_0 = GENERATION_1_SETTING;
  71. setting_1 = GENERATION_1_2_SETTING;
  72. break;
  73. case 1:
  74. setting_0 = GENERATION_1_2_SETTING;
  75. setting_1 = GENERATION_2_3_SETTING;
  76. break;
  77. case 2:
  78. setting_0 = GENERATION_2_3_SETTING;
  79. setting_1 = GENERATION_3_4_SETTING;
  80. break;
  81. }
  82. /* Set:
  83. *
  84. * Transmitter Emphasis Enable
  85. * Transmitter Emphasis Amplitude
  86. * Transmitter Amplitude
  87. */
  88. mvs_write_port_vsr_addr(mvi, phy_id, setting_0);
  89. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  90. tmp &= ~(0xFBE << 16);
  91. tmp |= (((phy_tuning.trans_emp_en << 11) |
  92. (phy_tuning.trans_emp_amp << 7) |
  93. (phy_tuning.trans_amp << 1)) << 16);
  94. mvs_write_port_vsr_data(mvi, phy_id, tmp);
  95. /* Set Transmitter Amplitude Adjust */
  96. mvs_write_port_vsr_addr(mvi, phy_id, setting_1);
  97. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  98. tmp &= ~(0xC000);
  99. tmp |= (phy_tuning.trans_amp_adj << 14);
  100. mvs_write_port_vsr_data(mvi, phy_id, tmp);
  101. }
  102. }
  103. void set_phy_ffe_tuning(struct mvs_info *mvi, int phy_id,
  104. struct ffe_control ffe)
  105. {
  106. u32 tmp;
  107. /* Don't run this if A0/B0 */
  108. if ((mvi->pdev->revision == VANIR_A0_REV)
  109. || (mvi->pdev->revision == VANIR_B0_REV))
  110. return;
  111. /* FFE Resistor and Capacitor */
  112. /* R10Ch DFE Resolution Control/Squelch and FFE Setting
  113. *
  114. * FFE_FORCE [7]
  115. * FFE_RES_SEL [6:4]
  116. * FFE_CAP_SEL [3:0]
  117. */
  118. mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_FFE_CONTROL);
  119. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  120. tmp &= ~0xFF;
  121. /* Read from HBA_Info_Page */
  122. tmp |= ((0x1 << 7) |
  123. (ffe.ffe_rss_sel << 4) |
  124. (ffe.ffe_cap_sel << 0));
  125. mvs_write_port_vsr_data(mvi, phy_id, tmp);
  126. /* R064h PHY Mode Register 1
  127. *
  128. * DFE_DIS 18
  129. */
  130. mvs_write_port_vsr_addr(mvi, phy_id, VSR_REF_CLOCK_CRTL);
  131. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  132. tmp &= ~0x40001;
  133. /* Hard coding */
  134. /* No defines in HBA_Info_Page */
  135. tmp |= (0 << 18);
  136. mvs_write_port_vsr_data(mvi, phy_id, tmp);
  137. /* R110h DFE F0-F1 Coefficient Control/DFE Update Control
  138. *
  139. * DFE_UPDATE_EN [11:6]
  140. * DFE_FX_FORCE [5:0]
  141. */
  142. mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_DFE_UPDATE_CRTL);
  143. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  144. tmp &= ~0xFFF;
  145. /* Hard coding */
  146. /* No defines in HBA_Info_Page */
  147. tmp |= ((0x3F << 6) | (0x0 << 0));
  148. mvs_write_port_vsr_data(mvi, phy_id, tmp);
  149. /* R1A0h Interface and Digital Reference Clock Control/Reserved_50h
  150. *
  151. * FFE_TRAIN_EN 3
  152. */
  153. mvs_write_port_vsr_addr(mvi, phy_id, VSR_REF_CLOCK_CRTL);
  154. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  155. tmp &= ~0x8;
  156. /* Hard coding */
  157. /* No defines in HBA_Info_Page */
  158. tmp |= (0 << 3);
  159. mvs_write_port_vsr_data(mvi, phy_id, tmp);
  160. }
  161. /*Notice: this function must be called when phy is disabled*/
  162. void set_phy_rate(struct mvs_info *mvi, int phy_id, u8 rate)
  163. {
  164. union reg_phy_cfg phy_cfg, phy_cfg_tmp;
  165. mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_MODE2);
  166. phy_cfg_tmp.v = mvs_read_port_vsr_data(mvi, phy_id);
  167. phy_cfg.v = 0;
  168. phy_cfg.u.disable_phy = phy_cfg_tmp.u.disable_phy;
  169. phy_cfg.u.sas_support = 1;
  170. phy_cfg.u.sata_support = 1;
  171. phy_cfg.u.sata_host_mode = 1;
  172. switch (rate) {
  173. case 0x0:
  174. /* support 1.5 Gbps */
  175. phy_cfg.u.speed_support = 1;
  176. phy_cfg.u.snw_3_support = 0;
  177. phy_cfg.u.tx_lnk_parity = 1;
  178. phy_cfg.u.tx_spt_phs_lnk_rate = 0x30;
  179. break;
  180. case 0x1:
  181. /* support 1.5, 3.0 Gbps */
  182. phy_cfg.u.speed_support = 3;
  183. phy_cfg.u.tx_spt_phs_lnk_rate = 0x3c;
  184. phy_cfg.u.tx_lgcl_lnk_rate = 0x08;
  185. break;
  186. case 0x2:
  187. default:
  188. /* support 1.5, 3.0, 6.0 Gbps */
  189. phy_cfg.u.speed_support = 7;
  190. phy_cfg.u.snw_3_support = 1;
  191. phy_cfg.u.tx_lnk_parity = 1;
  192. phy_cfg.u.tx_spt_phs_lnk_rate = 0x3f;
  193. phy_cfg.u.tx_lgcl_lnk_rate = 0x09;
  194. break;
  195. }
  196. mvs_write_port_vsr_data(mvi, phy_id, phy_cfg.v);
  197. }
  198. static void __devinit
  199. mvs_94xx_config_reg_from_hba(struct mvs_info *mvi, int phy_id)
  200. {
  201. u32 temp;
  202. temp = (u32)(*(u32 *)&mvi->hba_info_param.phy_tuning[phy_id]);
  203. if (temp == 0xFFFFFFFFL) {
  204. mvi->hba_info_param.phy_tuning[phy_id].trans_emp_amp = 0x6;
  205. mvi->hba_info_param.phy_tuning[phy_id].trans_amp = 0x1A;
  206. mvi->hba_info_param.phy_tuning[phy_id].trans_amp_adj = 0x3;
  207. }
  208. temp = (u8)(*(u8 *)&mvi->hba_info_param.ffe_ctl[phy_id]);
  209. if (temp == 0xFFL) {
  210. switch (mvi->pdev->revision) {
  211. case VANIR_A0_REV:
  212. case VANIR_B0_REV:
  213. mvi->hba_info_param.ffe_ctl[phy_id].ffe_rss_sel = 0x7;
  214. mvi->hba_info_param.ffe_ctl[phy_id].ffe_cap_sel = 0x7;
  215. break;
  216. case VANIR_C0_REV:
  217. case VANIR_C1_REV:
  218. case VANIR_C2_REV:
  219. default:
  220. mvi->hba_info_param.ffe_ctl[phy_id].ffe_rss_sel = 0x7;
  221. mvi->hba_info_param.ffe_ctl[phy_id].ffe_cap_sel = 0xC;
  222. break;
  223. }
  224. }
  225. temp = (u8)(*(u8 *)&mvi->hba_info_param.phy_rate[phy_id]);
  226. if (temp == 0xFFL)
  227. /*set default phy_rate = 6Gbps*/
  228. mvi->hba_info_param.phy_rate[phy_id] = 0x2;
  229. set_phy_tuning(mvi, phy_id,
  230. mvi->hba_info_param.phy_tuning[phy_id]);
  231. set_phy_ffe_tuning(mvi, phy_id,
  232. mvi->hba_info_param.ffe_ctl[phy_id]);
  233. set_phy_rate(mvi, phy_id,
  234. mvi->hba_info_param.phy_rate[phy_id]);
  235. }
  236. static void __devinit mvs_94xx_enable_xmt(struct mvs_info *mvi, int phy_id)
  237. {
  238. void __iomem *regs = mvi->regs;
  239. u32 tmp;
  240. tmp = mr32(MVS_PCS);
  241. tmp |= 1 << (phy_id + PCS_EN_PORT_XMT_SHIFT2);
  242. mw32(MVS_PCS, tmp);
  243. }
  244. static void mvs_94xx_phy_reset(struct mvs_info *mvi, u32 phy_id, int hard)
  245. {
  246. u32 tmp;
  247. u32 delay = 5000;
  248. if (hard == MVS_PHY_TUNE) {
  249. mvs_write_port_cfg_addr(mvi, phy_id, PHYR_SATA_CTL);
  250. tmp = mvs_read_port_cfg_data(mvi, phy_id);
  251. mvs_write_port_cfg_data(mvi, phy_id, tmp|0x20000000);
  252. mvs_write_port_cfg_data(mvi, phy_id, tmp|0x100000);
  253. return;
  254. }
  255. tmp = mvs_read_port_irq_stat(mvi, phy_id);
  256. tmp &= ~PHYEV_RDY_CH;
  257. mvs_write_port_irq_stat(mvi, phy_id, tmp);
  258. if (hard) {
  259. tmp = mvs_read_phy_ctl(mvi, phy_id);
  260. tmp |= PHY_RST_HARD;
  261. mvs_write_phy_ctl(mvi, phy_id, tmp);
  262. do {
  263. tmp = mvs_read_phy_ctl(mvi, phy_id);
  264. udelay(10);
  265. delay--;
  266. } while ((tmp & PHY_RST_HARD) && delay);
  267. if (!delay)
  268. mv_dprintk("phy hard reset failed.\n");
  269. } else {
  270. tmp = mvs_read_phy_ctl(mvi, phy_id);
  271. tmp |= PHY_RST;
  272. mvs_write_phy_ctl(mvi, phy_id, tmp);
  273. }
  274. }
  275. static void mvs_94xx_phy_disable(struct mvs_info *mvi, u32 phy_id)
  276. {
  277. u32 tmp;
  278. mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_MODE2);
  279. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  280. mvs_write_port_vsr_data(mvi, phy_id, tmp | 0x00800000);
  281. }
  282. static void mvs_94xx_phy_enable(struct mvs_info *mvi, u32 phy_id)
  283. {
  284. u32 tmp;
  285. u8 revision = 0;
  286. revision = mvi->pdev->revision;
  287. if (revision == VANIR_A0_REV) {
  288. mvs_write_port_vsr_addr(mvi, phy_id, CMD_HOST_RD_DATA);
  289. mvs_write_port_vsr_data(mvi, phy_id, 0x8300ffc1);
  290. }
  291. if (revision == VANIR_B0_REV) {
  292. mvs_write_port_vsr_addr(mvi, phy_id, CMD_APP_MEM_CTL);
  293. mvs_write_port_vsr_data(mvi, phy_id, 0x08001006);
  294. mvs_write_port_vsr_addr(mvi, phy_id, CMD_HOST_RD_DATA);
  295. mvs_write_port_vsr_data(mvi, phy_id, 0x0000705f);
  296. }
  297. mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_MODE2);
  298. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  299. tmp |= bit(0);
  300. mvs_write_port_vsr_data(mvi, phy_id, tmp & 0xfd7fffff);
  301. }
  302. static int __devinit mvs_94xx_init(struct mvs_info *mvi)
  303. {
  304. void __iomem *regs = mvi->regs;
  305. int i;
  306. u32 tmp, cctl;
  307. u8 revision;
  308. revision = mvi->pdev->revision;
  309. mvs_show_pcie_usage(mvi);
  310. if (mvi->flags & MVF_FLAG_SOC) {
  311. tmp = mr32(MVS_PHY_CTL);
  312. tmp &= ~PCTL_PWR_OFF;
  313. tmp |= PCTL_PHY_DSBL;
  314. mw32(MVS_PHY_CTL, tmp);
  315. }
  316. /* Init Chip */
  317. /* make sure RST is set; HBA_RST /should/ have done that for us */
  318. cctl = mr32(MVS_CTL) & 0xFFFF;
  319. if (cctl & CCTL_RST)
  320. cctl &= ~CCTL_RST;
  321. else
  322. mw32_f(MVS_CTL, cctl | CCTL_RST);
  323. if (mvi->flags & MVF_FLAG_SOC) {
  324. tmp = mr32(MVS_PHY_CTL);
  325. tmp &= ~PCTL_PWR_OFF;
  326. tmp |= PCTL_COM_ON;
  327. tmp &= ~PCTL_PHY_DSBL;
  328. tmp |= PCTL_LINK_RST;
  329. mw32(MVS_PHY_CTL, tmp);
  330. msleep(100);
  331. tmp &= ~PCTL_LINK_RST;
  332. mw32(MVS_PHY_CTL, tmp);
  333. msleep(100);
  334. }
  335. /* disable Multiplexing, enable phy implemented */
  336. mw32(MVS_PORTS_IMP, 0xFF);
  337. if (revision == VANIR_A0_REV) {
  338. mw32(MVS_PA_VSR_ADDR, CMD_CMWK_OOB_DET);
  339. mw32(MVS_PA_VSR_PORT, 0x00018080);
  340. }
  341. mw32(MVS_PA_VSR_ADDR, VSR_PHY_MODE2);
  342. if (revision == VANIR_A0_REV || revision == VANIR_B0_REV)
  343. /* set 6G/3G/1.5G, multiplexing, without SSC */
  344. mw32(MVS_PA_VSR_PORT, 0x0084d4fe);
  345. else
  346. /* set 6G/3G/1.5G, multiplexing, with and without SSC */
  347. mw32(MVS_PA_VSR_PORT, 0x0084fffe);
  348. if (revision == VANIR_B0_REV) {
  349. mw32(MVS_PA_VSR_ADDR, CMD_APP_MEM_CTL);
  350. mw32(MVS_PA_VSR_PORT, 0x08001006);
  351. mw32(MVS_PA_VSR_ADDR, CMD_HOST_RD_DATA);
  352. mw32(MVS_PA_VSR_PORT, 0x0000705f);
  353. }
  354. /* reset control */
  355. mw32(MVS_PCS, 0); /* MVS_PCS */
  356. mw32(MVS_STP_REG_SET_0, 0);
  357. mw32(MVS_STP_REG_SET_1, 0);
  358. /* init phys */
  359. mvs_phy_hacks(mvi);
  360. /* disable non data frame retry */
  361. tmp = mvs_cr32(mvi, CMD_SAS_CTL1);
  362. if ((revision == VANIR_A0_REV) ||
  363. (revision == VANIR_B0_REV) ||
  364. (revision == VANIR_C0_REV)) {
  365. tmp &= ~0xffff;
  366. tmp |= 0x007f;
  367. mvs_cw32(mvi, CMD_SAS_CTL1, tmp);
  368. }
  369. /* set LED blink when IO*/
  370. mw32(MVS_PA_VSR_ADDR, VSR_PHY_ACT_LED);
  371. tmp = mr32(MVS_PA_VSR_PORT);
  372. tmp &= 0xFFFF00FF;
  373. tmp |= 0x00003300;
  374. mw32(MVS_PA_VSR_PORT, tmp);
  375. mw32(MVS_CMD_LIST_LO, mvi->slot_dma);
  376. mw32(MVS_CMD_LIST_HI, (mvi->slot_dma >> 16) >> 16);
  377. mw32(MVS_RX_FIS_LO, mvi->rx_fis_dma);
  378. mw32(MVS_RX_FIS_HI, (mvi->rx_fis_dma >> 16) >> 16);
  379. mw32(MVS_TX_CFG, MVS_CHIP_SLOT_SZ);
  380. mw32(MVS_TX_LO, mvi->tx_dma);
  381. mw32(MVS_TX_HI, (mvi->tx_dma >> 16) >> 16);
  382. mw32(MVS_RX_CFG, MVS_RX_RING_SZ);
  383. mw32(MVS_RX_LO, mvi->rx_dma);
  384. mw32(MVS_RX_HI, (mvi->rx_dma >> 16) >> 16);
  385. for (i = 0; i < mvi->chip->n_phy; i++) {
  386. mvs_94xx_phy_disable(mvi, i);
  387. /* set phy local SAS address */
  388. mvs_set_sas_addr(mvi, i, CONFIG_ID_FRAME3, CONFIG_ID_FRAME4,
  389. cpu_to_le64(mvi->phy[i].dev_sas_addr));
  390. mvs_94xx_enable_xmt(mvi, i);
  391. mvs_94xx_config_reg_from_hba(mvi, i);
  392. mvs_94xx_phy_enable(mvi, i);
  393. mvs_94xx_phy_reset(mvi, i, PHY_RST_HARD);
  394. msleep(500);
  395. mvs_94xx_detect_porttype(mvi, i);
  396. }
  397. if (mvi->flags & MVF_FLAG_SOC) {
  398. /* set select registers */
  399. writel(0x0E008000, regs + 0x000);
  400. writel(0x59000008, regs + 0x004);
  401. writel(0x20, regs + 0x008);
  402. writel(0x20, regs + 0x00c);
  403. writel(0x20, regs + 0x010);
  404. writel(0x20, regs + 0x014);
  405. writel(0x20, regs + 0x018);
  406. writel(0x20, regs + 0x01c);
  407. }
  408. for (i = 0; i < mvi->chip->n_phy; i++) {
  409. /* clear phy int status */
  410. tmp = mvs_read_port_irq_stat(mvi, i);
  411. tmp &= ~PHYEV_SIG_FIS;
  412. mvs_write_port_irq_stat(mvi, i, tmp);
  413. /* set phy int mask */
  414. tmp = PHYEV_RDY_CH | PHYEV_BROAD_CH |
  415. PHYEV_ID_DONE | PHYEV_DCDR_ERR | PHYEV_CRC_ERR ;
  416. mvs_write_port_irq_mask(mvi, i, tmp);
  417. msleep(100);
  418. mvs_update_phyinfo(mvi, i, 1);
  419. }
  420. /* little endian for open address and command table, etc. */
  421. cctl = mr32(MVS_CTL);
  422. cctl |= CCTL_ENDIAN_CMD;
  423. cctl &= ~CCTL_ENDIAN_OPEN;
  424. cctl |= CCTL_ENDIAN_RSP;
  425. mw32_f(MVS_CTL, cctl);
  426. /* reset CMD queue */
  427. tmp = mr32(MVS_PCS);
  428. tmp |= PCS_CMD_RST;
  429. tmp &= ~PCS_SELF_CLEAR;
  430. mw32(MVS_PCS, tmp);
  431. /*
  432. * the max count is 0x1ff, while our max slot is 0x200,
  433. * it will make count 0.
  434. */
  435. tmp = 0;
  436. if (MVS_CHIP_SLOT_SZ > 0x1ff)
  437. mw32(MVS_INT_COAL, 0x1ff | COAL_EN);
  438. else
  439. mw32(MVS_INT_COAL, MVS_CHIP_SLOT_SZ | COAL_EN);
  440. /* default interrupt coalescing time is 128us */
  441. tmp = 0x10000 | interrupt_coalescing;
  442. mw32(MVS_INT_COAL_TMOUT, tmp);
  443. /* ladies and gentlemen, start your engines */
  444. mw32(MVS_TX_CFG, 0);
  445. mw32(MVS_TX_CFG, MVS_CHIP_SLOT_SZ | TX_EN);
  446. mw32(MVS_RX_CFG, MVS_RX_RING_SZ | RX_EN);
  447. /* enable CMD/CMPL_Q/RESP mode */
  448. mw32(MVS_PCS, PCS_SATA_RETRY_2 | PCS_FIS_RX_EN |
  449. PCS_CMD_EN | PCS_CMD_STOP_ERR);
  450. /* enable completion queue interrupt */
  451. tmp = (CINT_PORT_MASK | CINT_DONE | CINT_MEM | CINT_SRS | CINT_CI_STOP |
  452. CINT_DMA_PCIE | CINT_NON_SPEC_NCQ_ERROR);
  453. tmp |= CINT_PHY_MASK;
  454. mw32(MVS_INT_MASK, tmp);
  455. tmp = mvs_cr32(mvi, CMD_LINK_TIMER);
  456. tmp |= 0xFFFF0000;
  457. mvs_cw32(mvi, CMD_LINK_TIMER, tmp);
  458. /* tune STP performance */
  459. tmp = 0x003F003F;
  460. mvs_cw32(mvi, CMD_PL_TIMER, tmp);
  461. /* This can improve expander large block size seq write performance */
  462. tmp = mvs_cr32(mvi, CMD_PORT_LAYER_TIMER1);
  463. tmp |= 0xFFFF007F;
  464. mvs_cw32(mvi, CMD_PORT_LAYER_TIMER1, tmp);
  465. /* change the connection open-close behavior (bit 9)
  466. * set bit8 to 1 for performance tuning */
  467. tmp = mvs_cr32(mvi, CMD_SL_MODE0);
  468. tmp |= 0x00000300;
  469. /* set bit0 to 0 to enable retry for no_dest reject case */
  470. tmp &= 0xFFFFFFFE;
  471. mvs_cw32(mvi, CMD_SL_MODE0, tmp);
  472. /* Enable SRS interrupt */
  473. mw32(MVS_INT_MASK_SRS_0, 0xFFFF);
  474. return 0;
  475. }
  476. static int mvs_94xx_ioremap(struct mvs_info *mvi)
  477. {
  478. if (!mvs_ioremap(mvi, 2, -1)) {
  479. mvi->regs_ex = mvi->regs + 0x10200;
  480. mvi->regs += 0x20000;
  481. if (mvi->id == 1)
  482. mvi->regs += 0x4000;
  483. return 0;
  484. }
  485. return -1;
  486. }
  487. static void mvs_94xx_iounmap(struct mvs_info *mvi)
  488. {
  489. if (mvi->regs) {
  490. mvi->regs -= 0x20000;
  491. if (mvi->id == 1)
  492. mvi->regs -= 0x4000;
  493. mvs_iounmap(mvi->regs);
  494. }
  495. }
  496. static void mvs_94xx_interrupt_enable(struct mvs_info *mvi)
  497. {
  498. void __iomem *regs = mvi->regs_ex;
  499. u32 tmp;
  500. tmp = mr32(MVS_GBL_CTL);
  501. tmp |= (IRQ_SAS_A | IRQ_SAS_B);
  502. mw32(MVS_GBL_INT_STAT, tmp);
  503. writel(tmp, regs + 0x0C);
  504. writel(tmp, regs + 0x10);
  505. writel(tmp, regs + 0x14);
  506. writel(tmp, regs + 0x18);
  507. mw32(MVS_GBL_CTL, tmp);
  508. }
  509. static void mvs_94xx_interrupt_disable(struct mvs_info *mvi)
  510. {
  511. void __iomem *regs = mvi->regs_ex;
  512. u32 tmp;
  513. tmp = mr32(MVS_GBL_CTL);
  514. tmp &= ~(IRQ_SAS_A | IRQ_SAS_B);
  515. mw32(MVS_GBL_INT_STAT, tmp);
  516. writel(tmp, regs + 0x0C);
  517. writel(tmp, regs + 0x10);
  518. writel(tmp, regs + 0x14);
  519. writel(tmp, regs + 0x18);
  520. mw32(MVS_GBL_CTL, tmp);
  521. }
  522. static u32 mvs_94xx_isr_status(struct mvs_info *mvi, int irq)
  523. {
  524. void __iomem *regs = mvi->regs_ex;
  525. u32 stat = 0;
  526. if (!(mvi->flags & MVF_FLAG_SOC)) {
  527. stat = mr32(MVS_GBL_INT_STAT);
  528. if (!(stat & (IRQ_SAS_A | IRQ_SAS_B)))
  529. return 0;
  530. }
  531. return stat;
  532. }
  533. static irqreturn_t mvs_94xx_isr(struct mvs_info *mvi, int irq, u32 stat)
  534. {
  535. void __iomem *regs = mvi->regs;
  536. if (((stat & IRQ_SAS_A) && mvi->id == 0) ||
  537. ((stat & IRQ_SAS_B) && mvi->id == 1)) {
  538. mw32_f(MVS_INT_STAT, CINT_DONE);
  539. spin_lock(&mvi->lock);
  540. mvs_int_full(mvi);
  541. spin_unlock(&mvi->lock);
  542. }
  543. return IRQ_HANDLED;
  544. }
  545. static void mvs_94xx_command_active(struct mvs_info *mvi, u32 slot_idx)
  546. {
  547. u32 tmp;
  548. tmp = mvs_cr32(mvi, MVS_COMMAND_ACTIVE+(slot_idx >> 3));
  549. if (tmp && 1 << (slot_idx % 32)) {
  550. mv_printk("command active %08X, slot [%x].\n", tmp, slot_idx);
  551. mvs_cw32(mvi, MVS_COMMAND_ACTIVE + (slot_idx >> 3),
  552. 1 << (slot_idx % 32));
  553. do {
  554. tmp = mvs_cr32(mvi,
  555. MVS_COMMAND_ACTIVE + (slot_idx >> 3));
  556. } while (tmp & 1 << (slot_idx % 32));
  557. }
  558. }
  559. void mvs_94xx_clear_srs_irq(struct mvs_info *mvi, u8 reg_set, u8 clear_all)
  560. {
  561. void __iomem *regs = mvi->regs;
  562. u32 tmp;
  563. if (clear_all) {
  564. tmp = mr32(MVS_INT_STAT_SRS_0);
  565. if (tmp) {
  566. mv_dprintk("check SRS 0 %08X.\n", tmp);
  567. mw32(MVS_INT_STAT_SRS_0, tmp);
  568. }
  569. tmp = mr32(MVS_INT_STAT_SRS_1);
  570. if (tmp) {
  571. mv_dprintk("check SRS 1 %08X.\n", tmp);
  572. mw32(MVS_INT_STAT_SRS_1, tmp);
  573. }
  574. } else {
  575. if (reg_set > 31)
  576. tmp = mr32(MVS_INT_STAT_SRS_1);
  577. else
  578. tmp = mr32(MVS_INT_STAT_SRS_0);
  579. if (tmp & (1 << (reg_set % 32))) {
  580. mv_dprintk("register set 0x%x was stopped.\n", reg_set);
  581. if (reg_set > 31)
  582. mw32(MVS_INT_STAT_SRS_1, 1 << (reg_set % 32));
  583. else
  584. mw32(MVS_INT_STAT_SRS_0, 1 << (reg_set % 32));
  585. }
  586. }
  587. }
  588. static void mvs_94xx_issue_stop(struct mvs_info *mvi, enum mvs_port_type type,
  589. u32 tfs)
  590. {
  591. void __iomem *regs = mvi->regs;
  592. u32 tmp;
  593. mvs_94xx_clear_srs_irq(mvi, 0, 1);
  594. tmp = mr32(MVS_INT_STAT);
  595. mw32(MVS_INT_STAT, tmp | CINT_CI_STOP);
  596. tmp = mr32(MVS_PCS) | 0xFF00;
  597. mw32(MVS_PCS, tmp);
  598. }
  599. static void mvs_94xx_non_spec_ncq_error(struct mvs_info *mvi)
  600. {
  601. void __iomem *regs = mvi->regs;
  602. u32 err_0, err_1;
  603. u8 i;
  604. struct mvs_device *device;
  605. err_0 = mr32(MVS_NON_NCQ_ERR_0);
  606. err_1 = mr32(MVS_NON_NCQ_ERR_1);
  607. mv_dprintk("non specific ncq error err_0:%x,err_1:%x.\n",
  608. err_0, err_1);
  609. for (i = 0; i < 32; i++) {
  610. if (err_0 & bit(i)) {
  611. device = mvs_find_dev_by_reg_set(mvi, i);
  612. if (device)
  613. mvs_release_task(mvi, device->sas_device);
  614. }
  615. if (err_1 & bit(i)) {
  616. device = mvs_find_dev_by_reg_set(mvi, i+32);
  617. if (device)
  618. mvs_release_task(mvi, device->sas_device);
  619. }
  620. }
  621. mw32(MVS_NON_NCQ_ERR_0, err_0);
  622. mw32(MVS_NON_NCQ_ERR_1, err_1);
  623. }
  624. static void mvs_94xx_free_reg_set(struct mvs_info *mvi, u8 *tfs)
  625. {
  626. void __iomem *regs = mvi->regs;
  627. u8 reg_set = *tfs;
  628. if (*tfs == MVS_ID_NOT_MAPPED)
  629. return;
  630. mvi->sata_reg_set &= ~bit(reg_set);
  631. if (reg_set < 32)
  632. w_reg_set_enable(reg_set, (u32)mvi->sata_reg_set);
  633. else
  634. w_reg_set_enable(reg_set, (u32)(mvi->sata_reg_set >> 32));
  635. *tfs = MVS_ID_NOT_MAPPED;
  636. return;
  637. }
  638. static u8 mvs_94xx_assign_reg_set(struct mvs_info *mvi, u8 *tfs)
  639. {
  640. int i;
  641. void __iomem *regs = mvi->regs;
  642. if (*tfs != MVS_ID_NOT_MAPPED)
  643. return 0;
  644. i = mv_ffc64(mvi->sata_reg_set);
  645. if (i >= 32) {
  646. mvi->sata_reg_set |= bit(i);
  647. w_reg_set_enable(i, (u32)(mvi->sata_reg_set >> 32));
  648. *tfs = i;
  649. return 0;
  650. } else if (i >= 0) {
  651. mvi->sata_reg_set |= bit(i);
  652. w_reg_set_enable(i, (u32)mvi->sata_reg_set);
  653. *tfs = i;
  654. return 0;
  655. }
  656. return MVS_ID_NOT_MAPPED;
  657. }
  658. static void mvs_94xx_make_prd(struct scatterlist *scatter, int nr, void *prd)
  659. {
  660. int i;
  661. struct scatterlist *sg;
  662. struct mvs_prd *buf_prd = prd;
  663. struct mvs_prd_imt im_len;
  664. *(u32 *)&im_len = 0;
  665. for_each_sg(scatter, sg, nr, i) {
  666. buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
  667. im_len.len = sg_dma_len(sg);
  668. buf_prd->im_len = cpu_to_le32(*(u32 *)&im_len);
  669. buf_prd++;
  670. }
  671. }
  672. static int mvs_94xx_oob_done(struct mvs_info *mvi, int i)
  673. {
  674. u32 phy_st;
  675. phy_st = mvs_read_phy_ctl(mvi, i);
  676. if (phy_st & PHY_READY_MASK)
  677. return 1;
  678. return 0;
  679. }
  680. static void mvs_94xx_get_dev_identify_frame(struct mvs_info *mvi, int port_id,
  681. struct sas_identify_frame *id)
  682. {
  683. int i;
  684. u32 id_frame[7];
  685. for (i = 0; i < 7; i++) {
  686. mvs_write_port_cfg_addr(mvi, port_id,
  687. CONFIG_ID_FRAME0 + i * 4);
  688. id_frame[i] = cpu_to_le32(mvs_read_port_cfg_data(mvi, port_id));
  689. }
  690. memcpy(id, id_frame, 28);
  691. }
  692. static void mvs_94xx_get_att_identify_frame(struct mvs_info *mvi, int port_id,
  693. struct sas_identify_frame *id)
  694. {
  695. int i;
  696. u32 id_frame[7];
  697. for (i = 0; i < 7; i++) {
  698. mvs_write_port_cfg_addr(mvi, port_id,
  699. CONFIG_ATT_ID_FRAME0 + i * 4);
  700. id_frame[i] = cpu_to_le32(mvs_read_port_cfg_data(mvi, port_id));
  701. mv_dprintk("94xx phy %d atta frame %d %x.\n",
  702. port_id + mvi->id * mvi->chip->n_phy, i, id_frame[i]);
  703. }
  704. memcpy(id, id_frame, 28);
  705. }
  706. static u32 mvs_94xx_make_dev_info(struct sas_identify_frame *id)
  707. {
  708. u32 att_dev_info = 0;
  709. att_dev_info |= id->dev_type;
  710. if (id->stp_iport)
  711. att_dev_info |= PORT_DEV_STP_INIT;
  712. if (id->smp_iport)
  713. att_dev_info |= PORT_DEV_SMP_INIT;
  714. if (id->ssp_iport)
  715. att_dev_info |= PORT_DEV_SSP_INIT;
  716. if (id->stp_tport)
  717. att_dev_info |= PORT_DEV_STP_TRGT;
  718. if (id->smp_tport)
  719. att_dev_info |= PORT_DEV_SMP_TRGT;
  720. if (id->ssp_tport)
  721. att_dev_info |= PORT_DEV_SSP_TRGT;
  722. att_dev_info |= (u32)id->phy_id<<24;
  723. return att_dev_info;
  724. }
  725. static u32 mvs_94xx_make_att_info(struct sas_identify_frame *id)
  726. {
  727. return mvs_94xx_make_dev_info(id);
  728. }
  729. static void mvs_94xx_fix_phy_info(struct mvs_info *mvi, int i,
  730. struct sas_identify_frame *id)
  731. {
  732. struct mvs_phy *phy = &mvi->phy[i];
  733. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  734. mv_dprintk("get all reg link rate is 0x%x\n", phy->phy_status);
  735. sas_phy->linkrate =
  736. (phy->phy_status & PHY_NEG_SPP_PHYS_LINK_RATE_MASK) >>
  737. PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET;
  738. sas_phy->linkrate += 0x8;
  739. mv_dprintk("get link rate is %d\n", sas_phy->linkrate);
  740. phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS;
  741. phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS;
  742. mvs_94xx_get_dev_identify_frame(mvi, i, id);
  743. phy->dev_info = mvs_94xx_make_dev_info(id);
  744. if (phy->phy_type & PORT_TYPE_SAS) {
  745. mvs_94xx_get_att_identify_frame(mvi, i, id);
  746. phy->att_dev_info = mvs_94xx_make_att_info(id);
  747. phy->att_dev_sas_addr = *(u64 *)id->sas_addr;
  748. } else {
  749. phy->att_dev_info = PORT_DEV_STP_TRGT | 1;
  750. }
  751. /* enable spin up bit */
  752. mvs_write_port_cfg_addr(mvi, i, PHYR_PHY_STAT);
  753. mvs_write_port_cfg_data(mvi, i, 0x04);
  754. }
  755. void mvs_94xx_phy_set_link_rate(struct mvs_info *mvi, u32 phy_id,
  756. struct sas_phy_linkrates *rates)
  757. {
  758. u32 lrmax = 0;
  759. u32 tmp;
  760. tmp = mvs_read_phy_ctl(mvi, phy_id);
  761. lrmax = (rates->maximum_linkrate - SAS_LINK_RATE_1_5_GBPS) << 12;
  762. if (lrmax) {
  763. tmp &= ~(0x3 << 12);
  764. tmp |= lrmax;
  765. }
  766. mvs_write_phy_ctl(mvi, phy_id, tmp);
  767. mvs_94xx_phy_reset(mvi, phy_id, PHY_RST_HARD);
  768. }
  769. static void mvs_94xx_clear_active_cmds(struct mvs_info *mvi)
  770. {
  771. u32 tmp;
  772. void __iomem *regs = mvi->regs;
  773. tmp = mr32(MVS_STP_REG_SET_0);
  774. mw32(MVS_STP_REG_SET_0, 0);
  775. mw32(MVS_STP_REG_SET_0, tmp);
  776. tmp = mr32(MVS_STP_REG_SET_1);
  777. mw32(MVS_STP_REG_SET_1, 0);
  778. mw32(MVS_STP_REG_SET_1, tmp);
  779. }
  780. u32 mvs_94xx_spi_read_data(struct mvs_info *mvi)
  781. {
  782. void __iomem *regs = mvi->regs_ex - 0x10200;
  783. return mr32(SPI_RD_DATA_REG_94XX);
  784. }
  785. void mvs_94xx_spi_write_data(struct mvs_info *mvi, u32 data)
  786. {
  787. void __iomem *regs = mvi->regs_ex - 0x10200;
  788. mw32(SPI_RD_DATA_REG_94XX, data);
  789. }
  790. int mvs_94xx_spi_buildcmd(struct mvs_info *mvi,
  791. u32 *dwCmd,
  792. u8 cmd,
  793. u8 read,
  794. u8 length,
  795. u32 addr
  796. )
  797. {
  798. void __iomem *regs = mvi->regs_ex - 0x10200;
  799. u32 dwTmp;
  800. dwTmp = ((u32)cmd << 8) | ((u32)length << 4);
  801. if (read)
  802. dwTmp |= SPI_CTRL_READ_94XX;
  803. if (addr != MV_MAX_U32) {
  804. mw32(SPI_ADDR_REG_94XX, (addr & 0x0003FFFFL));
  805. dwTmp |= SPI_ADDR_VLD_94XX;
  806. }
  807. *dwCmd = dwTmp;
  808. return 0;
  809. }
  810. int mvs_94xx_spi_issuecmd(struct mvs_info *mvi, u32 cmd)
  811. {
  812. void __iomem *regs = mvi->regs_ex - 0x10200;
  813. mw32(SPI_CTRL_REG_94XX, cmd | SPI_CTRL_SpiStart_94XX);
  814. return 0;
  815. }
  816. int mvs_94xx_spi_waitdataready(struct mvs_info *mvi, u32 timeout)
  817. {
  818. void __iomem *regs = mvi->regs_ex - 0x10200;
  819. u32 i, dwTmp;
  820. for (i = 0; i < timeout; i++) {
  821. dwTmp = mr32(SPI_CTRL_REG_94XX);
  822. if (!(dwTmp & SPI_CTRL_SpiStart_94XX))
  823. return 0;
  824. msleep(10);
  825. }
  826. return -1;
  827. }
  828. void mvs_94xx_fix_dma(struct mvs_info *mvi, u32 phy_mask,
  829. int buf_len, int from, void *prd)
  830. {
  831. int i;
  832. struct mvs_prd *buf_prd = prd;
  833. dma_addr_t buf_dma;
  834. struct mvs_prd_imt im_len;
  835. *(u32 *)&im_len = 0;
  836. buf_prd += from;
  837. #define PRD_CHAINED_ENTRY 0x01
  838. if ((mvi->pdev->revision == VANIR_A0_REV) ||
  839. (mvi->pdev->revision == VANIR_B0_REV))
  840. buf_dma = (phy_mask <= 0x08) ?
  841. mvi->bulk_buffer_dma : mvi->bulk_buffer_dma1;
  842. else
  843. return;
  844. for (i = from; i < MAX_SG_ENTRY; i++, ++buf_prd) {
  845. if (i == MAX_SG_ENTRY - 1) {
  846. buf_prd->addr = cpu_to_le64(virt_to_phys(buf_prd - 1));
  847. im_len.len = 2;
  848. im_len.misc_ctl = PRD_CHAINED_ENTRY;
  849. } else {
  850. buf_prd->addr = cpu_to_le64(buf_dma);
  851. im_len.len = buf_len;
  852. }
  853. buf_prd->im_len = cpu_to_le32(*(u32 *)&im_len);
  854. }
  855. }
  856. static void mvs_94xx_tune_interrupt(struct mvs_info *mvi, u32 time)
  857. {
  858. void __iomem *regs = mvi->regs;
  859. u32 tmp = 0;
  860. /*
  861. * the max count is 0x1ff, while our max slot is 0x200,
  862. * it will make count 0.
  863. */
  864. if (time == 0) {
  865. mw32(MVS_INT_COAL, 0);
  866. mw32(MVS_INT_COAL_TMOUT, 0x10000);
  867. } else {
  868. if (MVS_CHIP_SLOT_SZ > 0x1ff)
  869. mw32(MVS_INT_COAL, 0x1ff|COAL_EN);
  870. else
  871. mw32(MVS_INT_COAL, MVS_CHIP_SLOT_SZ|COAL_EN);
  872. tmp = 0x10000 | time;
  873. mw32(MVS_INT_COAL_TMOUT, tmp);
  874. }
  875. }
  876. const struct mvs_dispatch mvs_94xx_dispatch = {
  877. "mv94xx",
  878. mvs_94xx_init,
  879. NULL,
  880. mvs_94xx_ioremap,
  881. mvs_94xx_iounmap,
  882. mvs_94xx_isr,
  883. mvs_94xx_isr_status,
  884. mvs_94xx_interrupt_enable,
  885. mvs_94xx_interrupt_disable,
  886. mvs_read_phy_ctl,
  887. mvs_write_phy_ctl,
  888. mvs_read_port_cfg_data,
  889. mvs_write_port_cfg_data,
  890. mvs_write_port_cfg_addr,
  891. mvs_read_port_vsr_data,
  892. mvs_write_port_vsr_data,
  893. mvs_write_port_vsr_addr,
  894. mvs_read_port_irq_stat,
  895. mvs_write_port_irq_stat,
  896. mvs_read_port_irq_mask,
  897. mvs_write_port_irq_mask,
  898. mvs_94xx_command_active,
  899. mvs_94xx_clear_srs_irq,
  900. mvs_94xx_issue_stop,
  901. mvs_start_delivery,
  902. mvs_rx_update,
  903. mvs_int_full,
  904. mvs_94xx_assign_reg_set,
  905. mvs_94xx_free_reg_set,
  906. mvs_get_prd_size,
  907. mvs_get_prd_count,
  908. mvs_94xx_make_prd,
  909. mvs_94xx_detect_porttype,
  910. mvs_94xx_oob_done,
  911. mvs_94xx_fix_phy_info,
  912. NULL,
  913. mvs_94xx_phy_set_link_rate,
  914. mvs_hw_max_link_rate,
  915. mvs_94xx_phy_disable,
  916. mvs_94xx_phy_enable,
  917. mvs_94xx_phy_reset,
  918. NULL,
  919. mvs_94xx_clear_active_cmds,
  920. mvs_94xx_spi_read_data,
  921. mvs_94xx_spi_write_data,
  922. mvs_94xx_spi_buildcmd,
  923. mvs_94xx_spi_issuecmd,
  924. mvs_94xx_spi_waitdataready,
  925. mvs_94xx_fix_dma,
  926. mvs_94xx_tune_interrupt,
  927. mvs_94xx_non_spec_ncq_error,
  928. };