caamalg.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420
  1. /*
  2. * caam - Freescale FSL CAAM support for crypto API
  3. *
  4. * Copyright 2008-2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on talitos crypto API driver.
  7. *
  8. * relationship of job descriptors to shared descriptors (SteveC Dec 10 2008):
  9. *
  10. * --------------- ---------------
  11. * | JobDesc #1 |-------------------->| ShareDesc |
  12. * | *(packet 1) | | (PDB) |
  13. * --------------- |------------->| (hashKey) |
  14. * . | | (cipherKey) |
  15. * . | |-------->| (operation) |
  16. * --------------- | | ---------------
  17. * | JobDesc #2 |------| |
  18. * | *(packet 2) | |
  19. * --------------- |
  20. * . |
  21. * . |
  22. * --------------- |
  23. * | JobDesc #3 |------------
  24. * | *(packet 3) |
  25. * ---------------
  26. *
  27. * The SharedDesc never changes for a connection unless rekeyed, but
  28. * each packet will likely be in a different place. So all we need
  29. * to know to process the packet is where the input is, where the
  30. * output goes, and what context we want to process with. Context is
  31. * in the SharedDesc, packet references in the JobDesc.
  32. *
  33. * So, a job desc looks like:
  34. *
  35. * ---------------------
  36. * | Header |
  37. * | ShareDesc Pointer |
  38. * | SEQ_OUT_PTR |
  39. * | (output buffer) |
  40. * | SEQ_IN_PTR |
  41. * | (input buffer) |
  42. * | LOAD (to DECO) |
  43. * ---------------------
  44. */
  45. #include "compat.h"
  46. #include "regs.h"
  47. #include "intern.h"
  48. #include "desc_constr.h"
  49. #include "jr.h"
  50. #include "error.h"
  51. /*
  52. * crypto alg
  53. */
  54. #define CAAM_CRA_PRIORITY 3000
  55. /* max key is sum of AES_MAX_KEY_SIZE, max split key size */
  56. #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \
  57. SHA512_DIGEST_SIZE * 2)
  58. /* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
  59. #define CAAM_MAX_IV_LENGTH 16
  60. /* length of descriptors text */
  61. #define DESC_JOB_IO_LEN (CAAM_CMD_SZ * 3 + CAAM_PTR_SZ * 3)
  62. #define DESC_AEAD_BASE (4 * CAAM_CMD_SZ)
  63. #define DESC_AEAD_ENC_LEN (DESC_AEAD_BASE + 16 * CAAM_CMD_SZ)
  64. #define DESC_AEAD_DEC_LEN (DESC_AEAD_BASE + 21 * CAAM_CMD_SZ)
  65. #define DESC_AEAD_GIVENC_LEN (DESC_AEAD_ENC_LEN + 7 * CAAM_CMD_SZ)
  66. #define DESC_ABLKCIPHER_BASE (3 * CAAM_CMD_SZ)
  67. #define DESC_ABLKCIPHER_ENC_LEN (DESC_ABLKCIPHER_BASE + \
  68. 20 * CAAM_CMD_SZ)
  69. #define DESC_ABLKCIPHER_DEC_LEN (DESC_ABLKCIPHER_BASE + \
  70. 15 * CAAM_CMD_SZ)
  71. #define DESC_MAX_USED_BYTES (DESC_AEAD_GIVENC_LEN + \
  72. CAAM_MAX_KEY_SIZE)
  73. #define DESC_MAX_USED_LEN (DESC_MAX_USED_BYTES / CAAM_CMD_SZ)
  74. #ifdef DEBUG
  75. /* for print_hex_dumps with line references */
  76. #define xstr(s) str(s)
  77. #define str(s) #s
  78. #define debug(format, arg...) printk(format, arg)
  79. #else
  80. #define debug(format, arg...)
  81. #endif
  82. /* Set DK bit in class 1 operation if shared */
  83. static inline void append_dec_op1(u32 *desc, u32 type)
  84. {
  85. u32 *jump_cmd, *uncond_jump_cmd;
  86. jump_cmd = append_jump(desc, JUMP_TEST_ALL | JUMP_COND_SHRD);
  87. append_operation(desc, type | OP_ALG_AS_INITFINAL |
  88. OP_ALG_DECRYPT);
  89. uncond_jump_cmd = append_jump(desc, JUMP_TEST_ALL);
  90. set_jump_tgt_here(desc, jump_cmd);
  91. append_operation(desc, type | OP_ALG_AS_INITFINAL |
  92. OP_ALG_DECRYPT | OP_ALG_AAI_DK);
  93. set_jump_tgt_here(desc, uncond_jump_cmd);
  94. }
  95. /*
  96. * Wait for completion of class 1 key loading before allowing
  97. * error propagation
  98. */
  99. static inline void append_dec_shr_done(u32 *desc)
  100. {
  101. u32 *jump_cmd;
  102. jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1 | JUMP_TEST_ALL);
  103. set_jump_tgt_here(desc, jump_cmd);
  104. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  105. }
  106. /*
  107. * For aead functions, read payload and write payload,
  108. * both of which are specified in req->src and req->dst
  109. */
  110. static inline void aead_append_src_dst(u32 *desc, u32 msg_type)
  111. {
  112. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_BOTH |
  113. KEY_VLF | msg_type | FIFOLD_TYPE_LASTBOTH);
  114. append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF);
  115. }
  116. /*
  117. * For aead encrypt and decrypt, read iv for both classes
  118. */
  119. static inline void aead_append_ld_iv(u32 *desc, int ivsize)
  120. {
  121. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  122. LDST_CLASS_1_CCB | ivsize);
  123. append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize);
  124. }
  125. /*
  126. * For ablkcipher encrypt and decrypt, read from req->src and
  127. * write to req->dst
  128. */
  129. static inline void ablkcipher_append_src_dst(u32 *desc)
  130. {
  131. append_math_add(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ); \
  132. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ); \
  133. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | \
  134. KEY_VLF | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST1); \
  135. append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF); \
  136. }
  137. /*
  138. * If all data, including src (with assoc and iv) or dst (with iv only) are
  139. * contiguous
  140. */
  141. #define GIV_SRC_CONTIG 1
  142. #define GIV_DST_CONTIG (1 << 1)
  143. /*
  144. * per-session context
  145. */
  146. struct caam_ctx {
  147. struct device *jrdev;
  148. u32 sh_desc_enc[DESC_MAX_USED_LEN];
  149. u32 sh_desc_dec[DESC_MAX_USED_LEN];
  150. u32 sh_desc_givenc[DESC_MAX_USED_LEN];
  151. dma_addr_t sh_desc_enc_dma;
  152. dma_addr_t sh_desc_dec_dma;
  153. dma_addr_t sh_desc_givenc_dma;
  154. u32 class1_alg_type;
  155. u32 class2_alg_type;
  156. u32 alg_op;
  157. u8 key[CAAM_MAX_KEY_SIZE];
  158. dma_addr_t key_dma;
  159. unsigned int enckeylen;
  160. unsigned int split_key_len;
  161. unsigned int split_key_pad_len;
  162. unsigned int authsize;
  163. };
  164. static void append_key_aead(u32 *desc, struct caam_ctx *ctx,
  165. int keys_fit_inline)
  166. {
  167. if (keys_fit_inline) {
  168. append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
  169. ctx->split_key_len, CLASS_2 |
  170. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  171. append_key_as_imm(desc, (void *)ctx->key +
  172. ctx->split_key_pad_len, ctx->enckeylen,
  173. ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
  174. } else {
  175. append_key(desc, ctx->key_dma, ctx->split_key_len, CLASS_2 |
  176. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  177. append_key(desc, ctx->key_dma + ctx->split_key_pad_len,
  178. ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
  179. }
  180. }
  181. static void init_sh_desc_key_aead(u32 *desc, struct caam_ctx *ctx,
  182. int keys_fit_inline)
  183. {
  184. u32 *key_jump_cmd;
  185. init_sh_desc(desc, HDR_SHARE_WAIT);
  186. /* Skip if already shared */
  187. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  188. JUMP_COND_SHRD);
  189. append_key_aead(desc, ctx, keys_fit_inline);
  190. set_jump_tgt_here(desc, key_jump_cmd);
  191. /* Propagate errors from shared to job descriptor */
  192. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  193. }
  194. static int aead_set_sh_desc(struct crypto_aead *aead)
  195. {
  196. struct aead_tfm *tfm = &aead->base.crt_aead;
  197. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  198. struct device *jrdev = ctx->jrdev;
  199. bool keys_fit_inline = 0;
  200. u32 *key_jump_cmd, *jump_cmd;
  201. u32 geniv, moveiv;
  202. u32 *desc;
  203. if (!ctx->enckeylen || !ctx->authsize)
  204. return 0;
  205. /*
  206. * Job Descriptor and Shared Descriptors
  207. * must all fit into the 64-word Descriptor h/w Buffer
  208. */
  209. if (DESC_AEAD_ENC_LEN + DESC_JOB_IO_LEN +
  210. ctx->split_key_pad_len + ctx->enckeylen <=
  211. CAAM_DESC_BYTES_MAX)
  212. keys_fit_inline = 1;
  213. /* aead_encrypt shared descriptor */
  214. desc = ctx->sh_desc_enc;
  215. init_sh_desc_key_aead(desc, ctx, keys_fit_inline);
  216. /* Class 2 operation */
  217. append_operation(desc, ctx->class2_alg_type |
  218. OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
  219. /* cryptlen = seqoutlen - authsize */
  220. append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize);
  221. /* assoclen + cryptlen = seqinlen - ivsize */
  222. append_math_sub_imm_u32(desc, REG2, SEQINLEN, IMM, tfm->ivsize);
  223. /* assoclen + cryptlen = (assoclen + cryptlen) - cryptlen */
  224. append_math_sub(desc, VARSEQINLEN, REG2, REG3, CAAM_CMD_SZ);
  225. /* read assoc before reading payload */
  226. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG |
  227. KEY_VLF);
  228. aead_append_ld_iv(desc, tfm->ivsize);
  229. /* Class 1 operation */
  230. append_operation(desc, ctx->class1_alg_type |
  231. OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
  232. /* Read and write cryptlen bytes */
  233. append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ);
  234. append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ);
  235. aead_append_src_dst(desc, FIFOLD_TYPE_MSG1OUT2);
  236. /* Write ICV */
  237. append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB |
  238. LDST_SRCDST_BYTE_CONTEXT);
  239. ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
  240. desc_bytes(desc),
  241. DMA_TO_DEVICE);
  242. if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
  243. dev_err(jrdev, "unable to map shared descriptor\n");
  244. return -ENOMEM;
  245. }
  246. #ifdef DEBUG
  247. print_hex_dump(KERN_ERR, "aead enc shdesc@"xstr(__LINE__)": ",
  248. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  249. desc_bytes(desc), 1);
  250. #endif
  251. /*
  252. * Job Descriptor and Shared Descriptors
  253. * must all fit into the 64-word Descriptor h/w Buffer
  254. */
  255. if (DESC_AEAD_DEC_LEN + DESC_JOB_IO_LEN +
  256. ctx->split_key_pad_len + ctx->enckeylen <=
  257. CAAM_DESC_BYTES_MAX)
  258. keys_fit_inline = 1;
  259. desc = ctx->sh_desc_dec;
  260. /* aead_decrypt shared descriptor */
  261. init_sh_desc(desc, HDR_SHARE_WAIT);
  262. /* Skip if already shared */
  263. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  264. JUMP_COND_SHRD);
  265. append_key_aead(desc, ctx, keys_fit_inline);
  266. /* Only propagate error immediately if shared */
  267. jump_cmd = append_jump(desc, JUMP_TEST_ALL);
  268. set_jump_tgt_here(desc, key_jump_cmd);
  269. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  270. set_jump_tgt_here(desc, jump_cmd);
  271. /* Class 2 operation */
  272. append_operation(desc, ctx->class2_alg_type |
  273. OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON);
  274. /* assoclen + cryptlen = seqinlen - ivsize */
  275. append_math_sub_imm_u32(desc, REG3, SEQINLEN, IMM,
  276. ctx->authsize + tfm->ivsize)
  277. /* assoclen = (assoclen + cryptlen) - cryptlen */
  278. append_math_sub(desc, REG2, SEQOUTLEN, REG0, CAAM_CMD_SZ);
  279. append_math_sub(desc, VARSEQINLEN, REG3, REG2, CAAM_CMD_SZ);
  280. /* read assoc before reading payload */
  281. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG |
  282. KEY_VLF);
  283. aead_append_ld_iv(desc, tfm->ivsize);
  284. append_dec_op1(desc, ctx->class1_alg_type);
  285. /* Read and write cryptlen bytes */
  286. append_math_add(desc, VARSEQINLEN, ZERO, REG2, CAAM_CMD_SZ);
  287. append_math_add(desc, VARSEQOUTLEN, ZERO, REG2, CAAM_CMD_SZ);
  288. aead_append_src_dst(desc, FIFOLD_TYPE_MSG);
  289. /* Load ICV */
  290. append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS2 |
  291. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV);
  292. append_dec_shr_done(desc);
  293. ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc,
  294. desc_bytes(desc),
  295. DMA_TO_DEVICE);
  296. if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) {
  297. dev_err(jrdev, "unable to map shared descriptor\n");
  298. return -ENOMEM;
  299. }
  300. #ifdef DEBUG
  301. print_hex_dump(KERN_ERR, "aead dec shdesc@"xstr(__LINE__)": ",
  302. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  303. desc_bytes(desc), 1);
  304. #endif
  305. /*
  306. * Job Descriptor and Shared Descriptors
  307. * must all fit into the 64-word Descriptor h/w Buffer
  308. */
  309. if (DESC_AEAD_GIVENC_LEN + DESC_JOB_IO_LEN +
  310. ctx->split_key_pad_len + ctx->enckeylen <=
  311. CAAM_DESC_BYTES_MAX)
  312. keys_fit_inline = 1;
  313. /* aead_givencrypt shared descriptor */
  314. desc = ctx->sh_desc_givenc;
  315. init_sh_desc_key_aead(desc, ctx, keys_fit_inline);
  316. /* Generate IV */
  317. geniv = NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DEST_DECO |
  318. NFIFOENTRY_DTYPE_MSG | NFIFOENTRY_LC1 |
  319. NFIFOENTRY_PTYPE_RND | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT);
  320. append_load_imm_u32(desc, geniv, LDST_CLASS_IND_CCB |
  321. LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM);
  322. append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
  323. append_move(desc, MOVE_SRC_INFIFO |
  324. MOVE_DEST_CLASS1CTX | (tfm->ivsize << MOVE_LEN_SHIFT));
  325. append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
  326. /* Copy IV to class 1 context */
  327. append_move(desc, MOVE_SRC_CLASS1CTX |
  328. MOVE_DEST_OUTFIFO | (tfm->ivsize << MOVE_LEN_SHIFT));
  329. /* Return to encryption */
  330. append_operation(desc, ctx->class2_alg_type |
  331. OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
  332. /* ivsize + cryptlen = seqoutlen - authsize */
  333. append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize);
  334. /* assoclen = seqinlen - (ivsize + cryptlen) */
  335. append_math_sub(desc, VARSEQINLEN, SEQINLEN, REG3, CAAM_CMD_SZ);
  336. /* read assoc before reading payload */
  337. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG |
  338. KEY_VLF);
  339. /* Copy iv from class 1 ctx to class 2 fifo*/
  340. moveiv = NFIFOENTRY_STYPE_OFIFO | NFIFOENTRY_DEST_CLASS2 |
  341. NFIFOENTRY_DTYPE_MSG | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT);
  342. append_load_imm_u32(desc, moveiv, LDST_CLASS_IND_CCB |
  343. LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM);
  344. append_load_imm_u32(desc, tfm->ivsize, LDST_CLASS_2_CCB |
  345. LDST_SRCDST_WORD_DATASZ_REG | LDST_IMM);
  346. /* Class 1 operation */
  347. append_operation(desc, ctx->class1_alg_type |
  348. OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
  349. /* Will write ivsize + cryptlen */
  350. append_math_add(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  351. /* Not need to reload iv */
  352. append_seq_fifo_load(desc, tfm->ivsize,
  353. FIFOLD_CLASS_SKIP);
  354. /* Will read cryptlen */
  355. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  356. aead_append_src_dst(desc, FIFOLD_TYPE_MSG1OUT2);
  357. /* Write ICV */
  358. append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB |
  359. LDST_SRCDST_BYTE_CONTEXT);
  360. ctx->sh_desc_givenc_dma = dma_map_single(jrdev, desc,
  361. desc_bytes(desc),
  362. DMA_TO_DEVICE);
  363. if (dma_mapping_error(jrdev, ctx->sh_desc_givenc_dma)) {
  364. dev_err(jrdev, "unable to map shared descriptor\n");
  365. return -ENOMEM;
  366. }
  367. #ifdef DEBUG
  368. print_hex_dump(KERN_ERR, "aead givenc shdesc@"xstr(__LINE__)": ",
  369. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  370. desc_bytes(desc), 1);
  371. #endif
  372. return 0;
  373. }
  374. static int aead_setauthsize(struct crypto_aead *authenc,
  375. unsigned int authsize)
  376. {
  377. struct caam_ctx *ctx = crypto_aead_ctx(authenc);
  378. ctx->authsize = authsize;
  379. aead_set_sh_desc(authenc);
  380. return 0;
  381. }
  382. struct split_key_result {
  383. struct completion completion;
  384. int err;
  385. };
  386. static void split_key_done(struct device *dev, u32 *desc, u32 err,
  387. void *context)
  388. {
  389. struct split_key_result *res = context;
  390. #ifdef DEBUG
  391. dev_err(dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  392. #endif
  393. if (err) {
  394. char tmp[CAAM_ERROR_STR_MAX];
  395. dev_err(dev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  396. }
  397. res->err = err;
  398. complete(&res->completion);
  399. }
  400. /*
  401. get a split ipad/opad key
  402. Split key generation-----------------------------------------------
  403. [00] 0xb0810008 jobdesc: stidx=1 share=never len=8
  404. [01] 0x04000014 key: class2->keyreg len=20
  405. @0xffe01000
  406. [03] 0x84410014 operation: cls2-op sha1 hmac init dec
  407. [04] 0x24940000 fifold: class2 msgdata-last2 len=0 imm
  408. [05] 0xa4000001 jump: class2 local all ->1 [06]
  409. [06] 0x64260028 fifostr: class2 mdsplit-jdk len=40
  410. @0xffe04000
  411. */
  412. static u32 gen_split_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen)
  413. {
  414. struct device *jrdev = ctx->jrdev;
  415. u32 *desc;
  416. struct split_key_result result;
  417. dma_addr_t dma_addr_in, dma_addr_out;
  418. int ret = 0;
  419. desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  420. init_job_desc(desc, 0);
  421. dma_addr_in = dma_map_single(jrdev, (void *)key_in, authkeylen,
  422. DMA_TO_DEVICE);
  423. if (dma_mapping_error(jrdev, dma_addr_in)) {
  424. dev_err(jrdev, "unable to map key input memory\n");
  425. kfree(desc);
  426. return -ENOMEM;
  427. }
  428. append_key(desc, dma_addr_in, authkeylen, CLASS_2 |
  429. KEY_DEST_CLASS_REG);
  430. /* Sets MDHA up into an HMAC-INIT */
  431. append_operation(desc, ctx->alg_op | OP_ALG_DECRYPT |
  432. OP_ALG_AS_INIT);
  433. /*
  434. * do a FIFO_LOAD of zero, this will trigger the internal key expansion
  435. into both pads inside MDHA
  436. */
  437. append_fifo_load_as_imm(desc, NULL, 0, LDST_CLASS_2_CCB |
  438. FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2);
  439. /*
  440. * FIFO_STORE with the explicit split-key content store
  441. * (0x26 output type)
  442. */
  443. dma_addr_out = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  444. DMA_FROM_DEVICE);
  445. if (dma_mapping_error(jrdev, dma_addr_out)) {
  446. dev_err(jrdev, "unable to map key output memory\n");
  447. kfree(desc);
  448. return -ENOMEM;
  449. }
  450. append_fifo_store(desc, dma_addr_out, ctx->split_key_len,
  451. LDST_CLASS_2_CCB | FIFOST_TYPE_SPLIT_KEK);
  452. #ifdef DEBUG
  453. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  454. DUMP_PREFIX_ADDRESS, 16, 4, key_in, authkeylen, 1);
  455. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  456. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  457. #endif
  458. result.err = 0;
  459. init_completion(&result.completion);
  460. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  461. if (!ret) {
  462. /* in progress */
  463. wait_for_completion_interruptible(&result.completion);
  464. ret = result.err;
  465. #ifdef DEBUG
  466. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  467. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  468. ctx->split_key_pad_len, 1);
  469. #endif
  470. }
  471. dma_unmap_single(jrdev, dma_addr_out, ctx->split_key_pad_len,
  472. DMA_FROM_DEVICE);
  473. dma_unmap_single(jrdev, dma_addr_in, authkeylen, DMA_TO_DEVICE);
  474. kfree(desc);
  475. return ret;
  476. }
  477. static int aead_setkey(struct crypto_aead *aead,
  478. const u8 *key, unsigned int keylen)
  479. {
  480. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  481. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  482. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  483. struct device *jrdev = ctx->jrdev;
  484. struct rtattr *rta = (void *)key;
  485. struct crypto_authenc_key_param *param;
  486. unsigned int authkeylen;
  487. unsigned int enckeylen;
  488. int ret = 0;
  489. param = RTA_DATA(rta);
  490. enckeylen = be32_to_cpu(param->enckeylen);
  491. key += RTA_ALIGN(rta->rta_len);
  492. keylen -= RTA_ALIGN(rta->rta_len);
  493. if (keylen < enckeylen)
  494. goto badkey;
  495. authkeylen = keylen - enckeylen;
  496. if (keylen > CAAM_MAX_KEY_SIZE)
  497. goto badkey;
  498. /* Pick class 2 key length from algorithm submask */
  499. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  500. OP_ALG_ALGSEL_SHIFT] * 2;
  501. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  502. #ifdef DEBUG
  503. printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
  504. keylen, enckeylen, authkeylen);
  505. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  506. ctx->split_key_len, ctx->split_key_pad_len);
  507. print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
  508. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  509. #endif
  510. ret = gen_split_key(ctx, key, authkeylen);
  511. if (ret) {
  512. goto badkey;
  513. }
  514. /* postpend encryption key to auth split key */
  515. memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen);
  516. ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len +
  517. enckeylen, DMA_TO_DEVICE);
  518. if (dma_mapping_error(jrdev, ctx->key_dma)) {
  519. dev_err(jrdev, "unable to map key i/o memory\n");
  520. return -ENOMEM;
  521. }
  522. #ifdef DEBUG
  523. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  524. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  525. ctx->split_key_pad_len + enckeylen, 1);
  526. #endif
  527. ctx->enckeylen = enckeylen;
  528. ret = aead_set_sh_desc(aead);
  529. if (ret) {
  530. dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len +
  531. enckeylen, DMA_TO_DEVICE);
  532. }
  533. return ret;
  534. badkey:
  535. crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
  536. return -EINVAL;
  537. }
  538. static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
  539. const u8 *key, unsigned int keylen)
  540. {
  541. struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
  542. struct ablkcipher_tfm *tfm = &ablkcipher->base.crt_ablkcipher;
  543. struct device *jrdev = ctx->jrdev;
  544. int ret = 0;
  545. u32 *key_jump_cmd, *jump_cmd;
  546. u32 *desc;
  547. #ifdef DEBUG
  548. print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
  549. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  550. #endif
  551. memcpy(ctx->key, key, keylen);
  552. ctx->key_dma = dma_map_single(jrdev, ctx->key, keylen,
  553. DMA_TO_DEVICE);
  554. if (dma_mapping_error(jrdev, ctx->key_dma)) {
  555. dev_err(jrdev, "unable to map key i/o memory\n");
  556. return -ENOMEM;
  557. }
  558. ctx->enckeylen = keylen;
  559. /* ablkcipher_encrypt shared descriptor */
  560. desc = ctx->sh_desc_enc;
  561. init_sh_desc(desc, HDR_SHARE_WAIT);
  562. /* Skip if already shared */
  563. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  564. JUMP_COND_SHRD);
  565. /* Load class1 key only */
  566. append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
  567. ctx->enckeylen, CLASS_1 |
  568. KEY_DEST_CLASS_REG);
  569. set_jump_tgt_here(desc, key_jump_cmd);
  570. /* Propagate errors from shared to job descriptor */
  571. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  572. /* Load iv */
  573. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  574. LDST_CLASS_1_CCB | tfm->ivsize);
  575. /* Load operation */
  576. append_operation(desc, ctx->class1_alg_type |
  577. OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
  578. /* Perform operation */
  579. ablkcipher_append_src_dst(desc);
  580. ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
  581. desc_bytes(desc),
  582. DMA_TO_DEVICE);
  583. if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
  584. dev_err(jrdev, "unable to map shared descriptor\n");
  585. return -ENOMEM;
  586. }
  587. #ifdef DEBUG
  588. print_hex_dump(KERN_ERR, "ablkcipher enc shdesc@"xstr(__LINE__)": ",
  589. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  590. desc_bytes(desc), 1);
  591. #endif
  592. /* ablkcipher_decrypt shared descriptor */
  593. desc = ctx->sh_desc_dec;
  594. init_sh_desc(desc, HDR_SHARE_WAIT);
  595. /* Skip if already shared */
  596. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  597. JUMP_COND_SHRD);
  598. /* Load class1 key only */
  599. append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
  600. ctx->enckeylen, CLASS_1 |
  601. KEY_DEST_CLASS_REG);
  602. /* For aead, only propagate error immediately if shared */
  603. jump_cmd = append_jump(desc, JUMP_TEST_ALL);
  604. set_jump_tgt_here(desc, key_jump_cmd);
  605. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  606. set_jump_tgt_here(desc, jump_cmd);
  607. /* load IV */
  608. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  609. LDST_CLASS_1_CCB | tfm->ivsize);
  610. /* Choose operation */
  611. append_dec_op1(desc, ctx->class1_alg_type);
  612. /* Perform operation */
  613. ablkcipher_append_src_dst(desc);
  614. /* Wait for key to load before allowing propagating error */
  615. append_dec_shr_done(desc);
  616. ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc,
  617. desc_bytes(desc),
  618. DMA_TO_DEVICE);
  619. if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
  620. dev_err(jrdev, "unable to map shared descriptor\n");
  621. return -ENOMEM;
  622. }
  623. #ifdef DEBUG
  624. print_hex_dump(KERN_ERR, "ablkcipher dec shdesc@"xstr(__LINE__)": ",
  625. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  626. desc_bytes(desc), 1);
  627. #endif
  628. return ret;
  629. }
  630. struct link_tbl_entry {
  631. u64 ptr;
  632. u32 len;
  633. u8 reserved;
  634. u8 buf_pool_id;
  635. u16 offset;
  636. };
  637. /*
  638. * aead_edesc - s/w-extended aead descriptor
  639. * @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist
  640. * @src_nents: number of segments in input scatterlist
  641. * @dst_nents: number of segments in output scatterlist
  642. * @iv_dma: dma address of iv for checking continuity and link table
  643. * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
  644. * @link_tbl_bytes: length of dma mapped link_tbl space
  645. * @link_tbl_dma: bus physical mapped address of h/w link table
  646. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  647. */
  648. struct aead_edesc {
  649. int assoc_nents;
  650. int src_nents;
  651. int dst_nents;
  652. dma_addr_t iv_dma;
  653. int link_tbl_bytes;
  654. dma_addr_t link_tbl_dma;
  655. struct link_tbl_entry *link_tbl;
  656. u32 hw_desc[0];
  657. };
  658. /*
  659. * ablkcipher_edesc - s/w-extended ablkcipher descriptor
  660. * @src_nents: number of segments in input scatterlist
  661. * @dst_nents: number of segments in output scatterlist
  662. * @iv_dma: dma address of iv for checking continuity and link table
  663. * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
  664. * @link_tbl_bytes: length of dma mapped link_tbl space
  665. * @link_tbl_dma: bus physical mapped address of h/w link table
  666. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  667. */
  668. struct ablkcipher_edesc {
  669. int src_nents;
  670. int dst_nents;
  671. dma_addr_t iv_dma;
  672. int link_tbl_bytes;
  673. dma_addr_t link_tbl_dma;
  674. struct link_tbl_entry *link_tbl;
  675. u32 hw_desc[0];
  676. };
  677. static void caam_unmap(struct device *dev, struct scatterlist *src,
  678. struct scatterlist *dst, int src_nents, int dst_nents,
  679. dma_addr_t iv_dma, int ivsize, dma_addr_t link_tbl_dma,
  680. int link_tbl_bytes)
  681. {
  682. if (unlikely(dst != src)) {
  683. dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
  684. dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
  685. } else {
  686. dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
  687. }
  688. if (iv_dma)
  689. dma_unmap_single(dev, iv_dma, ivsize, DMA_TO_DEVICE);
  690. if (link_tbl_bytes)
  691. dma_unmap_single(dev, link_tbl_dma, link_tbl_bytes,
  692. DMA_TO_DEVICE);
  693. }
  694. static void aead_unmap(struct device *dev,
  695. struct aead_edesc *edesc,
  696. struct aead_request *req)
  697. {
  698. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  699. int ivsize = crypto_aead_ivsize(aead);
  700. dma_unmap_sg(dev, req->assoc, edesc->assoc_nents, DMA_TO_DEVICE);
  701. caam_unmap(dev, req->src, req->dst,
  702. edesc->src_nents, edesc->dst_nents,
  703. edesc->iv_dma, ivsize, edesc->link_tbl_dma,
  704. edesc->link_tbl_bytes);
  705. }
  706. static void ablkcipher_unmap(struct device *dev,
  707. struct ablkcipher_edesc *edesc,
  708. struct ablkcipher_request *req)
  709. {
  710. struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
  711. int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
  712. caam_unmap(dev, req->src, req->dst,
  713. edesc->src_nents, edesc->dst_nents,
  714. edesc->iv_dma, ivsize, edesc->link_tbl_dma,
  715. edesc->link_tbl_bytes);
  716. }
  717. static void aead_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
  718. void *context)
  719. {
  720. struct aead_request *req = context;
  721. struct aead_edesc *edesc;
  722. #ifdef DEBUG
  723. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  724. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  725. int ivsize = crypto_aead_ivsize(aead);
  726. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  727. #endif
  728. edesc = (struct aead_edesc *)((char *)desc -
  729. offsetof(struct aead_edesc, hw_desc));
  730. if (err) {
  731. char tmp[CAAM_ERROR_STR_MAX];
  732. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  733. }
  734. aead_unmap(jrdev, edesc, req);
  735. #ifdef DEBUG
  736. print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
  737. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc),
  738. req->assoclen , 1);
  739. print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
  740. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src) - ivsize,
  741. edesc->src_nents ? 100 : ivsize, 1);
  742. print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
  743. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
  744. edesc->src_nents ? 100 : req->cryptlen +
  745. ctx->authsize + 4, 1);
  746. #endif
  747. kfree(edesc);
  748. aead_request_complete(req, err);
  749. }
  750. static void aead_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
  751. void *context)
  752. {
  753. struct aead_request *req = context;
  754. struct aead_edesc *edesc;
  755. #ifdef DEBUG
  756. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  757. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  758. int ivsize = crypto_aead_ivsize(aead);
  759. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  760. #endif
  761. edesc = (struct aead_edesc *)((char *)desc -
  762. offsetof(struct aead_edesc, hw_desc));
  763. #ifdef DEBUG
  764. print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
  765. DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
  766. ivsize, 1);
  767. print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
  768. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->dst),
  769. req->cryptlen, 1);
  770. #endif
  771. if (err) {
  772. char tmp[CAAM_ERROR_STR_MAX];
  773. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  774. }
  775. aead_unmap(jrdev, edesc, req);
  776. /*
  777. * verify hw auth check passed else return -EBADMSG
  778. */
  779. if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK)
  780. err = -EBADMSG;
  781. #ifdef DEBUG
  782. print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ",
  783. DUMP_PREFIX_ADDRESS, 16, 4,
  784. ((char *)sg_virt(req->assoc) - sizeof(struct iphdr)),
  785. sizeof(struct iphdr) + req->assoclen +
  786. ((req->cryptlen > 1500) ? 1500 : req->cryptlen) +
  787. ctx->authsize + 36, 1);
  788. if (!err && edesc->link_tbl_bytes) {
  789. struct scatterlist *sg = sg_last(req->src, edesc->src_nents);
  790. print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ",
  791. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg),
  792. sg->length + ctx->authsize + 16, 1);
  793. }
  794. #endif
  795. kfree(edesc);
  796. aead_request_complete(req, err);
  797. }
  798. static void ablkcipher_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
  799. void *context)
  800. {
  801. struct ablkcipher_request *req = context;
  802. struct ablkcipher_edesc *edesc;
  803. #ifdef DEBUG
  804. struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
  805. int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
  806. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  807. #endif
  808. edesc = (struct ablkcipher_edesc *)((char *)desc -
  809. offsetof(struct ablkcipher_edesc, hw_desc));
  810. if (err) {
  811. char tmp[CAAM_ERROR_STR_MAX];
  812. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  813. }
  814. #ifdef DEBUG
  815. print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
  816. DUMP_PREFIX_ADDRESS, 16, 4, req->info,
  817. edesc->src_nents > 1 ? 100 : ivsize, 1);
  818. print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
  819. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
  820. edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
  821. #endif
  822. ablkcipher_unmap(jrdev, edesc, req);
  823. kfree(edesc);
  824. ablkcipher_request_complete(req, err);
  825. }
  826. static void ablkcipher_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
  827. void *context)
  828. {
  829. struct ablkcipher_request *req = context;
  830. struct ablkcipher_edesc *edesc;
  831. #ifdef DEBUG
  832. struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
  833. int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
  834. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  835. #endif
  836. edesc = (struct ablkcipher_edesc *)((char *)desc -
  837. offsetof(struct ablkcipher_edesc, hw_desc));
  838. if (err) {
  839. char tmp[CAAM_ERROR_STR_MAX];
  840. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  841. }
  842. #ifdef DEBUG
  843. print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
  844. DUMP_PREFIX_ADDRESS, 16, 4, req->info,
  845. ivsize, 1);
  846. print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
  847. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
  848. edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
  849. #endif
  850. ablkcipher_unmap(jrdev, edesc, req);
  851. kfree(edesc);
  852. ablkcipher_request_complete(req, err);
  853. }
  854. static void sg_to_link_tbl_one(struct link_tbl_entry *link_tbl_ptr,
  855. dma_addr_t dma, u32 len, u32 offset)
  856. {
  857. link_tbl_ptr->ptr = dma;
  858. link_tbl_ptr->len = len;
  859. link_tbl_ptr->reserved = 0;
  860. link_tbl_ptr->buf_pool_id = 0;
  861. link_tbl_ptr->offset = offset;
  862. #ifdef DEBUG
  863. print_hex_dump(KERN_ERR, "link_tbl_ptr@"xstr(__LINE__)": ",
  864. DUMP_PREFIX_ADDRESS, 16, 4, link_tbl_ptr,
  865. sizeof(struct link_tbl_entry), 1);
  866. #endif
  867. }
  868. /*
  869. * convert scatterlist to h/w link table format
  870. * but does not have final bit; instead, returns last entry
  871. */
  872. static struct link_tbl_entry *sg_to_link_tbl(struct scatterlist *sg,
  873. int sg_count, struct link_tbl_entry
  874. *link_tbl_ptr, u32 offset)
  875. {
  876. while (sg_count) {
  877. sg_to_link_tbl_one(link_tbl_ptr, sg_dma_address(sg),
  878. sg_dma_len(sg), offset);
  879. link_tbl_ptr++;
  880. sg = sg_next(sg);
  881. sg_count--;
  882. }
  883. return link_tbl_ptr - 1;
  884. }
  885. /*
  886. * convert scatterlist to h/w link table format
  887. * scatterlist must have been previously dma mapped
  888. */
  889. static void sg_to_link_tbl_last(struct scatterlist *sg, int sg_count,
  890. struct link_tbl_entry *link_tbl_ptr, u32 offset)
  891. {
  892. link_tbl_ptr = sg_to_link_tbl(sg, sg_count, link_tbl_ptr, offset);
  893. link_tbl_ptr->len |= 0x40000000;
  894. }
  895. /*
  896. * Fill in aead job descriptor
  897. */
  898. static void init_aead_job(u32 *sh_desc, dma_addr_t ptr,
  899. struct aead_edesc *edesc,
  900. struct aead_request *req,
  901. bool all_contig, bool encrypt)
  902. {
  903. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  904. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  905. int ivsize = crypto_aead_ivsize(aead);
  906. int authsize = ctx->authsize;
  907. u32 *desc = edesc->hw_desc;
  908. u32 out_options = 0, in_options;
  909. dma_addr_t dst_dma, src_dma;
  910. int len, link_tbl_index = 0;
  911. #ifdef DEBUG
  912. debug("assoclen %d cryptlen %d authsize %d\n",
  913. req->assoclen, req->cryptlen, authsize);
  914. print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
  915. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc),
  916. req->assoclen , 1);
  917. print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
  918. DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
  919. edesc->src_nents ? 100 : ivsize, 1);
  920. print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
  921. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
  922. edesc->src_nents ? 100 : req->cryptlen, 1);
  923. print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
  924. DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
  925. desc_bytes(sh_desc), 1);
  926. #endif
  927. len = desc_len(sh_desc);
  928. init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
  929. if (all_contig) {
  930. src_dma = sg_dma_address(req->assoc);
  931. in_options = 0;
  932. } else {
  933. src_dma = edesc->link_tbl_dma;
  934. link_tbl_index += (edesc->assoc_nents ? : 1) + 1 +
  935. (edesc->src_nents ? : 1);
  936. in_options = LDST_SGF;
  937. }
  938. if (encrypt)
  939. append_seq_in_ptr(desc, src_dma, req->assoclen + ivsize +
  940. req->cryptlen - authsize, in_options);
  941. else
  942. append_seq_in_ptr(desc, src_dma, req->assoclen + ivsize +
  943. req->cryptlen, in_options);
  944. if (likely(req->src == req->dst)) {
  945. if (all_contig) {
  946. dst_dma = sg_dma_address(req->src);
  947. } else {
  948. dst_dma = src_dma + sizeof(struct link_tbl_entry) *
  949. ((edesc->assoc_nents ? : 1) + 1);
  950. out_options = LDST_SGF;
  951. }
  952. } else {
  953. if (!edesc->dst_nents) {
  954. dst_dma = sg_dma_address(req->dst);
  955. } else {
  956. dst_dma = edesc->link_tbl_dma +
  957. link_tbl_index *
  958. sizeof(struct link_tbl_entry);
  959. out_options = LDST_SGF;
  960. }
  961. }
  962. if (encrypt)
  963. append_seq_out_ptr(desc, dst_dma, req->cryptlen, out_options);
  964. else
  965. append_seq_out_ptr(desc, dst_dma, req->cryptlen - authsize,
  966. out_options);
  967. }
  968. /*
  969. * Fill in aead givencrypt job descriptor
  970. */
  971. static void init_aead_giv_job(u32 *sh_desc, dma_addr_t ptr,
  972. struct aead_edesc *edesc,
  973. struct aead_request *req,
  974. int contig)
  975. {
  976. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  977. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  978. int ivsize = crypto_aead_ivsize(aead);
  979. int authsize = ctx->authsize;
  980. u32 *desc = edesc->hw_desc;
  981. u32 out_options = 0, in_options;
  982. dma_addr_t dst_dma, src_dma;
  983. int len, link_tbl_index = 0;
  984. #ifdef DEBUG
  985. debug("assoclen %d cryptlen %d authsize %d\n",
  986. req->assoclen, req->cryptlen, authsize);
  987. print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
  988. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc),
  989. req->assoclen , 1);
  990. print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
  991. DUMP_PREFIX_ADDRESS, 16, 4, req->iv, ivsize, 1);
  992. print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
  993. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
  994. edesc->src_nents > 1 ? 100 : req->cryptlen, 1);
  995. print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
  996. DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
  997. desc_bytes(sh_desc), 1);
  998. #endif
  999. len = desc_len(sh_desc);
  1000. init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
  1001. if (contig & GIV_SRC_CONTIG) {
  1002. src_dma = sg_dma_address(req->assoc);
  1003. in_options = 0;
  1004. } else {
  1005. src_dma = edesc->link_tbl_dma;
  1006. link_tbl_index += edesc->assoc_nents + 1 + edesc->src_nents;
  1007. in_options = LDST_SGF;
  1008. }
  1009. append_seq_in_ptr(desc, src_dma, req->assoclen + ivsize +
  1010. req->cryptlen - authsize, in_options);
  1011. if (contig & GIV_DST_CONTIG) {
  1012. dst_dma = edesc->iv_dma;
  1013. } else {
  1014. if (likely(req->src == req->dst)) {
  1015. dst_dma = src_dma + sizeof(struct link_tbl_entry) *
  1016. edesc->assoc_nents;
  1017. out_options = LDST_SGF;
  1018. } else {
  1019. dst_dma = edesc->link_tbl_dma +
  1020. link_tbl_index *
  1021. sizeof(struct link_tbl_entry);
  1022. out_options = LDST_SGF;
  1023. }
  1024. }
  1025. append_seq_out_ptr(desc, dst_dma, ivsize + req->cryptlen, out_options);
  1026. }
  1027. /*
  1028. * Fill in ablkcipher job descriptor
  1029. */
  1030. static void init_ablkcipher_job(u32 *sh_desc, dma_addr_t ptr,
  1031. struct ablkcipher_edesc *edesc,
  1032. struct ablkcipher_request *req,
  1033. bool iv_contig)
  1034. {
  1035. struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
  1036. int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
  1037. u32 *desc = edesc->hw_desc;
  1038. u32 out_options = 0, in_options;
  1039. dma_addr_t dst_dma, src_dma;
  1040. int len, link_tbl_index = 0;
  1041. #ifdef DEBUG
  1042. print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
  1043. DUMP_PREFIX_ADDRESS, 16, 4, req->info,
  1044. ivsize, 1);
  1045. print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
  1046. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
  1047. edesc->src_nents ? 100 : req->nbytes, 1);
  1048. #endif
  1049. len = desc_len(sh_desc);
  1050. init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
  1051. if (iv_contig) {
  1052. src_dma = edesc->iv_dma;
  1053. in_options = 0;
  1054. } else {
  1055. src_dma = edesc->link_tbl_dma;
  1056. link_tbl_index += (iv_contig ? 0 : 1) + edesc->src_nents;
  1057. in_options = LDST_SGF;
  1058. }
  1059. append_seq_in_ptr(desc, src_dma, req->nbytes + ivsize, in_options);
  1060. if (likely(req->src == req->dst)) {
  1061. if (!edesc->src_nents && iv_contig) {
  1062. dst_dma = sg_dma_address(req->src);
  1063. } else {
  1064. dst_dma = edesc->link_tbl_dma +
  1065. sizeof(struct link_tbl_entry);
  1066. out_options = LDST_SGF;
  1067. }
  1068. } else {
  1069. if (!edesc->dst_nents) {
  1070. dst_dma = sg_dma_address(req->dst);
  1071. } else {
  1072. dst_dma = edesc->link_tbl_dma +
  1073. link_tbl_index * sizeof(struct link_tbl_entry);
  1074. out_options = LDST_SGF;
  1075. }
  1076. }
  1077. append_seq_out_ptr(desc, dst_dma, req->nbytes, out_options);
  1078. }
  1079. /*
  1080. * derive number of elements in scatterlist
  1081. */
  1082. static int sg_count(struct scatterlist *sg_list, int nbytes)
  1083. {
  1084. struct scatterlist *sg = sg_list;
  1085. int sg_nents = 0;
  1086. while (nbytes > 0) {
  1087. sg_nents++;
  1088. nbytes -= sg->length;
  1089. if (!sg_is_last(sg) && (sg + 1)->length == 0)
  1090. BUG(); /* Not support chaining */
  1091. sg = scatterwalk_sg_next(sg);
  1092. }
  1093. if (likely(sg_nents == 1))
  1094. return 0;
  1095. return sg_nents;
  1096. }
  1097. /*
  1098. * allocate and map the aead extended descriptor
  1099. */
  1100. static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
  1101. int desc_bytes, bool *all_contig_ptr)
  1102. {
  1103. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  1104. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  1105. struct device *jrdev = ctx->jrdev;
  1106. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1107. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1108. int assoc_nents, src_nents, dst_nents = 0;
  1109. struct aead_edesc *edesc;
  1110. dma_addr_t iv_dma = 0;
  1111. int sgc;
  1112. bool all_contig = true;
  1113. int ivsize = crypto_aead_ivsize(aead);
  1114. int link_tbl_index, link_tbl_len = 0, link_tbl_bytes;
  1115. assoc_nents = sg_count(req->assoc, req->assoclen);
  1116. src_nents = sg_count(req->src, req->cryptlen);
  1117. if (unlikely(req->dst != req->src))
  1118. dst_nents = sg_count(req->dst, req->cryptlen);
  1119. sgc = dma_map_sg(jrdev, req->assoc, assoc_nents ? : 1,
  1120. DMA_BIDIRECTIONAL);
  1121. if (likely(req->src == req->dst)) {
  1122. sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
  1123. DMA_BIDIRECTIONAL);
  1124. } else {
  1125. sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
  1126. DMA_TO_DEVICE);
  1127. sgc = dma_map_sg(jrdev, req->dst, dst_nents ? : 1,
  1128. DMA_FROM_DEVICE);
  1129. }
  1130. /* Check if data are contiguous */
  1131. iv_dma = dma_map_single(jrdev, req->iv, ivsize, DMA_TO_DEVICE);
  1132. if (assoc_nents || sg_dma_address(req->assoc) + req->assoclen !=
  1133. iv_dma || src_nents || iv_dma + ivsize !=
  1134. sg_dma_address(req->src)) {
  1135. all_contig = false;
  1136. assoc_nents = assoc_nents ? : 1;
  1137. src_nents = src_nents ? : 1;
  1138. link_tbl_len = assoc_nents + 1 + src_nents;
  1139. }
  1140. link_tbl_len += dst_nents;
  1141. link_tbl_bytes = link_tbl_len * sizeof(struct link_tbl_entry);
  1142. /* allocate space for base edesc and hw desc commands, link tables */
  1143. edesc = kmalloc(sizeof(struct aead_edesc) + desc_bytes +
  1144. link_tbl_bytes, GFP_DMA | flags);
  1145. if (!edesc) {
  1146. dev_err(jrdev, "could not allocate extended descriptor\n");
  1147. return ERR_PTR(-ENOMEM);
  1148. }
  1149. edesc->assoc_nents = assoc_nents;
  1150. edesc->src_nents = src_nents;
  1151. edesc->dst_nents = dst_nents;
  1152. edesc->iv_dma = iv_dma;
  1153. edesc->link_tbl_bytes = link_tbl_bytes;
  1154. edesc->link_tbl = (void *)edesc + sizeof(struct aead_edesc) +
  1155. desc_bytes;
  1156. edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
  1157. link_tbl_bytes, DMA_TO_DEVICE);
  1158. *all_contig_ptr = all_contig;
  1159. link_tbl_index = 0;
  1160. if (!all_contig) {
  1161. sg_to_link_tbl(req->assoc,
  1162. (assoc_nents ? : 1),
  1163. edesc->link_tbl +
  1164. link_tbl_index, 0);
  1165. link_tbl_index += assoc_nents ? : 1;
  1166. sg_to_link_tbl_one(edesc->link_tbl + link_tbl_index,
  1167. iv_dma, ivsize, 0);
  1168. link_tbl_index += 1;
  1169. sg_to_link_tbl_last(req->src,
  1170. (src_nents ? : 1),
  1171. edesc->link_tbl +
  1172. link_tbl_index, 0);
  1173. link_tbl_index += src_nents ? : 1;
  1174. }
  1175. if (dst_nents) {
  1176. sg_to_link_tbl_last(req->dst, dst_nents,
  1177. edesc->link_tbl + link_tbl_index, 0);
  1178. }
  1179. return edesc;
  1180. }
  1181. static int aead_encrypt(struct aead_request *req)
  1182. {
  1183. struct aead_edesc *edesc;
  1184. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  1185. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  1186. struct device *jrdev = ctx->jrdev;
  1187. bool all_contig;
  1188. u32 *desc;
  1189. int ret = 0;
  1190. req->cryptlen += ctx->authsize;
  1191. /* allocate extended descriptor */
  1192. edesc = aead_edesc_alloc(req, DESC_JOB_IO_LEN *
  1193. CAAM_CMD_SZ, &all_contig);
  1194. if (IS_ERR(edesc))
  1195. return PTR_ERR(edesc);
  1196. /* Create and submit job descriptor */
  1197. init_aead_job(ctx->sh_desc_enc, ctx->sh_desc_enc_dma, edesc, req,
  1198. all_contig, true);
  1199. #ifdef DEBUG
  1200. print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ",
  1201. DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
  1202. desc_bytes(edesc->hw_desc), 1);
  1203. #endif
  1204. desc = edesc->hw_desc;
  1205. ret = caam_jr_enqueue(jrdev, desc, aead_encrypt_done, req);
  1206. if (!ret) {
  1207. ret = -EINPROGRESS;
  1208. } else {
  1209. aead_unmap(jrdev, edesc, req);
  1210. kfree(edesc);
  1211. }
  1212. return ret;
  1213. }
  1214. static int aead_decrypt(struct aead_request *req)
  1215. {
  1216. struct aead_edesc *edesc;
  1217. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  1218. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  1219. struct device *jrdev = ctx->jrdev;
  1220. bool all_contig;
  1221. u32 *desc;
  1222. int ret = 0;
  1223. /* allocate extended descriptor */
  1224. edesc = aead_edesc_alloc(req, DESC_JOB_IO_LEN *
  1225. CAAM_CMD_SZ, &all_contig);
  1226. if (IS_ERR(edesc))
  1227. return PTR_ERR(edesc);
  1228. #ifdef DEBUG
  1229. print_hex_dump(KERN_ERR, "dec src@"xstr(__LINE__)": ",
  1230. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
  1231. req->cryptlen, 1);
  1232. #endif
  1233. /* Create and submit job descriptor*/
  1234. init_aead_job(ctx->sh_desc_dec,
  1235. ctx->sh_desc_dec_dma, edesc, req, all_contig, false);
  1236. #ifdef DEBUG
  1237. print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ",
  1238. DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
  1239. desc_bytes(edesc->hw_desc), 1);
  1240. #endif
  1241. desc = edesc->hw_desc;
  1242. ret = caam_jr_enqueue(jrdev, desc, aead_decrypt_done, req);
  1243. if (!ret) {
  1244. ret = -EINPROGRESS;
  1245. } else {
  1246. aead_unmap(jrdev, edesc, req);
  1247. kfree(edesc);
  1248. }
  1249. return ret;
  1250. }
  1251. /*
  1252. * allocate and map the aead extended descriptor for aead givencrypt
  1253. */
  1254. static struct aead_edesc *aead_giv_edesc_alloc(struct aead_givcrypt_request
  1255. *greq, int desc_bytes,
  1256. u32 *contig_ptr)
  1257. {
  1258. struct aead_request *req = &greq->areq;
  1259. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  1260. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  1261. struct device *jrdev = ctx->jrdev;
  1262. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1263. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1264. int assoc_nents, src_nents, dst_nents = 0;
  1265. struct aead_edesc *edesc;
  1266. dma_addr_t iv_dma = 0;
  1267. int sgc;
  1268. u32 contig = GIV_SRC_CONTIG | GIV_DST_CONTIG;
  1269. int ivsize = crypto_aead_ivsize(aead);
  1270. int link_tbl_index, link_tbl_len = 0, link_tbl_bytes;
  1271. assoc_nents = sg_count(req->assoc, req->assoclen);
  1272. src_nents = sg_count(req->src, req->cryptlen);
  1273. if (unlikely(req->dst != req->src))
  1274. dst_nents = sg_count(req->dst, req->cryptlen);
  1275. sgc = dma_map_sg(jrdev, req->assoc, assoc_nents ? : 1,
  1276. DMA_BIDIRECTIONAL);
  1277. if (likely(req->src == req->dst)) {
  1278. sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
  1279. DMA_BIDIRECTIONAL);
  1280. } else {
  1281. sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
  1282. DMA_TO_DEVICE);
  1283. sgc = dma_map_sg(jrdev, req->dst, dst_nents ? : 1,
  1284. DMA_FROM_DEVICE);
  1285. }
  1286. /* Check if data are contiguous */
  1287. iv_dma = dma_map_single(jrdev, greq->giv, ivsize, DMA_TO_DEVICE);
  1288. if (assoc_nents || sg_dma_address(req->assoc) + req->assoclen !=
  1289. iv_dma || src_nents || iv_dma + ivsize != sg_dma_address(req->src))
  1290. contig &= ~GIV_SRC_CONTIG;
  1291. if (dst_nents || iv_dma + ivsize != sg_dma_address(req->dst))
  1292. contig &= ~GIV_DST_CONTIG;
  1293. if (unlikely(req->src != req->dst)) {
  1294. dst_nents = dst_nents ? : 1;
  1295. link_tbl_len += 1;
  1296. }
  1297. if (!(contig & GIV_SRC_CONTIG)) {
  1298. assoc_nents = assoc_nents ? : 1;
  1299. src_nents = src_nents ? : 1;
  1300. link_tbl_len += assoc_nents + 1 + src_nents;
  1301. if (likely(req->src == req->dst))
  1302. contig &= ~GIV_DST_CONTIG;
  1303. }
  1304. link_tbl_len += dst_nents;
  1305. link_tbl_bytes = link_tbl_len * sizeof(struct link_tbl_entry);
  1306. /* allocate space for base edesc and hw desc commands, link tables */
  1307. edesc = kmalloc(sizeof(struct aead_edesc) + desc_bytes +
  1308. link_tbl_bytes, GFP_DMA | flags);
  1309. if (!edesc) {
  1310. dev_err(jrdev, "could not allocate extended descriptor\n");
  1311. return ERR_PTR(-ENOMEM);
  1312. }
  1313. edesc->assoc_nents = assoc_nents;
  1314. edesc->src_nents = src_nents;
  1315. edesc->dst_nents = dst_nents;
  1316. edesc->iv_dma = iv_dma;
  1317. edesc->link_tbl_bytes = link_tbl_bytes;
  1318. edesc->link_tbl = (void *)edesc + sizeof(struct aead_edesc) +
  1319. desc_bytes;
  1320. edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
  1321. link_tbl_bytes, DMA_TO_DEVICE);
  1322. *contig_ptr = contig;
  1323. link_tbl_index = 0;
  1324. if (!(contig & GIV_SRC_CONTIG)) {
  1325. sg_to_link_tbl(req->assoc, assoc_nents,
  1326. edesc->link_tbl +
  1327. link_tbl_index, 0);
  1328. link_tbl_index += assoc_nents;
  1329. sg_to_link_tbl_one(edesc->link_tbl + link_tbl_index,
  1330. iv_dma, ivsize, 0);
  1331. link_tbl_index += 1;
  1332. sg_to_link_tbl_last(req->src, src_nents,
  1333. edesc->link_tbl +
  1334. link_tbl_index, 0);
  1335. link_tbl_index += src_nents;
  1336. }
  1337. if (unlikely(req->src != req->dst && !(contig & GIV_DST_CONTIG))) {
  1338. sg_to_link_tbl_one(edesc->link_tbl + link_tbl_index,
  1339. iv_dma, ivsize, 0);
  1340. link_tbl_index += 1;
  1341. sg_to_link_tbl_last(req->dst, dst_nents,
  1342. edesc->link_tbl + link_tbl_index, 0);
  1343. }
  1344. return edesc;
  1345. }
  1346. static int aead_givencrypt(struct aead_givcrypt_request *areq)
  1347. {
  1348. struct aead_request *req = &areq->areq;
  1349. struct aead_edesc *edesc;
  1350. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  1351. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  1352. struct device *jrdev = ctx->jrdev;
  1353. u32 contig;
  1354. u32 *desc;
  1355. int ret = 0;
  1356. req->cryptlen += ctx->authsize;
  1357. /* allocate extended descriptor */
  1358. edesc = aead_giv_edesc_alloc(areq, DESC_JOB_IO_LEN *
  1359. CAAM_CMD_SZ, &contig);
  1360. if (IS_ERR(edesc))
  1361. return PTR_ERR(edesc);
  1362. #ifdef DEBUG
  1363. print_hex_dump(KERN_ERR, "giv src@"xstr(__LINE__)": ",
  1364. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
  1365. req->cryptlen, 1);
  1366. #endif
  1367. /* Create and submit job descriptor*/
  1368. init_aead_giv_job(ctx->sh_desc_givenc,
  1369. ctx->sh_desc_givenc_dma, edesc, req, contig);
  1370. #ifdef DEBUG
  1371. print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ",
  1372. DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
  1373. desc_bytes(edesc->hw_desc), 1);
  1374. #endif
  1375. desc = edesc->hw_desc;
  1376. ret = caam_jr_enqueue(jrdev, desc, aead_encrypt_done, req);
  1377. if (!ret) {
  1378. ret = -EINPROGRESS;
  1379. } else {
  1380. aead_unmap(jrdev, edesc, req);
  1381. kfree(edesc);
  1382. }
  1383. return ret;
  1384. }
  1385. /*
  1386. * allocate and map the ablkcipher extended descriptor for ablkcipher
  1387. */
  1388. static struct ablkcipher_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request
  1389. *req, int desc_bytes,
  1390. bool *iv_contig_out)
  1391. {
  1392. struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
  1393. struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
  1394. struct device *jrdev = ctx->jrdev;
  1395. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1396. CRYPTO_TFM_REQ_MAY_SLEEP)) ?
  1397. GFP_KERNEL : GFP_ATOMIC;
  1398. int src_nents, dst_nents = 0, link_tbl_bytes;
  1399. struct ablkcipher_edesc *edesc;
  1400. dma_addr_t iv_dma = 0;
  1401. bool iv_contig = false;
  1402. int sgc;
  1403. int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
  1404. int link_tbl_index;
  1405. src_nents = sg_count(req->src, req->nbytes);
  1406. if (unlikely(req->dst != req->src))
  1407. dst_nents = sg_count(req->dst, req->nbytes);
  1408. if (likely(req->src == req->dst)) {
  1409. sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
  1410. DMA_BIDIRECTIONAL);
  1411. } else {
  1412. sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
  1413. DMA_TO_DEVICE);
  1414. sgc = dma_map_sg(jrdev, req->dst, dst_nents ? : 1,
  1415. DMA_FROM_DEVICE);
  1416. }
  1417. /*
  1418. * Check if iv can be contiguous with source and destination.
  1419. * If so, include it. If not, create scatterlist.
  1420. */
  1421. iv_dma = dma_map_single(jrdev, req->info, ivsize, DMA_TO_DEVICE);
  1422. if (!src_nents && iv_dma + ivsize == sg_dma_address(req->src))
  1423. iv_contig = true;
  1424. else
  1425. src_nents = src_nents ? : 1;
  1426. link_tbl_bytes = ((iv_contig ? 0 : 1) + src_nents + dst_nents) *
  1427. sizeof(struct link_tbl_entry);
  1428. /* allocate space for base edesc and hw desc commands, link tables */
  1429. edesc = kmalloc(sizeof(struct ablkcipher_edesc) + desc_bytes +
  1430. link_tbl_bytes, GFP_DMA | flags);
  1431. if (!edesc) {
  1432. dev_err(jrdev, "could not allocate extended descriptor\n");
  1433. return ERR_PTR(-ENOMEM);
  1434. }
  1435. edesc->src_nents = src_nents;
  1436. edesc->dst_nents = dst_nents;
  1437. edesc->link_tbl_bytes = link_tbl_bytes;
  1438. edesc->link_tbl = (void *)edesc + sizeof(struct ablkcipher_edesc) +
  1439. desc_bytes;
  1440. link_tbl_index = 0;
  1441. if (!iv_contig) {
  1442. sg_to_link_tbl_one(edesc->link_tbl, iv_dma, ivsize, 0);
  1443. sg_to_link_tbl_last(req->src, src_nents,
  1444. edesc->link_tbl + 1, 0);
  1445. link_tbl_index += 1 + src_nents;
  1446. }
  1447. if (unlikely(dst_nents)) {
  1448. sg_to_link_tbl_last(req->dst, dst_nents,
  1449. edesc->link_tbl + link_tbl_index, 0);
  1450. }
  1451. edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
  1452. link_tbl_bytes, DMA_TO_DEVICE);
  1453. edesc->iv_dma = iv_dma;
  1454. #ifdef DEBUG
  1455. print_hex_dump(KERN_ERR, "ablkcipher link_tbl@"xstr(__LINE__)": ",
  1456. DUMP_PREFIX_ADDRESS, 16, 4, edesc->link_tbl,
  1457. link_tbl_bytes, 1);
  1458. #endif
  1459. *iv_contig_out = iv_contig;
  1460. return edesc;
  1461. }
  1462. static int ablkcipher_encrypt(struct ablkcipher_request *req)
  1463. {
  1464. struct ablkcipher_edesc *edesc;
  1465. struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
  1466. struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
  1467. struct device *jrdev = ctx->jrdev;
  1468. bool iv_contig;
  1469. u32 *desc;
  1470. int ret = 0;
  1471. /* allocate extended descriptor */
  1472. edesc = ablkcipher_edesc_alloc(req, DESC_JOB_IO_LEN *
  1473. CAAM_CMD_SZ, &iv_contig);
  1474. if (IS_ERR(edesc))
  1475. return PTR_ERR(edesc);
  1476. /* Create and submit job descriptor*/
  1477. init_ablkcipher_job(ctx->sh_desc_enc,
  1478. ctx->sh_desc_enc_dma, edesc, req, iv_contig);
  1479. #ifdef DEBUG
  1480. print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"xstr(__LINE__)": ",
  1481. DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
  1482. desc_bytes(edesc->hw_desc), 1);
  1483. #endif
  1484. desc = edesc->hw_desc;
  1485. ret = caam_jr_enqueue(jrdev, desc, ablkcipher_encrypt_done, req);
  1486. if (!ret) {
  1487. ret = -EINPROGRESS;
  1488. } else {
  1489. ablkcipher_unmap(jrdev, edesc, req);
  1490. kfree(edesc);
  1491. }
  1492. return ret;
  1493. }
  1494. static int ablkcipher_decrypt(struct ablkcipher_request *req)
  1495. {
  1496. struct ablkcipher_edesc *edesc;
  1497. struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
  1498. struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
  1499. struct device *jrdev = ctx->jrdev;
  1500. bool iv_contig;
  1501. u32 *desc;
  1502. int ret = 0;
  1503. /* allocate extended descriptor */
  1504. edesc = ablkcipher_edesc_alloc(req, DESC_JOB_IO_LEN *
  1505. CAAM_CMD_SZ, &iv_contig);
  1506. if (IS_ERR(edesc))
  1507. return PTR_ERR(edesc);
  1508. /* Create and submit job descriptor*/
  1509. init_ablkcipher_job(ctx->sh_desc_dec,
  1510. ctx->sh_desc_dec_dma, edesc, req, iv_contig);
  1511. desc = edesc->hw_desc;
  1512. #ifdef DEBUG
  1513. print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"xstr(__LINE__)": ",
  1514. DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
  1515. desc_bytes(edesc->hw_desc), 1);
  1516. #endif
  1517. ret = caam_jr_enqueue(jrdev, desc, ablkcipher_decrypt_done, req);
  1518. if (!ret) {
  1519. ret = -EINPROGRESS;
  1520. } else {
  1521. ablkcipher_unmap(jrdev, edesc, req);
  1522. kfree(edesc);
  1523. }
  1524. return ret;
  1525. }
  1526. #define template_aead template_u.aead
  1527. #define template_ablkcipher template_u.ablkcipher
  1528. struct caam_alg_template {
  1529. char name[CRYPTO_MAX_ALG_NAME];
  1530. char driver_name[CRYPTO_MAX_ALG_NAME];
  1531. unsigned int blocksize;
  1532. u32 type;
  1533. union {
  1534. struct ablkcipher_alg ablkcipher;
  1535. struct aead_alg aead;
  1536. struct blkcipher_alg blkcipher;
  1537. struct cipher_alg cipher;
  1538. struct compress_alg compress;
  1539. struct rng_alg rng;
  1540. } template_u;
  1541. u32 class1_alg_type;
  1542. u32 class2_alg_type;
  1543. u32 alg_op;
  1544. };
  1545. static struct caam_alg_template driver_algs[] = {
  1546. /* single-pass ipsec_esp descriptor */
  1547. {
  1548. .name = "authenc(hmac(md5),cbc(aes))",
  1549. .driver_name = "authenc-hmac-md5-cbc-aes-caam",
  1550. .blocksize = AES_BLOCK_SIZE,
  1551. .type = CRYPTO_ALG_TYPE_AEAD,
  1552. .template_aead = {
  1553. .setkey = aead_setkey,
  1554. .setauthsize = aead_setauthsize,
  1555. .encrypt = aead_encrypt,
  1556. .decrypt = aead_decrypt,
  1557. .givencrypt = aead_givencrypt,
  1558. .geniv = "<built-in>",
  1559. .ivsize = AES_BLOCK_SIZE,
  1560. .maxauthsize = MD5_DIGEST_SIZE,
  1561. },
  1562. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1563. .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP,
  1564. .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
  1565. },
  1566. {
  1567. .name = "authenc(hmac(sha1),cbc(aes))",
  1568. .driver_name = "authenc-hmac-sha1-cbc-aes-caam",
  1569. .blocksize = AES_BLOCK_SIZE,
  1570. .type = CRYPTO_ALG_TYPE_AEAD,
  1571. .template_aead = {
  1572. .setkey = aead_setkey,
  1573. .setauthsize = aead_setauthsize,
  1574. .encrypt = aead_encrypt,
  1575. .decrypt = aead_decrypt,
  1576. .givencrypt = aead_givencrypt,
  1577. .geniv = "<built-in>",
  1578. .ivsize = AES_BLOCK_SIZE,
  1579. .maxauthsize = SHA1_DIGEST_SIZE,
  1580. },
  1581. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1582. .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
  1583. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  1584. },
  1585. {
  1586. .name = "authenc(hmac(sha224),cbc(aes))",
  1587. .driver_name = "authenc-hmac-sha224-cbc-aes-caam",
  1588. .blocksize = AES_BLOCK_SIZE,
  1589. .template_aead = {
  1590. .setkey = aead_setkey,
  1591. .setauthsize = aead_setauthsize,
  1592. .encrypt = aead_encrypt,
  1593. .decrypt = aead_decrypt,
  1594. .givencrypt = aead_givencrypt,
  1595. .geniv = "<built-in>",
  1596. .ivsize = AES_BLOCK_SIZE,
  1597. .maxauthsize = SHA224_DIGEST_SIZE,
  1598. },
  1599. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1600. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  1601. OP_ALG_AAI_HMAC_PRECOMP,
  1602. .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
  1603. },
  1604. {
  1605. .name = "authenc(hmac(sha256),cbc(aes))",
  1606. .driver_name = "authenc-hmac-sha256-cbc-aes-caam",
  1607. .blocksize = AES_BLOCK_SIZE,
  1608. .type = CRYPTO_ALG_TYPE_AEAD,
  1609. .template_aead = {
  1610. .setkey = aead_setkey,
  1611. .setauthsize = aead_setauthsize,
  1612. .encrypt = aead_encrypt,
  1613. .decrypt = aead_decrypt,
  1614. .givencrypt = aead_givencrypt,
  1615. .geniv = "<built-in>",
  1616. .ivsize = AES_BLOCK_SIZE,
  1617. .maxauthsize = SHA256_DIGEST_SIZE,
  1618. },
  1619. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1620. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  1621. OP_ALG_AAI_HMAC_PRECOMP,
  1622. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  1623. },
  1624. {
  1625. .name = "authenc(hmac(sha384),cbc(aes))",
  1626. .driver_name = "authenc-hmac-sha384-cbc-aes-caam",
  1627. .blocksize = AES_BLOCK_SIZE,
  1628. .template_aead = {
  1629. .setkey = aead_setkey,
  1630. .setauthsize = aead_setauthsize,
  1631. .encrypt = aead_encrypt,
  1632. .decrypt = aead_decrypt,
  1633. .givencrypt = aead_givencrypt,
  1634. .geniv = "<built-in>",
  1635. .ivsize = AES_BLOCK_SIZE,
  1636. .maxauthsize = SHA384_DIGEST_SIZE,
  1637. },
  1638. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1639. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  1640. OP_ALG_AAI_HMAC_PRECOMP,
  1641. .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
  1642. },
  1643. {
  1644. .name = "authenc(hmac(sha512),cbc(aes))",
  1645. .driver_name = "authenc-hmac-sha512-cbc-aes-caam",
  1646. .blocksize = AES_BLOCK_SIZE,
  1647. .type = CRYPTO_ALG_TYPE_AEAD,
  1648. .template_aead = {
  1649. .setkey = aead_setkey,
  1650. .setauthsize = aead_setauthsize,
  1651. .encrypt = aead_encrypt,
  1652. .decrypt = aead_decrypt,
  1653. .givencrypt = aead_givencrypt,
  1654. .geniv = "<built-in>",
  1655. .ivsize = AES_BLOCK_SIZE,
  1656. .maxauthsize = SHA512_DIGEST_SIZE,
  1657. },
  1658. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1659. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  1660. OP_ALG_AAI_HMAC_PRECOMP,
  1661. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  1662. },
  1663. {
  1664. .name = "authenc(hmac(md5),cbc(des3_ede))",
  1665. .driver_name = "authenc-hmac-md5-cbc-des3_ede-caam",
  1666. .blocksize = DES3_EDE_BLOCK_SIZE,
  1667. .type = CRYPTO_ALG_TYPE_AEAD,
  1668. .template_aead = {
  1669. .setkey = aead_setkey,
  1670. .setauthsize = aead_setauthsize,
  1671. .encrypt = aead_encrypt,
  1672. .decrypt = aead_decrypt,
  1673. .givencrypt = aead_givencrypt,
  1674. .geniv = "<built-in>",
  1675. .ivsize = DES3_EDE_BLOCK_SIZE,
  1676. .maxauthsize = MD5_DIGEST_SIZE,
  1677. },
  1678. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1679. .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP,
  1680. .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
  1681. },
  1682. {
  1683. .name = "authenc(hmac(sha1),cbc(des3_ede))",
  1684. .driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam",
  1685. .blocksize = DES3_EDE_BLOCK_SIZE,
  1686. .type = CRYPTO_ALG_TYPE_AEAD,
  1687. .template_aead = {
  1688. .setkey = aead_setkey,
  1689. .setauthsize = aead_setauthsize,
  1690. .encrypt = aead_encrypt,
  1691. .decrypt = aead_decrypt,
  1692. .givencrypt = aead_givencrypt,
  1693. .geniv = "<built-in>",
  1694. .ivsize = DES3_EDE_BLOCK_SIZE,
  1695. .maxauthsize = SHA1_DIGEST_SIZE,
  1696. },
  1697. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1698. .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
  1699. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  1700. },
  1701. {
  1702. .name = "authenc(hmac(sha224),cbc(des3_ede))",
  1703. .driver_name = "authenc-hmac-sha224-cbc-des3_ede-caam",
  1704. .blocksize = DES3_EDE_BLOCK_SIZE,
  1705. .template_aead = {
  1706. .setkey = aead_setkey,
  1707. .setauthsize = aead_setauthsize,
  1708. .encrypt = aead_encrypt,
  1709. .decrypt = aead_decrypt,
  1710. .givencrypt = aead_givencrypt,
  1711. .geniv = "<built-in>",
  1712. .ivsize = DES3_EDE_BLOCK_SIZE,
  1713. .maxauthsize = SHA224_DIGEST_SIZE,
  1714. },
  1715. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1716. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  1717. OP_ALG_AAI_HMAC_PRECOMP,
  1718. .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
  1719. },
  1720. {
  1721. .name = "authenc(hmac(sha256),cbc(des3_ede))",
  1722. .driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam",
  1723. .blocksize = DES3_EDE_BLOCK_SIZE,
  1724. .type = CRYPTO_ALG_TYPE_AEAD,
  1725. .template_aead = {
  1726. .setkey = aead_setkey,
  1727. .setauthsize = aead_setauthsize,
  1728. .encrypt = aead_encrypt,
  1729. .decrypt = aead_decrypt,
  1730. .givencrypt = aead_givencrypt,
  1731. .geniv = "<built-in>",
  1732. .ivsize = DES3_EDE_BLOCK_SIZE,
  1733. .maxauthsize = SHA256_DIGEST_SIZE,
  1734. },
  1735. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1736. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  1737. OP_ALG_AAI_HMAC_PRECOMP,
  1738. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  1739. },
  1740. {
  1741. .name = "authenc(hmac(sha384),cbc(des3_ede))",
  1742. .driver_name = "authenc-hmac-sha384-cbc-des3_ede-caam",
  1743. .blocksize = DES3_EDE_BLOCK_SIZE,
  1744. .template_aead = {
  1745. .setkey = aead_setkey,
  1746. .setauthsize = aead_setauthsize,
  1747. .encrypt = aead_encrypt,
  1748. .decrypt = aead_decrypt,
  1749. .givencrypt = aead_givencrypt,
  1750. .geniv = "<built-in>",
  1751. .ivsize = DES3_EDE_BLOCK_SIZE,
  1752. .maxauthsize = SHA384_DIGEST_SIZE,
  1753. },
  1754. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1755. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  1756. OP_ALG_AAI_HMAC_PRECOMP,
  1757. .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
  1758. },
  1759. {
  1760. .name = "authenc(hmac(sha512),cbc(des3_ede))",
  1761. .driver_name = "authenc-hmac-sha512-cbc-des3_ede-caam",
  1762. .blocksize = DES3_EDE_BLOCK_SIZE,
  1763. .type = CRYPTO_ALG_TYPE_AEAD,
  1764. .template_aead = {
  1765. .setkey = aead_setkey,
  1766. .setauthsize = aead_setauthsize,
  1767. .encrypt = aead_encrypt,
  1768. .decrypt = aead_decrypt,
  1769. .givencrypt = aead_givencrypt,
  1770. .geniv = "<built-in>",
  1771. .ivsize = DES3_EDE_BLOCK_SIZE,
  1772. .maxauthsize = SHA512_DIGEST_SIZE,
  1773. },
  1774. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1775. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  1776. OP_ALG_AAI_HMAC_PRECOMP,
  1777. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  1778. },
  1779. {
  1780. .name = "authenc(hmac(md5),cbc(des))",
  1781. .driver_name = "authenc-hmac-md5-cbc-des-caam",
  1782. .blocksize = DES_BLOCK_SIZE,
  1783. .type = CRYPTO_ALG_TYPE_AEAD,
  1784. .template_aead = {
  1785. .setkey = aead_setkey,
  1786. .setauthsize = aead_setauthsize,
  1787. .encrypt = aead_encrypt,
  1788. .decrypt = aead_decrypt,
  1789. .givencrypt = aead_givencrypt,
  1790. .geniv = "<built-in>",
  1791. .ivsize = DES_BLOCK_SIZE,
  1792. .maxauthsize = MD5_DIGEST_SIZE,
  1793. },
  1794. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1795. .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP,
  1796. .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
  1797. },
  1798. {
  1799. .name = "authenc(hmac(sha1),cbc(des))",
  1800. .driver_name = "authenc-hmac-sha1-cbc-des-caam",
  1801. .blocksize = DES_BLOCK_SIZE,
  1802. .type = CRYPTO_ALG_TYPE_AEAD,
  1803. .template_aead = {
  1804. .setkey = aead_setkey,
  1805. .setauthsize = aead_setauthsize,
  1806. .encrypt = aead_encrypt,
  1807. .decrypt = aead_decrypt,
  1808. .givencrypt = aead_givencrypt,
  1809. .geniv = "<built-in>",
  1810. .ivsize = DES_BLOCK_SIZE,
  1811. .maxauthsize = SHA1_DIGEST_SIZE,
  1812. },
  1813. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1814. .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
  1815. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  1816. },
  1817. {
  1818. .name = "authenc(hmac(sha224),cbc(des))",
  1819. .driver_name = "authenc-hmac-sha224-cbc-des-caam",
  1820. .blocksize = DES_BLOCK_SIZE,
  1821. .template_aead = {
  1822. .setkey = aead_setkey,
  1823. .setauthsize = aead_setauthsize,
  1824. .encrypt = aead_encrypt,
  1825. .decrypt = aead_decrypt,
  1826. .givencrypt = aead_givencrypt,
  1827. .geniv = "<built-in>",
  1828. .ivsize = DES_BLOCK_SIZE,
  1829. .maxauthsize = SHA224_DIGEST_SIZE,
  1830. },
  1831. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1832. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  1833. OP_ALG_AAI_HMAC_PRECOMP,
  1834. .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
  1835. },
  1836. {
  1837. .name = "authenc(hmac(sha256),cbc(des))",
  1838. .driver_name = "authenc-hmac-sha256-cbc-des-caam",
  1839. .blocksize = DES_BLOCK_SIZE,
  1840. .type = CRYPTO_ALG_TYPE_AEAD,
  1841. .template_aead = {
  1842. .setkey = aead_setkey,
  1843. .setauthsize = aead_setauthsize,
  1844. .encrypt = aead_encrypt,
  1845. .decrypt = aead_decrypt,
  1846. .givencrypt = aead_givencrypt,
  1847. .geniv = "<built-in>",
  1848. .ivsize = DES_BLOCK_SIZE,
  1849. .maxauthsize = SHA256_DIGEST_SIZE,
  1850. },
  1851. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1852. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  1853. OP_ALG_AAI_HMAC_PRECOMP,
  1854. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  1855. },
  1856. {
  1857. .name = "authenc(hmac(sha384),cbc(des))",
  1858. .driver_name = "authenc-hmac-sha384-cbc-des-caam",
  1859. .blocksize = DES_BLOCK_SIZE,
  1860. .template_aead = {
  1861. .setkey = aead_setkey,
  1862. .setauthsize = aead_setauthsize,
  1863. .encrypt = aead_encrypt,
  1864. .decrypt = aead_decrypt,
  1865. .givencrypt = aead_givencrypt,
  1866. .geniv = "<built-in>",
  1867. .ivsize = DES_BLOCK_SIZE,
  1868. .maxauthsize = SHA384_DIGEST_SIZE,
  1869. },
  1870. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1871. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  1872. OP_ALG_AAI_HMAC_PRECOMP,
  1873. .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
  1874. },
  1875. {
  1876. .name = "authenc(hmac(sha512),cbc(des))",
  1877. .driver_name = "authenc-hmac-sha512-cbc-des-caam",
  1878. .blocksize = DES_BLOCK_SIZE,
  1879. .type = CRYPTO_ALG_TYPE_AEAD,
  1880. .template_aead = {
  1881. .setkey = aead_setkey,
  1882. .setauthsize = aead_setauthsize,
  1883. .encrypt = aead_encrypt,
  1884. .decrypt = aead_decrypt,
  1885. .givencrypt = aead_givencrypt,
  1886. .geniv = "<built-in>",
  1887. .ivsize = DES_BLOCK_SIZE,
  1888. .maxauthsize = SHA512_DIGEST_SIZE,
  1889. },
  1890. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1891. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  1892. OP_ALG_AAI_HMAC_PRECOMP,
  1893. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  1894. },
  1895. /* ablkcipher descriptor */
  1896. {
  1897. .name = "cbc(aes)",
  1898. .driver_name = "cbc-aes-caam",
  1899. .blocksize = AES_BLOCK_SIZE,
  1900. .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
  1901. .template_ablkcipher = {
  1902. .setkey = ablkcipher_setkey,
  1903. .encrypt = ablkcipher_encrypt,
  1904. .decrypt = ablkcipher_decrypt,
  1905. .geniv = "eseqiv",
  1906. .min_keysize = AES_MIN_KEY_SIZE,
  1907. .max_keysize = AES_MAX_KEY_SIZE,
  1908. .ivsize = AES_BLOCK_SIZE,
  1909. },
  1910. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1911. },
  1912. {
  1913. .name = "cbc(des3_ede)",
  1914. .driver_name = "cbc-3des-caam",
  1915. .blocksize = DES3_EDE_BLOCK_SIZE,
  1916. .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
  1917. .template_ablkcipher = {
  1918. .setkey = ablkcipher_setkey,
  1919. .encrypt = ablkcipher_encrypt,
  1920. .decrypt = ablkcipher_decrypt,
  1921. .geniv = "eseqiv",
  1922. .min_keysize = DES3_EDE_KEY_SIZE,
  1923. .max_keysize = DES3_EDE_KEY_SIZE,
  1924. .ivsize = DES3_EDE_BLOCK_SIZE,
  1925. },
  1926. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1927. },
  1928. {
  1929. .name = "cbc(des)",
  1930. .driver_name = "cbc-des-caam",
  1931. .blocksize = DES_BLOCK_SIZE,
  1932. .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
  1933. .template_ablkcipher = {
  1934. .setkey = ablkcipher_setkey,
  1935. .encrypt = ablkcipher_encrypt,
  1936. .decrypt = ablkcipher_decrypt,
  1937. .geniv = "eseqiv",
  1938. .min_keysize = DES_KEY_SIZE,
  1939. .max_keysize = DES_KEY_SIZE,
  1940. .ivsize = DES_BLOCK_SIZE,
  1941. },
  1942. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1943. }
  1944. };
  1945. struct caam_crypto_alg {
  1946. struct list_head entry;
  1947. struct device *ctrldev;
  1948. int class1_alg_type;
  1949. int class2_alg_type;
  1950. int alg_op;
  1951. struct crypto_alg crypto_alg;
  1952. };
  1953. static int caam_cra_init(struct crypto_tfm *tfm)
  1954. {
  1955. struct crypto_alg *alg = tfm->__crt_alg;
  1956. struct caam_crypto_alg *caam_alg =
  1957. container_of(alg, struct caam_crypto_alg, crypto_alg);
  1958. struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
  1959. struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev);
  1960. int tgt_jr = atomic_inc_return(&priv->tfm_count);
  1961. /*
  1962. * distribute tfms across job rings to ensure in-order
  1963. * crypto request processing per tfm
  1964. */
  1965. ctx->jrdev = priv->algapi_jr[(tgt_jr / 2) % priv->num_jrs_for_algapi];
  1966. /* copy descriptor header template value */
  1967. ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type;
  1968. ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type;
  1969. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op;
  1970. return 0;
  1971. }
  1972. static void caam_cra_exit(struct crypto_tfm *tfm)
  1973. {
  1974. struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
  1975. if (ctx->sh_desc_enc_dma &&
  1976. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_enc_dma))
  1977. dma_unmap_single(ctx->jrdev, ctx->sh_desc_enc_dma,
  1978. desc_bytes(ctx->sh_desc_enc), DMA_TO_DEVICE);
  1979. if (ctx->sh_desc_dec_dma &&
  1980. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_dec_dma))
  1981. dma_unmap_single(ctx->jrdev, ctx->sh_desc_dec_dma,
  1982. desc_bytes(ctx->sh_desc_dec), DMA_TO_DEVICE);
  1983. if (ctx->sh_desc_givenc_dma &&
  1984. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_givenc_dma))
  1985. dma_unmap_single(ctx->jrdev, ctx->sh_desc_givenc_dma,
  1986. desc_bytes(ctx->sh_desc_givenc),
  1987. DMA_TO_DEVICE);
  1988. }
  1989. static void __exit caam_algapi_exit(void)
  1990. {
  1991. struct device_node *dev_node;
  1992. struct platform_device *pdev;
  1993. struct device *ctrldev;
  1994. struct caam_drv_private *priv;
  1995. struct caam_crypto_alg *t_alg, *n;
  1996. int i, err;
  1997. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1998. if (!dev_node)
  1999. return;
  2000. pdev = of_find_device_by_node(dev_node);
  2001. if (!pdev)
  2002. return;
  2003. ctrldev = &pdev->dev;
  2004. of_node_put(dev_node);
  2005. priv = dev_get_drvdata(ctrldev);
  2006. if (!priv->alg_list.next)
  2007. return;
  2008. list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
  2009. crypto_unregister_alg(&t_alg->crypto_alg);
  2010. list_del(&t_alg->entry);
  2011. kfree(t_alg);
  2012. }
  2013. for (i = 0; i < priv->total_jobrs; i++) {
  2014. err = caam_jr_deregister(priv->algapi_jr[i]);
  2015. if (err < 0)
  2016. break;
  2017. }
  2018. kfree(priv->algapi_jr);
  2019. }
  2020. static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev,
  2021. struct caam_alg_template
  2022. *template)
  2023. {
  2024. struct caam_crypto_alg *t_alg;
  2025. struct crypto_alg *alg;
  2026. t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL);
  2027. if (!t_alg) {
  2028. dev_err(ctrldev, "failed to allocate t_alg\n");
  2029. return ERR_PTR(-ENOMEM);
  2030. }
  2031. alg = &t_alg->crypto_alg;
  2032. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
  2033. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  2034. template->driver_name);
  2035. alg->cra_module = THIS_MODULE;
  2036. alg->cra_init = caam_cra_init;
  2037. alg->cra_exit = caam_cra_exit;
  2038. alg->cra_priority = CAAM_CRA_PRIORITY;
  2039. alg->cra_blocksize = template->blocksize;
  2040. alg->cra_alignmask = 0;
  2041. alg->cra_ctxsize = sizeof(struct caam_ctx);
  2042. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
  2043. template->type;
  2044. switch (template->type) {
  2045. case CRYPTO_ALG_TYPE_ABLKCIPHER:
  2046. alg->cra_type = &crypto_ablkcipher_type;
  2047. alg->cra_ablkcipher = template->template_ablkcipher;
  2048. break;
  2049. case CRYPTO_ALG_TYPE_AEAD:
  2050. alg->cra_type = &crypto_aead_type;
  2051. alg->cra_aead = template->template_aead;
  2052. break;
  2053. }
  2054. t_alg->class1_alg_type = template->class1_alg_type;
  2055. t_alg->class2_alg_type = template->class2_alg_type;
  2056. t_alg->alg_op = template->alg_op;
  2057. t_alg->ctrldev = ctrldev;
  2058. return t_alg;
  2059. }
  2060. static int __init caam_algapi_init(void)
  2061. {
  2062. struct device_node *dev_node;
  2063. struct platform_device *pdev;
  2064. struct device *ctrldev, **jrdev;
  2065. struct caam_drv_private *priv;
  2066. int i = 0, err = 0;
  2067. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  2068. if (!dev_node)
  2069. return -ENODEV;
  2070. pdev = of_find_device_by_node(dev_node);
  2071. if (!pdev)
  2072. return -ENODEV;
  2073. ctrldev = &pdev->dev;
  2074. priv = dev_get_drvdata(ctrldev);
  2075. of_node_put(dev_node);
  2076. INIT_LIST_HEAD(&priv->alg_list);
  2077. jrdev = kmalloc(sizeof(*jrdev) * priv->total_jobrs, GFP_KERNEL);
  2078. if (!jrdev)
  2079. return -ENOMEM;
  2080. for (i = 0; i < priv->total_jobrs; i++) {
  2081. err = caam_jr_register(ctrldev, &jrdev[i]);
  2082. if (err < 0)
  2083. break;
  2084. }
  2085. if (err < 0 && i == 0) {
  2086. dev_err(ctrldev, "algapi error in job ring registration: %d\n",
  2087. err);
  2088. kfree(jrdev);
  2089. return err;
  2090. }
  2091. priv->num_jrs_for_algapi = i;
  2092. priv->algapi_jr = jrdev;
  2093. atomic_set(&priv->tfm_count, -1);
  2094. /* register crypto algorithms the device supports */
  2095. for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
  2096. /* TODO: check if h/w supports alg */
  2097. struct caam_crypto_alg *t_alg;
  2098. t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]);
  2099. if (IS_ERR(t_alg)) {
  2100. err = PTR_ERR(t_alg);
  2101. dev_warn(ctrldev, "%s alg allocation failed\n",
  2102. driver_algs[i].driver_name);
  2103. continue;
  2104. }
  2105. err = crypto_register_alg(&t_alg->crypto_alg);
  2106. if (err) {
  2107. dev_warn(ctrldev, "%s alg registration failed\n",
  2108. t_alg->crypto_alg.cra_driver_name);
  2109. kfree(t_alg);
  2110. } else
  2111. list_add_tail(&t_alg->entry, &priv->alg_list);
  2112. }
  2113. if (!list_empty(&priv->alg_list))
  2114. dev_info(ctrldev, "%s algorithms registered in /proc/crypto\n",
  2115. (char *)of_get_property(dev_node, "compatible", NULL));
  2116. return err;
  2117. }
  2118. module_init(caam_algapi_init);
  2119. module_exit(caam_algapi_exit);
  2120. MODULE_LICENSE("GPL");
  2121. MODULE_DESCRIPTION("FSL CAAM support for crypto API");
  2122. MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");