cfq-iosched.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "cfq.h"
  19. /*
  20. * tunables
  21. */
  22. /* max queue in one round of service */
  23. static const int cfq_quantum = 8;
  24. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  25. /* maximum backwards seek, in KiB */
  26. static const int cfq_back_max = 16 * 1024;
  27. /* penalty of a backwards seek */
  28. static const int cfq_back_penalty = 2;
  29. static const int cfq_slice_sync = HZ / 10;
  30. static int cfq_slice_async = HZ / 25;
  31. static const int cfq_slice_async_rq = 2;
  32. static int cfq_slice_idle = HZ / 125;
  33. static int cfq_group_idle = HZ / 125;
  34. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  35. static const int cfq_hist_divisor = 4;
  36. /*
  37. * offset from end of service tree
  38. */
  39. #define CFQ_IDLE_DELAY (HZ / 5)
  40. /*
  41. * below this threshold, we consider thinktime immediate
  42. */
  43. #define CFQ_MIN_TT (2)
  44. #define CFQ_SLICE_SCALE (5)
  45. #define CFQ_HW_QUEUE_MIN (5)
  46. #define CFQ_SERVICE_SHIFT 12
  47. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  48. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  49. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  50. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  51. #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
  54. static struct kmem_cache *cfq_pool;
  55. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  56. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  57. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  58. #define sample_valid(samples) ((samples) > 80)
  59. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  60. struct cfq_ttime {
  61. unsigned long last_end_request;
  62. unsigned long ttime_total;
  63. unsigned long ttime_samples;
  64. unsigned long ttime_mean;
  65. };
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. struct cfq_ttime ttime;
  79. };
  80. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  81. .ttime = {.last_end_request = jiffies,},}
  82. /*
  83. * Per process-grouping structure
  84. */
  85. struct cfq_queue {
  86. /* reference count */
  87. int ref;
  88. /* various state flags, see below */
  89. unsigned int flags;
  90. /* parent cfq_data */
  91. struct cfq_data *cfqd;
  92. /* service_tree member */
  93. struct rb_node rb_node;
  94. /* service_tree key */
  95. unsigned long rb_key;
  96. /* prio tree member */
  97. struct rb_node p_node;
  98. /* prio tree root we belong to, if any */
  99. struct rb_root *p_root;
  100. /* sorted list of pending requests */
  101. struct rb_root sort_list;
  102. /* if fifo isn't expired, next request to serve */
  103. struct request *next_rq;
  104. /* requests queued in sort_list */
  105. int queued[2];
  106. /* currently allocated requests */
  107. int allocated[2];
  108. /* fifo list of requests in sort_list */
  109. struct list_head fifo;
  110. /* time when queue got scheduled in to dispatch first request. */
  111. unsigned long dispatch_start;
  112. unsigned int allocated_slice;
  113. unsigned int slice_dispatch;
  114. /* time when first request from queue completed and slice started. */
  115. unsigned long slice_start;
  116. unsigned long slice_end;
  117. long slice_resid;
  118. /* pending priority requests */
  119. int prio_pending;
  120. /* number of requests that are on the dispatch list or inside driver */
  121. int dispatched;
  122. /* io prio of this group */
  123. unsigned short ioprio, org_ioprio;
  124. unsigned short ioprio_class;
  125. pid_t pid;
  126. u32 seek_history;
  127. sector_t last_request_pos;
  128. struct cfq_rb_root *service_tree;
  129. struct cfq_queue *new_cfqq;
  130. struct cfq_group *cfqg;
  131. /* Number of sectors dispatched from queue in single dispatch round */
  132. unsigned long nr_sectors;
  133. };
  134. /*
  135. * First index in the service_trees.
  136. * IDLE is handled separately, so it has negative index
  137. */
  138. enum wl_prio_t {
  139. BE_WORKLOAD = 0,
  140. RT_WORKLOAD = 1,
  141. IDLE_WORKLOAD = 2,
  142. CFQ_PRIO_NR,
  143. };
  144. /*
  145. * Second index in the service_trees.
  146. */
  147. enum wl_type_t {
  148. ASYNC_WORKLOAD = 0,
  149. SYNC_NOIDLE_WORKLOAD = 1,
  150. SYNC_WORKLOAD = 2
  151. };
  152. /* This is per cgroup per device grouping structure */
  153. struct cfq_group {
  154. /* group service_tree member */
  155. struct rb_node rb_node;
  156. /* group service_tree key */
  157. u64 vdisktime;
  158. unsigned int weight;
  159. unsigned int new_weight;
  160. bool needs_update;
  161. /* number of cfqq currently on this group */
  162. int nr_cfqq;
  163. /*
  164. * Per group busy queues average. Useful for workload slice calc. We
  165. * create the array for each prio class but at run time it is used
  166. * only for RT and BE class and slot for IDLE class remains unused.
  167. * This is primarily done to avoid confusion and a gcc warning.
  168. */
  169. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  170. /*
  171. * rr lists of queues with requests. We maintain service trees for
  172. * RT and BE classes. These trees are subdivided in subclasses
  173. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  174. * class there is no subclassification and all the cfq queues go on
  175. * a single tree service_tree_idle.
  176. * Counts are embedded in the cfq_rb_root
  177. */
  178. struct cfq_rb_root service_trees[2][3];
  179. struct cfq_rb_root service_tree_idle;
  180. unsigned long saved_workload_slice;
  181. enum wl_type_t saved_workload;
  182. enum wl_prio_t saved_serving_prio;
  183. struct blkio_group blkg;
  184. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  185. struct hlist_node cfqd_node;
  186. int ref;
  187. #endif
  188. /* number of requests that are on the dispatch list or inside driver */
  189. int dispatched;
  190. struct cfq_ttime ttime;
  191. };
  192. struct cfq_io_cq {
  193. struct io_cq icq; /* must be the first member */
  194. struct cfq_queue *cfqq[2];
  195. struct cfq_ttime ttime;
  196. };
  197. /*
  198. * Per block device queue structure
  199. */
  200. struct cfq_data {
  201. struct request_queue *queue;
  202. /* Root service tree for cfq_groups */
  203. struct cfq_rb_root grp_service_tree;
  204. struct cfq_group root_group;
  205. /*
  206. * The priority currently being served
  207. */
  208. enum wl_prio_t serving_prio;
  209. enum wl_type_t serving_type;
  210. unsigned long workload_expires;
  211. struct cfq_group *serving_group;
  212. /*
  213. * Each priority tree is sorted by next_request position. These
  214. * trees are used when determining if two or more queues are
  215. * interleaving requests (see cfq_close_cooperator).
  216. */
  217. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  218. unsigned int busy_queues;
  219. unsigned int busy_sync_queues;
  220. int rq_in_driver;
  221. int rq_in_flight[2];
  222. /*
  223. * queue-depth detection
  224. */
  225. int rq_queued;
  226. int hw_tag;
  227. /*
  228. * hw_tag can be
  229. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  230. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  231. * 0 => no NCQ
  232. */
  233. int hw_tag_est_depth;
  234. unsigned int hw_tag_samples;
  235. /*
  236. * idle window management
  237. */
  238. struct timer_list idle_slice_timer;
  239. struct work_struct unplug_work;
  240. struct cfq_queue *active_queue;
  241. struct cfq_io_cq *active_cic;
  242. /*
  243. * async queue for each priority case
  244. */
  245. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  246. struct cfq_queue *async_idle_cfqq;
  247. sector_t last_position;
  248. /*
  249. * tunables, see top of file
  250. */
  251. unsigned int cfq_quantum;
  252. unsigned int cfq_fifo_expire[2];
  253. unsigned int cfq_back_penalty;
  254. unsigned int cfq_back_max;
  255. unsigned int cfq_slice[2];
  256. unsigned int cfq_slice_async_rq;
  257. unsigned int cfq_slice_idle;
  258. unsigned int cfq_group_idle;
  259. unsigned int cfq_latency;
  260. unsigned int cfq_target_latency;
  261. /*
  262. * Fallback dummy cfqq for extreme OOM conditions
  263. */
  264. struct cfq_queue oom_cfqq;
  265. unsigned long last_delayed_sync;
  266. /* List of cfq groups being managed on this device*/
  267. struct hlist_head cfqg_list;
  268. /* Number of groups which are on blkcg->blkg_list */
  269. unsigned int nr_blkcg_linked_grps;
  270. };
  271. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  272. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  273. enum wl_prio_t prio,
  274. enum wl_type_t type)
  275. {
  276. if (!cfqg)
  277. return NULL;
  278. if (prio == IDLE_WORKLOAD)
  279. return &cfqg->service_tree_idle;
  280. return &cfqg->service_trees[prio][type];
  281. }
  282. enum cfqq_state_flags {
  283. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  284. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  285. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  286. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  287. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  288. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  289. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  290. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  291. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  292. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  293. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  294. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  295. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  296. };
  297. #define CFQ_CFQQ_FNS(name) \
  298. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  299. { \
  300. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  301. } \
  302. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  303. { \
  304. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  305. } \
  306. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  307. { \
  308. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  309. }
  310. CFQ_CFQQ_FNS(on_rr);
  311. CFQ_CFQQ_FNS(wait_request);
  312. CFQ_CFQQ_FNS(must_dispatch);
  313. CFQ_CFQQ_FNS(must_alloc_slice);
  314. CFQ_CFQQ_FNS(fifo_expire);
  315. CFQ_CFQQ_FNS(idle_window);
  316. CFQ_CFQQ_FNS(prio_changed);
  317. CFQ_CFQQ_FNS(slice_new);
  318. CFQ_CFQQ_FNS(sync);
  319. CFQ_CFQQ_FNS(coop);
  320. CFQ_CFQQ_FNS(split_coop);
  321. CFQ_CFQQ_FNS(deep);
  322. CFQ_CFQQ_FNS(wait_busy);
  323. #undef CFQ_CFQQ_FNS
  324. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  325. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  326. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  327. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  328. blkg_path(&(cfqq)->cfqg->blkg), ##args)
  329. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  330. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  331. blkg_path(&(cfqg)->blkg), ##args) \
  332. #else
  333. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  334. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  335. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  336. #endif
  337. #define cfq_log(cfqd, fmt, args...) \
  338. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  339. /* Traverses through cfq group service trees */
  340. #define for_each_cfqg_st(cfqg, i, j, st) \
  341. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  342. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  343. : &cfqg->service_tree_idle; \
  344. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  345. (i == IDLE_WORKLOAD && j == 0); \
  346. j++, st = i < IDLE_WORKLOAD ? \
  347. &cfqg->service_trees[i][j]: NULL) \
  348. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  349. struct cfq_ttime *ttime, bool group_idle)
  350. {
  351. unsigned long slice;
  352. if (!sample_valid(ttime->ttime_samples))
  353. return false;
  354. if (group_idle)
  355. slice = cfqd->cfq_group_idle;
  356. else
  357. slice = cfqd->cfq_slice_idle;
  358. return ttime->ttime_mean > slice;
  359. }
  360. static inline bool iops_mode(struct cfq_data *cfqd)
  361. {
  362. /*
  363. * If we are not idling on queues and it is a NCQ drive, parallel
  364. * execution of requests is on and measuring time is not possible
  365. * in most of the cases until and unless we drive shallower queue
  366. * depths and that becomes a performance bottleneck. In such cases
  367. * switch to start providing fairness in terms of number of IOs.
  368. */
  369. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  370. return true;
  371. else
  372. return false;
  373. }
  374. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  375. {
  376. if (cfq_class_idle(cfqq))
  377. return IDLE_WORKLOAD;
  378. if (cfq_class_rt(cfqq))
  379. return RT_WORKLOAD;
  380. return BE_WORKLOAD;
  381. }
  382. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  383. {
  384. if (!cfq_cfqq_sync(cfqq))
  385. return ASYNC_WORKLOAD;
  386. if (!cfq_cfqq_idle_window(cfqq))
  387. return SYNC_NOIDLE_WORKLOAD;
  388. return SYNC_WORKLOAD;
  389. }
  390. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  391. struct cfq_data *cfqd,
  392. struct cfq_group *cfqg)
  393. {
  394. if (wl == IDLE_WORKLOAD)
  395. return cfqg->service_tree_idle.count;
  396. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  397. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  398. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  399. }
  400. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  401. struct cfq_group *cfqg)
  402. {
  403. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  404. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  405. }
  406. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  407. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  408. struct io_context *, gfp_t);
  409. static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
  410. {
  411. /* cic->icq is the first member, %NULL will convert to %NULL */
  412. return container_of(icq, struct cfq_io_cq, icq);
  413. }
  414. static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
  415. struct io_context *ioc)
  416. {
  417. if (ioc)
  418. return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
  419. return NULL;
  420. }
  421. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
  422. {
  423. return cic->cfqq[is_sync];
  424. }
  425. static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
  426. bool is_sync)
  427. {
  428. cic->cfqq[is_sync] = cfqq;
  429. }
  430. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
  431. {
  432. return cic->icq.q->elevator->elevator_data;
  433. }
  434. /*
  435. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  436. * set (in which case it could also be direct WRITE).
  437. */
  438. static inline bool cfq_bio_sync(struct bio *bio)
  439. {
  440. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  441. }
  442. /*
  443. * scheduler run of queue, if there are requests pending and no one in the
  444. * driver that will restart queueing
  445. */
  446. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  447. {
  448. if (cfqd->busy_queues) {
  449. cfq_log(cfqd, "schedule dispatch");
  450. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  451. }
  452. }
  453. /*
  454. * Scale schedule slice based on io priority. Use the sync time slice only
  455. * if a queue is marked sync and has sync io queued. A sync queue with async
  456. * io only, should not get full sync slice length.
  457. */
  458. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  459. unsigned short prio)
  460. {
  461. const int base_slice = cfqd->cfq_slice[sync];
  462. WARN_ON(prio >= IOPRIO_BE_NR);
  463. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  464. }
  465. static inline int
  466. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  467. {
  468. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  469. }
  470. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  471. {
  472. u64 d = delta << CFQ_SERVICE_SHIFT;
  473. d = d * BLKIO_WEIGHT_DEFAULT;
  474. do_div(d, cfqg->weight);
  475. return d;
  476. }
  477. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  478. {
  479. s64 delta = (s64)(vdisktime - min_vdisktime);
  480. if (delta > 0)
  481. min_vdisktime = vdisktime;
  482. return min_vdisktime;
  483. }
  484. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  485. {
  486. s64 delta = (s64)(vdisktime - min_vdisktime);
  487. if (delta < 0)
  488. min_vdisktime = vdisktime;
  489. return min_vdisktime;
  490. }
  491. static void update_min_vdisktime(struct cfq_rb_root *st)
  492. {
  493. struct cfq_group *cfqg;
  494. if (st->left) {
  495. cfqg = rb_entry_cfqg(st->left);
  496. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  497. cfqg->vdisktime);
  498. }
  499. }
  500. /*
  501. * get averaged number of queues of RT/BE priority.
  502. * average is updated, with a formula that gives more weight to higher numbers,
  503. * to quickly follows sudden increases and decrease slowly
  504. */
  505. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  506. struct cfq_group *cfqg, bool rt)
  507. {
  508. unsigned min_q, max_q;
  509. unsigned mult = cfq_hist_divisor - 1;
  510. unsigned round = cfq_hist_divisor / 2;
  511. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  512. min_q = min(cfqg->busy_queues_avg[rt], busy);
  513. max_q = max(cfqg->busy_queues_avg[rt], busy);
  514. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  515. cfq_hist_divisor;
  516. return cfqg->busy_queues_avg[rt];
  517. }
  518. static inline unsigned
  519. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  520. {
  521. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  522. return cfqd->cfq_target_latency * cfqg->weight / st->total_weight;
  523. }
  524. static inline unsigned
  525. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  526. {
  527. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  528. if (cfqd->cfq_latency) {
  529. /*
  530. * interested queues (we consider only the ones with the same
  531. * priority class in the cfq group)
  532. */
  533. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  534. cfq_class_rt(cfqq));
  535. unsigned sync_slice = cfqd->cfq_slice[1];
  536. unsigned expect_latency = sync_slice * iq;
  537. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  538. if (expect_latency > group_slice) {
  539. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  540. /* scale low_slice according to IO priority
  541. * and sync vs async */
  542. unsigned low_slice =
  543. min(slice, base_low_slice * slice / sync_slice);
  544. /* the adapted slice value is scaled to fit all iqs
  545. * into the target latency */
  546. slice = max(slice * group_slice / expect_latency,
  547. low_slice);
  548. }
  549. }
  550. return slice;
  551. }
  552. static inline void
  553. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  554. {
  555. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  556. cfqq->slice_start = jiffies;
  557. cfqq->slice_end = jiffies + slice;
  558. cfqq->allocated_slice = slice;
  559. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  560. }
  561. /*
  562. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  563. * isn't valid until the first request from the dispatch is activated
  564. * and the slice time set.
  565. */
  566. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  567. {
  568. if (cfq_cfqq_slice_new(cfqq))
  569. return false;
  570. if (time_before(jiffies, cfqq->slice_end))
  571. return false;
  572. return true;
  573. }
  574. /*
  575. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  576. * We choose the request that is closest to the head right now. Distance
  577. * behind the head is penalized and only allowed to a certain extent.
  578. */
  579. static struct request *
  580. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  581. {
  582. sector_t s1, s2, d1 = 0, d2 = 0;
  583. unsigned long back_max;
  584. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  585. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  586. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  587. if (rq1 == NULL || rq1 == rq2)
  588. return rq2;
  589. if (rq2 == NULL)
  590. return rq1;
  591. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  592. return rq_is_sync(rq1) ? rq1 : rq2;
  593. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  594. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  595. s1 = blk_rq_pos(rq1);
  596. s2 = blk_rq_pos(rq2);
  597. /*
  598. * by definition, 1KiB is 2 sectors
  599. */
  600. back_max = cfqd->cfq_back_max * 2;
  601. /*
  602. * Strict one way elevator _except_ in the case where we allow
  603. * short backward seeks which are biased as twice the cost of a
  604. * similar forward seek.
  605. */
  606. if (s1 >= last)
  607. d1 = s1 - last;
  608. else if (s1 + back_max >= last)
  609. d1 = (last - s1) * cfqd->cfq_back_penalty;
  610. else
  611. wrap |= CFQ_RQ1_WRAP;
  612. if (s2 >= last)
  613. d2 = s2 - last;
  614. else if (s2 + back_max >= last)
  615. d2 = (last - s2) * cfqd->cfq_back_penalty;
  616. else
  617. wrap |= CFQ_RQ2_WRAP;
  618. /* Found required data */
  619. /*
  620. * By doing switch() on the bit mask "wrap" we avoid having to
  621. * check two variables for all permutations: --> faster!
  622. */
  623. switch (wrap) {
  624. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  625. if (d1 < d2)
  626. return rq1;
  627. else if (d2 < d1)
  628. return rq2;
  629. else {
  630. if (s1 >= s2)
  631. return rq1;
  632. else
  633. return rq2;
  634. }
  635. case CFQ_RQ2_WRAP:
  636. return rq1;
  637. case CFQ_RQ1_WRAP:
  638. return rq2;
  639. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  640. default:
  641. /*
  642. * Since both rqs are wrapped,
  643. * start with the one that's further behind head
  644. * (--> only *one* back seek required),
  645. * since back seek takes more time than forward.
  646. */
  647. if (s1 <= s2)
  648. return rq1;
  649. else
  650. return rq2;
  651. }
  652. }
  653. /*
  654. * The below is leftmost cache rbtree addon
  655. */
  656. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  657. {
  658. /* Service tree is empty */
  659. if (!root->count)
  660. return NULL;
  661. if (!root->left)
  662. root->left = rb_first(&root->rb);
  663. if (root->left)
  664. return rb_entry(root->left, struct cfq_queue, rb_node);
  665. return NULL;
  666. }
  667. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  668. {
  669. if (!root->left)
  670. root->left = rb_first(&root->rb);
  671. if (root->left)
  672. return rb_entry_cfqg(root->left);
  673. return NULL;
  674. }
  675. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  676. {
  677. rb_erase(n, root);
  678. RB_CLEAR_NODE(n);
  679. }
  680. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  681. {
  682. if (root->left == n)
  683. root->left = NULL;
  684. rb_erase_init(n, &root->rb);
  685. --root->count;
  686. }
  687. /*
  688. * would be nice to take fifo expire time into account as well
  689. */
  690. static struct request *
  691. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  692. struct request *last)
  693. {
  694. struct rb_node *rbnext = rb_next(&last->rb_node);
  695. struct rb_node *rbprev = rb_prev(&last->rb_node);
  696. struct request *next = NULL, *prev = NULL;
  697. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  698. if (rbprev)
  699. prev = rb_entry_rq(rbprev);
  700. if (rbnext)
  701. next = rb_entry_rq(rbnext);
  702. else {
  703. rbnext = rb_first(&cfqq->sort_list);
  704. if (rbnext && rbnext != &last->rb_node)
  705. next = rb_entry_rq(rbnext);
  706. }
  707. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  708. }
  709. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  710. struct cfq_queue *cfqq)
  711. {
  712. /*
  713. * just an approximation, should be ok.
  714. */
  715. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  716. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  717. }
  718. static inline s64
  719. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  720. {
  721. return cfqg->vdisktime - st->min_vdisktime;
  722. }
  723. static void
  724. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  725. {
  726. struct rb_node **node = &st->rb.rb_node;
  727. struct rb_node *parent = NULL;
  728. struct cfq_group *__cfqg;
  729. s64 key = cfqg_key(st, cfqg);
  730. int left = 1;
  731. while (*node != NULL) {
  732. parent = *node;
  733. __cfqg = rb_entry_cfqg(parent);
  734. if (key < cfqg_key(st, __cfqg))
  735. node = &parent->rb_left;
  736. else {
  737. node = &parent->rb_right;
  738. left = 0;
  739. }
  740. }
  741. if (left)
  742. st->left = &cfqg->rb_node;
  743. rb_link_node(&cfqg->rb_node, parent, node);
  744. rb_insert_color(&cfqg->rb_node, &st->rb);
  745. }
  746. static void
  747. cfq_update_group_weight(struct cfq_group *cfqg)
  748. {
  749. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  750. if (cfqg->needs_update) {
  751. cfqg->weight = cfqg->new_weight;
  752. cfqg->needs_update = false;
  753. }
  754. }
  755. static void
  756. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  757. {
  758. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  759. cfq_update_group_weight(cfqg);
  760. __cfq_group_service_tree_add(st, cfqg);
  761. st->total_weight += cfqg->weight;
  762. }
  763. static void
  764. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  765. {
  766. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  767. struct cfq_group *__cfqg;
  768. struct rb_node *n;
  769. cfqg->nr_cfqq++;
  770. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  771. return;
  772. /*
  773. * Currently put the group at the end. Later implement something
  774. * so that groups get lesser vtime based on their weights, so that
  775. * if group does not loose all if it was not continuously backlogged.
  776. */
  777. n = rb_last(&st->rb);
  778. if (n) {
  779. __cfqg = rb_entry_cfqg(n);
  780. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  781. } else
  782. cfqg->vdisktime = st->min_vdisktime;
  783. cfq_group_service_tree_add(st, cfqg);
  784. }
  785. static void
  786. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  787. {
  788. st->total_weight -= cfqg->weight;
  789. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  790. cfq_rb_erase(&cfqg->rb_node, st);
  791. }
  792. static void
  793. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  794. {
  795. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  796. BUG_ON(cfqg->nr_cfqq < 1);
  797. cfqg->nr_cfqq--;
  798. /* If there are other cfq queues under this group, don't delete it */
  799. if (cfqg->nr_cfqq)
  800. return;
  801. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  802. cfq_group_service_tree_del(st, cfqg);
  803. cfqg->saved_workload_slice = 0;
  804. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  805. }
  806. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  807. unsigned int *unaccounted_time)
  808. {
  809. unsigned int slice_used;
  810. /*
  811. * Queue got expired before even a single request completed or
  812. * got expired immediately after first request completion.
  813. */
  814. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  815. /*
  816. * Also charge the seek time incurred to the group, otherwise
  817. * if there are mutiple queues in the group, each can dispatch
  818. * a single request on seeky media and cause lots of seek time
  819. * and group will never know it.
  820. */
  821. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  822. 1);
  823. } else {
  824. slice_used = jiffies - cfqq->slice_start;
  825. if (slice_used > cfqq->allocated_slice) {
  826. *unaccounted_time = slice_used - cfqq->allocated_slice;
  827. slice_used = cfqq->allocated_slice;
  828. }
  829. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  830. *unaccounted_time += cfqq->slice_start -
  831. cfqq->dispatch_start;
  832. }
  833. return slice_used;
  834. }
  835. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  836. struct cfq_queue *cfqq)
  837. {
  838. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  839. unsigned int used_sl, charge, unaccounted_sl = 0;
  840. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  841. - cfqg->service_tree_idle.count;
  842. BUG_ON(nr_sync < 0);
  843. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  844. if (iops_mode(cfqd))
  845. charge = cfqq->slice_dispatch;
  846. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  847. charge = cfqq->allocated_slice;
  848. /* Can't update vdisktime while group is on service tree */
  849. cfq_group_service_tree_del(st, cfqg);
  850. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  851. /* If a new weight was requested, update now, off tree */
  852. cfq_group_service_tree_add(st, cfqg);
  853. /* This group is being expired. Save the context */
  854. if (time_after(cfqd->workload_expires, jiffies)) {
  855. cfqg->saved_workload_slice = cfqd->workload_expires
  856. - jiffies;
  857. cfqg->saved_workload = cfqd->serving_type;
  858. cfqg->saved_serving_prio = cfqd->serving_prio;
  859. } else
  860. cfqg->saved_workload_slice = 0;
  861. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  862. st->min_vdisktime);
  863. cfq_log_cfqq(cfqq->cfqd, cfqq,
  864. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  865. used_sl, cfqq->slice_dispatch, charge,
  866. iops_mode(cfqd), cfqq->nr_sectors);
  867. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  868. unaccounted_sl);
  869. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  870. }
  871. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  872. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  873. {
  874. if (blkg)
  875. return container_of(blkg, struct cfq_group, blkg);
  876. return NULL;
  877. }
  878. static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  879. unsigned int weight)
  880. {
  881. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  882. cfqg->new_weight = weight;
  883. cfqg->needs_update = true;
  884. }
  885. static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
  886. struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
  887. {
  888. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  889. unsigned int major, minor;
  890. /*
  891. * Add group onto cgroup list. It might happen that bdi->dev is
  892. * not initialized yet. Initialize this new group without major
  893. * and minor info and this info will be filled in once a new thread
  894. * comes for IO.
  895. */
  896. if (bdi->dev) {
  897. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  898. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  899. (void *)cfqd, MKDEV(major, minor));
  900. } else
  901. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  902. (void *)cfqd, 0);
  903. cfqd->nr_blkcg_linked_grps++;
  904. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  905. /* Add group on cfqd list */
  906. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  907. }
  908. /*
  909. * Should be called from sleepable context. No request queue lock as per
  910. * cpu stats are allocated dynamically and alloc_percpu needs to be called
  911. * from sleepable context.
  912. */
  913. static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
  914. {
  915. struct cfq_group *cfqg = NULL;
  916. int i, j, ret;
  917. struct cfq_rb_root *st;
  918. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  919. if (!cfqg)
  920. return NULL;
  921. for_each_cfqg_st(cfqg, i, j, st)
  922. *st = CFQ_RB_ROOT;
  923. RB_CLEAR_NODE(&cfqg->rb_node);
  924. cfqg->ttime.last_end_request = jiffies;
  925. /*
  926. * Take the initial reference that will be released on destroy
  927. * This can be thought of a joint reference by cgroup and
  928. * elevator which will be dropped by either elevator exit
  929. * or cgroup deletion path depending on who is exiting first.
  930. */
  931. cfqg->ref = 1;
  932. ret = blkio_alloc_blkg_stats(&cfqg->blkg);
  933. if (ret) {
  934. kfree(cfqg);
  935. return NULL;
  936. }
  937. return cfqg;
  938. }
  939. static struct cfq_group *
  940. cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
  941. {
  942. struct cfq_group *cfqg = NULL;
  943. void *key = cfqd;
  944. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  945. unsigned int major, minor;
  946. /*
  947. * This is the common case when there are no blkio cgroups.
  948. * Avoid lookup in this case
  949. */
  950. if (blkcg == &blkio_root_cgroup)
  951. cfqg = &cfqd->root_group;
  952. else
  953. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  954. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  955. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  956. cfqg->blkg.dev = MKDEV(major, minor);
  957. }
  958. return cfqg;
  959. }
  960. /*
  961. * Search for the cfq group current task belongs to. request_queue lock must
  962. * be held.
  963. */
  964. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  965. {
  966. struct blkio_cgroup *blkcg;
  967. struct cfq_group *cfqg = NULL, *__cfqg = NULL;
  968. struct request_queue *q = cfqd->queue;
  969. rcu_read_lock();
  970. blkcg = task_blkio_cgroup(current);
  971. cfqg = cfq_find_cfqg(cfqd, blkcg);
  972. if (cfqg) {
  973. rcu_read_unlock();
  974. return cfqg;
  975. }
  976. /*
  977. * Need to allocate a group. Allocation of group also needs allocation
  978. * of per cpu stats which in-turn takes a mutex() and can block. Hence
  979. * we need to drop rcu lock and queue_lock before we call alloc.
  980. *
  981. * Not taking any queue reference here and assuming that queue is
  982. * around by the time we return. CFQ queue allocation code does
  983. * the same. It might be racy though.
  984. */
  985. rcu_read_unlock();
  986. spin_unlock_irq(q->queue_lock);
  987. cfqg = cfq_alloc_cfqg(cfqd);
  988. spin_lock_irq(q->queue_lock);
  989. rcu_read_lock();
  990. blkcg = task_blkio_cgroup(current);
  991. /*
  992. * If some other thread already allocated the group while we were
  993. * not holding queue lock, free up the group
  994. */
  995. __cfqg = cfq_find_cfqg(cfqd, blkcg);
  996. if (__cfqg) {
  997. kfree(cfqg);
  998. rcu_read_unlock();
  999. return __cfqg;
  1000. }
  1001. if (!cfqg)
  1002. cfqg = &cfqd->root_group;
  1003. cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
  1004. rcu_read_unlock();
  1005. return cfqg;
  1006. }
  1007. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1008. {
  1009. cfqg->ref++;
  1010. return cfqg;
  1011. }
  1012. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  1013. {
  1014. /* Currently, all async queues are mapped to root group */
  1015. if (!cfq_cfqq_sync(cfqq))
  1016. cfqg = &cfqq->cfqd->root_group;
  1017. cfqq->cfqg = cfqg;
  1018. /* cfqq reference on cfqg */
  1019. cfqq->cfqg->ref++;
  1020. }
  1021. static void cfq_put_cfqg(struct cfq_group *cfqg)
  1022. {
  1023. struct cfq_rb_root *st;
  1024. int i, j;
  1025. BUG_ON(cfqg->ref <= 0);
  1026. cfqg->ref--;
  1027. if (cfqg->ref)
  1028. return;
  1029. for_each_cfqg_st(cfqg, i, j, st)
  1030. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  1031. free_percpu(cfqg->blkg.stats_cpu);
  1032. kfree(cfqg);
  1033. }
  1034. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1035. {
  1036. /* Something wrong if we are trying to remove same group twice */
  1037. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  1038. hlist_del_init(&cfqg->cfqd_node);
  1039. BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
  1040. cfqd->nr_blkcg_linked_grps--;
  1041. /*
  1042. * Put the reference taken at the time of creation so that when all
  1043. * queues are gone, group can be destroyed.
  1044. */
  1045. cfq_put_cfqg(cfqg);
  1046. }
  1047. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  1048. {
  1049. struct hlist_node *pos, *n;
  1050. struct cfq_group *cfqg;
  1051. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  1052. /*
  1053. * If cgroup removal path got to blk_group first and removed
  1054. * it from cgroup list, then it will take care of destroying
  1055. * cfqg also.
  1056. */
  1057. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  1058. cfq_destroy_cfqg(cfqd, cfqg);
  1059. }
  1060. }
  1061. /*
  1062. * Blk cgroup controller notification saying that blkio_group object is being
  1063. * delinked as associated cgroup object is going away. That also means that
  1064. * no new IO will come in this group. So get rid of this group as soon as
  1065. * any pending IO in the group is finished.
  1066. *
  1067. * This function is called under rcu_read_lock(). key is the rcu protected
  1068. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  1069. * read lock.
  1070. *
  1071. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  1072. * it should not be NULL as even if elevator was exiting, cgroup deltion
  1073. * path got to it first.
  1074. */
  1075. static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1076. {
  1077. unsigned long flags;
  1078. struct cfq_data *cfqd = key;
  1079. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1080. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1081. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1082. }
  1083. #else /* GROUP_IOSCHED */
  1084. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  1085. {
  1086. return &cfqd->root_group;
  1087. }
  1088. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1089. {
  1090. return cfqg;
  1091. }
  1092. static inline void
  1093. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1094. cfqq->cfqg = cfqg;
  1095. }
  1096. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1097. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1098. #endif /* GROUP_IOSCHED */
  1099. /*
  1100. * The cfqd->service_trees holds all pending cfq_queue's that have
  1101. * requests waiting to be processed. It is sorted in the order that
  1102. * we will service the queues.
  1103. */
  1104. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1105. bool add_front)
  1106. {
  1107. struct rb_node **p, *parent;
  1108. struct cfq_queue *__cfqq;
  1109. unsigned long rb_key;
  1110. struct cfq_rb_root *service_tree;
  1111. int left;
  1112. int new_cfqq = 1;
  1113. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1114. cfqq_type(cfqq));
  1115. if (cfq_class_idle(cfqq)) {
  1116. rb_key = CFQ_IDLE_DELAY;
  1117. parent = rb_last(&service_tree->rb);
  1118. if (parent && parent != &cfqq->rb_node) {
  1119. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1120. rb_key += __cfqq->rb_key;
  1121. } else
  1122. rb_key += jiffies;
  1123. } else if (!add_front) {
  1124. /*
  1125. * Get our rb key offset. Subtract any residual slice
  1126. * value carried from last service. A negative resid
  1127. * count indicates slice overrun, and this should position
  1128. * the next service time further away in the tree.
  1129. */
  1130. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1131. rb_key -= cfqq->slice_resid;
  1132. cfqq->slice_resid = 0;
  1133. } else {
  1134. rb_key = -HZ;
  1135. __cfqq = cfq_rb_first(service_tree);
  1136. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1137. }
  1138. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1139. new_cfqq = 0;
  1140. /*
  1141. * same position, nothing more to do
  1142. */
  1143. if (rb_key == cfqq->rb_key &&
  1144. cfqq->service_tree == service_tree)
  1145. return;
  1146. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1147. cfqq->service_tree = NULL;
  1148. }
  1149. left = 1;
  1150. parent = NULL;
  1151. cfqq->service_tree = service_tree;
  1152. p = &service_tree->rb.rb_node;
  1153. while (*p) {
  1154. struct rb_node **n;
  1155. parent = *p;
  1156. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1157. /*
  1158. * sort by key, that represents service time.
  1159. */
  1160. if (time_before(rb_key, __cfqq->rb_key))
  1161. n = &(*p)->rb_left;
  1162. else {
  1163. n = &(*p)->rb_right;
  1164. left = 0;
  1165. }
  1166. p = n;
  1167. }
  1168. if (left)
  1169. service_tree->left = &cfqq->rb_node;
  1170. cfqq->rb_key = rb_key;
  1171. rb_link_node(&cfqq->rb_node, parent, p);
  1172. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1173. service_tree->count++;
  1174. if (add_front || !new_cfqq)
  1175. return;
  1176. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1177. }
  1178. static struct cfq_queue *
  1179. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1180. sector_t sector, struct rb_node **ret_parent,
  1181. struct rb_node ***rb_link)
  1182. {
  1183. struct rb_node **p, *parent;
  1184. struct cfq_queue *cfqq = NULL;
  1185. parent = NULL;
  1186. p = &root->rb_node;
  1187. while (*p) {
  1188. struct rb_node **n;
  1189. parent = *p;
  1190. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1191. /*
  1192. * Sort strictly based on sector. Smallest to the left,
  1193. * largest to the right.
  1194. */
  1195. if (sector > blk_rq_pos(cfqq->next_rq))
  1196. n = &(*p)->rb_right;
  1197. else if (sector < blk_rq_pos(cfqq->next_rq))
  1198. n = &(*p)->rb_left;
  1199. else
  1200. break;
  1201. p = n;
  1202. cfqq = NULL;
  1203. }
  1204. *ret_parent = parent;
  1205. if (rb_link)
  1206. *rb_link = p;
  1207. return cfqq;
  1208. }
  1209. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1210. {
  1211. struct rb_node **p, *parent;
  1212. struct cfq_queue *__cfqq;
  1213. if (cfqq->p_root) {
  1214. rb_erase(&cfqq->p_node, cfqq->p_root);
  1215. cfqq->p_root = NULL;
  1216. }
  1217. if (cfq_class_idle(cfqq))
  1218. return;
  1219. if (!cfqq->next_rq)
  1220. return;
  1221. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1222. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1223. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1224. if (!__cfqq) {
  1225. rb_link_node(&cfqq->p_node, parent, p);
  1226. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1227. } else
  1228. cfqq->p_root = NULL;
  1229. }
  1230. /*
  1231. * Update cfqq's position in the service tree.
  1232. */
  1233. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1234. {
  1235. /*
  1236. * Resorting requires the cfqq to be on the RR list already.
  1237. */
  1238. if (cfq_cfqq_on_rr(cfqq)) {
  1239. cfq_service_tree_add(cfqd, cfqq, 0);
  1240. cfq_prio_tree_add(cfqd, cfqq);
  1241. }
  1242. }
  1243. /*
  1244. * add to busy list of queues for service, trying to be fair in ordering
  1245. * the pending list according to last request service
  1246. */
  1247. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1248. {
  1249. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1250. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1251. cfq_mark_cfqq_on_rr(cfqq);
  1252. cfqd->busy_queues++;
  1253. if (cfq_cfqq_sync(cfqq))
  1254. cfqd->busy_sync_queues++;
  1255. cfq_resort_rr_list(cfqd, cfqq);
  1256. }
  1257. /*
  1258. * Called when the cfqq no longer has requests pending, remove it from
  1259. * the service tree.
  1260. */
  1261. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1262. {
  1263. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1264. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1265. cfq_clear_cfqq_on_rr(cfqq);
  1266. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1267. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1268. cfqq->service_tree = NULL;
  1269. }
  1270. if (cfqq->p_root) {
  1271. rb_erase(&cfqq->p_node, cfqq->p_root);
  1272. cfqq->p_root = NULL;
  1273. }
  1274. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1275. BUG_ON(!cfqd->busy_queues);
  1276. cfqd->busy_queues--;
  1277. if (cfq_cfqq_sync(cfqq))
  1278. cfqd->busy_sync_queues--;
  1279. }
  1280. /*
  1281. * rb tree support functions
  1282. */
  1283. static void cfq_del_rq_rb(struct request *rq)
  1284. {
  1285. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1286. const int sync = rq_is_sync(rq);
  1287. BUG_ON(!cfqq->queued[sync]);
  1288. cfqq->queued[sync]--;
  1289. elv_rb_del(&cfqq->sort_list, rq);
  1290. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1291. /*
  1292. * Queue will be deleted from service tree when we actually
  1293. * expire it later. Right now just remove it from prio tree
  1294. * as it is empty.
  1295. */
  1296. if (cfqq->p_root) {
  1297. rb_erase(&cfqq->p_node, cfqq->p_root);
  1298. cfqq->p_root = NULL;
  1299. }
  1300. }
  1301. }
  1302. static void cfq_add_rq_rb(struct request *rq)
  1303. {
  1304. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1305. struct cfq_data *cfqd = cfqq->cfqd;
  1306. struct request *prev;
  1307. cfqq->queued[rq_is_sync(rq)]++;
  1308. elv_rb_add(&cfqq->sort_list, rq);
  1309. if (!cfq_cfqq_on_rr(cfqq))
  1310. cfq_add_cfqq_rr(cfqd, cfqq);
  1311. /*
  1312. * check if this request is a better next-serve candidate
  1313. */
  1314. prev = cfqq->next_rq;
  1315. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1316. /*
  1317. * adjust priority tree position, if ->next_rq changes
  1318. */
  1319. if (prev != cfqq->next_rq)
  1320. cfq_prio_tree_add(cfqd, cfqq);
  1321. BUG_ON(!cfqq->next_rq);
  1322. }
  1323. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1324. {
  1325. elv_rb_del(&cfqq->sort_list, rq);
  1326. cfqq->queued[rq_is_sync(rq)]--;
  1327. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1328. rq_data_dir(rq), rq_is_sync(rq));
  1329. cfq_add_rq_rb(rq);
  1330. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1331. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1332. rq_is_sync(rq));
  1333. }
  1334. static struct request *
  1335. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1336. {
  1337. struct task_struct *tsk = current;
  1338. struct cfq_io_cq *cic;
  1339. struct cfq_queue *cfqq;
  1340. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1341. if (!cic)
  1342. return NULL;
  1343. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1344. if (cfqq) {
  1345. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1346. return elv_rb_find(&cfqq->sort_list, sector);
  1347. }
  1348. return NULL;
  1349. }
  1350. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1351. {
  1352. struct cfq_data *cfqd = q->elevator->elevator_data;
  1353. cfqd->rq_in_driver++;
  1354. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1355. cfqd->rq_in_driver);
  1356. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1357. }
  1358. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1359. {
  1360. struct cfq_data *cfqd = q->elevator->elevator_data;
  1361. WARN_ON(!cfqd->rq_in_driver);
  1362. cfqd->rq_in_driver--;
  1363. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1364. cfqd->rq_in_driver);
  1365. }
  1366. static void cfq_remove_request(struct request *rq)
  1367. {
  1368. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1369. if (cfqq->next_rq == rq)
  1370. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1371. list_del_init(&rq->queuelist);
  1372. cfq_del_rq_rb(rq);
  1373. cfqq->cfqd->rq_queued--;
  1374. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1375. rq_data_dir(rq), rq_is_sync(rq));
  1376. if (rq->cmd_flags & REQ_PRIO) {
  1377. WARN_ON(!cfqq->prio_pending);
  1378. cfqq->prio_pending--;
  1379. }
  1380. }
  1381. static int cfq_merge(struct request_queue *q, struct request **req,
  1382. struct bio *bio)
  1383. {
  1384. struct cfq_data *cfqd = q->elevator->elevator_data;
  1385. struct request *__rq;
  1386. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1387. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1388. *req = __rq;
  1389. return ELEVATOR_FRONT_MERGE;
  1390. }
  1391. return ELEVATOR_NO_MERGE;
  1392. }
  1393. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1394. int type)
  1395. {
  1396. if (type == ELEVATOR_FRONT_MERGE) {
  1397. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1398. cfq_reposition_rq_rb(cfqq, req);
  1399. }
  1400. }
  1401. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1402. struct bio *bio)
  1403. {
  1404. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1405. bio_data_dir(bio), cfq_bio_sync(bio));
  1406. }
  1407. static void
  1408. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1409. struct request *next)
  1410. {
  1411. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1412. struct cfq_data *cfqd = q->elevator->elevator_data;
  1413. /*
  1414. * reposition in fifo if next is older than rq
  1415. */
  1416. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1417. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1418. list_move(&rq->queuelist, &next->queuelist);
  1419. rq_set_fifo_time(rq, rq_fifo_time(next));
  1420. }
  1421. if (cfqq->next_rq == next)
  1422. cfqq->next_rq = rq;
  1423. cfq_remove_request(next);
  1424. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1425. rq_data_dir(next), rq_is_sync(next));
  1426. cfqq = RQ_CFQQ(next);
  1427. /*
  1428. * all requests of this queue are merged to other queues, delete it
  1429. * from the service tree. If it's the active_queue,
  1430. * cfq_dispatch_requests() will choose to expire it or do idle
  1431. */
  1432. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
  1433. cfqq != cfqd->active_queue)
  1434. cfq_del_cfqq_rr(cfqd, cfqq);
  1435. }
  1436. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1437. struct bio *bio)
  1438. {
  1439. struct cfq_data *cfqd = q->elevator->elevator_data;
  1440. struct cfq_io_cq *cic;
  1441. struct cfq_queue *cfqq;
  1442. /*
  1443. * Disallow merge of a sync bio into an async request.
  1444. */
  1445. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1446. return false;
  1447. /*
  1448. * Lookup the cfqq that this bio will be queued with and allow
  1449. * merge only if rq is queued there.
  1450. */
  1451. cic = cfq_cic_lookup(cfqd, current->io_context);
  1452. if (!cic)
  1453. return false;
  1454. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1455. return cfqq == RQ_CFQQ(rq);
  1456. }
  1457. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1458. {
  1459. del_timer(&cfqd->idle_slice_timer);
  1460. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1461. }
  1462. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1463. struct cfq_queue *cfqq)
  1464. {
  1465. if (cfqq) {
  1466. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1467. cfqd->serving_prio, cfqd->serving_type);
  1468. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1469. cfqq->slice_start = 0;
  1470. cfqq->dispatch_start = jiffies;
  1471. cfqq->allocated_slice = 0;
  1472. cfqq->slice_end = 0;
  1473. cfqq->slice_dispatch = 0;
  1474. cfqq->nr_sectors = 0;
  1475. cfq_clear_cfqq_wait_request(cfqq);
  1476. cfq_clear_cfqq_must_dispatch(cfqq);
  1477. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1478. cfq_clear_cfqq_fifo_expire(cfqq);
  1479. cfq_mark_cfqq_slice_new(cfqq);
  1480. cfq_del_timer(cfqd, cfqq);
  1481. }
  1482. cfqd->active_queue = cfqq;
  1483. }
  1484. /*
  1485. * current cfqq expired its slice (or was too idle), select new one
  1486. */
  1487. static void
  1488. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1489. bool timed_out)
  1490. {
  1491. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1492. if (cfq_cfqq_wait_request(cfqq))
  1493. cfq_del_timer(cfqd, cfqq);
  1494. cfq_clear_cfqq_wait_request(cfqq);
  1495. cfq_clear_cfqq_wait_busy(cfqq);
  1496. /*
  1497. * If this cfqq is shared between multiple processes, check to
  1498. * make sure that those processes are still issuing I/Os within
  1499. * the mean seek distance. If not, it may be time to break the
  1500. * queues apart again.
  1501. */
  1502. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1503. cfq_mark_cfqq_split_coop(cfqq);
  1504. /*
  1505. * store what was left of this slice, if the queue idled/timed out
  1506. */
  1507. if (timed_out) {
  1508. if (cfq_cfqq_slice_new(cfqq))
  1509. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1510. else
  1511. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1512. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1513. }
  1514. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1515. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1516. cfq_del_cfqq_rr(cfqd, cfqq);
  1517. cfq_resort_rr_list(cfqd, cfqq);
  1518. if (cfqq == cfqd->active_queue)
  1519. cfqd->active_queue = NULL;
  1520. if (cfqd->active_cic) {
  1521. put_io_context(cfqd->active_cic->icq.ioc);
  1522. cfqd->active_cic = NULL;
  1523. }
  1524. }
  1525. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1526. {
  1527. struct cfq_queue *cfqq = cfqd->active_queue;
  1528. if (cfqq)
  1529. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1530. }
  1531. /*
  1532. * Get next queue for service. Unless we have a queue preemption,
  1533. * we'll simply select the first cfqq in the service tree.
  1534. */
  1535. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1536. {
  1537. struct cfq_rb_root *service_tree =
  1538. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1539. cfqd->serving_type);
  1540. if (!cfqd->rq_queued)
  1541. return NULL;
  1542. /* There is nothing to dispatch */
  1543. if (!service_tree)
  1544. return NULL;
  1545. if (RB_EMPTY_ROOT(&service_tree->rb))
  1546. return NULL;
  1547. return cfq_rb_first(service_tree);
  1548. }
  1549. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1550. {
  1551. struct cfq_group *cfqg;
  1552. struct cfq_queue *cfqq;
  1553. int i, j;
  1554. struct cfq_rb_root *st;
  1555. if (!cfqd->rq_queued)
  1556. return NULL;
  1557. cfqg = cfq_get_next_cfqg(cfqd);
  1558. if (!cfqg)
  1559. return NULL;
  1560. for_each_cfqg_st(cfqg, i, j, st)
  1561. if ((cfqq = cfq_rb_first(st)) != NULL)
  1562. return cfqq;
  1563. return NULL;
  1564. }
  1565. /*
  1566. * Get and set a new active queue for service.
  1567. */
  1568. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1569. struct cfq_queue *cfqq)
  1570. {
  1571. if (!cfqq)
  1572. cfqq = cfq_get_next_queue(cfqd);
  1573. __cfq_set_active_queue(cfqd, cfqq);
  1574. return cfqq;
  1575. }
  1576. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1577. struct request *rq)
  1578. {
  1579. if (blk_rq_pos(rq) >= cfqd->last_position)
  1580. return blk_rq_pos(rq) - cfqd->last_position;
  1581. else
  1582. return cfqd->last_position - blk_rq_pos(rq);
  1583. }
  1584. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1585. struct request *rq)
  1586. {
  1587. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1588. }
  1589. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1590. struct cfq_queue *cur_cfqq)
  1591. {
  1592. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1593. struct rb_node *parent, *node;
  1594. struct cfq_queue *__cfqq;
  1595. sector_t sector = cfqd->last_position;
  1596. if (RB_EMPTY_ROOT(root))
  1597. return NULL;
  1598. /*
  1599. * First, if we find a request starting at the end of the last
  1600. * request, choose it.
  1601. */
  1602. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1603. if (__cfqq)
  1604. return __cfqq;
  1605. /*
  1606. * If the exact sector wasn't found, the parent of the NULL leaf
  1607. * will contain the closest sector.
  1608. */
  1609. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1610. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1611. return __cfqq;
  1612. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1613. node = rb_next(&__cfqq->p_node);
  1614. else
  1615. node = rb_prev(&__cfqq->p_node);
  1616. if (!node)
  1617. return NULL;
  1618. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1619. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1620. return __cfqq;
  1621. return NULL;
  1622. }
  1623. /*
  1624. * cfqd - obvious
  1625. * cur_cfqq - passed in so that we don't decide that the current queue is
  1626. * closely cooperating with itself.
  1627. *
  1628. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1629. * one request, and that cfqd->last_position reflects a position on the disk
  1630. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1631. * assumption.
  1632. */
  1633. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1634. struct cfq_queue *cur_cfqq)
  1635. {
  1636. struct cfq_queue *cfqq;
  1637. if (cfq_class_idle(cur_cfqq))
  1638. return NULL;
  1639. if (!cfq_cfqq_sync(cur_cfqq))
  1640. return NULL;
  1641. if (CFQQ_SEEKY(cur_cfqq))
  1642. return NULL;
  1643. /*
  1644. * Don't search priority tree if it's the only queue in the group.
  1645. */
  1646. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1647. return NULL;
  1648. /*
  1649. * We should notice if some of the queues are cooperating, eg
  1650. * working closely on the same area of the disk. In that case,
  1651. * we can group them together and don't waste time idling.
  1652. */
  1653. cfqq = cfqq_close(cfqd, cur_cfqq);
  1654. if (!cfqq)
  1655. return NULL;
  1656. /* If new queue belongs to different cfq_group, don't choose it */
  1657. if (cur_cfqq->cfqg != cfqq->cfqg)
  1658. return NULL;
  1659. /*
  1660. * It only makes sense to merge sync queues.
  1661. */
  1662. if (!cfq_cfqq_sync(cfqq))
  1663. return NULL;
  1664. if (CFQQ_SEEKY(cfqq))
  1665. return NULL;
  1666. /*
  1667. * Do not merge queues of different priority classes
  1668. */
  1669. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1670. return NULL;
  1671. return cfqq;
  1672. }
  1673. /*
  1674. * Determine whether we should enforce idle window for this queue.
  1675. */
  1676. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1677. {
  1678. enum wl_prio_t prio = cfqq_prio(cfqq);
  1679. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1680. BUG_ON(!service_tree);
  1681. BUG_ON(!service_tree->count);
  1682. if (!cfqd->cfq_slice_idle)
  1683. return false;
  1684. /* We never do for idle class queues. */
  1685. if (prio == IDLE_WORKLOAD)
  1686. return false;
  1687. /* We do for queues that were marked with idle window flag. */
  1688. if (cfq_cfqq_idle_window(cfqq) &&
  1689. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1690. return true;
  1691. /*
  1692. * Otherwise, we do only if they are the last ones
  1693. * in their service tree.
  1694. */
  1695. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1696. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1697. return true;
  1698. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1699. service_tree->count);
  1700. return false;
  1701. }
  1702. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1703. {
  1704. struct cfq_queue *cfqq = cfqd->active_queue;
  1705. struct cfq_io_cq *cic;
  1706. unsigned long sl, group_idle = 0;
  1707. /*
  1708. * SSD device without seek penalty, disable idling. But only do so
  1709. * for devices that support queuing, otherwise we still have a problem
  1710. * with sync vs async workloads.
  1711. */
  1712. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1713. return;
  1714. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1715. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1716. /*
  1717. * idle is disabled, either manually or by past process history
  1718. */
  1719. if (!cfq_should_idle(cfqd, cfqq)) {
  1720. /* no queue idling. Check for group idling */
  1721. if (cfqd->cfq_group_idle)
  1722. group_idle = cfqd->cfq_group_idle;
  1723. else
  1724. return;
  1725. }
  1726. /*
  1727. * still active requests from this queue, don't idle
  1728. */
  1729. if (cfqq->dispatched)
  1730. return;
  1731. /*
  1732. * task has exited, don't wait
  1733. */
  1734. cic = cfqd->active_cic;
  1735. if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
  1736. return;
  1737. /*
  1738. * If our average think time is larger than the remaining time
  1739. * slice, then don't idle. This avoids overrunning the allotted
  1740. * time slice.
  1741. */
  1742. if (sample_valid(cic->ttime.ttime_samples) &&
  1743. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1744. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1745. cic->ttime.ttime_mean);
  1746. return;
  1747. }
  1748. /* There are other queues in the group, don't do group idle */
  1749. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1750. return;
  1751. cfq_mark_cfqq_wait_request(cfqq);
  1752. if (group_idle)
  1753. sl = cfqd->cfq_group_idle;
  1754. else
  1755. sl = cfqd->cfq_slice_idle;
  1756. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1757. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1758. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1759. group_idle ? 1 : 0);
  1760. }
  1761. /*
  1762. * Move request from internal lists to the request queue dispatch list.
  1763. */
  1764. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1765. {
  1766. struct cfq_data *cfqd = q->elevator->elevator_data;
  1767. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1768. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1769. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1770. cfq_remove_request(rq);
  1771. cfqq->dispatched++;
  1772. (RQ_CFQG(rq))->dispatched++;
  1773. elv_dispatch_sort(q, rq);
  1774. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1775. cfqq->nr_sectors += blk_rq_sectors(rq);
  1776. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1777. rq_data_dir(rq), rq_is_sync(rq));
  1778. }
  1779. /*
  1780. * return expired entry, or NULL to just start from scratch in rbtree
  1781. */
  1782. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1783. {
  1784. struct request *rq = NULL;
  1785. if (cfq_cfqq_fifo_expire(cfqq))
  1786. return NULL;
  1787. cfq_mark_cfqq_fifo_expire(cfqq);
  1788. if (list_empty(&cfqq->fifo))
  1789. return NULL;
  1790. rq = rq_entry_fifo(cfqq->fifo.next);
  1791. if (time_before(jiffies, rq_fifo_time(rq)))
  1792. rq = NULL;
  1793. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1794. return rq;
  1795. }
  1796. static inline int
  1797. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1798. {
  1799. const int base_rq = cfqd->cfq_slice_async_rq;
  1800. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1801. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1802. }
  1803. /*
  1804. * Must be called with the queue_lock held.
  1805. */
  1806. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1807. {
  1808. int process_refs, io_refs;
  1809. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1810. process_refs = cfqq->ref - io_refs;
  1811. BUG_ON(process_refs < 0);
  1812. return process_refs;
  1813. }
  1814. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1815. {
  1816. int process_refs, new_process_refs;
  1817. struct cfq_queue *__cfqq;
  1818. /*
  1819. * If there are no process references on the new_cfqq, then it is
  1820. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1821. * chain may have dropped their last reference (not just their
  1822. * last process reference).
  1823. */
  1824. if (!cfqq_process_refs(new_cfqq))
  1825. return;
  1826. /* Avoid a circular list and skip interim queue merges */
  1827. while ((__cfqq = new_cfqq->new_cfqq)) {
  1828. if (__cfqq == cfqq)
  1829. return;
  1830. new_cfqq = __cfqq;
  1831. }
  1832. process_refs = cfqq_process_refs(cfqq);
  1833. new_process_refs = cfqq_process_refs(new_cfqq);
  1834. /*
  1835. * If the process for the cfqq has gone away, there is no
  1836. * sense in merging the queues.
  1837. */
  1838. if (process_refs == 0 || new_process_refs == 0)
  1839. return;
  1840. /*
  1841. * Merge in the direction of the lesser amount of work.
  1842. */
  1843. if (new_process_refs >= process_refs) {
  1844. cfqq->new_cfqq = new_cfqq;
  1845. new_cfqq->ref += process_refs;
  1846. } else {
  1847. new_cfqq->new_cfqq = cfqq;
  1848. cfqq->ref += new_process_refs;
  1849. }
  1850. }
  1851. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1852. struct cfq_group *cfqg, enum wl_prio_t prio)
  1853. {
  1854. struct cfq_queue *queue;
  1855. int i;
  1856. bool key_valid = false;
  1857. unsigned long lowest_key = 0;
  1858. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1859. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1860. /* select the one with lowest rb_key */
  1861. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1862. if (queue &&
  1863. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1864. lowest_key = queue->rb_key;
  1865. cur_best = i;
  1866. key_valid = true;
  1867. }
  1868. }
  1869. return cur_best;
  1870. }
  1871. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1872. {
  1873. unsigned slice;
  1874. unsigned count;
  1875. struct cfq_rb_root *st;
  1876. unsigned group_slice;
  1877. enum wl_prio_t original_prio = cfqd->serving_prio;
  1878. /* Choose next priority. RT > BE > IDLE */
  1879. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1880. cfqd->serving_prio = RT_WORKLOAD;
  1881. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1882. cfqd->serving_prio = BE_WORKLOAD;
  1883. else {
  1884. cfqd->serving_prio = IDLE_WORKLOAD;
  1885. cfqd->workload_expires = jiffies + 1;
  1886. return;
  1887. }
  1888. if (original_prio != cfqd->serving_prio)
  1889. goto new_workload;
  1890. /*
  1891. * For RT and BE, we have to choose also the type
  1892. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1893. * expiration time
  1894. */
  1895. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1896. count = st->count;
  1897. /*
  1898. * check workload expiration, and that we still have other queues ready
  1899. */
  1900. if (count && !time_after(jiffies, cfqd->workload_expires))
  1901. return;
  1902. new_workload:
  1903. /* otherwise select new workload type */
  1904. cfqd->serving_type =
  1905. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1906. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1907. count = st->count;
  1908. /*
  1909. * the workload slice is computed as a fraction of target latency
  1910. * proportional to the number of queues in that workload, over
  1911. * all the queues in the same priority class
  1912. */
  1913. group_slice = cfq_group_slice(cfqd, cfqg);
  1914. slice = group_slice * count /
  1915. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1916. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1917. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1918. unsigned int tmp;
  1919. /*
  1920. * Async queues are currently system wide. Just taking
  1921. * proportion of queues with-in same group will lead to higher
  1922. * async ratio system wide as generally root group is going
  1923. * to have higher weight. A more accurate thing would be to
  1924. * calculate system wide asnc/sync ratio.
  1925. */
  1926. tmp = cfqd->cfq_target_latency *
  1927. cfqg_busy_async_queues(cfqd, cfqg);
  1928. tmp = tmp/cfqd->busy_queues;
  1929. slice = min_t(unsigned, slice, tmp);
  1930. /* async workload slice is scaled down according to
  1931. * the sync/async slice ratio. */
  1932. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1933. } else
  1934. /* sync workload slice is at least 2 * cfq_slice_idle */
  1935. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1936. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1937. cfq_log(cfqd, "workload slice:%d", slice);
  1938. cfqd->workload_expires = jiffies + slice;
  1939. }
  1940. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1941. {
  1942. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1943. struct cfq_group *cfqg;
  1944. if (RB_EMPTY_ROOT(&st->rb))
  1945. return NULL;
  1946. cfqg = cfq_rb_first_group(st);
  1947. update_min_vdisktime(st);
  1948. return cfqg;
  1949. }
  1950. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1951. {
  1952. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1953. if (!cfqg)
  1954. return;
  1955. cfqd->serving_group = cfqg;
  1956. /* Restore the workload type data */
  1957. if (cfqg->saved_workload_slice) {
  1958. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1959. cfqd->serving_type = cfqg->saved_workload;
  1960. cfqd->serving_prio = cfqg->saved_serving_prio;
  1961. } else
  1962. cfqd->workload_expires = jiffies - 1;
  1963. choose_service_tree(cfqd, cfqg);
  1964. }
  1965. /*
  1966. * Select a queue for service. If we have a current active queue,
  1967. * check whether to continue servicing it, or retrieve and set a new one.
  1968. */
  1969. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1970. {
  1971. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1972. cfqq = cfqd->active_queue;
  1973. if (!cfqq)
  1974. goto new_queue;
  1975. if (!cfqd->rq_queued)
  1976. return NULL;
  1977. /*
  1978. * We were waiting for group to get backlogged. Expire the queue
  1979. */
  1980. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1981. goto expire;
  1982. /*
  1983. * The active queue has run out of time, expire it and select new.
  1984. */
  1985. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1986. /*
  1987. * If slice had not expired at the completion of last request
  1988. * we might not have turned on wait_busy flag. Don't expire
  1989. * the queue yet. Allow the group to get backlogged.
  1990. *
  1991. * The very fact that we have used the slice, that means we
  1992. * have been idling all along on this queue and it should be
  1993. * ok to wait for this request to complete.
  1994. */
  1995. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1996. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1997. cfqq = NULL;
  1998. goto keep_queue;
  1999. } else
  2000. goto check_group_idle;
  2001. }
  2002. /*
  2003. * The active queue has requests and isn't expired, allow it to
  2004. * dispatch.
  2005. */
  2006. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2007. goto keep_queue;
  2008. /*
  2009. * If another queue has a request waiting within our mean seek
  2010. * distance, let it run. The expire code will check for close
  2011. * cooperators and put the close queue at the front of the service
  2012. * tree. If possible, merge the expiring queue with the new cfqq.
  2013. */
  2014. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  2015. if (new_cfqq) {
  2016. if (!cfqq->new_cfqq)
  2017. cfq_setup_merge(cfqq, new_cfqq);
  2018. goto expire;
  2019. }
  2020. /*
  2021. * No requests pending. If the active queue still has requests in
  2022. * flight or is idling for a new request, allow either of these
  2023. * conditions to happen (or time out) before selecting a new queue.
  2024. */
  2025. if (timer_pending(&cfqd->idle_slice_timer)) {
  2026. cfqq = NULL;
  2027. goto keep_queue;
  2028. }
  2029. /*
  2030. * This is a deep seek queue, but the device is much faster than
  2031. * the queue can deliver, don't idle
  2032. **/
  2033. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  2034. (cfq_cfqq_slice_new(cfqq) ||
  2035. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  2036. cfq_clear_cfqq_deep(cfqq);
  2037. cfq_clear_cfqq_idle_window(cfqq);
  2038. }
  2039. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2040. cfqq = NULL;
  2041. goto keep_queue;
  2042. }
  2043. /*
  2044. * If group idle is enabled and there are requests dispatched from
  2045. * this group, wait for requests to complete.
  2046. */
  2047. check_group_idle:
  2048. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  2049. cfqq->cfqg->dispatched &&
  2050. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  2051. cfqq = NULL;
  2052. goto keep_queue;
  2053. }
  2054. expire:
  2055. cfq_slice_expired(cfqd, 0);
  2056. new_queue:
  2057. /*
  2058. * Current queue expired. Check if we have to switch to a new
  2059. * service tree
  2060. */
  2061. if (!new_cfqq)
  2062. cfq_choose_cfqg(cfqd);
  2063. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2064. keep_queue:
  2065. return cfqq;
  2066. }
  2067. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2068. {
  2069. int dispatched = 0;
  2070. while (cfqq->next_rq) {
  2071. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2072. dispatched++;
  2073. }
  2074. BUG_ON(!list_empty(&cfqq->fifo));
  2075. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2076. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2077. return dispatched;
  2078. }
  2079. /*
  2080. * Drain our current requests. Used for barriers and when switching
  2081. * io schedulers on-the-fly.
  2082. */
  2083. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2084. {
  2085. struct cfq_queue *cfqq;
  2086. int dispatched = 0;
  2087. /* Expire the timeslice of the current active queue first */
  2088. cfq_slice_expired(cfqd, 0);
  2089. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2090. __cfq_set_active_queue(cfqd, cfqq);
  2091. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2092. }
  2093. BUG_ON(cfqd->busy_queues);
  2094. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2095. return dispatched;
  2096. }
  2097. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2098. struct cfq_queue *cfqq)
  2099. {
  2100. /* the queue hasn't finished any request, can't estimate */
  2101. if (cfq_cfqq_slice_new(cfqq))
  2102. return true;
  2103. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2104. cfqq->slice_end))
  2105. return true;
  2106. return false;
  2107. }
  2108. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2109. {
  2110. unsigned int max_dispatch;
  2111. /*
  2112. * Drain async requests before we start sync IO
  2113. */
  2114. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2115. return false;
  2116. /*
  2117. * If this is an async queue and we have sync IO in flight, let it wait
  2118. */
  2119. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2120. return false;
  2121. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2122. if (cfq_class_idle(cfqq))
  2123. max_dispatch = 1;
  2124. /*
  2125. * Does this cfqq already have too much IO in flight?
  2126. */
  2127. if (cfqq->dispatched >= max_dispatch) {
  2128. bool promote_sync = false;
  2129. /*
  2130. * idle queue must always only have a single IO in flight
  2131. */
  2132. if (cfq_class_idle(cfqq))
  2133. return false;
  2134. /*
  2135. * If there is only one sync queue
  2136. * we can ignore async queue here and give the sync
  2137. * queue no dispatch limit. The reason is a sync queue can
  2138. * preempt async queue, limiting the sync queue doesn't make
  2139. * sense. This is useful for aiostress test.
  2140. */
  2141. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2142. promote_sync = true;
  2143. /*
  2144. * We have other queues, don't allow more IO from this one
  2145. */
  2146. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2147. !promote_sync)
  2148. return false;
  2149. /*
  2150. * Sole queue user, no limit
  2151. */
  2152. if (cfqd->busy_queues == 1 || promote_sync)
  2153. max_dispatch = -1;
  2154. else
  2155. /*
  2156. * Normally we start throttling cfqq when cfq_quantum/2
  2157. * requests have been dispatched. But we can drive
  2158. * deeper queue depths at the beginning of slice
  2159. * subjected to upper limit of cfq_quantum.
  2160. * */
  2161. max_dispatch = cfqd->cfq_quantum;
  2162. }
  2163. /*
  2164. * Async queues must wait a bit before being allowed dispatch.
  2165. * We also ramp up the dispatch depth gradually for async IO,
  2166. * based on the last sync IO we serviced
  2167. */
  2168. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2169. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2170. unsigned int depth;
  2171. depth = last_sync / cfqd->cfq_slice[1];
  2172. if (!depth && !cfqq->dispatched)
  2173. depth = 1;
  2174. if (depth < max_dispatch)
  2175. max_dispatch = depth;
  2176. }
  2177. /*
  2178. * If we're below the current max, allow a dispatch
  2179. */
  2180. return cfqq->dispatched < max_dispatch;
  2181. }
  2182. /*
  2183. * Dispatch a request from cfqq, moving them to the request queue
  2184. * dispatch list.
  2185. */
  2186. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2187. {
  2188. struct request *rq;
  2189. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2190. if (!cfq_may_dispatch(cfqd, cfqq))
  2191. return false;
  2192. /*
  2193. * follow expired path, else get first next available
  2194. */
  2195. rq = cfq_check_fifo(cfqq);
  2196. if (!rq)
  2197. rq = cfqq->next_rq;
  2198. /*
  2199. * insert request into driver dispatch list
  2200. */
  2201. cfq_dispatch_insert(cfqd->queue, rq);
  2202. if (!cfqd->active_cic) {
  2203. struct cfq_io_cq *cic = RQ_CIC(rq);
  2204. atomic_long_inc(&cic->icq.ioc->refcount);
  2205. cfqd->active_cic = cic;
  2206. }
  2207. return true;
  2208. }
  2209. /*
  2210. * Find the cfqq that we need to service and move a request from that to the
  2211. * dispatch list
  2212. */
  2213. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2214. {
  2215. struct cfq_data *cfqd = q->elevator->elevator_data;
  2216. struct cfq_queue *cfqq;
  2217. if (!cfqd->busy_queues)
  2218. return 0;
  2219. if (unlikely(force))
  2220. return cfq_forced_dispatch(cfqd);
  2221. cfqq = cfq_select_queue(cfqd);
  2222. if (!cfqq)
  2223. return 0;
  2224. /*
  2225. * Dispatch a request from this cfqq, if it is allowed
  2226. */
  2227. if (!cfq_dispatch_request(cfqd, cfqq))
  2228. return 0;
  2229. cfqq->slice_dispatch++;
  2230. cfq_clear_cfqq_must_dispatch(cfqq);
  2231. /*
  2232. * expire an async queue immediately if it has used up its slice. idle
  2233. * queue always expire after 1 dispatch round.
  2234. */
  2235. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2236. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2237. cfq_class_idle(cfqq))) {
  2238. cfqq->slice_end = jiffies + 1;
  2239. cfq_slice_expired(cfqd, 0);
  2240. }
  2241. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2242. return 1;
  2243. }
  2244. /*
  2245. * task holds one reference to the queue, dropped when task exits. each rq
  2246. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2247. *
  2248. * Each cfq queue took a reference on the parent group. Drop it now.
  2249. * queue lock must be held here.
  2250. */
  2251. static void cfq_put_queue(struct cfq_queue *cfqq)
  2252. {
  2253. struct cfq_data *cfqd = cfqq->cfqd;
  2254. struct cfq_group *cfqg;
  2255. BUG_ON(cfqq->ref <= 0);
  2256. cfqq->ref--;
  2257. if (cfqq->ref)
  2258. return;
  2259. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2260. BUG_ON(rb_first(&cfqq->sort_list));
  2261. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2262. cfqg = cfqq->cfqg;
  2263. if (unlikely(cfqd->active_queue == cfqq)) {
  2264. __cfq_slice_expired(cfqd, cfqq, 0);
  2265. cfq_schedule_dispatch(cfqd);
  2266. }
  2267. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2268. kmem_cache_free(cfq_pool, cfqq);
  2269. cfq_put_cfqg(cfqg);
  2270. }
  2271. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2272. {
  2273. struct cfq_queue *__cfqq, *next;
  2274. /*
  2275. * If this queue was scheduled to merge with another queue, be
  2276. * sure to drop the reference taken on that queue (and others in
  2277. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2278. */
  2279. __cfqq = cfqq->new_cfqq;
  2280. while (__cfqq) {
  2281. if (__cfqq == cfqq) {
  2282. WARN(1, "cfqq->new_cfqq loop detected\n");
  2283. break;
  2284. }
  2285. next = __cfqq->new_cfqq;
  2286. cfq_put_queue(__cfqq);
  2287. __cfqq = next;
  2288. }
  2289. }
  2290. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2291. {
  2292. if (unlikely(cfqq == cfqd->active_queue)) {
  2293. __cfq_slice_expired(cfqd, cfqq, 0);
  2294. cfq_schedule_dispatch(cfqd);
  2295. }
  2296. cfq_put_cooperator(cfqq);
  2297. cfq_put_queue(cfqq);
  2298. }
  2299. static void cfq_init_icq(struct io_cq *icq)
  2300. {
  2301. struct cfq_io_cq *cic = icq_to_cic(icq);
  2302. cic->ttime.last_end_request = jiffies;
  2303. }
  2304. static void cfq_exit_icq(struct io_cq *icq)
  2305. {
  2306. struct cfq_io_cq *cic = icq_to_cic(icq);
  2307. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2308. if (cic->cfqq[BLK_RW_ASYNC]) {
  2309. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2310. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2311. }
  2312. if (cic->cfqq[BLK_RW_SYNC]) {
  2313. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2314. cic->cfqq[BLK_RW_SYNC] = NULL;
  2315. }
  2316. }
  2317. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2318. {
  2319. struct task_struct *tsk = current;
  2320. int ioprio_class;
  2321. if (!cfq_cfqq_prio_changed(cfqq))
  2322. return;
  2323. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2324. switch (ioprio_class) {
  2325. default:
  2326. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2327. case IOPRIO_CLASS_NONE:
  2328. /*
  2329. * no prio set, inherit CPU scheduling settings
  2330. */
  2331. cfqq->ioprio = task_nice_ioprio(tsk);
  2332. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2333. break;
  2334. case IOPRIO_CLASS_RT:
  2335. cfqq->ioprio = task_ioprio(ioc);
  2336. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2337. break;
  2338. case IOPRIO_CLASS_BE:
  2339. cfqq->ioprio = task_ioprio(ioc);
  2340. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2341. break;
  2342. case IOPRIO_CLASS_IDLE:
  2343. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2344. cfqq->ioprio = 7;
  2345. cfq_clear_cfqq_idle_window(cfqq);
  2346. break;
  2347. }
  2348. /*
  2349. * keep track of original prio settings in case we have to temporarily
  2350. * elevate the priority of this queue
  2351. */
  2352. cfqq->org_ioprio = cfqq->ioprio;
  2353. cfq_clear_cfqq_prio_changed(cfqq);
  2354. }
  2355. static void changed_ioprio(struct cfq_io_cq *cic)
  2356. {
  2357. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2358. struct cfq_queue *cfqq;
  2359. if (unlikely(!cfqd))
  2360. return;
  2361. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2362. if (cfqq) {
  2363. struct cfq_queue *new_cfqq;
  2364. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
  2365. GFP_ATOMIC);
  2366. if (new_cfqq) {
  2367. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2368. cfq_put_queue(cfqq);
  2369. }
  2370. }
  2371. cfqq = cic->cfqq[BLK_RW_SYNC];
  2372. if (cfqq)
  2373. cfq_mark_cfqq_prio_changed(cfqq);
  2374. }
  2375. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2376. pid_t pid, bool is_sync)
  2377. {
  2378. RB_CLEAR_NODE(&cfqq->rb_node);
  2379. RB_CLEAR_NODE(&cfqq->p_node);
  2380. INIT_LIST_HEAD(&cfqq->fifo);
  2381. cfqq->ref = 0;
  2382. cfqq->cfqd = cfqd;
  2383. cfq_mark_cfqq_prio_changed(cfqq);
  2384. if (is_sync) {
  2385. if (!cfq_class_idle(cfqq))
  2386. cfq_mark_cfqq_idle_window(cfqq);
  2387. cfq_mark_cfqq_sync(cfqq);
  2388. }
  2389. cfqq->pid = pid;
  2390. }
  2391. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2392. static void changed_cgroup(struct cfq_io_cq *cic)
  2393. {
  2394. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2395. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2396. struct request_queue *q;
  2397. if (unlikely(!cfqd))
  2398. return;
  2399. q = cfqd->queue;
  2400. if (sync_cfqq) {
  2401. /*
  2402. * Drop reference to sync queue. A new sync queue will be
  2403. * assigned in new group upon arrival of a fresh request.
  2404. */
  2405. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2406. cic_set_cfqq(cic, NULL, 1);
  2407. cfq_put_queue(sync_cfqq);
  2408. }
  2409. }
  2410. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2411. static struct cfq_queue *
  2412. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2413. struct io_context *ioc, gfp_t gfp_mask)
  2414. {
  2415. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2416. struct cfq_io_cq *cic;
  2417. struct cfq_group *cfqg;
  2418. retry:
  2419. cfqg = cfq_get_cfqg(cfqd);
  2420. cic = cfq_cic_lookup(cfqd, ioc);
  2421. /* cic always exists here */
  2422. cfqq = cic_to_cfqq(cic, is_sync);
  2423. /*
  2424. * Always try a new alloc if we fell back to the OOM cfqq
  2425. * originally, since it should just be a temporary situation.
  2426. */
  2427. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2428. cfqq = NULL;
  2429. if (new_cfqq) {
  2430. cfqq = new_cfqq;
  2431. new_cfqq = NULL;
  2432. } else if (gfp_mask & __GFP_WAIT) {
  2433. spin_unlock_irq(cfqd->queue->queue_lock);
  2434. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2435. gfp_mask | __GFP_ZERO,
  2436. cfqd->queue->node);
  2437. spin_lock_irq(cfqd->queue->queue_lock);
  2438. if (new_cfqq)
  2439. goto retry;
  2440. } else {
  2441. cfqq = kmem_cache_alloc_node(cfq_pool,
  2442. gfp_mask | __GFP_ZERO,
  2443. cfqd->queue->node);
  2444. }
  2445. if (cfqq) {
  2446. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2447. cfq_init_prio_data(cfqq, ioc);
  2448. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2449. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2450. } else
  2451. cfqq = &cfqd->oom_cfqq;
  2452. }
  2453. if (new_cfqq)
  2454. kmem_cache_free(cfq_pool, new_cfqq);
  2455. return cfqq;
  2456. }
  2457. static struct cfq_queue **
  2458. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2459. {
  2460. switch (ioprio_class) {
  2461. case IOPRIO_CLASS_RT:
  2462. return &cfqd->async_cfqq[0][ioprio];
  2463. case IOPRIO_CLASS_BE:
  2464. return &cfqd->async_cfqq[1][ioprio];
  2465. case IOPRIO_CLASS_IDLE:
  2466. return &cfqd->async_idle_cfqq;
  2467. default:
  2468. BUG();
  2469. }
  2470. }
  2471. static struct cfq_queue *
  2472. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2473. gfp_t gfp_mask)
  2474. {
  2475. const int ioprio = task_ioprio(ioc);
  2476. const int ioprio_class = task_ioprio_class(ioc);
  2477. struct cfq_queue **async_cfqq = NULL;
  2478. struct cfq_queue *cfqq = NULL;
  2479. if (!is_sync) {
  2480. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2481. cfqq = *async_cfqq;
  2482. }
  2483. if (!cfqq)
  2484. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2485. /*
  2486. * pin the queue now that it's allocated, scheduler exit will prune it
  2487. */
  2488. if (!is_sync && !(*async_cfqq)) {
  2489. cfqq->ref++;
  2490. *async_cfqq = cfqq;
  2491. }
  2492. cfqq->ref++;
  2493. return cfqq;
  2494. }
  2495. static void
  2496. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2497. {
  2498. unsigned long elapsed = jiffies - ttime->last_end_request;
  2499. elapsed = min(elapsed, 2UL * slice_idle);
  2500. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2501. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2502. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2503. }
  2504. static void
  2505. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2506. struct cfq_io_cq *cic)
  2507. {
  2508. if (cfq_cfqq_sync(cfqq)) {
  2509. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2510. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2511. cfqd->cfq_slice_idle);
  2512. }
  2513. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2514. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  2515. #endif
  2516. }
  2517. static void
  2518. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2519. struct request *rq)
  2520. {
  2521. sector_t sdist = 0;
  2522. sector_t n_sec = blk_rq_sectors(rq);
  2523. if (cfqq->last_request_pos) {
  2524. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2525. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2526. else
  2527. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2528. }
  2529. cfqq->seek_history <<= 1;
  2530. if (blk_queue_nonrot(cfqd->queue))
  2531. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2532. else
  2533. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2534. }
  2535. /*
  2536. * Disable idle window if the process thinks too long or seeks so much that
  2537. * it doesn't matter
  2538. */
  2539. static void
  2540. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2541. struct cfq_io_cq *cic)
  2542. {
  2543. int old_idle, enable_idle;
  2544. /*
  2545. * Don't idle for async or idle io prio class
  2546. */
  2547. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2548. return;
  2549. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2550. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2551. cfq_mark_cfqq_deep(cfqq);
  2552. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2553. enable_idle = 0;
  2554. else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
  2555. !cfqd->cfq_slice_idle ||
  2556. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2557. enable_idle = 0;
  2558. else if (sample_valid(cic->ttime.ttime_samples)) {
  2559. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2560. enable_idle = 0;
  2561. else
  2562. enable_idle = 1;
  2563. }
  2564. if (old_idle != enable_idle) {
  2565. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2566. if (enable_idle)
  2567. cfq_mark_cfqq_idle_window(cfqq);
  2568. else
  2569. cfq_clear_cfqq_idle_window(cfqq);
  2570. }
  2571. }
  2572. /*
  2573. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2574. * no or if we aren't sure, a 1 will cause a preempt.
  2575. */
  2576. static bool
  2577. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2578. struct request *rq)
  2579. {
  2580. struct cfq_queue *cfqq;
  2581. cfqq = cfqd->active_queue;
  2582. if (!cfqq)
  2583. return false;
  2584. if (cfq_class_idle(new_cfqq))
  2585. return false;
  2586. if (cfq_class_idle(cfqq))
  2587. return true;
  2588. /*
  2589. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2590. */
  2591. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2592. return false;
  2593. /*
  2594. * if the new request is sync, but the currently running queue is
  2595. * not, let the sync request have priority.
  2596. */
  2597. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2598. return true;
  2599. if (new_cfqq->cfqg != cfqq->cfqg)
  2600. return false;
  2601. if (cfq_slice_used(cfqq))
  2602. return true;
  2603. /* Allow preemption only if we are idling on sync-noidle tree */
  2604. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2605. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2606. new_cfqq->service_tree->count == 2 &&
  2607. RB_EMPTY_ROOT(&cfqq->sort_list))
  2608. return true;
  2609. /*
  2610. * So both queues are sync. Let the new request get disk time if
  2611. * it's a metadata request and the current queue is doing regular IO.
  2612. */
  2613. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  2614. return true;
  2615. /*
  2616. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2617. */
  2618. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2619. return true;
  2620. /* An idle queue should not be idle now for some reason */
  2621. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2622. return true;
  2623. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2624. return false;
  2625. /*
  2626. * if this request is as-good as one we would expect from the
  2627. * current cfqq, let it preempt
  2628. */
  2629. if (cfq_rq_close(cfqd, cfqq, rq))
  2630. return true;
  2631. return false;
  2632. }
  2633. /*
  2634. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2635. * let it have half of its nominal slice.
  2636. */
  2637. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2638. {
  2639. enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
  2640. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2641. cfq_slice_expired(cfqd, 1);
  2642. /*
  2643. * workload type is changed, don't save slice, otherwise preempt
  2644. * doesn't happen
  2645. */
  2646. if (old_type != cfqq_type(cfqq))
  2647. cfqq->cfqg->saved_workload_slice = 0;
  2648. /*
  2649. * Put the new queue at the front of the of the current list,
  2650. * so we know that it will be selected next.
  2651. */
  2652. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2653. cfq_service_tree_add(cfqd, cfqq, 1);
  2654. cfqq->slice_end = 0;
  2655. cfq_mark_cfqq_slice_new(cfqq);
  2656. }
  2657. /*
  2658. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2659. * something we should do about it
  2660. */
  2661. static void
  2662. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2663. struct request *rq)
  2664. {
  2665. struct cfq_io_cq *cic = RQ_CIC(rq);
  2666. cfqd->rq_queued++;
  2667. if (rq->cmd_flags & REQ_PRIO)
  2668. cfqq->prio_pending++;
  2669. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2670. cfq_update_io_seektime(cfqd, cfqq, rq);
  2671. cfq_update_idle_window(cfqd, cfqq, cic);
  2672. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2673. if (cfqq == cfqd->active_queue) {
  2674. /*
  2675. * Remember that we saw a request from this process, but
  2676. * don't start queuing just yet. Otherwise we risk seeing lots
  2677. * of tiny requests, because we disrupt the normal plugging
  2678. * and merging. If the request is already larger than a single
  2679. * page, let it rip immediately. For that case we assume that
  2680. * merging is already done. Ditto for a busy system that
  2681. * has other work pending, don't risk delaying until the
  2682. * idle timer unplug to continue working.
  2683. */
  2684. if (cfq_cfqq_wait_request(cfqq)) {
  2685. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2686. cfqd->busy_queues > 1) {
  2687. cfq_del_timer(cfqd, cfqq);
  2688. cfq_clear_cfqq_wait_request(cfqq);
  2689. __blk_run_queue(cfqd->queue);
  2690. } else {
  2691. cfq_blkiocg_update_idle_time_stats(
  2692. &cfqq->cfqg->blkg);
  2693. cfq_mark_cfqq_must_dispatch(cfqq);
  2694. }
  2695. }
  2696. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2697. /*
  2698. * not the active queue - expire current slice if it is
  2699. * idle and has expired it's mean thinktime or this new queue
  2700. * has some old slice time left and is of higher priority or
  2701. * this new queue is RT and the current one is BE
  2702. */
  2703. cfq_preempt_queue(cfqd, cfqq);
  2704. __blk_run_queue(cfqd->queue);
  2705. }
  2706. }
  2707. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2708. {
  2709. struct cfq_data *cfqd = q->elevator->elevator_data;
  2710. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2711. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2712. cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
  2713. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2714. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2715. cfq_add_rq_rb(rq);
  2716. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2717. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2718. rq_is_sync(rq));
  2719. cfq_rq_enqueued(cfqd, cfqq, rq);
  2720. }
  2721. /*
  2722. * Update hw_tag based on peak queue depth over 50 samples under
  2723. * sufficient load.
  2724. */
  2725. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2726. {
  2727. struct cfq_queue *cfqq = cfqd->active_queue;
  2728. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2729. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2730. if (cfqd->hw_tag == 1)
  2731. return;
  2732. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2733. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2734. return;
  2735. /*
  2736. * If active queue hasn't enough requests and can idle, cfq might not
  2737. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2738. * case
  2739. */
  2740. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2741. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2742. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2743. return;
  2744. if (cfqd->hw_tag_samples++ < 50)
  2745. return;
  2746. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2747. cfqd->hw_tag = 1;
  2748. else
  2749. cfqd->hw_tag = 0;
  2750. }
  2751. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2752. {
  2753. struct cfq_io_cq *cic = cfqd->active_cic;
  2754. /* If the queue already has requests, don't wait */
  2755. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2756. return false;
  2757. /* If there are other queues in the group, don't wait */
  2758. if (cfqq->cfqg->nr_cfqq > 1)
  2759. return false;
  2760. /* the only queue in the group, but think time is big */
  2761. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  2762. return false;
  2763. if (cfq_slice_used(cfqq))
  2764. return true;
  2765. /* if slice left is less than think time, wait busy */
  2766. if (cic && sample_valid(cic->ttime.ttime_samples)
  2767. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  2768. return true;
  2769. /*
  2770. * If think times is less than a jiffy than ttime_mean=0 and above
  2771. * will not be true. It might happen that slice has not expired yet
  2772. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2773. * case where think time is less than a jiffy, mark the queue wait
  2774. * busy if only 1 jiffy is left in the slice.
  2775. */
  2776. if (cfqq->slice_end - jiffies == 1)
  2777. return true;
  2778. return false;
  2779. }
  2780. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2781. {
  2782. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2783. struct cfq_data *cfqd = cfqq->cfqd;
  2784. const int sync = rq_is_sync(rq);
  2785. unsigned long now;
  2786. now = jiffies;
  2787. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2788. !!(rq->cmd_flags & REQ_NOIDLE));
  2789. cfq_update_hw_tag(cfqd);
  2790. WARN_ON(!cfqd->rq_in_driver);
  2791. WARN_ON(!cfqq->dispatched);
  2792. cfqd->rq_in_driver--;
  2793. cfqq->dispatched--;
  2794. (RQ_CFQG(rq))->dispatched--;
  2795. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2796. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2797. rq_data_dir(rq), rq_is_sync(rq));
  2798. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2799. if (sync) {
  2800. struct cfq_rb_root *service_tree;
  2801. RQ_CIC(rq)->ttime.last_end_request = now;
  2802. if (cfq_cfqq_on_rr(cfqq))
  2803. service_tree = cfqq->service_tree;
  2804. else
  2805. service_tree = service_tree_for(cfqq->cfqg,
  2806. cfqq_prio(cfqq), cfqq_type(cfqq));
  2807. service_tree->ttime.last_end_request = now;
  2808. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2809. cfqd->last_delayed_sync = now;
  2810. }
  2811. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2812. cfqq->cfqg->ttime.last_end_request = now;
  2813. #endif
  2814. /*
  2815. * If this is the active queue, check if it needs to be expired,
  2816. * or if we want to idle in case it has no pending requests.
  2817. */
  2818. if (cfqd->active_queue == cfqq) {
  2819. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2820. if (cfq_cfqq_slice_new(cfqq)) {
  2821. cfq_set_prio_slice(cfqd, cfqq);
  2822. cfq_clear_cfqq_slice_new(cfqq);
  2823. }
  2824. /*
  2825. * Should we wait for next request to come in before we expire
  2826. * the queue.
  2827. */
  2828. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2829. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2830. if (!cfqd->cfq_slice_idle)
  2831. extend_sl = cfqd->cfq_group_idle;
  2832. cfqq->slice_end = jiffies + extend_sl;
  2833. cfq_mark_cfqq_wait_busy(cfqq);
  2834. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2835. }
  2836. /*
  2837. * Idling is not enabled on:
  2838. * - expired queues
  2839. * - idle-priority queues
  2840. * - async queues
  2841. * - queues with still some requests queued
  2842. * - when there is a close cooperator
  2843. */
  2844. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2845. cfq_slice_expired(cfqd, 1);
  2846. else if (sync && cfqq_empty &&
  2847. !cfq_close_cooperator(cfqd, cfqq)) {
  2848. cfq_arm_slice_timer(cfqd);
  2849. }
  2850. }
  2851. if (!cfqd->rq_in_driver)
  2852. cfq_schedule_dispatch(cfqd);
  2853. }
  2854. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2855. {
  2856. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2857. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2858. return ELV_MQUEUE_MUST;
  2859. }
  2860. return ELV_MQUEUE_MAY;
  2861. }
  2862. static int cfq_may_queue(struct request_queue *q, int rw)
  2863. {
  2864. struct cfq_data *cfqd = q->elevator->elevator_data;
  2865. struct task_struct *tsk = current;
  2866. struct cfq_io_cq *cic;
  2867. struct cfq_queue *cfqq;
  2868. /*
  2869. * don't force setup of a queue from here, as a call to may_queue
  2870. * does not necessarily imply that a request actually will be queued.
  2871. * so just lookup a possibly existing queue, or return 'may queue'
  2872. * if that fails
  2873. */
  2874. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2875. if (!cic)
  2876. return ELV_MQUEUE_MAY;
  2877. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2878. if (cfqq) {
  2879. cfq_init_prio_data(cfqq, cic->icq.ioc);
  2880. return __cfq_may_queue(cfqq);
  2881. }
  2882. return ELV_MQUEUE_MAY;
  2883. }
  2884. /*
  2885. * queue lock held here
  2886. */
  2887. static void cfq_put_request(struct request *rq)
  2888. {
  2889. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2890. if (cfqq) {
  2891. const int rw = rq_data_dir(rq);
  2892. BUG_ON(!cfqq->allocated[rw]);
  2893. cfqq->allocated[rw]--;
  2894. /* Put down rq reference on cfqg */
  2895. cfq_put_cfqg(RQ_CFQG(rq));
  2896. rq->elv.priv[0] = NULL;
  2897. rq->elv.priv[1] = NULL;
  2898. cfq_put_queue(cfqq);
  2899. }
  2900. }
  2901. static struct cfq_queue *
  2902. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
  2903. struct cfq_queue *cfqq)
  2904. {
  2905. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2906. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2907. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2908. cfq_put_queue(cfqq);
  2909. return cic_to_cfqq(cic, 1);
  2910. }
  2911. /*
  2912. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2913. * was the last process referring to said cfqq.
  2914. */
  2915. static struct cfq_queue *
  2916. split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
  2917. {
  2918. if (cfqq_process_refs(cfqq) == 1) {
  2919. cfqq->pid = current->pid;
  2920. cfq_clear_cfqq_coop(cfqq);
  2921. cfq_clear_cfqq_split_coop(cfqq);
  2922. return cfqq;
  2923. }
  2924. cic_set_cfqq(cic, NULL, 1);
  2925. cfq_put_cooperator(cfqq);
  2926. cfq_put_queue(cfqq);
  2927. return NULL;
  2928. }
  2929. /*
  2930. * Allocate cfq data structures associated with this request.
  2931. */
  2932. static int
  2933. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  2934. {
  2935. struct cfq_data *cfqd = q->elevator->elevator_data;
  2936. struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
  2937. const int rw = rq_data_dir(rq);
  2938. const bool is_sync = rq_is_sync(rq);
  2939. struct cfq_queue *cfqq;
  2940. unsigned int changed;
  2941. might_sleep_if(gfp_mask & __GFP_WAIT);
  2942. spin_lock_irq(q->queue_lock);
  2943. /* handle changed notifications */
  2944. changed = icq_get_changed(&cic->icq);
  2945. if (unlikely(changed & ICQ_IOPRIO_CHANGED))
  2946. changed_ioprio(cic);
  2947. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2948. if (unlikely(changed & ICQ_CGROUP_CHANGED))
  2949. changed_cgroup(cic);
  2950. #endif
  2951. new_queue:
  2952. cfqq = cic_to_cfqq(cic, is_sync);
  2953. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2954. cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
  2955. cic_set_cfqq(cic, cfqq, is_sync);
  2956. } else {
  2957. /*
  2958. * If the queue was seeky for too long, break it apart.
  2959. */
  2960. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  2961. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2962. cfqq = split_cfqq(cic, cfqq);
  2963. if (!cfqq)
  2964. goto new_queue;
  2965. }
  2966. /*
  2967. * Check to see if this queue is scheduled to merge with
  2968. * another, closely cooperating queue. The merging of
  2969. * queues happens here as it must be done in process context.
  2970. * The reference on new_cfqq was taken in merge_cfqqs.
  2971. */
  2972. if (cfqq->new_cfqq)
  2973. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2974. }
  2975. cfqq->allocated[rw]++;
  2976. cfqq->ref++;
  2977. rq->elv.priv[0] = cfqq;
  2978. rq->elv.priv[1] = cfq_ref_get_cfqg(cfqq->cfqg);
  2979. spin_unlock_irq(q->queue_lock);
  2980. return 0;
  2981. }
  2982. static void cfq_kick_queue(struct work_struct *work)
  2983. {
  2984. struct cfq_data *cfqd =
  2985. container_of(work, struct cfq_data, unplug_work);
  2986. struct request_queue *q = cfqd->queue;
  2987. spin_lock_irq(q->queue_lock);
  2988. __blk_run_queue(cfqd->queue);
  2989. spin_unlock_irq(q->queue_lock);
  2990. }
  2991. /*
  2992. * Timer running if the active_queue is currently idling inside its time slice
  2993. */
  2994. static void cfq_idle_slice_timer(unsigned long data)
  2995. {
  2996. struct cfq_data *cfqd = (struct cfq_data *) data;
  2997. struct cfq_queue *cfqq;
  2998. unsigned long flags;
  2999. int timed_out = 1;
  3000. cfq_log(cfqd, "idle timer fired");
  3001. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3002. cfqq = cfqd->active_queue;
  3003. if (cfqq) {
  3004. timed_out = 0;
  3005. /*
  3006. * We saw a request before the queue expired, let it through
  3007. */
  3008. if (cfq_cfqq_must_dispatch(cfqq))
  3009. goto out_kick;
  3010. /*
  3011. * expired
  3012. */
  3013. if (cfq_slice_used(cfqq))
  3014. goto expire;
  3015. /*
  3016. * only expire and reinvoke request handler, if there are
  3017. * other queues with pending requests
  3018. */
  3019. if (!cfqd->busy_queues)
  3020. goto out_cont;
  3021. /*
  3022. * not expired and it has a request pending, let it dispatch
  3023. */
  3024. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3025. goto out_kick;
  3026. /*
  3027. * Queue depth flag is reset only when the idle didn't succeed
  3028. */
  3029. cfq_clear_cfqq_deep(cfqq);
  3030. }
  3031. expire:
  3032. cfq_slice_expired(cfqd, timed_out);
  3033. out_kick:
  3034. cfq_schedule_dispatch(cfqd);
  3035. out_cont:
  3036. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3037. }
  3038. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3039. {
  3040. del_timer_sync(&cfqd->idle_slice_timer);
  3041. cancel_work_sync(&cfqd->unplug_work);
  3042. }
  3043. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3044. {
  3045. int i;
  3046. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3047. if (cfqd->async_cfqq[0][i])
  3048. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3049. if (cfqd->async_cfqq[1][i])
  3050. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3051. }
  3052. if (cfqd->async_idle_cfqq)
  3053. cfq_put_queue(cfqd->async_idle_cfqq);
  3054. }
  3055. static void cfq_exit_queue(struct elevator_queue *e)
  3056. {
  3057. struct cfq_data *cfqd = e->elevator_data;
  3058. struct request_queue *q = cfqd->queue;
  3059. bool wait = false;
  3060. cfq_shutdown_timer_wq(cfqd);
  3061. spin_lock_irq(q->queue_lock);
  3062. if (cfqd->active_queue)
  3063. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3064. cfq_put_async_queues(cfqd);
  3065. cfq_release_cfq_groups(cfqd);
  3066. /*
  3067. * If there are groups which we could not unlink from blkcg list,
  3068. * wait for a rcu period for them to be freed.
  3069. */
  3070. if (cfqd->nr_blkcg_linked_grps)
  3071. wait = true;
  3072. spin_unlock_irq(q->queue_lock);
  3073. cfq_shutdown_timer_wq(cfqd);
  3074. /*
  3075. * Wait for cfqg->blkg->key accessors to exit their grace periods.
  3076. * Do this wait only if there are other unlinked groups out
  3077. * there. This can happen if cgroup deletion path claimed the
  3078. * responsibility of cleaning up a group before queue cleanup code
  3079. * get to the group.
  3080. *
  3081. * Do not call synchronize_rcu() unconditionally as there are drivers
  3082. * which create/delete request queue hundreds of times during scan/boot
  3083. * and synchronize_rcu() can take significant time and slow down boot.
  3084. */
  3085. if (wait)
  3086. synchronize_rcu();
  3087. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3088. /* Free up per cpu stats for root group */
  3089. free_percpu(cfqd->root_group.blkg.stats_cpu);
  3090. #endif
  3091. kfree(cfqd);
  3092. }
  3093. static void *cfq_init_queue(struct request_queue *q)
  3094. {
  3095. struct cfq_data *cfqd;
  3096. int i, j;
  3097. struct cfq_group *cfqg;
  3098. struct cfq_rb_root *st;
  3099. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3100. if (!cfqd)
  3101. return NULL;
  3102. /* Init root service tree */
  3103. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3104. /* Init root group */
  3105. cfqg = &cfqd->root_group;
  3106. for_each_cfqg_st(cfqg, i, j, st)
  3107. *st = CFQ_RB_ROOT;
  3108. RB_CLEAR_NODE(&cfqg->rb_node);
  3109. /* Give preference to root group over other groups */
  3110. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3111. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3112. /*
  3113. * Set root group reference to 2. One reference will be dropped when
  3114. * all groups on cfqd->cfqg_list are being deleted during queue exit.
  3115. * Other reference will remain there as we don't want to delete this
  3116. * group as it is statically allocated and gets destroyed when
  3117. * throtl_data goes away.
  3118. */
  3119. cfqg->ref = 2;
  3120. if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
  3121. kfree(cfqg);
  3122. kfree(cfqd);
  3123. return NULL;
  3124. }
  3125. rcu_read_lock();
  3126. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3127. (void *)cfqd, 0);
  3128. rcu_read_unlock();
  3129. cfqd->nr_blkcg_linked_grps++;
  3130. /* Add group on cfqd->cfqg_list */
  3131. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  3132. #endif
  3133. /*
  3134. * Not strictly needed (since RB_ROOT just clears the node and we
  3135. * zeroed cfqd on alloc), but better be safe in case someone decides
  3136. * to add magic to the rb code
  3137. */
  3138. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3139. cfqd->prio_trees[i] = RB_ROOT;
  3140. /*
  3141. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3142. * Grab a permanent reference to it, so that the normal code flow
  3143. * will not attempt to free it.
  3144. */
  3145. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3146. cfqd->oom_cfqq.ref++;
  3147. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3148. cfqd->queue = q;
  3149. init_timer(&cfqd->idle_slice_timer);
  3150. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3151. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3152. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3153. cfqd->cfq_quantum = cfq_quantum;
  3154. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3155. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3156. cfqd->cfq_back_max = cfq_back_max;
  3157. cfqd->cfq_back_penalty = cfq_back_penalty;
  3158. cfqd->cfq_slice[0] = cfq_slice_async;
  3159. cfqd->cfq_slice[1] = cfq_slice_sync;
  3160. cfqd->cfq_target_latency = cfq_target_latency;
  3161. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3162. cfqd->cfq_slice_idle = cfq_slice_idle;
  3163. cfqd->cfq_group_idle = cfq_group_idle;
  3164. cfqd->cfq_latency = 1;
  3165. cfqd->hw_tag = -1;
  3166. /*
  3167. * we optimistically start assuming sync ops weren't delayed in last
  3168. * second, in order to have larger depth for async operations.
  3169. */
  3170. cfqd->last_delayed_sync = jiffies - HZ;
  3171. return cfqd;
  3172. }
  3173. /*
  3174. * sysfs parts below -->
  3175. */
  3176. static ssize_t
  3177. cfq_var_show(unsigned int var, char *page)
  3178. {
  3179. return sprintf(page, "%d\n", var);
  3180. }
  3181. static ssize_t
  3182. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3183. {
  3184. char *p = (char *) page;
  3185. *var = simple_strtoul(p, &p, 10);
  3186. return count;
  3187. }
  3188. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3189. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3190. { \
  3191. struct cfq_data *cfqd = e->elevator_data; \
  3192. unsigned int __data = __VAR; \
  3193. if (__CONV) \
  3194. __data = jiffies_to_msecs(__data); \
  3195. return cfq_var_show(__data, (page)); \
  3196. }
  3197. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3198. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3199. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3200. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3201. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3202. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3203. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3204. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3205. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3206. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3207. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3208. SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
  3209. #undef SHOW_FUNCTION
  3210. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3211. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3212. { \
  3213. struct cfq_data *cfqd = e->elevator_data; \
  3214. unsigned int __data; \
  3215. int ret = cfq_var_store(&__data, (page), count); \
  3216. if (__data < (MIN)) \
  3217. __data = (MIN); \
  3218. else if (__data > (MAX)) \
  3219. __data = (MAX); \
  3220. if (__CONV) \
  3221. *(__PTR) = msecs_to_jiffies(__data); \
  3222. else \
  3223. *(__PTR) = __data; \
  3224. return ret; \
  3225. }
  3226. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3227. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3228. UINT_MAX, 1);
  3229. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3230. UINT_MAX, 1);
  3231. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3232. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3233. UINT_MAX, 0);
  3234. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3235. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3236. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3237. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3238. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3239. UINT_MAX, 0);
  3240. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3241. STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
  3242. #undef STORE_FUNCTION
  3243. #define CFQ_ATTR(name) \
  3244. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3245. static struct elv_fs_entry cfq_attrs[] = {
  3246. CFQ_ATTR(quantum),
  3247. CFQ_ATTR(fifo_expire_sync),
  3248. CFQ_ATTR(fifo_expire_async),
  3249. CFQ_ATTR(back_seek_max),
  3250. CFQ_ATTR(back_seek_penalty),
  3251. CFQ_ATTR(slice_sync),
  3252. CFQ_ATTR(slice_async),
  3253. CFQ_ATTR(slice_async_rq),
  3254. CFQ_ATTR(slice_idle),
  3255. CFQ_ATTR(group_idle),
  3256. CFQ_ATTR(low_latency),
  3257. CFQ_ATTR(target_latency),
  3258. __ATTR_NULL
  3259. };
  3260. static struct elevator_type iosched_cfq = {
  3261. .ops = {
  3262. .elevator_merge_fn = cfq_merge,
  3263. .elevator_merged_fn = cfq_merged_request,
  3264. .elevator_merge_req_fn = cfq_merged_requests,
  3265. .elevator_allow_merge_fn = cfq_allow_merge,
  3266. .elevator_bio_merged_fn = cfq_bio_merged,
  3267. .elevator_dispatch_fn = cfq_dispatch_requests,
  3268. .elevator_add_req_fn = cfq_insert_request,
  3269. .elevator_activate_req_fn = cfq_activate_request,
  3270. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3271. .elevator_completed_req_fn = cfq_completed_request,
  3272. .elevator_former_req_fn = elv_rb_former_request,
  3273. .elevator_latter_req_fn = elv_rb_latter_request,
  3274. .elevator_init_icq_fn = cfq_init_icq,
  3275. .elevator_exit_icq_fn = cfq_exit_icq,
  3276. .elevator_set_req_fn = cfq_set_request,
  3277. .elevator_put_req_fn = cfq_put_request,
  3278. .elevator_may_queue_fn = cfq_may_queue,
  3279. .elevator_init_fn = cfq_init_queue,
  3280. .elevator_exit_fn = cfq_exit_queue,
  3281. },
  3282. .icq_size = sizeof(struct cfq_io_cq),
  3283. .icq_align = __alignof__(struct cfq_io_cq),
  3284. .elevator_attrs = cfq_attrs,
  3285. .elevator_name = "cfq",
  3286. .elevator_owner = THIS_MODULE,
  3287. };
  3288. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3289. static struct blkio_policy_type blkio_policy_cfq = {
  3290. .ops = {
  3291. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3292. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3293. },
  3294. .plid = BLKIO_POLICY_PROP,
  3295. };
  3296. #else
  3297. static struct blkio_policy_type blkio_policy_cfq;
  3298. #endif
  3299. static int __init cfq_init(void)
  3300. {
  3301. int ret;
  3302. /*
  3303. * could be 0 on HZ < 1000 setups
  3304. */
  3305. if (!cfq_slice_async)
  3306. cfq_slice_async = 1;
  3307. if (!cfq_slice_idle)
  3308. cfq_slice_idle = 1;
  3309. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3310. if (!cfq_group_idle)
  3311. cfq_group_idle = 1;
  3312. #else
  3313. cfq_group_idle = 0;
  3314. #endif
  3315. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3316. if (!cfq_pool)
  3317. return -ENOMEM;
  3318. ret = elv_register(&iosched_cfq);
  3319. if (ret) {
  3320. kmem_cache_destroy(cfq_pool);
  3321. return ret;
  3322. }
  3323. blkio_policy_register(&blkio_policy_cfq);
  3324. return 0;
  3325. }
  3326. static void __exit cfq_exit(void)
  3327. {
  3328. blkio_policy_unregister(&blkio_policy_cfq);
  3329. elv_unregister(&iosched_cfq);
  3330. kmem_cache_destroy(cfq_pool);
  3331. }
  3332. module_init(cfq_init);
  3333. module_exit(cfq_exit);
  3334. MODULE_AUTHOR("Jens Axboe");
  3335. MODULE_LICENSE("GPL");
  3336. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");