uv_time.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426
  1. /*
  2. * SGI RTC clock/timer routines.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. *
  18. * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
  19. * Copyright (c) Dimitri Sivanich
  20. */
  21. #include <linux/clockchips.h>
  22. #include <linux/slab.h>
  23. #include <asm/uv/uv_mmrs.h>
  24. #include <asm/uv/uv_hub.h>
  25. #include <asm/uv/bios.h>
  26. #include <asm/uv/uv.h>
  27. #include <asm/apic.h>
  28. #include <asm/cpu.h>
  29. #define RTC_NAME "sgi_rtc"
  30. static cycle_t uv_read_rtc(struct clocksource *cs);
  31. static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
  32. static void uv_rtc_timer_setup(enum clock_event_mode,
  33. struct clock_event_device *);
  34. static struct clocksource clocksource_uv = {
  35. .name = RTC_NAME,
  36. .rating = 299,
  37. .read = uv_read_rtc,
  38. .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
  39. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  40. };
  41. static struct clock_event_device clock_event_device_uv = {
  42. .name = RTC_NAME,
  43. .features = CLOCK_EVT_FEAT_ONESHOT,
  44. .shift = 20,
  45. .rating = 400,
  46. .irq = -1,
  47. .set_next_event = uv_rtc_next_event,
  48. .set_mode = uv_rtc_timer_setup,
  49. .event_handler = NULL,
  50. };
  51. static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
  52. /* There is one of these allocated per node */
  53. struct uv_rtc_timer_head {
  54. spinlock_t lock;
  55. /* next cpu waiting for timer, local node relative: */
  56. int next_cpu;
  57. /* number of cpus on this node: */
  58. int ncpus;
  59. struct {
  60. int lcpu; /* systemwide logical cpu number */
  61. u64 expires; /* next timer expiration for this cpu */
  62. } cpu[1];
  63. };
  64. /*
  65. * Access to uv_rtc_timer_head via blade id.
  66. */
  67. static struct uv_rtc_timer_head **blade_info __read_mostly;
  68. static int uv_rtc_evt_enable;
  69. /*
  70. * Hardware interface routines
  71. */
  72. /* Send IPIs to another node */
  73. static void uv_rtc_send_IPI(int cpu)
  74. {
  75. unsigned long apicid, val;
  76. int pnode;
  77. apicid = cpu_physical_id(cpu);
  78. pnode = uv_apicid_to_pnode(apicid);
  79. apicid |= uv_apicid_hibits;
  80. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  81. (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  82. (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
  83. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  84. }
  85. /* Check for an RTC interrupt pending */
  86. static int uv_intr_pending(int pnode)
  87. {
  88. if (is_uv1_hub())
  89. return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
  90. UV1H_EVENT_OCCURRED0_RTC1_MASK;
  91. else
  92. return uv_read_global_mmr64(pnode, UV2H_EVENT_OCCURRED2) &
  93. UV2H_EVENT_OCCURRED2_RTC_1_MASK;
  94. }
  95. /* Setup interrupt and return non-zero if early expiration occurred. */
  96. static int uv_setup_intr(int cpu, u64 expires)
  97. {
  98. u64 val;
  99. unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
  100. int pnode = uv_cpu_to_pnode(cpu);
  101. uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
  102. UVH_RTC1_INT_CONFIG_M_MASK);
  103. uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
  104. if (is_uv1_hub())
  105. uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
  106. UV1H_EVENT_OCCURRED0_RTC1_MASK);
  107. else
  108. uv_write_global_mmr64(pnode, UV2H_EVENT_OCCURRED2_ALIAS,
  109. UV2H_EVENT_OCCURRED2_RTC_1_MASK);
  110. val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
  111. ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
  112. /* Set configuration */
  113. uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
  114. /* Initialize comparator value */
  115. uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
  116. if (uv_read_rtc(NULL) <= expires)
  117. return 0;
  118. return !uv_intr_pending(pnode);
  119. }
  120. /*
  121. * Per-cpu timer tracking routines
  122. */
  123. static __init void uv_rtc_deallocate_timers(void)
  124. {
  125. int bid;
  126. for_each_possible_blade(bid) {
  127. kfree(blade_info[bid]);
  128. }
  129. kfree(blade_info);
  130. }
  131. /* Allocate per-node list of cpu timer expiration times. */
  132. static __init int uv_rtc_allocate_timers(void)
  133. {
  134. int cpu;
  135. blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
  136. if (!blade_info)
  137. return -ENOMEM;
  138. memset(blade_info, 0, uv_possible_blades * sizeof(void *));
  139. for_each_present_cpu(cpu) {
  140. int nid = cpu_to_node(cpu);
  141. int bid = uv_cpu_to_blade_id(cpu);
  142. int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
  143. struct uv_rtc_timer_head *head = blade_info[bid];
  144. if (!head) {
  145. head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
  146. (uv_blade_nr_possible_cpus(bid) *
  147. 2 * sizeof(u64)),
  148. GFP_KERNEL, nid);
  149. if (!head) {
  150. uv_rtc_deallocate_timers();
  151. return -ENOMEM;
  152. }
  153. spin_lock_init(&head->lock);
  154. head->ncpus = uv_blade_nr_possible_cpus(bid);
  155. head->next_cpu = -1;
  156. blade_info[bid] = head;
  157. }
  158. head->cpu[bcpu].lcpu = cpu;
  159. head->cpu[bcpu].expires = ULLONG_MAX;
  160. }
  161. return 0;
  162. }
  163. /* Find and set the next expiring timer. */
  164. static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
  165. {
  166. u64 lowest = ULLONG_MAX;
  167. int c, bcpu = -1;
  168. head->next_cpu = -1;
  169. for (c = 0; c < head->ncpus; c++) {
  170. u64 exp = head->cpu[c].expires;
  171. if (exp < lowest) {
  172. bcpu = c;
  173. lowest = exp;
  174. }
  175. }
  176. if (bcpu >= 0) {
  177. head->next_cpu = bcpu;
  178. c = head->cpu[bcpu].lcpu;
  179. if (uv_setup_intr(c, lowest))
  180. /* If we didn't set it up in time, trigger */
  181. uv_rtc_send_IPI(c);
  182. } else {
  183. uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
  184. UVH_RTC1_INT_CONFIG_M_MASK);
  185. }
  186. }
  187. /*
  188. * Set expiration time for current cpu.
  189. *
  190. * Returns 1 if we missed the expiration time.
  191. */
  192. static int uv_rtc_set_timer(int cpu, u64 expires)
  193. {
  194. int pnode = uv_cpu_to_pnode(cpu);
  195. int bid = uv_cpu_to_blade_id(cpu);
  196. struct uv_rtc_timer_head *head = blade_info[bid];
  197. int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
  198. u64 *t = &head->cpu[bcpu].expires;
  199. unsigned long flags;
  200. int next_cpu;
  201. spin_lock_irqsave(&head->lock, flags);
  202. next_cpu = head->next_cpu;
  203. *t = expires;
  204. /* Will this one be next to go off? */
  205. if (next_cpu < 0 || bcpu == next_cpu ||
  206. expires < head->cpu[next_cpu].expires) {
  207. head->next_cpu = bcpu;
  208. if (uv_setup_intr(cpu, expires)) {
  209. *t = ULLONG_MAX;
  210. uv_rtc_find_next_timer(head, pnode);
  211. spin_unlock_irqrestore(&head->lock, flags);
  212. return -ETIME;
  213. }
  214. }
  215. spin_unlock_irqrestore(&head->lock, flags);
  216. return 0;
  217. }
  218. /*
  219. * Unset expiration time for current cpu.
  220. *
  221. * Returns 1 if this timer was pending.
  222. */
  223. static int uv_rtc_unset_timer(int cpu, int force)
  224. {
  225. int pnode = uv_cpu_to_pnode(cpu);
  226. int bid = uv_cpu_to_blade_id(cpu);
  227. struct uv_rtc_timer_head *head = blade_info[bid];
  228. int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
  229. u64 *t = &head->cpu[bcpu].expires;
  230. unsigned long flags;
  231. int rc = 0;
  232. spin_lock_irqsave(&head->lock, flags);
  233. if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
  234. rc = 1;
  235. if (rc) {
  236. *t = ULLONG_MAX;
  237. /* Was the hardware setup for this timer? */
  238. if (head->next_cpu == bcpu)
  239. uv_rtc_find_next_timer(head, pnode);
  240. }
  241. spin_unlock_irqrestore(&head->lock, flags);
  242. return rc;
  243. }
  244. /*
  245. * Kernel interface routines.
  246. */
  247. /*
  248. * Read the RTC.
  249. *
  250. * Starting with HUB rev 2.0, the UV RTC register is replicated across all
  251. * cachelines of it's own page. This allows faster simultaneous reads
  252. * from a given socket.
  253. */
  254. static cycle_t uv_read_rtc(struct clocksource *cs)
  255. {
  256. unsigned long offset;
  257. if (uv_get_min_hub_revision_id() == 1)
  258. offset = 0;
  259. else
  260. offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
  261. return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
  262. }
  263. /*
  264. * Program the next event, relative to now
  265. */
  266. static int uv_rtc_next_event(unsigned long delta,
  267. struct clock_event_device *ced)
  268. {
  269. int ced_cpu = cpumask_first(ced->cpumask);
  270. return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
  271. }
  272. /*
  273. * Setup the RTC timer in oneshot mode
  274. */
  275. static void uv_rtc_timer_setup(enum clock_event_mode mode,
  276. struct clock_event_device *evt)
  277. {
  278. int ced_cpu = cpumask_first(evt->cpumask);
  279. switch (mode) {
  280. case CLOCK_EVT_MODE_PERIODIC:
  281. case CLOCK_EVT_MODE_ONESHOT:
  282. case CLOCK_EVT_MODE_RESUME:
  283. /* Nothing to do here yet */
  284. break;
  285. case CLOCK_EVT_MODE_UNUSED:
  286. case CLOCK_EVT_MODE_SHUTDOWN:
  287. uv_rtc_unset_timer(ced_cpu, 1);
  288. break;
  289. }
  290. }
  291. static void uv_rtc_interrupt(void)
  292. {
  293. int cpu = smp_processor_id();
  294. struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
  295. if (!ced || !ced->event_handler)
  296. return;
  297. if (uv_rtc_unset_timer(cpu, 0) != 1)
  298. return;
  299. ced->event_handler(ced);
  300. }
  301. static int __init uv_enable_evt_rtc(char *str)
  302. {
  303. uv_rtc_evt_enable = 1;
  304. return 1;
  305. }
  306. __setup("uvrtcevt", uv_enable_evt_rtc);
  307. static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
  308. {
  309. struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
  310. *ced = clock_event_device_uv;
  311. ced->cpumask = cpumask_of(smp_processor_id());
  312. clockevents_register_device(ced);
  313. }
  314. static __init int uv_rtc_setup_clock(void)
  315. {
  316. int rc;
  317. if (!is_uv_system())
  318. return -ENODEV;
  319. rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
  320. if (rc)
  321. printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
  322. else
  323. printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
  324. sn_rtc_cycles_per_second/(unsigned long)1E6);
  325. if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
  326. return rc;
  327. /* Setup and register clockevents */
  328. rc = uv_rtc_allocate_timers();
  329. if (rc)
  330. goto error;
  331. x86_platform_ipi_callback = uv_rtc_interrupt;
  332. clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
  333. NSEC_PER_SEC, clock_event_device_uv.shift);
  334. clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
  335. sn_rtc_cycles_per_second;
  336. clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
  337. (NSEC_PER_SEC / sn_rtc_cycles_per_second);
  338. rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
  339. if (rc) {
  340. x86_platform_ipi_callback = NULL;
  341. uv_rtc_deallocate_timers();
  342. goto error;
  343. }
  344. printk(KERN_INFO "UV RTC clockevents registered\n");
  345. return 0;
  346. error:
  347. clocksource_unregister(&clocksource_uv);
  348. printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
  349. return rc;
  350. }
  351. arch_initcall(uv_rtc_setup_clock);