process.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. /*
  2. * linux/arch/unicore32/kernel/process.c
  3. *
  4. * Code specific to PKUnity SoC and UniCore ISA
  5. *
  6. * Copyright (C) 2001-2010 GUAN Xue-tao
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <stdarg.h>
  13. #include <linux/module.h>
  14. #include <linux/sched.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/stddef.h>
  18. #include <linux/unistd.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <linux/gpio.h>
  32. #include <linux/stacktrace.h>
  33. #include <asm/cacheflush.h>
  34. #include <asm/processor.h>
  35. #include <asm/stacktrace.h>
  36. #include "setup.h"
  37. static const char * const processor_modes[] = {
  38. "UK00", "UK01", "UK02", "UK03", "UK04", "UK05", "UK06", "UK07",
  39. "UK08", "UK09", "UK0A", "UK0B", "UK0C", "UK0D", "UK0E", "UK0F",
  40. "USER", "REAL", "INTR", "PRIV", "UK14", "UK15", "UK16", "ABRT",
  41. "UK18", "UK19", "UK1A", "EXTN", "UK1C", "UK1D", "UK1E", "SUSR"
  42. };
  43. /*
  44. * The idle thread, has rather strange semantics for calling pm_idle,
  45. * but this is what x86 does and we need to do the same, so that
  46. * things like cpuidle get called in the same way.
  47. */
  48. void cpu_idle(void)
  49. {
  50. /* endless idle loop with no priority at all */
  51. while (1) {
  52. tick_nohz_idle_enter();
  53. rcu_idle_enter();
  54. while (!need_resched()) {
  55. local_irq_disable();
  56. stop_critical_timings();
  57. cpu_do_idle();
  58. local_irq_enable();
  59. start_critical_timings();
  60. }
  61. rcu_idle_exit();
  62. tick_nohz_idle_exit();
  63. preempt_enable_no_resched();
  64. schedule();
  65. preempt_disable();
  66. }
  67. }
  68. static char reboot_mode = 'h';
  69. int __init reboot_setup(char *str)
  70. {
  71. reboot_mode = str[0];
  72. return 1;
  73. }
  74. __setup("reboot=", reboot_setup);
  75. void machine_halt(void)
  76. {
  77. gpio_set_value(GPO_SOFT_OFF, 0);
  78. }
  79. /*
  80. * Function pointers to optional machine specific functions
  81. */
  82. void (*pm_power_off)(void) = NULL;
  83. void machine_power_off(void)
  84. {
  85. if (pm_power_off)
  86. pm_power_off();
  87. machine_halt();
  88. }
  89. void machine_restart(char *cmd)
  90. {
  91. /* Disable interrupts first */
  92. local_irq_disable();
  93. /*
  94. * Tell the mm system that we are going to reboot -
  95. * we may need it to insert some 1:1 mappings so that
  96. * soft boot works.
  97. */
  98. setup_mm_for_reboot(reboot_mode);
  99. /* Clean and invalidate caches */
  100. flush_cache_all();
  101. /* Turn off caching */
  102. cpu_proc_fin();
  103. /* Push out any further dirty data, and ensure cache is empty */
  104. flush_cache_all();
  105. /*
  106. * Now handle reboot code.
  107. */
  108. if (reboot_mode == 's') {
  109. /* Jump into ROM at address 0xffff0000 */
  110. cpu_reset(VECTORS_BASE);
  111. } else {
  112. writel(0x00002001, PM_PLLSYSCFG); /* cpu clk = 250M */
  113. writel(0x00100800, PM_PLLDDRCFG); /* ddr clk = 44M */
  114. writel(0x00002001, PM_PLLVGACFG); /* vga clk = 250M */
  115. /* Use on-chip reset capability */
  116. /* following instructions must be in one icache line */
  117. __asm__ __volatile__(
  118. " .align 5\n\t"
  119. " stw %1, [%0]\n\t"
  120. "201: ldw r0, [%0]\n\t"
  121. " cmpsub.a r0, #0\n\t"
  122. " bne 201b\n\t"
  123. " stw %3, [%2]\n\t"
  124. " nop; nop; nop\n\t"
  125. /* prefetch 3 instructions at most */
  126. :
  127. : "r" (PM_PMCR),
  128. "r" (PM_PMCR_CFBSYS | PM_PMCR_CFBDDR
  129. | PM_PMCR_CFBVGA),
  130. "r" (RESETC_SWRR),
  131. "r" (RESETC_SWRR_SRB)
  132. : "r0", "memory");
  133. }
  134. /*
  135. * Whoops - the architecture was unable to reboot.
  136. * Tell the user!
  137. */
  138. mdelay(1000);
  139. printk(KERN_EMERG "Reboot failed -- System halted\n");
  140. do { } while (1);
  141. }
  142. void __show_regs(struct pt_regs *regs)
  143. {
  144. unsigned long flags;
  145. char buf[64];
  146. printk(KERN_DEFAULT "CPU: %d %s (%s %.*s)\n",
  147. raw_smp_processor_id(), print_tainted(),
  148. init_utsname()->release,
  149. (int)strcspn(init_utsname()->version, " "),
  150. init_utsname()->version);
  151. print_symbol("PC is at %s\n", instruction_pointer(regs));
  152. print_symbol("LR is at %s\n", regs->UCreg_lr);
  153. printk(KERN_DEFAULT "pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  154. "sp : %08lx ip : %08lx fp : %08lx\n",
  155. regs->UCreg_pc, regs->UCreg_lr, regs->UCreg_asr,
  156. regs->UCreg_sp, regs->UCreg_ip, regs->UCreg_fp);
  157. printk(KERN_DEFAULT "r26: %08lx r25: %08lx r24: %08lx\n",
  158. regs->UCreg_26, regs->UCreg_25,
  159. regs->UCreg_24);
  160. printk(KERN_DEFAULT "r23: %08lx r22: %08lx r21: %08lx r20: %08lx\n",
  161. regs->UCreg_23, regs->UCreg_22,
  162. regs->UCreg_21, regs->UCreg_20);
  163. printk(KERN_DEFAULT "r19: %08lx r18: %08lx r17: %08lx r16: %08lx\n",
  164. regs->UCreg_19, regs->UCreg_18,
  165. regs->UCreg_17, regs->UCreg_16);
  166. printk(KERN_DEFAULT "r15: %08lx r14: %08lx r13: %08lx r12: %08lx\n",
  167. regs->UCreg_15, regs->UCreg_14,
  168. regs->UCreg_13, regs->UCreg_12);
  169. printk(KERN_DEFAULT "r11: %08lx r10: %08lx r9 : %08lx r8 : %08lx\n",
  170. regs->UCreg_11, regs->UCreg_10,
  171. regs->UCreg_09, regs->UCreg_08);
  172. printk(KERN_DEFAULT "r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  173. regs->UCreg_07, regs->UCreg_06,
  174. regs->UCreg_05, regs->UCreg_04);
  175. printk(KERN_DEFAULT "r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  176. regs->UCreg_03, regs->UCreg_02,
  177. regs->UCreg_01, regs->UCreg_00);
  178. flags = regs->UCreg_asr;
  179. buf[0] = flags & PSR_S_BIT ? 'S' : 's';
  180. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  181. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  182. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  183. buf[4] = '\0';
  184. printk(KERN_DEFAULT "Flags: %s INTR o%s REAL o%s Mode %s Segment %s\n",
  185. buf, interrupts_enabled(regs) ? "n" : "ff",
  186. fast_interrupts_enabled(regs) ? "n" : "ff",
  187. processor_modes[processor_mode(regs)],
  188. segment_eq(get_fs(), get_ds()) ? "kernel" : "user");
  189. {
  190. unsigned int ctrl;
  191. buf[0] = '\0';
  192. {
  193. unsigned int transbase;
  194. asm("movc %0, p0.c2, #0\n"
  195. : "=r" (transbase));
  196. snprintf(buf, sizeof(buf), " Table: %08x", transbase);
  197. }
  198. asm("movc %0, p0.c1, #0\n" : "=r" (ctrl));
  199. printk(KERN_DEFAULT "Control: %08x%s\n", ctrl, buf);
  200. }
  201. }
  202. void show_regs(struct pt_regs *regs)
  203. {
  204. printk(KERN_DEFAULT "\n");
  205. printk(KERN_DEFAULT "Pid: %d, comm: %20s\n",
  206. task_pid_nr(current), current->comm);
  207. __show_regs(regs);
  208. __backtrace();
  209. }
  210. /*
  211. * Free current thread data structures etc..
  212. */
  213. void exit_thread(void)
  214. {
  215. }
  216. void flush_thread(void)
  217. {
  218. struct thread_info *thread = current_thread_info();
  219. struct task_struct *tsk = current;
  220. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  221. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  222. #ifdef CONFIG_UNICORE_FPU_F64
  223. memset(&thread->fpstate, 0, sizeof(struct fp_state));
  224. #endif
  225. }
  226. void release_thread(struct task_struct *dead_task)
  227. {
  228. }
  229. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  230. int
  231. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  232. unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
  233. {
  234. struct thread_info *thread = task_thread_info(p);
  235. struct pt_regs *childregs = task_pt_regs(p);
  236. *childregs = *regs;
  237. childregs->UCreg_00 = 0;
  238. childregs->UCreg_sp = stack_start;
  239. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  240. thread->cpu_context.sp = (unsigned long)childregs;
  241. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  242. if (clone_flags & CLONE_SETTLS)
  243. childregs->UCreg_16 = regs->UCreg_03;
  244. return 0;
  245. }
  246. /*
  247. * Fill in the task's elfregs structure for a core dump.
  248. */
  249. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  250. {
  251. elf_core_copy_regs(elfregs, task_pt_regs(t));
  252. return 1;
  253. }
  254. /*
  255. * fill in the fpe structure for a core dump...
  256. */
  257. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fp)
  258. {
  259. struct thread_info *thread = current_thread_info();
  260. int used_math = thread->used_cp[1] | thread->used_cp[2];
  261. #ifdef CONFIG_UNICORE_FPU_F64
  262. if (used_math)
  263. memcpy(fp, &thread->fpstate, sizeof(*fp));
  264. #endif
  265. return used_math != 0;
  266. }
  267. EXPORT_SYMBOL(dump_fpu);
  268. /*
  269. * Shuffle the argument into the correct register before calling the
  270. * thread function. r1 is the thread argument, r2 is the pointer to
  271. * the thread function, and r3 points to the exit function.
  272. */
  273. asm(".pushsection .text\n"
  274. " .align\n"
  275. " .type kernel_thread_helper, #function\n"
  276. "kernel_thread_helper:\n"
  277. " mov.a asr, r7\n"
  278. " mov r0, r4\n"
  279. " mov lr, r6\n"
  280. " mov pc, r5\n"
  281. " .size kernel_thread_helper, . - kernel_thread_helper\n"
  282. " .popsection");
  283. /*
  284. * Create a kernel thread.
  285. */
  286. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  287. {
  288. struct pt_regs regs;
  289. memset(&regs, 0, sizeof(regs));
  290. regs.UCreg_04 = (unsigned long)arg;
  291. regs.UCreg_05 = (unsigned long)fn;
  292. regs.UCreg_06 = (unsigned long)do_exit;
  293. regs.UCreg_07 = PRIV_MODE;
  294. regs.UCreg_pc = (unsigned long)kernel_thread_helper;
  295. regs.UCreg_asr = regs.UCreg_07 | PSR_I_BIT;
  296. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  297. }
  298. EXPORT_SYMBOL(kernel_thread);
  299. unsigned long get_wchan(struct task_struct *p)
  300. {
  301. struct stackframe frame;
  302. int count = 0;
  303. if (!p || p == current || p->state == TASK_RUNNING)
  304. return 0;
  305. frame.fp = thread_saved_fp(p);
  306. frame.sp = thread_saved_sp(p);
  307. frame.lr = 0; /* recovered from the stack */
  308. frame.pc = thread_saved_pc(p);
  309. do {
  310. int ret = unwind_frame(&frame);
  311. if (ret < 0)
  312. return 0;
  313. if (!in_sched_functions(frame.pc))
  314. return frame.pc;
  315. } while ((count++) < 16);
  316. return 0;
  317. }
  318. unsigned long arch_randomize_brk(struct mm_struct *mm)
  319. {
  320. unsigned long range_end = mm->brk + 0x02000000;
  321. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  322. }
  323. /*
  324. * The vectors page is always readable from user space for the
  325. * atomic helpers and the signal restart code. Let's declare a mapping
  326. * for it so it is visible through ptrace and /proc/<pid>/mem.
  327. */
  328. int vectors_user_mapping(void)
  329. {
  330. struct mm_struct *mm = current->mm;
  331. return install_special_mapping(mm, 0xffff0000, PAGE_SIZE,
  332. VM_READ | VM_EXEC |
  333. VM_MAYREAD | VM_MAYEXEC |
  334. VM_RESERVED,
  335. NULL);
  336. }
  337. const char *arch_vma_name(struct vm_area_struct *vma)
  338. {
  339. return (vma->vm_start == 0xffff0000) ? "[vectors]" : NULL;
  340. }