integrator_ap.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484
  1. /*
  2. * linux/arch/arm/mach-integrator/integrator_ap.c
  3. *
  4. * Copyright (C) 2000-2003 Deep Blue Solutions Ltd
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. #include <linux/types.h>
  21. #include <linux/kernel.h>
  22. #include <linux/init.h>
  23. #include <linux/list.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/slab.h>
  26. #include <linux/string.h>
  27. #include <linux/syscore_ops.h>
  28. #include <linux/amba/bus.h>
  29. #include <linux/amba/kmi.h>
  30. #include <linux/clocksource.h>
  31. #include <linux/clockchips.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/io.h>
  34. #include <linux/mtd/physmap.h>
  35. #include <linux/clk.h>
  36. #include <video/vga.h>
  37. #include <mach/hardware.h>
  38. #include <mach/platform.h>
  39. #include <asm/hardware/arm_timer.h>
  40. #include <asm/setup.h>
  41. #include <asm/param.h> /* HZ */
  42. #include <asm/mach-types.h>
  43. #include <mach/lm.h>
  44. #include <mach/irqs.h>
  45. #include <asm/mach/arch.h>
  46. #include <asm/mach/irq.h>
  47. #include <asm/mach/map.h>
  48. #include <asm/mach/time.h>
  49. #include <plat/fpga-irq.h>
  50. #include "common.h"
  51. /*
  52. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  53. * is the (PA >> 12).
  54. *
  55. * Setup a VA for the Integrator interrupt controller (for header #0,
  56. * just for now).
  57. */
  58. #define VA_IC_BASE __io_address(INTEGRATOR_IC_BASE)
  59. #define VA_SC_BASE __io_address(INTEGRATOR_SC_BASE)
  60. #define VA_EBI_BASE __io_address(INTEGRATOR_EBI_BASE)
  61. #define VA_CMIC_BASE __io_address(INTEGRATOR_HDR_IC)
  62. /*
  63. * Logical Physical
  64. * e8000000 40000000 PCI memory PHYS_PCI_MEM_BASE (max 512M)
  65. * ec000000 61000000 PCI config space PHYS_PCI_CONFIG_BASE (max 16M)
  66. * ed000000 62000000 PCI V3 regs PHYS_PCI_V3_BASE (max 64k)
  67. * ee000000 60000000 PCI IO PHYS_PCI_IO_BASE (max 16M)
  68. * ef000000 Cache flush
  69. * f1000000 10000000 Core module registers
  70. * f1100000 11000000 System controller registers
  71. * f1200000 12000000 EBI registers
  72. * f1300000 13000000 Counter/Timer
  73. * f1400000 14000000 Interrupt controller
  74. * f1600000 16000000 UART 0
  75. * f1700000 17000000 UART 1
  76. * f1a00000 1a000000 Debug LEDs
  77. * f1b00000 1b000000 GPIO
  78. */
  79. static struct map_desc ap_io_desc[] __initdata = {
  80. {
  81. .virtual = IO_ADDRESS(INTEGRATOR_HDR_BASE),
  82. .pfn = __phys_to_pfn(INTEGRATOR_HDR_BASE),
  83. .length = SZ_4K,
  84. .type = MT_DEVICE
  85. }, {
  86. .virtual = IO_ADDRESS(INTEGRATOR_SC_BASE),
  87. .pfn = __phys_to_pfn(INTEGRATOR_SC_BASE),
  88. .length = SZ_4K,
  89. .type = MT_DEVICE
  90. }, {
  91. .virtual = IO_ADDRESS(INTEGRATOR_EBI_BASE),
  92. .pfn = __phys_to_pfn(INTEGRATOR_EBI_BASE),
  93. .length = SZ_4K,
  94. .type = MT_DEVICE
  95. }, {
  96. .virtual = IO_ADDRESS(INTEGRATOR_CT_BASE),
  97. .pfn = __phys_to_pfn(INTEGRATOR_CT_BASE),
  98. .length = SZ_4K,
  99. .type = MT_DEVICE
  100. }, {
  101. .virtual = IO_ADDRESS(INTEGRATOR_IC_BASE),
  102. .pfn = __phys_to_pfn(INTEGRATOR_IC_BASE),
  103. .length = SZ_4K,
  104. .type = MT_DEVICE
  105. }, {
  106. .virtual = IO_ADDRESS(INTEGRATOR_UART0_BASE),
  107. .pfn = __phys_to_pfn(INTEGRATOR_UART0_BASE),
  108. .length = SZ_4K,
  109. .type = MT_DEVICE
  110. }, {
  111. .virtual = IO_ADDRESS(INTEGRATOR_UART1_BASE),
  112. .pfn = __phys_to_pfn(INTEGRATOR_UART1_BASE),
  113. .length = SZ_4K,
  114. .type = MT_DEVICE
  115. }, {
  116. .virtual = IO_ADDRESS(INTEGRATOR_DBG_BASE),
  117. .pfn = __phys_to_pfn(INTEGRATOR_DBG_BASE),
  118. .length = SZ_4K,
  119. .type = MT_DEVICE
  120. }, {
  121. .virtual = IO_ADDRESS(INTEGRATOR_AP_GPIO_BASE),
  122. .pfn = __phys_to_pfn(INTEGRATOR_AP_GPIO_BASE),
  123. .length = SZ_4K,
  124. .type = MT_DEVICE
  125. }, {
  126. .virtual = PCI_MEMORY_VADDR,
  127. .pfn = __phys_to_pfn(PHYS_PCI_MEM_BASE),
  128. .length = SZ_16M,
  129. .type = MT_DEVICE
  130. }, {
  131. .virtual = PCI_CONFIG_VADDR,
  132. .pfn = __phys_to_pfn(PHYS_PCI_CONFIG_BASE),
  133. .length = SZ_16M,
  134. .type = MT_DEVICE
  135. }, {
  136. .virtual = PCI_V3_VADDR,
  137. .pfn = __phys_to_pfn(PHYS_PCI_V3_BASE),
  138. .length = SZ_64K,
  139. .type = MT_DEVICE
  140. }, {
  141. .virtual = PCI_IO_VADDR,
  142. .pfn = __phys_to_pfn(PHYS_PCI_IO_BASE),
  143. .length = SZ_64K,
  144. .type = MT_DEVICE
  145. }
  146. };
  147. static void __init ap_map_io(void)
  148. {
  149. iotable_init(ap_io_desc, ARRAY_SIZE(ap_io_desc));
  150. vga_base = PCI_MEMORY_VADDR;
  151. }
  152. #define INTEGRATOR_SC_VALID_INT 0x003fffff
  153. static struct fpga_irq_data sc_irq_data = {
  154. .base = VA_IC_BASE,
  155. .irq_start = 0,
  156. .chip.name = "SC",
  157. };
  158. static void __init ap_init_irq(void)
  159. {
  160. /* Disable all interrupts initially. */
  161. /* Do the core module ones */
  162. writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
  163. /* do the header card stuff next */
  164. writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
  165. writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
  166. fpga_irq_init(-1, INTEGRATOR_SC_VALID_INT, &sc_irq_data);
  167. }
  168. #ifdef CONFIG_PM
  169. static unsigned long ic_irq_enable;
  170. static int irq_suspend(void)
  171. {
  172. ic_irq_enable = readl(VA_IC_BASE + IRQ_ENABLE);
  173. return 0;
  174. }
  175. static void irq_resume(void)
  176. {
  177. /* disable all irq sources */
  178. writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
  179. writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
  180. writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
  181. writel(ic_irq_enable, VA_IC_BASE + IRQ_ENABLE_SET);
  182. }
  183. #else
  184. #define irq_suspend NULL
  185. #define irq_resume NULL
  186. #endif
  187. static struct syscore_ops irq_syscore_ops = {
  188. .suspend = irq_suspend,
  189. .resume = irq_resume,
  190. };
  191. static int __init irq_syscore_init(void)
  192. {
  193. register_syscore_ops(&irq_syscore_ops);
  194. return 0;
  195. }
  196. device_initcall(irq_syscore_init);
  197. /*
  198. * Flash handling.
  199. */
  200. #define SC_CTRLC (VA_SC_BASE + INTEGRATOR_SC_CTRLC_OFFSET)
  201. #define SC_CTRLS (VA_SC_BASE + INTEGRATOR_SC_CTRLS_OFFSET)
  202. #define EBI_CSR1 (VA_EBI_BASE + INTEGRATOR_EBI_CSR1_OFFSET)
  203. #define EBI_LOCK (VA_EBI_BASE + INTEGRATOR_EBI_LOCK_OFFSET)
  204. static int ap_flash_init(struct platform_device *dev)
  205. {
  206. u32 tmp;
  207. writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, SC_CTRLC);
  208. tmp = readl(EBI_CSR1) | INTEGRATOR_EBI_WRITE_ENABLE;
  209. writel(tmp, EBI_CSR1);
  210. if (!(readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE)) {
  211. writel(0xa05f, EBI_LOCK);
  212. writel(tmp, EBI_CSR1);
  213. writel(0, EBI_LOCK);
  214. }
  215. return 0;
  216. }
  217. static void ap_flash_exit(struct platform_device *dev)
  218. {
  219. u32 tmp;
  220. writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, SC_CTRLC);
  221. tmp = readl(EBI_CSR1) & ~INTEGRATOR_EBI_WRITE_ENABLE;
  222. writel(tmp, EBI_CSR1);
  223. if (readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE) {
  224. writel(0xa05f, EBI_LOCK);
  225. writel(tmp, EBI_CSR1);
  226. writel(0, EBI_LOCK);
  227. }
  228. }
  229. static void ap_flash_set_vpp(struct platform_device *pdev, int on)
  230. {
  231. void __iomem *reg = on ? SC_CTRLS : SC_CTRLC;
  232. writel(INTEGRATOR_SC_CTRL_nFLVPPEN, reg);
  233. }
  234. static struct physmap_flash_data ap_flash_data = {
  235. .width = 4,
  236. .init = ap_flash_init,
  237. .exit = ap_flash_exit,
  238. .set_vpp = ap_flash_set_vpp,
  239. };
  240. static struct resource cfi_flash_resource = {
  241. .start = INTEGRATOR_FLASH_BASE,
  242. .end = INTEGRATOR_FLASH_BASE + INTEGRATOR_FLASH_SIZE - 1,
  243. .flags = IORESOURCE_MEM,
  244. };
  245. static struct platform_device cfi_flash_device = {
  246. .name = "physmap-flash",
  247. .id = 0,
  248. .dev = {
  249. .platform_data = &ap_flash_data,
  250. },
  251. .num_resources = 1,
  252. .resource = &cfi_flash_resource,
  253. };
  254. static void __init ap_init(void)
  255. {
  256. unsigned long sc_dec;
  257. int i;
  258. platform_device_register(&cfi_flash_device);
  259. sc_dec = readl(VA_SC_BASE + INTEGRATOR_SC_DEC_OFFSET);
  260. for (i = 0; i < 4; i++) {
  261. struct lm_device *lmdev;
  262. if ((sc_dec & (16 << i)) == 0)
  263. continue;
  264. lmdev = kzalloc(sizeof(struct lm_device), GFP_KERNEL);
  265. if (!lmdev)
  266. continue;
  267. lmdev->resource.start = 0xc0000000 + 0x10000000 * i;
  268. lmdev->resource.end = lmdev->resource.start + 0x0fffffff;
  269. lmdev->resource.flags = IORESOURCE_MEM;
  270. lmdev->irq = IRQ_AP_EXPINT0 + i;
  271. lmdev->id = i;
  272. lm_device_register(lmdev);
  273. }
  274. }
  275. /*
  276. * Where is the timer (VA)?
  277. */
  278. #define TIMER0_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER0_BASE)
  279. #define TIMER1_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER1_BASE)
  280. #define TIMER2_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER2_BASE)
  281. static unsigned long timer_reload;
  282. static u32 notrace integrator_read_sched_clock(void)
  283. {
  284. return -readl((void __iomem *) TIMER2_VA_BASE + TIMER_VALUE);
  285. }
  286. static void integrator_clocksource_init(unsigned long inrate)
  287. {
  288. void __iomem *base = (void __iomem *)TIMER2_VA_BASE;
  289. u32 ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC;
  290. unsigned long rate = inrate;
  291. if (rate >= 1500000) {
  292. rate /= 16;
  293. ctrl |= TIMER_CTRL_DIV16;
  294. }
  295. writel(0xffff, base + TIMER_LOAD);
  296. writel(ctrl, base + TIMER_CTRL);
  297. clocksource_mmio_init(base + TIMER_VALUE, "timer2",
  298. rate, 200, 16, clocksource_mmio_readl_down);
  299. setup_sched_clock(integrator_read_sched_clock, 16, rate);
  300. }
  301. static void __iomem * const clkevt_base = (void __iomem *)TIMER1_VA_BASE;
  302. /*
  303. * IRQ handler for the timer
  304. */
  305. static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id)
  306. {
  307. struct clock_event_device *evt = dev_id;
  308. /* clear the interrupt */
  309. writel(1, clkevt_base + TIMER_INTCLR);
  310. evt->event_handler(evt);
  311. return IRQ_HANDLED;
  312. }
  313. static void clkevt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt)
  314. {
  315. u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE;
  316. /* Disable timer */
  317. writel(ctrl, clkevt_base + TIMER_CTRL);
  318. switch (mode) {
  319. case CLOCK_EVT_MODE_PERIODIC:
  320. /* Enable the timer and start the periodic tick */
  321. writel(timer_reload, clkevt_base + TIMER_LOAD);
  322. ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE;
  323. writel(ctrl, clkevt_base + TIMER_CTRL);
  324. break;
  325. case CLOCK_EVT_MODE_ONESHOT:
  326. /* Leave the timer disabled, .set_next_event will enable it */
  327. ctrl &= ~TIMER_CTRL_PERIODIC;
  328. writel(ctrl, clkevt_base + TIMER_CTRL);
  329. break;
  330. case CLOCK_EVT_MODE_UNUSED:
  331. case CLOCK_EVT_MODE_SHUTDOWN:
  332. case CLOCK_EVT_MODE_RESUME:
  333. default:
  334. /* Just leave in disabled state */
  335. break;
  336. }
  337. }
  338. static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt)
  339. {
  340. unsigned long ctrl = readl(clkevt_base + TIMER_CTRL);
  341. writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
  342. writel(next, clkevt_base + TIMER_LOAD);
  343. writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
  344. return 0;
  345. }
  346. static struct clock_event_device integrator_clockevent = {
  347. .name = "timer1",
  348. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  349. .set_mode = clkevt_set_mode,
  350. .set_next_event = clkevt_set_next_event,
  351. .rating = 300,
  352. };
  353. static struct irqaction integrator_timer_irq = {
  354. .name = "timer",
  355. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  356. .handler = integrator_timer_interrupt,
  357. .dev_id = &integrator_clockevent,
  358. };
  359. static void integrator_clockevent_init(unsigned long inrate)
  360. {
  361. unsigned long rate = inrate;
  362. unsigned int ctrl = 0;
  363. /* Calculate and program a divisor */
  364. if (rate > 0x100000 * HZ) {
  365. rate /= 256;
  366. ctrl |= TIMER_CTRL_DIV256;
  367. } else if (rate > 0x10000 * HZ) {
  368. rate /= 16;
  369. ctrl |= TIMER_CTRL_DIV16;
  370. }
  371. timer_reload = rate / HZ;
  372. writel(ctrl, clkevt_base + TIMER_CTRL);
  373. setup_irq(IRQ_TIMERINT1, &integrator_timer_irq);
  374. clockevents_config_and_register(&integrator_clockevent,
  375. rate,
  376. 1,
  377. 0xffffU);
  378. }
  379. /*
  380. * Set up timer(s).
  381. */
  382. static void __init ap_init_timer(void)
  383. {
  384. struct clk *clk;
  385. unsigned long rate;
  386. clk = clk_get_sys("ap_timer", NULL);
  387. BUG_ON(IS_ERR(clk));
  388. clk_enable(clk);
  389. rate = clk_get_rate(clk);
  390. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  391. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  392. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  393. integrator_clocksource_init(rate);
  394. integrator_clockevent_init(rate);
  395. }
  396. static struct sys_timer ap_timer = {
  397. .init = ap_init_timer,
  398. };
  399. MACHINE_START(INTEGRATOR, "ARM-Integrator")
  400. /* Maintainer: ARM Ltd/Deep Blue Solutions Ltd */
  401. .atag_offset = 0x100,
  402. .reserve = integrator_reserve,
  403. .map_io = ap_map_io,
  404. .nr_irqs = NR_IRQS_INTEGRATOR_AP,
  405. .init_early = integrator_init_early,
  406. .init_irq = ap_init_irq,
  407. .timer = &ap_timer,
  408. .init_machine = ap_init,
  409. .restart = integrator_restart,
  410. MACHINE_END