123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- /*
- * arch/arm/include/asm/pgtable-2level.h
- *
- * Copyright (C) 1995-2002 Russell King
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #ifndef _ASM_PGTABLE_2LEVEL_H
- #define _ASM_PGTABLE_2LEVEL_H
- /*
- * Hardware-wise, we have a two level page table structure, where the first
- * level has 4096 entries, and the second level has 256 entries. Each entry
- * is one 32-bit word. Most of the bits in the second level entry are used
- * by hardware, and there aren't any "accessed" and "dirty" bits.
- *
- * Linux on the other hand has a three level page table structure, which can
- * be wrapped to fit a two level page table structure easily - using the PGD
- * and PTE only. However, Linux also expects one "PTE" table per page, and
- * at least a "dirty" bit.
- *
- * Therefore, we tweak the implementation slightly - we tell Linux that we
- * have 2048 entries in the first level, each of which is 8 bytes (iow, two
- * hardware pointers to the second level.) The second level contains two
- * hardware PTE tables arranged contiguously, preceded by Linux versions
- * which contain the state information Linux needs. We, therefore, end up
- * with 512 entries in the "PTE" level.
- *
- * This leads to the page tables having the following layout:
- *
- * pgd pte
- * | |
- * +--------+
- * | | +------------+ +0
- * +- - - - + | Linux pt 0 |
- * | | +------------+ +1024
- * +--------+ +0 | Linux pt 1 |
- * | |-----> +------------+ +2048
- * +- - - - + +4 | h/w pt 0 |
- * | |-----> +------------+ +3072
- * +--------+ +8 | h/w pt 1 |
- * | | +------------+ +4096
- *
- * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
- * PTE_xxx for definitions of bits appearing in the "h/w pt".
- *
- * PMD_xxx definitions refer to bits in the first level page table.
- *
- * The "dirty" bit is emulated by only granting hardware write permission
- * iff the page is marked "writable" and "dirty" in the Linux PTE. This
- * means that a write to a clean page will cause a permission fault, and
- * the Linux MM layer will mark the page dirty via handle_pte_fault().
- * For the hardware to notice the permission change, the TLB entry must
- * be flushed, and ptep_set_access_flags() does that for us.
- *
- * The "accessed" or "young" bit is emulated by a similar method; we only
- * allow accesses to the page if the "young" bit is set. Accesses to the
- * page will cause a fault, and handle_pte_fault() will set the young bit
- * for us as long as the page is marked present in the corresponding Linux
- * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
- * up to date.
- *
- * However, when the "young" bit is cleared, we deny access to the page
- * by clearing the hardware PTE. Currently Linux does not flush the TLB
- * for us in this case, which means the TLB will retain the transation
- * until either the TLB entry is evicted under pressure, or a context
- * switch which changes the user space mapping occurs.
- */
- #ifdef CONFIG_TIMA_RKP
- #include <asm/tlbflush.h>
- #include <asm/cp15.h>
- #endif
- #define PTRS_PER_PTE 512
- #define PTRS_PER_PMD 1
- #define PTRS_PER_PGD 2048
- #define PTE_HWTABLE_PTRS (PTRS_PER_PTE)
- #define PTE_HWTABLE_OFF (PTE_HWTABLE_PTRS * sizeof(pte_t))
- #define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u32))
- /*
- * PMD_SHIFT determines the size of the area a second-level page table can map
- * PGDIR_SHIFT determines what a third-level page table entry can map
- */
- #define PMD_SHIFT 21
- #define PGDIR_SHIFT 21
- #define PMD_SIZE (1UL << PMD_SHIFT)
- #define PMD_MASK (~(PMD_SIZE-1))
- #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
- #define PGDIR_MASK (~(PGDIR_SIZE-1))
- /*
- * section address mask and size definitions.
- */
- #define SECTION_SHIFT 20
- #define SECTION_SIZE (1UL << SECTION_SHIFT)
- #define SECTION_MASK (~(SECTION_SIZE-1))
- /*
- * ARMv6 supersection address mask and size definitions.
- */
- #define SUPERSECTION_SHIFT 24
- #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
- #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
- #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
- /*
- * "Linux" PTE definitions.
- *
- * We keep two sets of PTEs - the hardware and the linux version.
- * This allows greater flexibility in the way we map the Linux bits
- * onto the hardware tables, and allows us to have YOUNG and DIRTY
- * bits.
- *
- * The PTE table pointer refers to the hardware entries; the "Linux"
- * entries are stored 1024 bytes below.
- */
- #define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)
- #define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)
- #define L_PTE_FILE (_AT(pteval_t, 1) << 2) /* only when !PRESENT */
- #define L_PTE_DIRTY (_AT(pteval_t, 1) << 6)
- #define L_PTE_RDONLY (_AT(pteval_t, 1) << 7)
- #define L_PTE_USER (_AT(pteval_t, 1) << 8)
- #define L_PTE_XN (_AT(pteval_t, 1) << 9)
- #define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */
- /*
- * These are the memory types, defined to be compatible with
- * pre-ARMv6 CPUs cacheable and bufferable bits: XXCB
- */
- #define L_PTE_MT_UNCACHED (_AT(pteval_t, 0x00) << 2) /* 0000 */
- #define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 0x01) << 2) /* 0001 */
- #define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 0x02) << 2) /* 0010 */
- #define L_PTE_MT_WRITEBACK (_AT(pteval_t, 0x03) << 2) /* 0011 */
- #define L_PTE_MT_MINICACHE (_AT(pteval_t, 0x06) << 2) /* 0110 (sa1100, xscale) */
- #define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 0x07) << 2) /* 0111 */
- #define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 0x04) << 2) /* 0100 */
- #define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 0x0c) << 2) /* 1100 */
- #define L_PTE_MT_DEV_WC (_AT(pteval_t, 0x09) << 2) /* 1001 */
- #define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 0x0b) << 2) /* 1011 */
- #define L_PTE_MT_VECTORS (_AT(pteval_t, 0x0f) << 2) /* 1111 */
- #define L_PTE_MT_MASK (_AT(pteval_t, 0x0f) << 2)
- #ifndef __ASSEMBLY__
- /*
- * The "pud_xxx()" functions here are trivial when the pmd is folded into
- * the pud: the pud entry is never bad, always exists, and can't be set or
- * cleared.
- */
- #define pud_none(pud) (0)
- #define pud_bad(pud) (0)
- #define pud_present(pud) (1)
- #define pud_clear(pudp) do { } while (0)
- #define set_pud(pud,pudp) do { } while (0)
- static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
- {
- return (pmd_t *)pud;
- }
- #define pmd_bad(pmd) (pmd_val(pmd) & 2)
- #ifdef CONFIG_TIMA_RKP_L1_TABLES
- #if __GNUC__ >= 4 && __GNUC_MINOR__ >= 6
- asm(".arch_extension sec");
- #endif
- #endif
- #ifdef CONFIG_TIMA_RKP_L1_TABLES
- static inline void copy_pmd(pmd_t *pmdpd, pmd_t *pmdps)
- {
- unsigned long cmd_id = 0x3f809221;
- unsigned long tima_wr_out;
- unsigned long pmd_base;
- cpu_dcache_clean_area(pmdpd, 8);
- __asm__ __volatile__ (
- "stmfd sp!,{r0, r8-r11}\n"
- "mov r11, r0\n"
- "mov r0, %1\n"
- "mov r8, %2\n"
- "mov r9, %3\n"
- "mov r10, %4\n"
- "mcr p15, 0, r8, c7, c14, 1\n"
- "add r8, r8, #4\n"
- "mcr p15, 0, r8, c7, c14, 1\n"
- "dsb\n"
- "smc #9\n"
- "sub r8, r8, #4\n"
- "mcr p15, 0, r8, c7, c6, 1\n"
- "dsb\n"
- "mov %0, r10\n"
- "add r8, r8, #4\n"
- "mcr p15, 0, r8, c7, c6, 1\n"
- "dsb\n"
- "mov r0, #0\n"
- "mcr p15, 0, r0, c8, c3, 0\n"
- "dsb\n"
- "isb\n"
- "pop {r0, r8-r11}\n"
- :"=r"(tima_wr_out):"r"(cmd_id),"r"((unsigned long)pmdpd),"r"(pmdps[0]),"r"(pmdps[1]):"r0","r8","r9","r10","r11","cc");
-
- if (pmdpd[0] != pmdps[0] || pmdpd[1] != pmdps[1]) {
- printk(KERN_ERR"TIMA: pmdpd[0] %lx != pmdps[0] %lx -- pmdpd[1] %lx != pmdps[1] %lx in tima_wr_out = %lx\n",
- (unsigned long) pmdpd[0], (unsigned long) pmdps[0], (unsigned long) pmdpd[1], (unsigned long) pmdps[1], tima_wr_out);
- }
- flush_pmd_entry(pmdpd);
- pmd_base = ((unsigned long)pmdpd) & (~0x3fff);
- tima_verify_state(pmd_base, pmdps[0], 1, 0);
- tima_verify_state(pmd_base + 0x1000, pmdps[0], 1, 0);
- tima_verify_state(pmd_base + 0x2000, pmdps[0], 1, 0);
- tima_verify_state(pmd_base + 0x3000, pmdps[0], 1, 0);
- }
- #else
- #define copy_pmd(pmdpd,pmdps) \
- do { \
- pmdpd[0] = pmdps[0]; \
- pmdpd[1] = pmdps[1]; \
- flush_pmd_entry(pmdpd); \
- } while (0)
- #endif
- #ifdef CONFIG_TIMA_RKP_L1_TABLES
- #if __GNUC__ >= 4 && __GNUC_MINOR__ >= 6
- asm(".arch_extension sec");
- #endif
- #endif
- #ifdef CONFIG_TIMA_RKP
- extern void cpu_v7_tima_iommu_opt(unsigned long start,
- unsigned long end, unsigned long pgd);
- #endif
- #ifdef CONFIG_TIMA_RKP_L1_TABLES
- static inline void pmd_clear(pmd_t *pmdp)
- {
- unsigned long cmd_id = 0x3f80a221;
- unsigned long tima_wr_out;
- cpu_dcache_clean_area(pmdp, 8);
- __asm__ __volatile__ (
- "stmfd sp!,{r0, r1, r11}\n"
- "mov r11, r0\n"
- "mov r0, %1\n"
- "mov r1, %2\n"
- "mcr p15, 0, r1, c7, c14, 1\n"
- "add r1, r1, #4\n"
- "mcr p15, 0, r1, c7, c14, 1\n"
- "dsb\n"
- "smc #10\n"
- "mcr p15, 0, r1, c7, c6, 1\n"
- "dsb\n"
- "sub r1, r1, #4\n"
- "mcr p15, 0, r1, c7, c6, 1\n"
- "dsb\n"
- "ldr r0, [r1]\n"
- "mov %0, r0\n"
- "mov r0, #0\n"
- "mcr p15, 0, r0, c8, c3, 0\n"
- "dsb\n"
- "isb\n"
- "pop {r0, r1, r11}\n"
- :"=r"(tima_wr_out):"r"(cmd_id),"r"((unsigned long)pmdp):"r0","r1","r11","cc");
-
- if (pmdp[0] != 0 || pmdp[1] != 0 || tima_wr_out!=0)
- printk(KERN_ERR"pmdp[0] %lx - pmdp[1] %lx in tima_wr_out = %lx\n", (unsigned long)pmdp[0], (unsigned long)pmdp[1], tima_wr_out);
- clean_pmd_entry(pmdp);
- }
- #else
- #define pmd_clear(pmdp) \
- do { \
- pmdp[0] = __pmd(0); \
- pmdp[1] = __pmd(0); \
- clean_pmd_entry(pmdp); \
- } while (0)
- #endif
- #ifdef CONFIG_TIMA_RKP_L2_GROUP
- extern int cpu_v7_timal2group_set_pte_ext(pte_t *ptep, pte_t pte, unsigned int ext,
- unsigned long tima_l2group_entry_ptr);
- extern void cpu_v7_timal2group_set_pte_commit(void *tima_l2group_entry_ptr,
- unsigned long tima_l2group_entries_count);
- #endif /* CONFIG_TIMA_RKP_L2_GROUP */
- /* we don't need complex calculations here as the pmd is folded into the pgd */
- #define pmd_addr_end(addr,end) (end)
- #ifdef CONFIG_TIMA_RKP_L2_TABLES
- static inline void set_pte_ext(pte_t *ptep,pte_t pte,unsigned int ext)
- {
- if (tima_is_pg_protected((unsigned long) ptep) == 0)
- cpu_set_pte_ext(ptep,pte,ext);
- else
- cpu_tima_set_pte_ext(ptep,pte,ext);
- }
- #else
- #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
- #endif
- #ifdef CONFIG_TIMA_RKP_LAZY_MMU
- #define TIMA_LAZY_MMU_CMDID 0x25
- #define TIMA_LAZY_MMU_START 0
- #define TIMA_LAZY_MMU_STOP 1
- #endif
- #endif /* __ASSEMBLY__ */
- #endif /* _ASM_PGTABLE_2LEVEL_H */
|