123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400 |
- /*
- * arch/arm/include/asm/cacheflush.h
- *
- * Copyright (C) 1999-2002 Russell King
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #ifndef _ASMARM_CACHEFLUSH_H
- #define _ASMARM_CACHEFLUSH_H
- #include <linux/mm.h>
- #include <asm/glue-cache.h>
- #include <asm/shmparam.h>
- #include <asm/cachetype.h>
- #include <asm/outercache.h>
- #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
- /*
- * This flag is used to indicate that the page pointed to by a pte is clean
- * and does not require cleaning before returning it to the user.
- */
- #define PG_dcache_clean PG_arch_1
- /*
- * MM Cache Management
- * ===================
- *
- * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
- * implement these methods.
- *
- * Start addresses are inclusive and end addresses are exclusive;
- * start addresses should be rounded down, end addresses up.
- *
- * See Documentation/cachetlb.txt for more information.
- * Please note that the implementation of these, and the required
- * effects are cache-type (VIVT/VIPT/PIPT) specific.
- *
- * flush_icache_all()
- *
- * Unconditionally clean and invalidate the entire icache.
- * Currently only needed for cache-v6.S and cache-v7.S, see
- * __flush_icache_all for the generic implementation.
- *
- * flush_kern_all()
- *
- * Unconditionally clean and invalidate the entire cache.
- *
- * flush_kern_louis()
- *
- * Flush data cache levels up to the level of unification
- * inner shareable and invalidate the I-cache.
- * Only needed from v7 onwards, falls back to flush_cache_all()
- * for all other processor versions.
- *
- * flush_user_all()
- *
- * Clean and invalidate all user space cache entries
- * before a change of page tables.
- *
- * flush_user_range(start, end, flags)
- *
- * Clean and invalidate a range of cache entries in the
- * specified address space before a change of page tables.
- * - start - user start address (inclusive, page aligned)
- * - end - user end address (exclusive, page aligned)
- * - flags - vma->vm_flags field
- *
- * coherent_kern_range(start, end)
- *
- * Ensure coherency between the Icache and the Dcache in the
- * region described by start, end. If you have non-snooping
- * Harvard caches, you need to implement this function.
- * - start - virtual start address
- * - end - virtual end address
- *
- * coherent_user_range(start, end)
- *
- * Ensure coherency between the Icache and the Dcache in the
- * region described by start, end. If you have non-snooping
- * Harvard caches, you need to implement this function.
- * - start - virtual start address
- * - end - virtual end address
- *
- * flush_kern_dcache_area(kaddr, size)
- *
- * Ensure that the data held in page is written back.
- * - kaddr - page address
- * - size - region size
- *
- * DMA Cache Coherency
- * ===================
- *
- * dma_inv_range(start, end)
- *
- * Invalidate (discard) the specified virtual address range.
- * May not write back any entries. If 'start' or 'end'
- * are not cache line aligned, those lines must be written
- * back.
- * - start - virtual start address
- * - end - virtual end address
- *
- * dma_clean_range(start, end)
- *
- * Clean (write back) the specified virtual address range.
- * - start - virtual start address
- * - end - virtual end address
- *
- * dma_flush_range(start, end)
- *
- * Clean and invalidate the specified virtual address range.
- * - start - virtual start address
- * - end - virtual end address
- */
- struct cpu_cache_fns {
- void (*flush_icache_all)(void);
- void (*flush_kern_all)(void);
- void (*flush_kern_louis)(void);
- void (*flush_user_all)(void);
- void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
- void (*coherent_kern_range)(unsigned long, unsigned long);
- void (*coherent_user_range)(unsigned long, unsigned long);
- void (*flush_kern_dcache_area)(void *, size_t);
- void (*dma_map_area)(const void *, size_t, int);
- void (*dma_unmap_area)(const void *, size_t, int);
- void (*dma_inv_range)(const void *, const void *);
- void (*dma_clean_range)(const void *, const void *);
- void (*dma_flush_range)(const void *, const void *);
- };
- /*
- * Select the calling method
- */
- #ifdef MULTI_CACHE
- extern struct cpu_cache_fns cpu_cache;
- #define __cpuc_flush_icache_all cpu_cache.flush_icache_all
- #define __cpuc_flush_kern_all cpu_cache.flush_kern_all
- #define __cpuc_flush_kern_louis cpu_cache.flush_kern_louis
- #define __cpuc_flush_user_all cpu_cache.flush_user_all
- #define __cpuc_flush_user_range cpu_cache.flush_user_range
- #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
- #define __cpuc_coherent_user_range cpu_cache.coherent_user_range
- #define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area
- /*
- * These are private to the dma-mapping API. Do not use directly.
- * Their sole purpose is to ensure that data held in the cache
- * is visible to DMA, or data written by DMA to system memory is
- * visible to the CPU.
- */
- #define dmac_map_area cpu_cache.dma_map_area
- #define dmac_unmap_area cpu_cache.dma_unmap_area
- #define dmac_inv_range cpu_cache.dma_inv_range
- #define dmac_clean_range cpu_cache.dma_clean_range
- #define dmac_flush_range cpu_cache.dma_flush_range
- #else
- extern void __cpuc_flush_icache_all(void);
- extern void __cpuc_flush_kern_all(void);
- extern void __cpuc_flush_kern_louis(void);
- extern void __cpuc_flush_user_all(void);
- extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
- extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
- extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
- extern void __cpuc_flush_dcache_area(void *, size_t);
- /*
- * These are private to the dma-mapping API. Do not use directly.
- * Their sole purpose is to ensure that data held in the cache
- * is visible to DMA, or data written by DMA to system memory is
- * visible to the CPU.
- */
- extern void dmac_map_area(const void *, size_t, int);
- extern void dmac_unmap_area(const void *, size_t, int);
- extern void dmac_inv_range(const void *, const void *);
- extern void dmac_clean_range(const void *, const void *);
- extern void dmac_flush_range(const void *, const void *);
- #endif
- /*
- * Copy user data from/to a page which is mapped into a different
- * processes address space. Really, we want to allow our "user
- * space" model to handle this.
- */
- extern void copy_to_user_page(struct vm_area_struct *, struct page *,
- unsigned long, void *, const void *, unsigned long);
- #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
- do { \
- memcpy(dst, src, len); \
- } while (0)
- /*
- * Convert calls to our calling convention.
- */
- /* Invalidate I-cache */
- #define __flush_icache_all_generic() \
- asm("mcr p15, 0, %0, c7, c5, 0" \
- : : "r" (0));
- /* Invalidate I-cache inner shareable */
- #define __flush_icache_all_v7_smp() \
- asm("mcr p15, 0, %0, c7, c1, 0" \
- : : "r" (0));
- /*
- * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
- * will fall through to use __flush_icache_all_generic.
- */
- #if (defined(CONFIG_CPU_V7) && \
- (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
- defined(CONFIG_SMP_ON_UP)
- #define __flush_icache_preferred __cpuc_flush_icache_all
- #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
- #define __flush_icache_preferred __flush_icache_all_v7_smp
- #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
- #define __flush_icache_preferred __cpuc_flush_icache_all
- #else
- #define __flush_icache_preferred __flush_icache_all_generic
- #endif
- static inline void __flush_icache_all(void)
- {
- __flush_icache_preferred();
- dsb();
- }
- /*
- * Flush caches up to Level of Unification Inner Shareable
- */
- #define flush_cache_louis() __cpuc_flush_kern_louis()
- #define flush_cache_all() __cpuc_flush_kern_all()
- static inline void vivt_flush_cache_mm(struct mm_struct *mm)
- {
- if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
- __cpuc_flush_user_all();
- }
- static inline void
- vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
- {
- struct mm_struct *mm = vma->vm_mm;
- if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
- __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
- vma->vm_flags);
- }
- static inline void
- vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
- {
- struct mm_struct *mm = vma->vm_mm;
- if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
- unsigned long addr = user_addr & PAGE_MASK;
- __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
- }
- }
- #ifndef CONFIG_CPU_CACHE_VIPT
- #define flush_cache_mm(mm) \
- vivt_flush_cache_mm(mm)
- #define flush_cache_range(vma,start,end) \
- vivt_flush_cache_range(vma,start,end)
- #define flush_cache_page(vma,addr,pfn) \
- vivt_flush_cache_page(vma,addr,pfn)
- #else
- extern void flush_cache_mm(struct mm_struct *mm);
- extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
- extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
- #endif
- #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
- /*
- * flush_cache_user_range is used when we want to ensure that the
- * Harvard caches are synchronised for the user space address range.
- * This is used for the ARM private sys_cacheflush system call.
- */
- #define flush_cache_user_range(start,end) \
- __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
- /*
- * Perform necessary cache operations to ensure that data previously
- * stored within this range of addresses can be executed by the CPU.
- */
- #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
- /*
- * Perform necessary cache operations to ensure that the TLB will
- * see data written in the specified area.
- */
- #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
- /*
- * flush_dcache_page is used when the kernel has written to the page
- * cache page at virtual address page->virtual.
- *
- * If this page isn't mapped (ie, page_mapping == NULL), or it might
- * have userspace mappings, then we _must_ always clean + invalidate
- * the dcache entries associated with the kernel mapping.
- *
- * Otherwise we can defer the operation, and clean the cache when we are
- * about to change to user space. This is the same method as used on SPARC64.
- * See update_mmu_cache for the user space part.
- */
- #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
- extern void flush_dcache_page(struct page *);
- static inline void flush_kernel_vmap_range(void *addr, int size)
- {
- if ((cache_is_vivt() || cache_is_vipt_aliasing()))
- __cpuc_flush_dcache_area(addr, (size_t)size);
- }
- static inline void invalidate_kernel_vmap_range(void *addr, int size)
- {
- if ((cache_is_vivt() || cache_is_vipt_aliasing()))
- __cpuc_flush_dcache_area(addr, (size_t)size);
- }
- #define ARCH_HAS_FLUSH_ANON_PAGE
- static inline void flush_anon_page(struct vm_area_struct *vma,
- struct page *page, unsigned long vmaddr)
- {
- extern void __flush_anon_page(struct vm_area_struct *vma,
- struct page *, unsigned long);
- if (PageAnon(page))
- __flush_anon_page(vma, page, vmaddr);
- }
- #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
- extern void flush_kernel_dcache_page(struct page *);
- #define flush_dcache_mmap_lock(mapping) \
- spin_lock_irq(&(mapping)->tree_lock)
- #define flush_dcache_mmap_unlock(mapping) \
- spin_unlock_irq(&(mapping)->tree_lock)
- #define flush_icache_user_range(vma,page,addr,len) \
- flush_dcache_page(page)
- /*
- * We don't appear to need to do anything here. In fact, if we did, we'd
- * duplicate cache flushing elsewhere performed by flush_dcache_page().
- */
- #define flush_icache_page(vma,page) do { } while (0)
- /*
- * flush_cache_vmap() is used when creating mappings (eg, via vmap,
- * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
- * caches, since the direct-mappings of these pages may contain cached
- * data, we need to do a full cache flush to ensure that writebacks
- * don't corrupt data placed into these pages via the new mappings.
- */
- static inline void flush_cache_vmap(unsigned long start, unsigned long end)
- {
- if (!cache_is_vipt_nonaliasing())
- flush_cache_all();
- else
- /*
- * set_pte_at() called from vmap_pte_range() does not
- * have a DSB after cleaning the cache line.
- */
- dsb();
- }
- static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
- {
- if (!cache_is_vipt_nonaliasing())
- flush_cache_all();
- }
- int set_memory_ro(unsigned long addr, int numpages);
- int set_memory_rw(unsigned long addr, int numpages);
- int set_memory_x(unsigned long addr, int numpages);
- int set_memory_nx(unsigned long addr, int numpages);
- #ifdef CONFIG_FREE_PAGES_RDONLY
- #define mark_addr_rdonly(a) set_memory_ro((unsigned long)a, 1);
- #define mark_addr_rdwrite(a) set_memory_rw((unsigned long)a, 1);
- #else
- #define mark_addr_rdonly(a)
- #define mark_addr_rdwrite(a)
- #endif
- #endif
|