tcp_input.c 177 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_ecn __read_mostly = 2;
  81. EXPORT_SYMBOL(sysctl_tcp_ecn);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. /* rfc5961 challenge ack rate limiting */
  87. int sysctl_tcp_challenge_ack_limit = 1000;
  88. int sysctl_tcp_stdurg __read_mostly;
  89. int sysctl_tcp_rfc1337 __read_mostly;
  90. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  91. int sysctl_tcp_frto __read_mostly = 2;
  92. int sysctl_tcp_frto_response __read_mostly;
  93. int sysctl_tcp_nometrics_save __read_mostly;
  94. int sysctl_tcp_thin_dupack __read_mostly;
  95. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  96. int sysctl_tcp_default_init_rwnd __read_mostly = TCP_DEFAULT_INIT_RCVWND;
  97. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  98. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  99. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  100. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  101. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  102. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  103. #define FLAG_ECE 0x40 /* ECE in this ACK */
  104. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  105. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  106. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  107. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  108. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  109. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  110. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  111. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  112. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  113. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  114. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  115. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  116. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  117. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  118. /* Adapt the MSS value used to make delayed ack decision to the
  119. * real world.
  120. */
  121. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  122. {
  123. struct inet_connection_sock *icsk = inet_csk(sk);
  124. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  125. unsigned int len;
  126. icsk->icsk_ack.last_seg_size = 0;
  127. /* skb->len may jitter because of SACKs, even if peer
  128. * sends good full-sized frames.
  129. */
  130. len = skb_shinfo(skb)->gso_size ? : skb->len;
  131. if (len >= icsk->icsk_ack.rcv_mss) {
  132. icsk->icsk_ack.rcv_mss = len;
  133. } else {
  134. /* Otherwise, we make more careful check taking into account,
  135. * that SACKs block is variable.
  136. *
  137. * "len" is invariant segment length, including TCP header.
  138. */
  139. len += skb->data - skb_transport_header(skb);
  140. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  141. /* If PSH is not set, packet should be
  142. * full sized, provided peer TCP is not badly broken.
  143. * This observation (if it is correct 8)) allows
  144. * to handle super-low mtu links fairly.
  145. */
  146. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  147. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  148. /* Subtract also invariant (if peer is RFC compliant),
  149. * tcp header plus fixed timestamp option length.
  150. * Resulting "len" is MSS free of SACK jitter.
  151. */
  152. len -= tcp_sk(sk)->tcp_header_len;
  153. icsk->icsk_ack.last_seg_size = len;
  154. if (len == lss) {
  155. icsk->icsk_ack.rcv_mss = len;
  156. return;
  157. }
  158. }
  159. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  160. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  161. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  162. }
  163. }
  164. static void tcp_incr_quickack(struct sock *sk)
  165. {
  166. struct inet_connection_sock *icsk = inet_csk(sk);
  167. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  168. if (quickacks == 0)
  169. quickacks = 2;
  170. if (quickacks > icsk->icsk_ack.quick)
  171. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  172. }
  173. static void tcp_enter_quickack_mode(struct sock *sk)
  174. {
  175. struct inet_connection_sock *icsk = inet_csk(sk);
  176. tcp_incr_quickack(sk);
  177. icsk->icsk_ack.pingpong = 0;
  178. icsk->icsk_ack.ato = TCP_ATO_MIN;
  179. }
  180. /* Send ACKs quickly, if "quick" count is not exhausted
  181. * and the session is not interactive.
  182. */
  183. static inline int tcp_in_quickack_mode(const struct sock *sk)
  184. {
  185. const struct inet_connection_sock *icsk = inet_csk(sk);
  186. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  187. }
  188. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  189. {
  190. if (tp->ecn_flags & TCP_ECN_OK)
  191. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  192. }
  193. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  194. {
  195. if (tcp_hdr(skb)->cwr)
  196. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  197. }
  198. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  199. {
  200. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  201. }
  202. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  203. {
  204. if (!(tp->ecn_flags & TCP_ECN_OK))
  205. return;
  206. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  207. case INET_ECN_NOT_ECT:
  208. /* Funny extension: if ECT is not set on a segment,
  209. * and we already seen ECT on a previous segment,
  210. * it is probably a retransmit.
  211. */
  212. if (tp->ecn_flags & TCP_ECN_SEEN)
  213. tcp_enter_quickack_mode((struct sock *)tp);
  214. break;
  215. case INET_ECN_CE:
  216. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  217. /* fallinto */
  218. default:
  219. tp->ecn_flags |= TCP_ECN_SEEN;
  220. }
  221. }
  222. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  223. {
  224. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  225. tp->ecn_flags &= ~TCP_ECN_OK;
  226. }
  227. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  228. {
  229. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  230. tp->ecn_flags &= ~TCP_ECN_OK;
  231. }
  232. static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  233. {
  234. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  235. return 1;
  236. return 0;
  237. }
  238. /* Buffer size and advertised window tuning.
  239. *
  240. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  241. */
  242. static void tcp_fixup_sndbuf(struct sock *sk)
  243. {
  244. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  245. sndmem *= TCP_INIT_CWND;
  246. if (sk->sk_sndbuf < sndmem)
  247. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  248. }
  249. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  250. *
  251. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  252. * forward and advertised in receiver window (tp->rcv_wnd) and
  253. * "application buffer", required to isolate scheduling/application
  254. * latencies from network.
  255. * window_clamp is maximal advertised window. It can be less than
  256. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  257. * is reserved for "application" buffer. The less window_clamp is
  258. * the smoother our behaviour from viewpoint of network, but the lower
  259. * throughput and the higher sensitivity of the connection to losses. 8)
  260. *
  261. * rcv_ssthresh is more strict window_clamp used at "slow start"
  262. * phase to predict further behaviour of this connection.
  263. * It is used for two goals:
  264. * - to enforce header prediction at sender, even when application
  265. * requires some significant "application buffer". It is check #1.
  266. * - to prevent pruning of receive queue because of misprediction
  267. * of receiver window. Check #2.
  268. *
  269. * The scheme does not work when sender sends good segments opening
  270. * window and then starts to feed us spaghetti. But it should work
  271. * in common situations. Otherwise, we have to rely on queue collapsing.
  272. */
  273. /* Slow part of check#2. */
  274. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  275. {
  276. struct tcp_sock *tp = tcp_sk(sk);
  277. /* Optimize this! */
  278. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  279. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  280. while (tp->rcv_ssthresh <= window) {
  281. if (truesize <= skb->len)
  282. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  283. truesize >>= 1;
  284. window >>= 1;
  285. }
  286. return 0;
  287. }
  288. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  289. {
  290. struct tcp_sock *tp = tcp_sk(sk);
  291. int room;
  292. room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
  293. /* Check #1 */
  294. if (room > 0 && !sk_under_memory_pressure(sk)) {
  295. int incr;
  296. /* Check #2. Increase window, if skb with such overhead
  297. * will fit to rcvbuf in future.
  298. */
  299. if (tcp_win_from_space(skb->truesize) <= skb->len)
  300. incr = 2 * tp->advmss;
  301. else
  302. incr = __tcp_grow_window(sk, skb);
  303. if (incr) {
  304. incr = max_t(int, incr, 2 * skb->len);
  305. tp->rcv_ssthresh += min(room, incr);
  306. inet_csk(sk)->icsk_ack.quick |= 1;
  307. }
  308. }
  309. }
  310. /* 3. Tuning rcvbuf, when connection enters established state. */
  311. static void tcp_fixup_rcvbuf(struct sock *sk)
  312. {
  313. u32 mss = tcp_sk(sk)->advmss;
  314. u32 icwnd = sysctl_tcp_default_init_rwnd;
  315. int rcvmem;
  316. /* Limit to 10 segments if mss <= 1460,
  317. * or 14600/mss segments, with a minimum of two segments.
  318. */
  319. if (mss > 1460)
  320. icwnd = max_t(u32, (1460 * icwnd) / mss, 2);
  321. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  322. while (tcp_win_from_space(rcvmem) < mss)
  323. rcvmem += 128;
  324. rcvmem *= icwnd;
  325. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  326. * Allow enough cushion so that sender is not limited by our window
  327. */
  328. if (sysctl_tcp_moderate_rcvbuf)
  329. rcvmem <<= 2;
  330. if (sk->sk_rcvbuf < rcvmem)
  331. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  332. }
  333. /* 4. Try to fixup all. It is made immediately after connection enters
  334. * established state.
  335. */
  336. static void tcp_init_buffer_space(struct sock *sk)
  337. {
  338. struct tcp_sock *tp = tcp_sk(sk);
  339. int maxwin;
  340. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  341. tcp_fixup_rcvbuf(sk);
  342. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  343. tcp_fixup_sndbuf(sk);
  344. tp->rcvq_space.space = tp->rcv_wnd;
  345. tp->rcvq_space.time = tcp_time_stamp;
  346. tp->rcvq_space.seq = tp->copied_seq;
  347. maxwin = tcp_full_space(sk);
  348. if (tp->window_clamp >= maxwin) {
  349. tp->window_clamp = maxwin;
  350. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  351. tp->window_clamp = max(maxwin -
  352. (maxwin >> sysctl_tcp_app_win),
  353. 4 * tp->advmss);
  354. }
  355. /* Force reservation of one segment. */
  356. if (sysctl_tcp_app_win &&
  357. tp->window_clamp > 2 * tp->advmss &&
  358. tp->window_clamp + tp->advmss > maxwin)
  359. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  360. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  361. tp->snd_cwnd_stamp = tcp_time_stamp;
  362. }
  363. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  364. static void tcp_clamp_window(struct sock *sk)
  365. {
  366. struct tcp_sock *tp = tcp_sk(sk);
  367. struct inet_connection_sock *icsk = inet_csk(sk);
  368. icsk->icsk_ack.quick = 0;
  369. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  370. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  371. !sk_under_memory_pressure(sk) &&
  372. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  373. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  374. sysctl_tcp_rmem[2]);
  375. }
  376. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  377. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  378. }
  379. /* Initialize RCV_MSS value.
  380. * RCV_MSS is an our guess about MSS used by the peer.
  381. * We haven't any direct information about the MSS.
  382. * It's better to underestimate the RCV_MSS rather than overestimate.
  383. * Overestimations make us ACKing less frequently than needed.
  384. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  385. */
  386. void tcp_initialize_rcv_mss(struct sock *sk)
  387. {
  388. const struct tcp_sock *tp = tcp_sk(sk);
  389. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  390. hint = min(hint, tp->rcv_wnd / 2);
  391. hint = min(hint, TCP_MSS_DEFAULT);
  392. hint = max(hint, TCP_MIN_MSS);
  393. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  394. }
  395. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  396. /* Receiver "autotuning" code.
  397. *
  398. * The algorithm for RTT estimation w/o timestamps is based on
  399. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  400. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  401. *
  402. * More detail on this code can be found at
  403. * <http://staff.psc.edu/jheffner/>,
  404. * though this reference is out of date. A new paper
  405. * is pending.
  406. */
  407. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  408. {
  409. u32 new_sample = tp->rcv_rtt_est.rtt;
  410. long m = sample;
  411. if (m == 0)
  412. m = 1;
  413. if (new_sample != 0) {
  414. /* If we sample in larger samples in the non-timestamp
  415. * case, we could grossly overestimate the RTT especially
  416. * with chatty applications or bulk transfer apps which
  417. * are stalled on filesystem I/O.
  418. *
  419. * Also, since we are only going for a minimum in the
  420. * non-timestamp case, we do not smooth things out
  421. * else with timestamps disabled convergence takes too
  422. * long.
  423. */
  424. if (!win_dep) {
  425. m -= (new_sample >> 3);
  426. new_sample += m;
  427. } else {
  428. m <<= 3;
  429. if (m < new_sample)
  430. new_sample = m;
  431. }
  432. } else {
  433. /* No previous measure. */
  434. new_sample = m << 3;
  435. }
  436. if (tp->rcv_rtt_est.rtt != new_sample)
  437. tp->rcv_rtt_est.rtt = new_sample;
  438. }
  439. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  440. {
  441. if (tp->rcv_rtt_est.time == 0)
  442. goto new_measure;
  443. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  444. return;
  445. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  446. new_measure:
  447. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  448. tp->rcv_rtt_est.time = tcp_time_stamp;
  449. }
  450. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  451. const struct sk_buff *skb)
  452. {
  453. struct tcp_sock *tp = tcp_sk(sk);
  454. if (tp->rx_opt.rcv_tsecr &&
  455. (TCP_SKB_CB(skb)->end_seq -
  456. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  457. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  458. }
  459. /*
  460. * This function should be called every time data is copied to user space.
  461. * It calculates the appropriate TCP receive buffer space.
  462. */
  463. void tcp_rcv_space_adjust(struct sock *sk)
  464. {
  465. struct tcp_sock *tp = tcp_sk(sk);
  466. int time;
  467. int copied;
  468. time = tcp_time_stamp - tp->rcvq_space.time;
  469. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  470. return;
  471. /* Number of bytes copied to user in last RTT */
  472. copied = tp->copied_seq - tp->rcvq_space.seq;
  473. if (copied <= tp->rcvq_space.space)
  474. goto new_measure;
  475. /* A bit of theory :
  476. * copied = bytes received in previous RTT, our base window
  477. * To cope with packet losses, we need a 2x factor
  478. * To cope with slow start, and sender growing its cwin by 100 %
  479. * every RTT, we need a 4x factor, because the ACK we are sending
  480. * now is for the next RTT, not the current one :
  481. * <prev RTT . ><current RTT .. ><next RTT .... >
  482. */
  483. if (sysctl_tcp_moderate_rcvbuf &&
  484. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  485. int rcvwin, rcvmem, rcvbuf;
  486. /* minimal window to cope with packet losses, assuming
  487. * steady state. Add some cushion because of small variations.
  488. */
  489. rcvwin = (copied << 1) + 16 * tp->advmss;
  490. /* If rate increased by 25%,
  491. * assume slow start, rcvwin = 3 * copied
  492. * If rate increased by 50%,
  493. * assume sender can use 2x growth, rcvwin = 4 * copied
  494. */
  495. if (copied >=
  496. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  497. if (copied >=
  498. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  499. rcvwin <<= 1;
  500. else
  501. rcvwin += (rcvwin >> 1);
  502. }
  503. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  504. while (tcp_win_from_space(rcvmem) < tp->advmss)
  505. rcvmem += 128;
  506. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  507. if (rcvbuf > sk->sk_rcvbuf) {
  508. sk->sk_rcvbuf = rcvbuf;
  509. /* Make the window clamp follow along. */
  510. tp->window_clamp = rcvwin;
  511. }
  512. }
  513. tp->rcvq_space.space = copied;
  514. new_measure:
  515. tp->rcvq_space.seq = tp->copied_seq;
  516. tp->rcvq_space.time = tcp_time_stamp;
  517. }
  518. /* There is something which you must keep in mind when you analyze the
  519. * behavior of the tp->ato delayed ack timeout interval. When a
  520. * connection starts up, we want to ack as quickly as possible. The
  521. * problem is that "good" TCP's do slow start at the beginning of data
  522. * transmission. The means that until we send the first few ACK's the
  523. * sender will sit on his end and only queue most of his data, because
  524. * he can only send snd_cwnd unacked packets at any given time. For
  525. * each ACK we send, he increments snd_cwnd and transmits more of his
  526. * queue. -DaveM
  527. */
  528. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  529. {
  530. struct tcp_sock *tp = tcp_sk(sk);
  531. struct inet_connection_sock *icsk = inet_csk(sk);
  532. u32 now;
  533. inet_csk_schedule_ack(sk);
  534. tcp_measure_rcv_mss(sk, skb);
  535. tcp_rcv_rtt_measure(tp);
  536. now = tcp_time_stamp;
  537. if (!icsk->icsk_ack.ato) {
  538. /* The _first_ data packet received, initialize
  539. * delayed ACK engine.
  540. */
  541. tcp_incr_quickack(sk);
  542. icsk->icsk_ack.ato = TCP_ATO_MIN;
  543. } else {
  544. int m = now - icsk->icsk_ack.lrcvtime;
  545. if (m <= TCP_ATO_MIN / 2) {
  546. /* The fastest case is the first. */
  547. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  548. } else if (m < icsk->icsk_ack.ato) {
  549. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  550. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  551. icsk->icsk_ack.ato = icsk->icsk_rto;
  552. } else if (m > icsk->icsk_rto) {
  553. /* Too long gap. Apparently sender failed to
  554. * restart window, so that we send ACKs quickly.
  555. */
  556. tcp_incr_quickack(sk);
  557. sk_mem_reclaim(sk);
  558. }
  559. }
  560. icsk->icsk_ack.lrcvtime = now;
  561. TCP_ECN_check_ce(tp, skb);
  562. if (skb->len >= 128)
  563. tcp_grow_window(sk, skb);
  564. }
  565. /* Called to compute a smoothed rtt estimate. The data fed to this
  566. * routine either comes from timestamps, or from segments that were
  567. * known _not_ to have been retransmitted [see Karn/Partridge
  568. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  569. * piece by Van Jacobson.
  570. * NOTE: the next three routines used to be one big routine.
  571. * To save cycles in the RFC 1323 implementation it was better to break
  572. * it up into three procedures. -- erics
  573. */
  574. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  575. {
  576. struct tcp_sock *tp = tcp_sk(sk);
  577. long m = mrtt; /* RTT */
  578. u32 srtt = tp->srtt;
  579. /* The following amusing code comes from Jacobson's
  580. * article in SIGCOMM '88. Note that rtt and mdev
  581. * are scaled versions of rtt and mean deviation.
  582. * This is designed to be as fast as possible
  583. * m stands for "measurement".
  584. *
  585. * On a 1990 paper the rto value is changed to:
  586. * RTO = rtt + 4 * mdev
  587. *
  588. * Funny. This algorithm seems to be very broken.
  589. * These formulae increase RTO, when it should be decreased, increase
  590. * too slowly, when it should be increased quickly, decrease too quickly
  591. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  592. * does not matter how to _calculate_ it. Seems, it was trap
  593. * that VJ failed to avoid. 8)
  594. */
  595. if (srtt != 0) {
  596. m -= (srtt >> 3); /* m is now error in rtt est */
  597. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  598. if (m < 0) {
  599. m = -m; /* m is now abs(error) */
  600. m -= (tp->mdev >> 2); /* similar update on mdev */
  601. /* This is similar to one of Eifel findings.
  602. * Eifel blocks mdev updates when rtt decreases.
  603. * This solution is a bit different: we use finer gain
  604. * for mdev in this case (alpha*beta).
  605. * Like Eifel it also prevents growth of rto,
  606. * but also it limits too fast rto decreases,
  607. * happening in pure Eifel.
  608. */
  609. if (m > 0)
  610. m >>= 3;
  611. } else {
  612. m -= (tp->mdev >> 2); /* similar update on mdev */
  613. }
  614. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  615. if (tp->mdev > tp->mdev_max) {
  616. tp->mdev_max = tp->mdev;
  617. if (tp->mdev_max > tp->rttvar)
  618. tp->rttvar = tp->mdev_max;
  619. }
  620. if (after(tp->snd_una, tp->rtt_seq)) {
  621. if (tp->mdev_max < tp->rttvar)
  622. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  623. tp->rtt_seq = tp->snd_nxt;
  624. tp->mdev_max = tcp_rto_min(sk);
  625. }
  626. } else {
  627. /* no previous measure. */
  628. srtt = m << 3; /* take the measured time to be rtt */
  629. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  630. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  631. tp->rtt_seq = tp->snd_nxt;
  632. }
  633. tp->srtt = max(1U, srtt);
  634. }
  635. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  636. * Note: TCP stack does not yet implement pacing.
  637. * FQ packet scheduler can be used to implement cheap but effective
  638. * TCP pacing, to smooth the burst on large writes when packets
  639. * in flight is significantly lower than cwnd (or rwin)
  640. */
  641. static void tcp_update_pacing_rate(struct sock *sk)
  642. {
  643. const struct tcp_sock *tp = tcp_sk(sk);
  644. u64 rate;
  645. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  646. rate = (u64)tp->mss_cache * 2 * (HZ << 3);
  647. rate *= max(tp->snd_cwnd, tp->packets_out);
  648. /* Correction for small srtt and scheduling constraints.
  649. * For small rtt, consider noise is too high, and use
  650. * the minimal value (srtt = 1 -> 125 us for HZ=1000)
  651. *
  652. * We probably need usec resolution in the future.
  653. * Note: This also takes care of possible srtt=0 case,
  654. * when tcp_rtt_estimator() was not yet called.
  655. */
  656. if (tp->srtt > 8 + 2)
  657. do_div(rate, tp->srtt);
  658. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  659. * without any lock. We want to make sure compiler wont store
  660. * intermediate values in this location.
  661. */
  662. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  663. sk->sk_max_pacing_rate);
  664. }
  665. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  666. * routine referred to above.
  667. */
  668. static inline void tcp_set_rto(struct sock *sk)
  669. {
  670. const struct tcp_sock *tp = tcp_sk(sk);
  671. /* Old crap is replaced with new one. 8)
  672. *
  673. * More seriously:
  674. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  675. * It cannot be less due to utterly erratic ACK generation made
  676. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  677. * to do with delayed acks, because at cwnd>2 true delack timeout
  678. * is invisible. Actually, Linux-2.4 also generates erratic
  679. * ACKs in some circumstances.
  680. */
  681. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  682. /* 2. Fixups made earlier cannot be right.
  683. * If we do not estimate RTO correctly without them,
  684. * all the algo is pure shit and should be replaced
  685. * with correct one. It is exactly, which we pretend to do.
  686. */
  687. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  688. * guarantees that rto is higher.
  689. */
  690. tcp_bound_rto(sk);
  691. }
  692. /* Save metrics learned by this TCP session.
  693. This function is called only, when TCP finishes successfully
  694. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  695. */
  696. void tcp_update_metrics(struct sock *sk)
  697. {
  698. struct tcp_sock *tp = tcp_sk(sk);
  699. struct dst_entry *dst = __sk_dst_get(sk);
  700. if (sysctl_tcp_nometrics_save)
  701. return;
  702. if (dst && (dst->flags & DST_HOST)) {
  703. const struct inet_connection_sock *icsk = inet_csk(sk);
  704. int m;
  705. unsigned long rtt;
  706. dst_confirm(dst);
  707. if (icsk->icsk_backoff || !tp->srtt) {
  708. /* This session failed to estimate rtt. Why?
  709. * Probably, no packets returned in time.
  710. * Reset our results.
  711. */
  712. if (!(dst_metric_locked(dst, RTAX_RTT)))
  713. dst_metric_set(dst, RTAX_RTT, 0);
  714. return;
  715. }
  716. rtt = dst_metric_rtt(dst, RTAX_RTT);
  717. m = rtt - tp->srtt;
  718. /* If newly calculated rtt larger than stored one,
  719. * store new one. Otherwise, use EWMA. Remember,
  720. * rtt overestimation is always better than underestimation.
  721. */
  722. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  723. if (m <= 0)
  724. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  725. else
  726. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  727. }
  728. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  729. unsigned long var;
  730. if (m < 0)
  731. m = -m;
  732. /* Scale deviation to rttvar fixed point */
  733. m >>= 1;
  734. if (m < tp->mdev)
  735. m = tp->mdev;
  736. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  737. if (m >= var)
  738. var = m;
  739. else
  740. var -= (var - m) >> 2;
  741. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  742. }
  743. if (tcp_in_initial_slowstart(tp)) {
  744. /* Slow start still did not finish. */
  745. if (dst_metric(dst, RTAX_SSTHRESH) &&
  746. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  747. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  748. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
  749. if (!dst_metric_locked(dst, RTAX_CWND) &&
  750. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  751. dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
  752. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  753. icsk->icsk_ca_state == TCP_CA_Open) {
  754. /* Cong. avoidance phase, cwnd is reliable. */
  755. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  756. dst_metric_set(dst, RTAX_SSTHRESH,
  757. max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
  758. if (!dst_metric_locked(dst, RTAX_CWND))
  759. dst_metric_set(dst, RTAX_CWND,
  760. (dst_metric(dst, RTAX_CWND) +
  761. tp->snd_cwnd) >> 1);
  762. } else {
  763. /* Else slow start did not finish, cwnd is non-sense,
  764. ssthresh may be also invalid.
  765. */
  766. if (!dst_metric_locked(dst, RTAX_CWND))
  767. dst_metric_set(dst, RTAX_CWND,
  768. (dst_metric(dst, RTAX_CWND) +
  769. tp->snd_ssthresh) >> 1);
  770. if (dst_metric(dst, RTAX_SSTHRESH) &&
  771. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  772. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  773. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
  774. }
  775. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  776. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  777. tp->reordering != sysctl_tcp_reordering)
  778. dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
  779. }
  780. }
  781. }
  782. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  783. {
  784. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  785. if (!cwnd)
  786. cwnd = TCP_INIT_CWND;
  787. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  788. }
  789. /* Set slow start threshold and cwnd not falling to slow start */
  790. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  791. {
  792. struct tcp_sock *tp = tcp_sk(sk);
  793. const struct inet_connection_sock *icsk = inet_csk(sk);
  794. tp->prior_ssthresh = 0;
  795. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  796. tp->undo_marker = 0;
  797. if (set_ssthresh)
  798. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  799. tp->snd_cwnd = min(tp->snd_cwnd,
  800. tcp_packets_in_flight(tp) + 1U);
  801. tp->snd_cwnd_cnt = 0;
  802. tp->high_seq = tp->snd_nxt;
  803. tp->snd_cwnd_stamp = tcp_time_stamp;
  804. TCP_ECN_queue_cwr(tp);
  805. tcp_set_ca_state(sk, TCP_CA_CWR);
  806. }
  807. }
  808. /*
  809. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  810. * disables it when reordering is detected
  811. */
  812. static void tcp_disable_fack(struct tcp_sock *tp)
  813. {
  814. /* RFC3517 uses different metric in lost marker => reset on change */
  815. if (tcp_is_fack(tp))
  816. tp->lost_skb_hint = NULL;
  817. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  818. }
  819. /* Take a notice that peer is sending D-SACKs */
  820. static void tcp_dsack_seen(struct tcp_sock *tp)
  821. {
  822. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  823. }
  824. /* Initialize metrics on socket. */
  825. static void tcp_init_metrics(struct sock *sk)
  826. {
  827. struct tcp_sock *tp = tcp_sk(sk);
  828. struct dst_entry *dst = __sk_dst_get(sk);
  829. if (dst == NULL)
  830. goto reset;
  831. dst_confirm(dst);
  832. if (dst_metric_locked(dst, RTAX_CWND))
  833. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  834. if (dst_metric(dst, RTAX_SSTHRESH)) {
  835. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  836. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  837. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  838. } else {
  839. /* ssthresh may have been reduced unnecessarily during.
  840. * 3WHS. Restore it back to its initial default.
  841. */
  842. tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
  843. }
  844. if (dst_metric(dst, RTAX_REORDERING) &&
  845. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  846. tcp_disable_fack(tp);
  847. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  848. }
  849. if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
  850. goto reset;
  851. /* Initial rtt is determined from SYN,SYN-ACK.
  852. * The segment is small and rtt may appear much
  853. * less than real one. Use per-dst memory
  854. * to make it more realistic.
  855. *
  856. * A bit of theory. RTT is time passed after "normal" sized packet
  857. * is sent until it is ACKed. In normal circumstances sending small
  858. * packets force peer to delay ACKs and calculation is correct too.
  859. * The algorithm is adaptive and, provided we follow specs, it
  860. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  861. * tricks sort of "quick acks" for time long enough to decrease RTT
  862. * to low value, and then abruptly stops to do it and starts to delay
  863. * ACKs, wait for troubles.
  864. */
  865. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  866. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  867. tp->rtt_seq = tp->snd_nxt;
  868. }
  869. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  870. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  871. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  872. }
  873. tcp_set_rto(sk);
  874. reset:
  875. if (tp->srtt == 0) {
  876. /* RFC2988bis: We've failed to get a valid RTT sample from
  877. * 3WHS. This is most likely due to retransmission,
  878. * including spurious one. Reset the RTO back to 3secs
  879. * from the more aggressive 1sec to avoid more spurious
  880. * retransmission.
  881. */
  882. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
  883. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
  884. }
  885. /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
  886. * retransmitted. In light of RFC2988bis' more aggressive 1sec
  887. * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
  888. * retransmission has occurred.
  889. */
  890. if (tp->total_retrans > 1)
  891. tp->snd_cwnd = 1;
  892. else
  893. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  894. tp->snd_cwnd_stamp = tcp_time_stamp;
  895. }
  896. static void tcp_update_reordering(struct sock *sk, const int metric,
  897. const int ts)
  898. {
  899. struct tcp_sock *tp = tcp_sk(sk);
  900. if (metric > tp->reordering) {
  901. int mib_idx;
  902. tp->reordering = min(TCP_MAX_REORDERING, metric);
  903. /* This exciting event is worth to be remembered. 8) */
  904. if (ts)
  905. mib_idx = LINUX_MIB_TCPTSREORDER;
  906. else if (tcp_is_reno(tp))
  907. mib_idx = LINUX_MIB_TCPRENOREORDER;
  908. else if (tcp_is_fack(tp))
  909. mib_idx = LINUX_MIB_TCPFACKREORDER;
  910. else
  911. mib_idx = LINUX_MIB_TCPSACKREORDER;
  912. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  913. #if FASTRETRANS_DEBUG > 1
  914. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  915. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  916. tp->reordering,
  917. tp->fackets_out,
  918. tp->sacked_out,
  919. tp->undo_marker ? tp->undo_retrans : 0);
  920. #endif
  921. tcp_disable_fack(tp);
  922. }
  923. }
  924. /* This must be called before lost_out is incremented */
  925. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  926. {
  927. if ((tp->retransmit_skb_hint == NULL) ||
  928. before(TCP_SKB_CB(skb)->seq,
  929. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  930. tp->retransmit_skb_hint = skb;
  931. if (!tp->lost_out ||
  932. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  933. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  934. }
  935. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  936. {
  937. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  938. tcp_verify_retransmit_hint(tp, skb);
  939. tp->lost_out += tcp_skb_pcount(skb);
  940. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  941. }
  942. }
  943. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  944. struct sk_buff *skb)
  945. {
  946. tcp_verify_retransmit_hint(tp, skb);
  947. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  948. tp->lost_out += tcp_skb_pcount(skb);
  949. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  950. }
  951. }
  952. /* This procedure tags the retransmission queue when SACKs arrive.
  953. *
  954. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  955. * Packets in queue with these bits set are counted in variables
  956. * sacked_out, retrans_out and lost_out, correspondingly.
  957. *
  958. * Valid combinations are:
  959. * Tag InFlight Description
  960. * 0 1 - orig segment is in flight.
  961. * S 0 - nothing flies, orig reached receiver.
  962. * L 0 - nothing flies, orig lost by net.
  963. * R 2 - both orig and retransmit are in flight.
  964. * L|R 1 - orig is lost, retransmit is in flight.
  965. * S|R 1 - orig reached receiver, retrans is still in flight.
  966. * (L|S|R is logically valid, it could occur when L|R is sacked,
  967. * but it is equivalent to plain S and code short-curcuits it to S.
  968. * L|S is logically invalid, it would mean -1 packet in flight 8))
  969. *
  970. * These 6 states form finite state machine, controlled by the following events:
  971. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  972. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  973. * 3. Loss detection event of two flavors:
  974. * A. Scoreboard estimator decided the packet is lost.
  975. * A'. Reno "three dupacks" marks head of queue lost.
  976. * A''. Its FACK modification, head until snd.fack is lost.
  977. * B. SACK arrives sacking SND.NXT at the moment, when the
  978. * segment was retransmitted.
  979. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  980. *
  981. * It is pleasant to note, that state diagram turns out to be commutative,
  982. * so that we are allowed not to be bothered by order of our actions,
  983. * when multiple events arrive simultaneously. (see the function below).
  984. *
  985. * Reordering detection.
  986. * --------------------
  987. * Reordering metric is maximal distance, which a packet can be displaced
  988. * in packet stream. With SACKs we can estimate it:
  989. *
  990. * 1. SACK fills old hole and the corresponding segment was not
  991. * ever retransmitted -> reordering. Alas, we cannot use it
  992. * when segment was retransmitted.
  993. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  994. * for retransmitted and already SACKed segment -> reordering..
  995. * Both of these heuristics are not used in Loss state, when we cannot
  996. * account for retransmits accurately.
  997. *
  998. * SACK block validation.
  999. * ----------------------
  1000. *
  1001. * SACK block range validation checks that the received SACK block fits to
  1002. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  1003. * Note that SND.UNA is not included to the range though being valid because
  1004. * it means that the receiver is rather inconsistent with itself reporting
  1005. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  1006. * perfectly valid, however, in light of RFC2018 which explicitly states
  1007. * that "SACK block MUST reflect the newest segment. Even if the newest
  1008. * segment is going to be discarded ...", not that it looks very clever
  1009. * in case of head skb. Due to potentional receiver driven attacks, we
  1010. * choose to avoid immediate execution of a walk in write queue due to
  1011. * reneging and defer head skb's loss recovery to standard loss recovery
  1012. * procedure that will eventually trigger (nothing forbids us doing this).
  1013. *
  1014. * Implements also blockage to start_seq wrap-around. Problem lies in the
  1015. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  1016. * there's no guarantee that it will be before snd_nxt (n). The problem
  1017. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  1018. * wrap (s_w):
  1019. *
  1020. * <- outs wnd -> <- wrapzone ->
  1021. * u e n u_w e_w s n_w
  1022. * | | | | | | |
  1023. * |<------------+------+----- TCP seqno space --------------+---------->|
  1024. * ...-- <2^31 ->| |<--------...
  1025. * ...---- >2^31 ------>| |<--------...
  1026. *
  1027. * Current code wouldn't be vulnerable but it's better still to discard such
  1028. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  1029. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  1030. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  1031. * equal to the ideal case (infinite seqno space without wrap caused issues).
  1032. *
  1033. * With D-SACK the lower bound is extended to cover sequence space below
  1034. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  1035. * again, D-SACK block must not to go across snd_una (for the same reason as
  1036. * for the normal SACK blocks, explained above). But there all simplicity
  1037. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  1038. * fully below undo_marker they do not affect behavior in anyway and can
  1039. * therefore be safely ignored. In rare cases (which are more or less
  1040. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  1041. * fragmentation and packet reordering past skb's retransmission. To consider
  1042. * them correctly, the acceptable range must be extended even more though
  1043. * the exact amount is rather hard to quantify. However, tp->max_window can
  1044. * be used as an exaggerated estimate.
  1045. */
  1046. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  1047. u32 start_seq, u32 end_seq)
  1048. {
  1049. /* Too far in future, or reversed (interpretation is ambiguous) */
  1050. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  1051. return 0;
  1052. /* Nasty start_seq wrap-around check (see comments above) */
  1053. if (!before(start_seq, tp->snd_nxt))
  1054. return 0;
  1055. /* In outstanding window? ...This is valid exit for D-SACKs too.
  1056. * start_seq == snd_una is non-sensical (see comments above)
  1057. */
  1058. if (after(start_seq, tp->snd_una))
  1059. return 1;
  1060. if (!is_dsack || !tp->undo_marker)
  1061. return 0;
  1062. /* ...Then it's D-SACK, and must reside below snd_una completely */
  1063. if (after(end_seq, tp->snd_una))
  1064. return 0;
  1065. if (!before(start_seq, tp->undo_marker))
  1066. return 1;
  1067. /* Too old */
  1068. if (!after(end_seq, tp->undo_marker))
  1069. return 0;
  1070. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1071. * start_seq < undo_marker and end_seq >= undo_marker.
  1072. */
  1073. return !before(start_seq, end_seq - tp->max_window);
  1074. }
  1075. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1076. * Event "B". Later note: FACK people cheated me again 8), we have to account
  1077. * for reordering! Ugly, but should help.
  1078. *
  1079. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1080. * less than what is now known to be received by the other end (derived from
  1081. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1082. * retransmitted skbs to avoid some costly processing per ACKs.
  1083. */
  1084. static void tcp_mark_lost_retrans(struct sock *sk)
  1085. {
  1086. const struct inet_connection_sock *icsk = inet_csk(sk);
  1087. struct tcp_sock *tp = tcp_sk(sk);
  1088. struct sk_buff *skb;
  1089. int cnt = 0;
  1090. u32 new_low_seq = tp->snd_nxt;
  1091. u32 received_upto = tcp_highest_sack_seq(tp);
  1092. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1093. !after(received_upto, tp->lost_retrans_low) ||
  1094. icsk->icsk_ca_state != TCP_CA_Recovery)
  1095. return;
  1096. tcp_for_write_queue(skb, sk) {
  1097. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1098. if (skb == tcp_send_head(sk))
  1099. break;
  1100. if (cnt == tp->retrans_out)
  1101. break;
  1102. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1103. continue;
  1104. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1105. continue;
  1106. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1107. * constraint here (see above) but figuring out that at
  1108. * least tp->reordering SACK blocks reside between ack_seq
  1109. * and received_upto is not easy task to do cheaply with
  1110. * the available datastructures.
  1111. *
  1112. * Whether FACK should check here for tp->reordering segs
  1113. * in-between one could argue for either way (it would be
  1114. * rather simple to implement as we could count fack_count
  1115. * during the walk and do tp->fackets_out - fack_count).
  1116. */
  1117. if (after(received_upto, ack_seq)) {
  1118. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1119. tp->retrans_out -= tcp_skb_pcount(skb);
  1120. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1121. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1122. } else {
  1123. if (before(ack_seq, new_low_seq))
  1124. new_low_seq = ack_seq;
  1125. cnt += tcp_skb_pcount(skb);
  1126. }
  1127. }
  1128. if (tp->retrans_out)
  1129. tp->lost_retrans_low = new_low_seq;
  1130. }
  1131. static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  1132. struct tcp_sack_block_wire *sp, int num_sacks,
  1133. u32 prior_snd_una)
  1134. {
  1135. struct tcp_sock *tp = tcp_sk(sk);
  1136. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1137. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1138. int dup_sack = 0;
  1139. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1140. dup_sack = 1;
  1141. tcp_dsack_seen(tp);
  1142. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1143. } else if (num_sacks > 1) {
  1144. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1145. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1146. if (!after(end_seq_0, end_seq_1) &&
  1147. !before(start_seq_0, start_seq_1)) {
  1148. dup_sack = 1;
  1149. tcp_dsack_seen(tp);
  1150. NET_INC_STATS_BH(sock_net(sk),
  1151. LINUX_MIB_TCPDSACKOFORECV);
  1152. }
  1153. }
  1154. /* D-SACK for already forgotten data... Do dumb counting. */
  1155. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  1156. !after(end_seq_0, prior_snd_una) &&
  1157. after(end_seq_0, tp->undo_marker))
  1158. tp->undo_retrans--;
  1159. return dup_sack;
  1160. }
  1161. struct tcp_sacktag_state {
  1162. int reord;
  1163. int fack_count;
  1164. int flag;
  1165. };
  1166. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1167. * the incoming SACK may not exactly match but we can find smaller MSS
  1168. * aligned portion of it that matches. Therefore we might need to fragment
  1169. * which may fail and creates some hassle (caller must handle error case
  1170. * returns).
  1171. *
  1172. * FIXME: this could be merged to shift decision code
  1173. */
  1174. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1175. u32 start_seq, u32 end_seq)
  1176. {
  1177. int in_sack, err;
  1178. unsigned int pkt_len;
  1179. unsigned int mss;
  1180. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1181. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1182. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1183. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1184. mss = tcp_skb_mss(skb);
  1185. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1186. if (!in_sack) {
  1187. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1188. if (pkt_len < mss)
  1189. pkt_len = mss;
  1190. } else {
  1191. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1192. if (pkt_len < mss)
  1193. return -EINVAL;
  1194. }
  1195. /* Round if necessary so that SACKs cover only full MSSes
  1196. * and/or the remaining small portion (if present)
  1197. */
  1198. if (pkt_len > mss) {
  1199. unsigned int new_len = (pkt_len / mss) * mss;
  1200. if (!in_sack && new_len < pkt_len) {
  1201. new_len += mss;
  1202. if (new_len >= skb->len)
  1203. return 0;
  1204. }
  1205. pkt_len = new_len;
  1206. }
  1207. err = tcp_fragment(sk, skb, pkt_len, mss);
  1208. if (err < 0)
  1209. return err;
  1210. }
  1211. return in_sack;
  1212. }
  1213. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1214. static u8 tcp_sacktag_one(struct sock *sk,
  1215. struct tcp_sacktag_state *state, u8 sacked,
  1216. u32 start_seq, u32 end_seq,
  1217. int dup_sack, int pcount)
  1218. {
  1219. struct tcp_sock *tp = tcp_sk(sk);
  1220. int fack_count = state->fack_count;
  1221. /* Account D-SACK for retransmitted packet. */
  1222. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1223. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1224. after(end_seq, tp->undo_marker))
  1225. tp->undo_retrans--;
  1226. if (sacked & TCPCB_SACKED_ACKED)
  1227. state->reord = min(fack_count, state->reord);
  1228. }
  1229. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1230. if (!after(end_seq, tp->snd_una))
  1231. return sacked;
  1232. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1233. if (sacked & TCPCB_SACKED_RETRANS) {
  1234. /* If the segment is not tagged as lost,
  1235. * we do not clear RETRANS, believing
  1236. * that retransmission is still in flight.
  1237. */
  1238. if (sacked & TCPCB_LOST) {
  1239. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1240. tp->lost_out -= pcount;
  1241. tp->retrans_out -= pcount;
  1242. }
  1243. } else {
  1244. if (!(sacked & TCPCB_RETRANS)) {
  1245. /* New sack for not retransmitted frame,
  1246. * which was in hole. It is reordering.
  1247. */
  1248. if (before(start_seq,
  1249. tcp_highest_sack_seq(tp)))
  1250. state->reord = min(fack_count,
  1251. state->reord);
  1252. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1253. if (!after(end_seq, tp->frto_highmark))
  1254. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1255. }
  1256. if (sacked & TCPCB_LOST) {
  1257. sacked &= ~TCPCB_LOST;
  1258. tp->lost_out -= pcount;
  1259. }
  1260. }
  1261. sacked |= TCPCB_SACKED_ACKED;
  1262. state->flag |= FLAG_DATA_SACKED;
  1263. tp->sacked_out += pcount;
  1264. fack_count += pcount;
  1265. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1266. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1267. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1268. tp->lost_cnt_hint += pcount;
  1269. if (fack_count > tp->fackets_out)
  1270. tp->fackets_out = fack_count;
  1271. }
  1272. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1273. * frames and clear it. undo_retrans is decreased above, L|R frames
  1274. * are accounted above as well.
  1275. */
  1276. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1277. sacked &= ~TCPCB_SACKED_RETRANS;
  1278. tp->retrans_out -= pcount;
  1279. }
  1280. return sacked;
  1281. }
  1282. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1283. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1284. */
  1285. static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1286. struct tcp_sacktag_state *state,
  1287. unsigned int pcount, int shifted, int mss,
  1288. int dup_sack)
  1289. {
  1290. struct tcp_sock *tp = tcp_sk(sk);
  1291. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1292. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1293. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1294. BUG_ON(!pcount);
  1295. /* Adjust counters and hints for the newly sacked sequence
  1296. * range but discard the return value since prev is already
  1297. * marked. We must tag the range first because the seq
  1298. * advancement below implicitly advances
  1299. * tcp_highest_sack_seq() when skb is highest_sack.
  1300. */
  1301. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1302. start_seq, end_seq, dup_sack, pcount);
  1303. if (skb == tp->lost_skb_hint)
  1304. tp->lost_cnt_hint += pcount;
  1305. TCP_SKB_CB(prev)->end_seq += shifted;
  1306. TCP_SKB_CB(skb)->seq += shifted;
  1307. skb_shinfo(prev)->gso_segs += pcount;
  1308. WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
  1309. skb_shinfo(skb)->gso_segs -= pcount;
  1310. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1311. * in theory this shouldn't be necessary but as long as DSACK
  1312. * code can come after this skb later on it's better to keep
  1313. * setting gso_size to something.
  1314. */
  1315. if (!skb_shinfo(prev)->gso_size) {
  1316. skb_shinfo(prev)->gso_size = mss;
  1317. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1318. }
  1319. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1320. if (skb_shinfo(skb)->gso_segs <= 1) {
  1321. skb_shinfo(skb)->gso_size = 0;
  1322. skb_shinfo(skb)->gso_type = 0;
  1323. }
  1324. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1325. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1326. if (skb->len > 0) {
  1327. BUG_ON(!tcp_skb_pcount(skb));
  1328. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1329. return 0;
  1330. }
  1331. /* Whole SKB was eaten :-) */
  1332. if (skb == tp->retransmit_skb_hint)
  1333. tp->retransmit_skb_hint = prev;
  1334. if (skb == tp->scoreboard_skb_hint)
  1335. tp->scoreboard_skb_hint = prev;
  1336. if (skb == tp->lost_skb_hint) {
  1337. tp->lost_skb_hint = prev;
  1338. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1339. }
  1340. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1341. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1342. TCP_SKB_CB(prev)->end_seq++;
  1343. if (skb == tcp_highest_sack(sk))
  1344. tcp_advance_highest_sack(sk, skb);
  1345. tcp_unlink_write_queue(skb, sk);
  1346. sk_wmem_free_skb(sk, skb);
  1347. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1348. return 1;
  1349. }
  1350. /* I wish gso_size would have a bit more sane initialization than
  1351. * something-or-zero which complicates things
  1352. */
  1353. static int tcp_skb_seglen(const struct sk_buff *skb)
  1354. {
  1355. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1356. }
  1357. /* Shifting pages past head area doesn't work */
  1358. static int skb_can_shift(const struct sk_buff *skb)
  1359. {
  1360. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1361. }
  1362. int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
  1363. int pcount, int shiftlen)
  1364. {
  1365. /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
  1366. * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
  1367. * to make sure not storing more than 65535 * 8 bytes per skb,
  1368. * even if current MSS is bigger.
  1369. */
  1370. if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
  1371. return 0;
  1372. if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
  1373. return 0;
  1374. return skb_shift(to, from, shiftlen);
  1375. }
  1376. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1377. * skb.
  1378. */
  1379. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1380. struct tcp_sacktag_state *state,
  1381. u32 start_seq, u32 end_seq,
  1382. int dup_sack)
  1383. {
  1384. struct tcp_sock *tp = tcp_sk(sk);
  1385. struct sk_buff *prev;
  1386. int mss;
  1387. int next_pcount;
  1388. int pcount = 0;
  1389. int len;
  1390. int in_sack;
  1391. if (!sk_can_gso(sk))
  1392. goto fallback;
  1393. /* Normally R but no L won't result in plain S */
  1394. if (!dup_sack &&
  1395. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1396. goto fallback;
  1397. if (!skb_can_shift(skb))
  1398. goto fallback;
  1399. /* This frame is about to be dropped (was ACKed). */
  1400. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1401. goto fallback;
  1402. /* Can only happen with delayed DSACK + discard craziness */
  1403. if (unlikely(skb == tcp_write_queue_head(sk)))
  1404. goto fallback;
  1405. prev = tcp_write_queue_prev(sk, skb);
  1406. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1407. goto fallback;
  1408. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1409. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1410. if (in_sack) {
  1411. len = skb->len;
  1412. pcount = tcp_skb_pcount(skb);
  1413. mss = tcp_skb_seglen(skb);
  1414. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1415. * drop this restriction as unnecessary
  1416. */
  1417. if (mss != tcp_skb_seglen(prev))
  1418. goto fallback;
  1419. } else {
  1420. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1421. goto noop;
  1422. /* CHECKME: This is non-MSS split case only?, this will
  1423. * cause skipped skbs due to advancing loop btw, original
  1424. * has that feature too
  1425. */
  1426. if (tcp_skb_pcount(skb) <= 1)
  1427. goto noop;
  1428. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1429. if (!in_sack) {
  1430. /* TODO: head merge to next could be attempted here
  1431. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1432. * though it might not be worth of the additional hassle
  1433. *
  1434. * ...we can probably just fallback to what was done
  1435. * previously. We could try merging non-SACKed ones
  1436. * as well but it probably isn't going to buy off
  1437. * because later SACKs might again split them, and
  1438. * it would make skb timestamp tracking considerably
  1439. * harder problem.
  1440. */
  1441. goto fallback;
  1442. }
  1443. len = end_seq - TCP_SKB_CB(skb)->seq;
  1444. BUG_ON(len < 0);
  1445. BUG_ON(len > skb->len);
  1446. /* MSS boundaries should be honoured or else pcount will
  1447. * severely break even though it makes things bit trickier.
  1448. * Optimize common case to avoid most of the divides
  1449. */
  1450. mss = tcp_skb_mss(skb);
  1451. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1452. * drop this restriction as unnecessary
  1453. */
  1454. if (mss != tcp_skb_seglen(prev))
  1455. goto fallback;
  1456. if (len == mss) {
  1457. pcount = 1;
  1458. } else if (len < mss) {
  1459. goto noop;
  1460. } else {
  1461. pcount = len / mss;
  1462. len = pcount * mss;
  1463. }
  1464. }
  1465. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1466. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1467. goto fallback;
  1468. if (!tcp_skb_shift(prev, skb, pcount, len))
  1469. goto fallback;
  1470. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1471. goto out;
  1472. /* Hole filled allows collapsing with the next as well, this is very
  1473. * useful when hole on every nth skb pattern happens
  1474. */
  1475. if (prev == tcp_write_queue_tail(sk))
  1476. goto out;
  1477. skb = tcp_write_queue_next(sk, prev);
  1478. if (!skb_can_shift(skb) ||
  1479. (skb == tcp_send_head(sk)) ||
  1480. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1481. (mss != tcp_skb_seglen(skb)))
  1482. goto out;
  1483. len = skb->len;
  1484. next_pcount = tcp_skb_pcount(skb);
  1485. if (tcp_skb_shift(prev, skb, next_pcount, len)) {
  1486. pcount += next_pcount;
  1487. tcp_shifted_skb(sk, skb, state, next_pcount, len, mss, 0);
  1488. }
  1489. out:
  1490. state->fack_count += pcount;
  1491. return prev;
  1492. noop:
  1493. return skb;
  1494. fallback:
  1495. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1496. return NULL;
  1497. }
  1498. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1499. struct tcp_sack_block *next_dup,
  1500. struct tcp_sacktag_state *state,
  1501. u32 start_seq, u32 end_seq,
  1502. int dup_sack_in)
  1503. {
  1504. struct tcp_sock *tp = tcp_sk(sk);
  1505. struct sk_buff *tmp;
  1506. tcp_for_write_queue_from(skb, sk) {
  1507. int in_sack = 0;
  1508. int dup_sack = dup_sack_in;
  1509. if (skb == tcp_send_head(sk))
  1510. break;
  1511. /* queue is in-order => we can short-circuit the walk early */
  1512. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1513. break;
  1514. if ((next_dup != NULL) &&
  1515. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1516. in_sack = tcp_match_skb_to_sack(sk, skb,
  1517. next_dup->start_seq,
  1518. next_dup->end_seq);
  1519. if (in_sack > 0)
  1520. dup_sack = 1;
  1521. }
  1522. /* skb reference here is a bit tricky to get right, since
  1523. * shifting can eat and free both this skb and the next,
  1524. * so not even _safe variant of the loop is enough.
  1525. */
  1526. if (in_sack <= 0) {
  1527. tmp = tcp_shift_skb_data(sk, skb, state,
  1528. start_seq, end_seq, dup_sack);
  1529. if (tmp != NULL) {
  1530. if (tmp != skb) {
  1531. skb = tmp;
  1532. continue;
  1533. }
  1534. in_sack = 0;
  1535. } else {
  1536. in_sack = tcp_match_skb_to_sack(sk, skb,
  1537. start_seq,
  1538. end_seq);
  1539. }
  1540. }
  1541. if (unlikely(in_sack < 0))
  1542. break;
  1543. if (in_sack) {
  1544. TCP_SKB_CB(skb)->sacked =
  1545. tcp_sacktag_one(sk,
  1546. state,
  1547. TCP_SKB_CB(skb)->sacked,
  1548. TCP_SKB_CB(skb)->seq,
  1549. TCP_SKB_CB(skb)->end_seq,
  1550. dup_sack,
  1551. tcp_skb_pcount(skb));
  1552. if (!before(TCP_SKB_CB(skb)->seq,
  1553. tcp_highest_sack_seq(tp)))
  1554. tcp_advance_highest_sack(sk, skb);
  1555. }
  1556. state->fack_count += tcp_skb_pcount(skb);
  1557. }
  1558. return skb;
  1559. }
  1560. /* Avoid all extra work that is being done by sacktag while walking in
  1561. * a normal way
  1562. */
  1563. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1564. struct tcp_sacktag_state *state,
  1565. u32 skip_to_seq)
  1566. {
  1567. tcp_for_write_queue_from(skb, sk) {
  1568. if (skb == tcp_send_head(sk))
  1569. break;
  1570. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1571. break;
  1572. state->fack_count += tcp_skb_pcount(skb);
  1573. }
  1574. return skb;
  1575. }
  1576. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1577. struct sock *sk,
  1578. struct tcp_sack_block *next_dup,
  1579. struct tcp_sacktag_state *state,
  1580. u32 skip_to_seq)
  1581. {
  1582. if (next_dup == NULL)
  1583. return skb;
  1584. if (before(next_dup->start_seq, skip_to_seq)) {
  1585. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1586. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1587. next_dup->start_seq, next_dup->end_seq,
  1588. 1);
  1589. }
  1590. return skb;
  1591. }
  1592. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1593. {
  1594. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1595. }
  1596. static int
  1597. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1598. u32 prior_snd_una)
  1599. {
  1600. const struct inet_connection_sock *icsk = inet_csk(sk);
  1601. struct tcp_sock *tp = tcp_sk(sk);
  1602. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1603. TCP_SKB_CB(ack_skb)->sacked);
  1604. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1605. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1606. struct tcp_sack_block *cache;
  1607. struct tcp_sacktag_state state;
  1608. struct sk_buff *skb;
  1609. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1610. int used_sacks;
  1611. int found_dup_sack = 0;
  1612. int i, j;
  1613. int first_sack_index;
  1614. state.flag = 0;
  1615. state.reord = tp->packets_out;
  1616. if (!tp->sacked_out) {
  1617. if (WARN_ON(tp->fackets_out))
  1618. tp->fackets_out = 0;
  1619. tcp_highest_sack_reset(sk);
  1620. }
  1621. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1622. num_sacks, prior_snd_una);
  1623. if (found_dup_sack)
  1624. state.flag |= FLAG_DSACKING_ACK;
  1625. /* Eliminate too old ACKs, but take into
  1626. * account more or less fresh ones, they can
  1627. * contain valid SACK info.
  1628. */
  1629. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1630. return 0;
  1631. if (!tp->packets_out)
  1632. goto out;
  1633. used_sacks = 0;
  1634. first_sack_index = 0;
  1635. for (i = 0; i < num_sacks; i++) {
  1636. int dup_sack = !i && found_dup_sack;
  1637. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1638. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1639. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1640. sp[used_sacks].start_seq,
  1641. sp[used_sacks].end_seq)) {
  1642. int mib_idx;
  1643. if (dup_sack) {
  1644. if (!tp->undo_marker)
  1645. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1646. else
  1647. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1648. } else {
  1649. /* Don't count olds caused by ACK reordering */
  1650. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1651. !after(sp[used_sacks].end_seq, tp->snd_una))
  1652. continue;
  1653. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1654. }
  1655. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1656. if (i == 0)
  1657. first_sack_index = -1;
  1658. continue;
  1659. }
  1660. /* Ignore very old stuff early */
  1661. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1662. continue;
  1663. used_sacks++;
  1664. }
  1665. /* order SACK blocks to allow in order walk of the retrans queue */
  1666. for (i = used_sacks - 1; i > 0; i--) {
  1667. for (j = 0; j < i; j++) {
  1668. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1669. swap(sp[j], sp[j + 1]);
  1670. /* Track where the first SACK block goes to */
  1671. if (j == first_sack_index)
  1672. first_sack_index = j + 1;
  1673. }
  1674. }
  1675. }
  1676. skb = tcp_write_queue_head(sk);
  1677. state.fack_count = 0;
  1678. i = 0;
  1679. if (!tp->sacked_out) {
  1680. /* It's already past, so skip checking against it */
  1681. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1682. } else {
  1683. cache = tp->recv_sack_cache;
  1684. /* Skip empty blocks in at head of the cache */
  1685. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1686. !cache->end_seq)
  1687. cache++;
  1688. }
  1689. while (i < used_sacks) {
  1690. u32 start_seq = sp[i].start_seq;
  1691. u32 end_seq = sp[i].end_seq;
  1692. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1693. struct tcp_sack_block *next_dup = NULL;
  1694. if (found_dup_sack && ((i + 1) == first_sack_index))
  1695. next_dup = &sp[i + 1];
  1696. /* Skip too early cached blocks */
  1697. while (tcp_sack_cache_ok(tp, cache) &&
  1698. !before(start_seq, cache->end_seq))
  1699. cache++;
  1700. /* Can skip some work by looking recv_sack_cache? */
  1701. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1702. after(end_seq, cache->start_seq)) {
  1703. /* Head todo? */
  1704. if (before(start_seq, cache->start_seq)) {
  1705. skb = tcp_sacktag_skip(skb, sk, &state,
  1706. start_seq);
  1707. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1708. &state,
  1709. start_seq,
  1710. cache->start_seq,
  1711. dup_sack);
  1712. }
  1713. /* Rest of the block already fully processed? */
  1714. if (!after(end_seq, cache->end_seq))
  1715. goto advance_sp;
  1716. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1717. &state,
  1718. cache->end_seq);
  1719. /* ...tail remains todo... */
  1720. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1721. /* ...but better entrypoint exists! */
  1722. skb = tcp_highest_sack(sk);
  1723. if (skb == NULL)
  1724. break;
  1725. state.fack_count = tp->fackets_out;
  1726. cache++;
  1727. goto walk;
  1728. }
  1729. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1730. /* Check overlap against next cached too (past this one already) */
  1731. cache++;
  1732. continue;
  1733. }
  1734. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1735. skb = tcp_highest_sack(sk);
  1736. if (skb == NULL)
  1737. break;
  1738. state.fack_count = tp->fackets_out;
  1739. }
  1740. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1741. walk:
  1742. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1743. start_seq, end_seq, dup_sack);
  1744. advance_sp:
  1745. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1746. * due to in-order walk
  1747. */
  1748. if (after(end_seq, tp->frto_highmark))
  1749. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1750. i++;
  1751. }
  1752. /* Clear the head of the cache sack blocks so we can skip it next time */
  1753. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1754. tp->recv_sack_cache[i].start_seq = 0;
  1755. tp->recv_sack_cache[i].end_seq = 0;
  1756. }
  1757. for (j = 0; j < used_sacks; j++)
  1758. tp->recv_sack_cache[i++] = sp[j];
  1759. tcp_mark_lost_retrans(sk);
  1760. tcp_verify_left_out(tp);
  1761. if ((state.reord < tp->fackets_out) &&
  1762. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1763. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1764. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1765. out:
  1766. #if FASTRETRANS_DEBUG > 0
  1767. WARN_ON((int)tp->sacked_out < 0);
  1768. WARN_ON((int)tp->lost_out < 0);
  1769. WARN_ON((int)tp->retrans_out < 0);
  1770. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1771. #endif
  1772. return state.flag;
  1773. }
  1774. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1775. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1776. */
  1777. static int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1778. {
  1779. u32 holes;
  1780. holes = max(tp->lost_out, 1U);
  1781. holes = min(holes, tp->packets_out);
  1782. if ((tp->sacked_out + holes) > tp->packets_out) {
  1783. tp->sacked_out = tp->packets_out - holes;
  1784. return 1;
  1785. }
  1786. return 0;
  1787. }
  1788. /* If we receive more dupacks than we expected counting segments
  1789. * in assumption of absent reordering, interpret this as reordering.
  1790. * The only another reason could be bug in receiver TCP.
  1791. */
  1792. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1793. {
  1794. struct tcp_sock *tp = tcp_sk(sk);
  1795. if (tcp_limit_reno_sacked(tp))
  1796. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1797. }
  1798. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1799. static void tcp_add_reno_sack(struct sock *sk)
  1800. {
  1801. struct tcp_sock *tp = tcp_sk(sk);
  1802. tp->sacked_out++;
  1803. tcp_check_reno_reordering(sk, 0);
  1804. tcp_verify_left_out(tp);
  1805. }
  1806. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1807. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1808. {
  1809. struct tcp_sock *tp = tcp_sk(sk);
  1810. if (acked > 0) {
  1811. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1812. if (acked - 1 >= tp->sacked_out)
  1813. tp->sacked_out = 0;
  1814. else
  1815. tp->sacked_out -= acked - 1;
  1816. }
  1817. tcp_check_reno_reordering(sk, acked);
  1818. tcp_verify_left_out(tp);
  1819. }
  1820. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1821. {
  1822. tp->sacked_out = 0;
  1823. }
  1824. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1825. {
  1826. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1827. }
  1828. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1829. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1830. */
  1831. int tcp_use_frto(struct sock *sk)
  1832. {
  1833. const struct tcp_sock *tp = tcp_sk(sk);
  1834. const struct inet_connection_sock *icsk = inet_csk(sk);
  1835. struct sk_buff *skb;
  1836. if (!sysctl_tcp_frto)
  1837. return 0;
  1838. /* MTU probe and F-RTO won't really play nicely along currently */
  1839. if (icsk->icsk_mtup.probe_size)
  1840. return 0;
  1841. if (tcp_is_sackfrto(tp))
  1842. return 1;
  1843. /* Avoid expensive walking of rexmit queue if possible */
  1844. if (tp->retrans_out > 1)
  1845. return 0;
  1846. skb = tcp_write_queue_head(sk);
  1847. if (tcp_skb_is_last(sk, skb))
  1848. return 1;
  1849. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1850. tcp_for_write_queue_from(skb, sk) {
  1851. if (skb == tcp_send_head(sk))
  1852. break;
  1853. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1854. return 0;
  1855. /* Short-circuit when first non-SACKed skb has been checked */
  1856. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1857. break;
  1858. }
  1859. return 1;
  1860. }
  1861. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1862. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1863. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1864. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1865. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1866. * bits are handled if the Loss state is really to be entered (in
  1867. * tcp_enter_frto_loss).
  1868. *
  1869. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1870. * does:
  1871. * "Reduce ssthresh if it has not yet been made inside this window."
  1872. */
  1873. void tcp_enter_frto(struct sock *sk)
  1874. {
  1875. const struct inet_connection_sock *icsk = inet_csk(sk);
  1876. struct tcp_sock *tp = tcp_sk(sk);
  1877. struct sk_buff *skb;
  1878. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1879. tp->snd_una == tp->high_seq ||
  1880. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1881. !icsk->icsk_retransmits)) {
  1882. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1883. /* Our state is too optimistic in ssthresh() call because cwnd
  1884. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1885. * recovery has not yet completed. Pattern would be this: RTO,
  1886. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1887. * up here twice).
  1888. * RFC4138 should be more specific on what to do, even though
  1889. * RTO is quite unlikely to occur after the first Cumulative ACK
  1890. * due to back-off and complexity of triggering events ...
  1891. */
  1892. if (tp->frto_counter) {
  1893. u32 stored_cwnd;
  1894. stored_cwnd = tp->snd_cwnd;
  1895. tp->snd_cwnd = 2;
  1896. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1897. tp->snd_cwnd = stored_cwnd;
  1898. } else {
  1899. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1900. }
  1901. /* ... in theory, cong.control module could do "any tricks" in
  1902. * ssthresh(), which means that ca_state, lost bits and lost_out
  1903. * counter would have to be faked before the call occurs. We
  1904. * consider that too expensive, unlikely and hacky, so modules
  1905. * using these in ssthresh() must deal these incompatibility
  1906. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1907. */
  1908. tcp_ca_event(sk, CA_EVENT_FRTO);
  1909. }
  1910. tp->undo_marker = tp->snd_una;
  1911. tp->undo_retrans = 0;
  1912. skb = tcp_write_queue_head(sk);
  1913. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1914. tp->undo_marker = 0;
  1915. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1916. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1917. tp->retrans_out -= tcp_skb_pcount(skb);
  1918. }
  1919. tcp_verify_left_out(tp);
  1920. /* Too bad if TCP was application limited */
  1921. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1922. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1923. * The last condition is necessary at least in tp->frto_counter case.
  1924. */
  1925. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1926. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1927. after(tp->high_seq, tp->snd_una)) {
  1928. tp->frto_highmark = tp->high_seq;
  1929. } else {
  1930. tp->frto_highmark = tp->snd_nxt;
  1931. }
  1932. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1933. tp->high_seq = tp->snd_nxt;
  1934. tp->frto_counter = 1;
  1935. }
  1936. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1937. * which indicates that we should follow the traditional RTO recovery,
  1938. * i.e. mark everything lost and do go-back-N retransmission.
  1939. */
  1940. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1941. {
  1942. struct tcp_sock *tp = tcp_sk(sk);
  1943. struct sk_buff *skb;
  1944. tp->lost_out = 0;
  1945. tp->retrans_out = 0;
  1946. if (tcp_is_reno(tp))
  1947. tcp_reset_reno_sack(tp);
  1948. tcp_for_write_queue(skb, sk) {
  1949. if (skb == tcp_send_head(sk))
  1950. break;
  1951. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1952. /*
  1953. * Count the retransmission made on RTO correctly (only when
  1954. * waiting for the first ACK and did not get it)...
  1955. */
  1956. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1957. /* For some reason this R-bit might get cleared? */
  1958. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1959. tp->retrans_out += tcp_skb_pcount(skb);
  1960. /* ...enter this if branch just for the first segment */
  1961. flag |= FLAG_DATA_ACKED;
  1962. } else {
  1963. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1964. tp->undo_marker = 0;
  1965. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1966. }
  1967. /* Marking forward transmissions that were made after RTO lost
  1968. * can cause unnecessary retransmissions in some scenarios,
  1969. * SACK blocks will mitigate that in some but not in all cases.
  1970. * We used to not mark them but it was causing break-ups with
  1971. * receivers that do only in-order receival.
  1972. *
  1973. * TODO: we could detect presence of such receiver and select
  1974. * different behavior per flow.
  1975. */
  1976. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1977. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1978. tp->lost_out += tcp_skb_pcount(skb);
  1979. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1980. }
  1981. }
  1982. tcp_verify_left_out(tp);
  1983. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1984. tp->snd_cwnd_cnt = 0;
  1985. tp->snd_cwnd_stamp = tcp_time_stamp;
  1986. tp->frto_counter = 0;
  1987. tp->reordering = min_t(unsigned int, tp->reordering,
  1988. sysctl_tcp_reordering);
  1989. tcp_set_ca_state(sk, TCP_CA_Loss);
  1990. tp->high_seq = tp->snd_nxt;
  1991. TCP_ECN_queue_cwr(tp);
  1992. tcp_clear_all_retrans_hints(tp);
  1993. }
  1994. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1995. {
  1996. tp->retrans_out = 0;
  1997. tp->lost_out = 0;
  1998. tp->undo_marker = 0;
  1999. tp->undo_retrans = -1;
  2000. }
  2001. void tcp_clear_retrans(struct tcp_sock *tp)
  2002. {
  2003. tcp_clear_retrans_partial(tp);
  2004. tp->fackets_out = 0;
  2005. tp->sacked_out = 0;
  2006. }
  2007. /* Enter Loss state. If "how" is not zero, forget all SACK information
  2008. * and reset tags completely, otherwise preserve SACKs. If receiver
  2009. * dropped its ofo queue, we will know this due to reneging detection.
  2010. */
  2011. void tcp_enter_loss(struct sock *sk, int how)
  2012. {
  2013. const struct inet_connection_sock *icsk = inet_csk(sk);
  2014. struct tcp_sock *tp = tcp_sk(sk);
  2015. struct sk_buff *skb;
  2016. /* Reduce ssthresh if it has not yet been made inside this window. */
  2017. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  2018. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  2019. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2020. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2021. tcp_ca_event(sk, CA_EVENT_LOSS);
  2022. }
  2023. tp->snd_cwnd = 1;
  2024. tp->snd_cwnd_cnt = 0;
  2025. tp->snd_cwnd_stamp = tcp_time_stamp;
  2026. tcp_clear_retrans_partial(tp);
  2027. if (tcp_is_reno(tp))
  2028. tcp_reset_reno_sack(tp);
  2029. tp->undo_marker = tp->snd_una;
  2030. if (how) {
  2031. tp->sacked_out = 0;
  2032. tp->fackets_out = 0;
  2033. }
  2034. tcp_clear_all_retrans_hints(tp);
  2035. tcp_for_write_queue(skb, sk) {
  2036. if (skb == tcp_send_head(sk))
  2037. break;
  2038. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  2039. tp->undo_marker = 0;
  2040. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  2041. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  2042. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  2043. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  2044. tp->lost_out += tcp_skb_pcount(skb);
  2045. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  2046. }
  2047. }
  2048. tcp_verify_left_out(tp);
  2049. tp->reordering = min_t(unsigned int, tp->reordering,
  2050. sysctl_tcp_reordering);
  2051. tcp_set_ca_state(sk, TCP_CA_Loss);
  2052. tp->high_seq = tp->snd_nxt;
  2053. TCP_ECN_queue_cwr(tp);
  2054. /* Abort F-RTO algorithm if one is in progress */
  2055. tp->frto_counter = 0;
  2056. }
  2057. /* If ACK arrived pointing to a remembered SACK, it means that our
  2058. * remembered SACKs do not reflect real state of receiver i.e.
  2059. * receiver _host_ is heavily congested (or buggy).
  2060. *
  2061. * Do processing similar to RTO timeout.
  2062. */
  2063. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  2064. {
  2065. if (flag & FLAG_SACK_RENEGING) {
  2066. struct inet_connection_sock *icsk = inet_csk(sk);
  2067. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  2068. tcp_enter_loss(sk, 1);
  2069. icsk->icsk_retransmits++;
  2070. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  2071. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2072. icsk->icsk_rto, TCP_RTO_MAX);
  2073. return 1;
  2074. }
  2075. return 0;
  2076. }
  2077. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  2078. {
  2079. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  2080. }
  2081. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  2082. * counter when SACK is enabled (without SACK, sacked_out is used for
  2083. * that purpose).
  2084. *
  2085. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  2086. * segments up to the highest received SACK block so far and holes in
  2087. * between them.
  2088. *
  2089. * With reordering, holes may still be in flight, so RFC3517 recovery
  2090. * uses pure sacked_out (total number of SACKed segments) even though
  2091. * it violates the RFC that uses duplicate ACKs, often these are equal
  2092. * but when e.g. out-of-window ACKs or packet duplication occurs,
  2093. * they differ. Since neither occurs due to loss, TCP should really
  2094. * ignore them.
  2095. */
  2096. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  2097. {
  2098. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2099. }
  2100. static inline int tcp_skb_timedout(const struct sock *sk,
  2101. const struct sk_buff *skb)
  2102. {
  2103. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  2104. }
  2105. static inline int tcp_head_timedout(const struct sock *sk)
  2106. {
  2107. const struct tcp_sock *tp = tcp_sk(sk);
  2108. return tp->packets_out &&
  2109. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2110. }
  2111. /* Linux NewReno/SACK/FACK/ECN state machine.
  2112. * --------------------------------------
  2113. *
  2114. * "Open" Normal state, no dubious events, fast path.
  2115. * "Disorder" In all the respects it is "Open",
  2116. * but requires a bit more attention. It is entered when
  2117. * we see some SACKs or dupacks. It is split of "Open"
  2118. * mainly to move some processing from fast path to slow one.
  2119. * "CWR" CWND was reduced due to some Congestion Notification event.
  2120. * It can be ECN, ICMP source quench, local device congestion.
  2121. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2122. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2123. *
  2124. * tcp_fastretrans_alert() is entered:
  2125. * - each incoming ACK, if state is not "Open"
  2126. * - when arrived ACK is unusual, namely:
  2127. * * SACK
  2128. * * Duplicate ACK.
  2129. * * ECN ECE.
  2130. *
  2131. * Counting packets in flight is pretty simple.
  2132. *
  2133. * in_flight = packets_out - left_out + retrans_out
  2134. *
  2135. * packets_out is SND.NXT-SND.UNA counted in packets.
  2136. *
  2137. * retrans_out is number of retransmitted segments.
  2138. *
  2139. * left_out is number of segments left network, but not ACKed yet.
  2140. *
  2141. * left_out = sacked_out + lost_out
  2142. *
  2143. * sacked_out: Packets, which arrived to receiver out of order
  2144. * and hence not ACKed. With SACKs this number is simply
  2145. * amount of SACKed data. Even without SACKs
  2146. * it is easy to give pretty reliable estimate of this number,
  2147. * counting duplicate ACKs.
  2148. *
  2149. * lost_out: Packets lost by network. TCP has no explicit
  2150. * "loss notification" feedback from network (for now).
  2151. * It means that this number can be only _guessed_.
  2152. * Actually, it is the heuristics to predict lossage that
  2153. * distinguishes different algorithms.
  2154. *
  2155. * F.e. after RTO, when all the queue is considered as lost,
  2156. * lost_out = packets_out and in_flight = retrans_out.
  2157. *
  2158. * Essentially, we have now two algorithms counting
  2159. * lost packets.
  2160. *
  2161. * FACK: It is the simplest heuristics. As soon as we decided
  2162. * that something is lost, we decide that _all_ not SACKed
  2163. * packets until the most forward SACK are lost. I.e.
  2164. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2165. * It is absolutely correct estimate, if network does not reorder
  2166. * packets. And it loses any connection to reality when reordering
  2167. * takes place. We use FACK by default until reordering
  2168. * is suspected on the path to this destination.
  2169. *
  2170. * NewReno: when Recovery is entered, we assume that one segment
  2171. * is lost (classic Reno). While we are in Recovery and
  2172. * a partial ACK arrives, we assume that one more packet
  2173. * is lost (NewReno). This heuristics are the same in NewReno
  2174. * and SACK.
  2175. *
  2176. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2177. * deflation etc. CWND is real congestion window, never inflated, changes
  2178. * only according to classic VJ rules.
  2179. *
  2180. * Really tricky (and requiring careful tuning) part of algorithm
  2181. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2182. * The first determines the moment _when_ we should reduce CWND and,
  2183. * hence, slow down forward transmission. In fact, it determines the moment
  2184. * when we decide that hole is caused by loss, rather than by a reorder.
  2185. *
  2186. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2187. * holes, caused by lost packets.
  2188. *
  2189. * And the most logically complicated part of algorithm is undo
  2190. * heuristics. We detect false retransmits due to both too early
  2191. * fast retransmit (reordering) and underestimated RTO, analyzing
  2192. * timestamps and D-SACKs. When we detect that some segments were
  2193. * retransmitted by mistake and CWND reduction was wrong, we undo
  2194. * window reduction and abort recovery phase. This logic is hidden
  2195. * inside several functions named tcp_try_undo_<something>.
  2196. */
  2197. /* This function decides, when we should leave Disordered state
  2198. * and enter Recovery phase, reducing congestion window.
  2199. *
  2200. * Main question: may we further continue forward transmission
  2201. * with the same cwnd?
  2202. */
  2203. static int tcp_time_to_recover(struct sock *sk)
  2204. {
  2205. struct tcp_sock *tp = tcp_sk(sk);
  2206. __u32 packets_out;
  2207. /* Do not perform any recovery during F-RTO algorithm */
  2208. if (tp->frto_counter)
  2209. return 0;
  2210. /* Trick#1: The loss is proven. */
  2211. if (tp->lost_out)
  2212. return 1;
  2213. /* Not-A-Trick#2 : Classic rule... */
  2214. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2215. return 1;
  2216. /* Trick#3 : when we use RFC2988 timer restart, fast
  2217. * retransmit can be triggered by timeout of queue head.
  2218. */
  2219. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2220. return 1;
  2221. /* Trick#4: It is still not OK... But will it be useful to delay
  2222. * recovery more?
  2223. */
  2224. packets_out = tp->packets_out;
  2225. if (packets_out <= tp->reordering &&
  2226. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2227. !tcp_may_send_now(sk)) {
  2228. /* We have nothing to send. This connection is limited
  2229. * either by receiver window or by application.
  2230. */
  2231. return 1;
  2232. }
  2233. /* If a thin stream is detected, retransmit after first
  2234. * received dupack. Employ only if SACK is supported in order
  2235. * to avoid possible corner-case series of spurious retransmissions
  2236. * Use only if there are no unsent data.
  2237. */
  2238. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2239. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2240. tcp_is_sack(tp) && !tcp_send_head(sk))
  2241. return 1;
  2242. return 0;
  2243. }
  2244. /* New heuristics: it is possible only after we switched to restart timer
  2245. * each time when something is ACKed. Hence, we can detect timed out packets
  2246. * during fast retransmit without falling to slow start.
  2247. *
  2248. * Usefulness of this as is very questionable, since we should know which of
  2249. * the segments is the next to timeout which is relatively expensive to find
  2250. * in general case unless we add some data structure just for that. The
  2251. * current approach certainly won't find the right one too often and when it
  2252. * finally does find _something_ it usually marks large part of the window
  2253. * right away (because a retransmission with a larger timestamp blocks the
  2254. * loop from advancing). -ij
  2255. */
  2256. static void tcp_timeout_skbs(struct sock *sk)
  2257. {
  2258. struct tcp_sock *tp = tcp_sk(sk);
  2259. struct sk_buff *skb;
  2260. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2261. return;
  2262. skb = tp->scoreboard_skb_hint;
  2263. if (tp->scoreboard_skb_hint == NULL)
  2264. skb = tcp_write_queue_head(sk);
  2265. tcp_for_write_queue_from(skb, sk) {
  2266. if (skb == tcp_send_head(sk))
  2267. break;
  2268. if (!tcp_skb_timedout(sk, skb))
  2269. break;
  2270. tcp_skb_mark_lost(tp, skb);
  2271. }
  2272. tp->scoreboard_skb_hint = skb;
  2273. tcp_verify_left_out(tp);
  2274. }
  2275. /* Detect loss in event "A" above by marking head of queue up as lost.
  2276. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2277. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2278. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2279. * the maximum SACKed segments to pass before reaching this limit.
  2280. */
  2281. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2282. {
  2283. struct tcp_sock *tp = tcp_sk(sk);
  2284. struct sk_buff *skb;
  2285. int cnt, oldcnt;
  2286. int err;
  2287. unsigned int mss;
  2288. /* Use SACK to deduce losses of new sequences sent during recovery */
  2289. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2290. WARN_ON(packets > tp->packets_out);
  2291. if (tp->lost_skb_hint) {
  2292. skb = tp->lost_skb_hint;
  2293. cnt = tp->lost_cnt_hint;
  2294. /* Head already handled? */
  2295. if (mark_head && skb != tcp_write_queue_head(sk))
  2296. return;
  2297. } else {
  2298. skb = tcp_write_queue_head(sk);
  2299. cnt = 0;
  2300. }
  2301. tcp_for_write_queue_from(skb, sk) {
  2302. if (skb == tcp_send_head(sk))
  2303. break;
  2304. /* TODO: do this better */
  2305. /* this is not the most efficient way to do this... */
  2306. tp->lost_skb_hint = skb;
  2307. tp->lost_cnt_hint = cnt;
  2308. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2309. break;
  2310. oldcnt = cnt;
  2311. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2312. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2313. cnt += tcp_skb_pcount(skb);
  2314. if (cnt > packets) {
  2315. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2316. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  2317. (oldcnt >= packets))
  2318. break;
  2319. mss = skb_shinfo(skb)->gso_size;
  2320. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2321. if (err < 0)
  2322. break;
  2323. cnt = packets;
  2324. }
  2325. tcp_skb_mark_lost(tp, skb);
  2326. if (mark_head)
  2327. break;
  2328. }
  2329. tcp_verify_left_out(tp);
  2330. }
  2331. /* Account newly detected lost packet(s) */
  2332. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2333. {
  2334. struct tcp_sock *tp = tcp_sk(sk);
  2335. if (tcp_is_reno(tp)) {
  2336. tcp_mark_head_lost(sk, 1, 1);
  2337. } else if (tcp_is_fack(tp)) {
  2338. int lost = tp->fackets_out - tp->reordering;
  2339. if (lost <= 0)
  2340. lost = 1;
  2341. tcp_mark_head_lost(sk, lost, 0);
  2342. } else {
  2343. int sacked_upto = tp->sacked_out - tp->reordering;
  2344. if (sacked_upto >= 0)
  2345. tcp_mark_head_lost(sk, sacked_upto, 0);
  2346. else if (fast_rexmit)
  2347. tcp_mark_head_lost(sk, 1, 1);
  2348. }
  2349. tcp_timeout_skbs(sk);
  2350. }
  2351. /* CWND moderation, preventing bursts due to too big ACKs
  2352. * in dubious situations.
  2353. */
  2354. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2355. {
  2356. tp->snd_cwnd = min(tp->snd_cwnd,
  2357. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2358. tp->snd_cwnd_stamp = tcp_time_stamp;
  2359. }
  2360. /* Lower bound on congestion window is slow start threshold
  2361. * unless congestion avoidance choice decides to overide it.
  2362. */
  2363. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2364. {
  2365. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2366. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2367. }
  2368. /* Decrease cwnd each second ack. */
  2369. static void tcp_cwnd_down(struct sock *sk, int flag)
  2370. {
  2371. struct tcp_sock *tp = tcp_sk(sk);
  2372. int decr = tp->snd_cwnd_cnt + 1;
  2373. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2374. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2375. tp->snd_cwnd_cnt = decr & 1;
  2376. decr >>= 1;
  2377. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2378. tp->snd_cwnd -= decr;
  2379. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2380. tp->snd_cwnd_stamp = tcp_time_stamp;
  2381. }
  2382. }
  2383. /* Nothing was retransmitted or returned timestamp is less
  2384. * than timestamp of the first retransmission.
  2385. */
  2386. static inline int tcp_packet_delayed(const struct tcp_sock *tp)
  2387. {
  2388. return !tp->retrans_stamp ||
  2389. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2390. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2391. }
  2392. /* Undo procedures. */
  2393. #if FASTRETRANS_DEBUG > 1
  2394. static void DBGUNDO(struct sock *sk, const char *msg)
  2395. {
  2396. struct tcp_sock *tp = tcp_sk(sk);
  2397. struct inet_sock *inet = inet_sk(sk);
  2398. if (sk->sk_family == AF_INET) {
  2399. printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2400. msg,
  2401. &inet->inet_daddr, ntohs(inet->inet_dport),
  2402. tp->snd_cwnd, tcp_left_out(tp),
  2403. tp->snd_ssthresh, tp->prior_ssthresh,
  2404. tp->packets_out);
  2405. }
  2406. #if IS_ENABLED(CONFIG_IPV6)
  2407. else if (sk->sk_family == AF_INET6) {
  2408. struct ipv6_pinfo *np = inet6_sk(sk);
  2409. printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2410. msg,
  2411. &np->daddr, ntohs(inet->inet_dport),
  2412. tp->snd_cwnd, tcp_left_out(tp),
  2413. tp->snd_ssthresh, tp->prior_ssthresh,
  2414. tp->packets_out);
  2415. }
  2416. #endif
  2417. }
  2418. #else
  2419. #define DBGUNDO(x...) do { } while (0)
  2420. #endif
  2421. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2422. {
  2423. struct tcp_sock *tp = tcp_sk(sk);
  2424. if (tp->prior_ssthresh) {
  2425. const struct inet_connection_sock *icsk = inet_csk(sk);
  2426. if (icsk->icsk_ca_ops->undo_cwnd)
  2427. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2428. else
  2429. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2430. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2431. tp->snd_ssthresh = tp->prior_ssthresh;
  2432. TCP_ECN_withdraw_cwr(tp);
  2433. }
  2434. } else {
  2435. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2436. }
  2437. tp->snd_cwnd_stamp = tcp_time_stamp;
  2438. }
  2439. static inline int tcp_may_undo(const struct tcp_sock *tp)
  2440. {
  2441. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2442. }
  2443. /* People celebrate: "We love our President!" */
  2444. static int tcp_try_undo_recovery(struct sock *sk)
  2445. {
  2446. struct tcp_sock *tp = tcp_sk(sk);
  2447. if (tcp_may_undo(tp)) {
  2448. int mib_idx;
  2449. /* Happy end! We did not retransmit anything
  2450. * or our original transmission succeeded.
  2451. */
  2452. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2453. tcp_undo_cwr(sk, true);
  2454. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2455. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2456. else
  2457. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2458. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2459. tp->undo_marker = 0;
  2460. }
  2461. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2462. /* Hold old state until something *above* high_seq
  2463. * is ACKed. For Reno it is MUST to prevent false
  2464. * fast retransmits (RFC2582). SACK TCP is safe. */
  2465. tcp_moderate_cwnd(tp);
  2466. return 1;
  2467. }
  2468. tcp_set_ca_state(sk, TCP_CA_Open);
  2469. return 0;
  2470. }
  2471. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2472. static void tcp_try_undo_dsack(struct sock *sk)
  2473. {
  2474. struct tcp_sock *tp = tcp_sk(sk);
  2475. if (tp->undo_marker && !tp->undo_retrans) {
  2476. DBGUNDO(sk, "D-SACK");
  2477. tcp_undo_cwr(sk, true);
  2478. tp->undo_marker = 0;
  2479. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2480. }
  2481. }
  2482. /* We can clear retrans_stamp when there are no retransmissions in the
  2483. * window. It would seem that it is trivially available for us in
  2484. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2485. * what will happen if errors occur when sending retransmission for the
  2486. * second time. ...It could the that such segment has only
  2487. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2488. * the head skb is enough except for some reneging corner cases that
  2489. * are not worth the effort.
  2490. *
  2491. * Main reason for all this complexity is the fact that connection dying
  2492. * time now depends on the validity of the retrans_stamp, in particular,
  2493. * that successive retransmissions of a segment must not advance
  2494. * retrans_stamp under any conditions.
  2495. */
  2496. static int tcp_any_retrans_done(const struct sock *sk)
  2497. {
  2498. const struct tcp_sock *tp = tcp_sk(sk);
  2499. struct sk_buff *skb;
  2500. if (tp->retrans_out)
  2501. return 1;
  2502. skb = tcp_write_queue_head(sk);
  2503. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2504. return 1;
  2505. return 0;
  2506. }
  2507. /* Undo during fast recovery after partial ACK. */
  2508. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2509. {
  2510. struct tcp_sock *tp = tcp_sk(sk);
  2511. /* Partial ACK arrived. Force Hoe's retransmit. */
  2512. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2513. if (tcp_may_undo(tp)) {
  2514. /* Plain luck! Hole if filled with delayed
  2515. * packet, rather than with a retransmit.
  2516. */
  2517. if (!tcp_any_retrans_done(sk))
  2518. tp->retrans_stamp = 0;
  2519. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2520. DBGUNDO(sk, "Hoe");
  2521. tcp_undo_cwr(sk, false);
  2522. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2523. /* So... Do not make Hoe's retransmit yet.
  2524. * If the first packet was delayed, the rest
  2525. * ones are most probably delayed as well.
  2526. */
  2527. failed = 0;
  2528. }
  2529. return failed;
  2530. }
  2531. /* Undo during loss recovery after partial ACK. */
  2532. static int tcp_try_undo_loss(struct sock *sk)
  2533. {
  2534. struct tcp_sock *tp = tcp_sk(sk);
  2535. if (tcp_may_undo(tp)) {
  2536. struct sk_buff *skb;
  2537. tcp_for_write_queue(skb, sk) {
  2538. if (skb == tcp_send_head(sk))
  2539. break;
  2540. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2541. }
  2542. tcp_clear_all_retrans_hints(tp);
  2543. DBGUNDO(sk, "partial loss");
  2544. tp->lost_out = 0;
  2545. tcp_undo_cwr(sk, true);
  2546. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2547. inet_csk(sk)->icsk_retransmits = 0;
  2548. tp->undo_marker = 0;
  2549. if (tcp_is_sack(tp))
  2550. tcp_set_ca_state(sk, TCP_CA_Open);
  2551. return 1;
  2552. }
  2553. return 0;
  2554. }
  2555. static inline void tcp_complete_cwr(struct sock *sk)
  2556. {
  2557. struct tcp_sock *tp = tcp_sk(sk);
  2558. /* Do not moderate cwnd if it's already undone in cwr or recovery. */
  2559. if (tp->undo_marker) {
  2560. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
  2561. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2562. tp->snd_cwnd_stamp = tcp_time_stamp;
  2563. } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
  2564. /* PRR algorithm. */
  2565. tp->snd_cwnd = tp->snd_ssthresh;
  2566. tp->snd_cwnd_stamp = tcp_time_stamp;
  2567. }
  2568. }
  2569. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2570. }
  2571. static void tcp_try_keep_open(struct sock *sk)
  2572. {
  2573. struct tcp_sock *tp = tcp_sk(sk);
  2574. int state = TCP_CA_Open;
  2575. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2576. state = TCP_CA_Disorder;
  2577. if (inet_csk(sk)->icsk_ca_state != state) {
  2578. tcp_set_ca_state(sk, state);
  2579. tp->high_seq = tp->snd_nxt;
  2580. }
  2581. }
  2582. static void tcp_try_to_open(struct sock *sk, int flag)
  2583. {
  2584. struct tcp_sock *tp = tcp_sk(sk);
  2585. tcp_verify_left_out(tp);
  2586. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2587. tp->retrans_stamp = 0;
  2588. if (flag & FLAG_ECE)
  2589. tcp_enter_cwr(sk, 1);
  2590. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2591. tcp_try_keep_open(sk);
  2592. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2593. tcp_moderate_cwnd(tp);
  2594. } else {
  2595. tcp_cwnd_down(sk, flag);
  2596. }
  2597. }
  2598. static void tcp_mtup_probe_failed(struct sock *sk)
  2599. {
  2600. struct inet_connection_sock *icsk = inet_csk(sk);
  2601. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2602. icsk->icsk_mtup.probe_size = 0;
  2603. }
  2604. static void tcp_mtup_probe_success(struct sock *sk)
  2605. {
  2606. struct tcp_sock *tp = tcp_sk(sk);
  2607. struct inet_connection_sock *icsk = inet_csk(sk);
  2608. /* FIXME: breaks with very large cwnd */
  2609. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2610. tp->snd_cwnd = tp->snd_cwnd *
  2611. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2612. icsk->icsk_mtup.probe_size;
  2613. tp->snd_cwnd_cnt = 0;
  2614. tp->snd_cwnd_stamp = tcp_time_stamp;
  2615. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2616. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2617. icsk->icsk_mtup.probe_size = 0;
  2618. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2619. }
  2620. /* Do a simple retransmit without using the backoff mechanisms in
  2621. * tcp_timer. This is used for path mtu discovery.
  2622. * The socket is already locked here.
  2623. */
  2624. void tcp_simple_retransmit(struct sock *sk)
  2625. {
  2626. const struct inet_connection_sock *icsk = inet_csk(sk);
  2627. struct tcp_sock *tp = tcp_sk(sk);
  2628. struct sk_buff *skb;
  2629. unsigned int mss = tcp_current_mss(sk);
  2630. u32 prior_lost = tp->lost_out;
  2631. tcp_for_write_queue(skb, sk) {
  2632. if (skb == tcp_send_head(sk))
  2633. break;
  2634. if (tcp_skb_seglen(skb) > mss &&
  2635. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2636. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2637. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2638. tp->retrans_out -= tcp_skb_pcount(skb);
  2639. }
  2640. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2641. }
  2642. }
  2643. tcp_clear_retrans_hints_partial(tp);
  2644. if (prior_lost == tp->lost_out)
  2645. return;
  2646. if (tcp_is_reno(tp))
  2647. tcp_limit_reno_sacked(tp);
  2648. tcp_verify_left_out(tp);
  2649. /* Don't muck with the congestion window here.
  2650. * Reason is that we do not increase amount of _data_
  2651. * in network, but units changed and effective
  2652. * cwnd/ssthresh really reduced now.
  2653. */
  2654. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2655. tp->high_seq = tp->snd_nxt;
  2656. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2657. tp->prior_ssthresh = 0;
  2658. tp->undo_marker = 0;
  2659. tcp_set_ca_state(sk, TCP_CA_Loss);
  2660. }
  2661. tcp_xmit_retransmit_queue(sk);
  2662. }
  2663. EXPORT_SYMBOL(tcp_simple_retransmit);
  2664. /* This function implements the PRR algorithm, specifcally the PRR-SSRB
  2665. * (proportional rate reduction with slow start reduction bound) as described in
  2666. * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
  2667. * It computes the number of packets to send (sndcnt) based on packets newly
  2668. * delivered:
  2669. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2670. * cwnd reductions across a full RTT.
  2671. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2672. * losses and/or application stalls), do not perform any further cwnd
  2673. * reductions, but instead slow start up to ssthresh.
  2674. */
  2675. static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
  2676. int fast_rexmit, int flag)
  2677. {
  2678. struct tcp_sock *tp = tcp_sk(sk);
  2679. int sndcnt = 0;
  2680. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2681. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2682. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2683. tp->prior_cwnd - 1;
  2684. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2685. } else {
  2686. sndcnt = min_t(int, delta,
  2687. max_t(int, tp->prr_delivered - tp->prr_out,
  2688. newly_acked_sacked) + 1);
  2689. }
  2690. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2691. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2692. }
  2693. /* Process an event, which can update packets-in-flight not trivially.
  2694. * Main goal of this function is to calculate new estimate for left_out,
  2695. * taking into account both packets sitting in receiver's buffer and
  2696. * packets lost by network.
  2697. *
  2698. * Besides that it does CWND reduction, when packet loss is detected
  2699. * and changes state of machine.
  2700. *
  2701. * It does _not_ decide what to send, it is made in function
  2702. * tcp_xmit_retransmit_queue().
  2703. */
  2704. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2705. int prior_sacked, int prior_packets,
  2706. bool is_dupack, int flag)
  2707. {
  2708. struct inet_connection_sock *icsk = inet_csk(sk);
  2709. struct tcp_sock *tp = tcp_sk(sk);
  2710. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2711. (tcp_fackets_out(tp) > tp->reordering));
  2712. int newly_acked_sacked = 0;
  2713. int fast_rexmit = 0, mib_idx;
  2714. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2715. tp->sacked_out = 0;
  2716. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2717. tp->fackets_out = 0;
  2718. /* Now state machine starts.
  2719. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2720. if (flag & FLAG_ECE)
  2721. tp->prior_ssthresh = 0;
  2722. /* B. In all the states check for reneging SACKs. */
  2723. if (tcp_check_sack_reneging(sk, flag))
  2724. return;
  2725. /* C. Check consistency of the current state. */
  2726. tcp_verify_left_out(tp);
  2727. /* D. Check state exit conditions. State can be terminated
  2728. * when high_seq is ACKed. */
  2729. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2730. WARN_ON(tp->retrans_out != 0);
  2731. tp->retrans_stamp = 0;
  2732. } else if (!before(tp->snd_una, tp->high_seq)) {
  2733. switch (icsk->icsk_ca_state) {
  2734. case TCP_CA_Loss:
  2735. icsk->icsk_retransmits = 0;
  2736. if (tcp_try_undo_recovery(sk))
  2737. return;
  2738. break;
  2739. case TCP_CA_CWR:
  2740. /* CWR is to be held something *above* high_seq
  2741. * is ACKed for CWR bit to reach receiver. */
  2742. if (tp->snd_una != tp->high_seq) {
  2743. tcp_complete_cwr(sk);
  2744. tcp_set_ca_state(sk, TCP_CA_Open);
  2745. }
  2746. break;
  2747. case TCP_CA_Recovery:
  2748. if (tcp_is_reno(tp))
  2749. tcp_reset_reno_sack(tp);
  2750. if (tcp_try_undo_recovery(sk))
  2751. return;
  2752. tcp_complete_cwr(sk);
  2753. break;
  2754. }
  2755. }
  2756. /* E. Process state. */
  2757. switch (icsk->icsk_ca_state) {
  2758. case TCP_CA_Recovery:
  2759. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2760. if (tcp_is_reno(tp) && is_dupack)
  2761. tcp_add_reno_sack(sk);
  2762. } else
  2763. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2764. newly_acked_sacked = prior_packets - tp->packets_out +
  2765. tp->sacked_out - prior_sacked;
  2766. break;
  2767. case TCP_CA_Loss:
  2768. if (flag & FLAG_DATA_ACKED)
  2769. icsk->icsk_retransmits = 0;
  2770. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2771. tcp_reset_reno_sack(tp);
  2772. if (!tcp_try_undo_loss(sk)) {
  2773. tcp_moderate_cwnd(tp);
  2774. tcp_xmit_retransmit_queue(sk);
  2775. return;
  2776. }
  2777. if (icsk->icsk_ca_state != TCP_CA_Open)
  2778. return;
  2779. /* Loss is undone; fall through to processing in Open state. */
  2780. default:
  2781. if (tcp_is_reno(tp)) {
  2782. if (flag & FLAG_SND_UNA_ADVANCED)
  2783. tcp_reset_reno_sack(tp);
  2784. if (is_dupack)
  2785. tcp_add_reno_sack(sk);
  2786. }
  2787. newly_acked_sacked = prior_packets - tp->packets_out +
  2788. tp->sacked_out - prior_sacked;
  2789. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2790. tcp_try_undo_dsack(sk);
  2791. if (!tcp_time_to_recover(sk)) {
  2792. tcp_try_to_open(sk, flag);
  2793. return;
  2794. }
  2795. /* MTU probe failure: don't reduce cwnd */
  2796. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2797. icsk->icsk_mtup.probe_size &&
  2798. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2799. tcp_mtup_probe_failed(sk);
  2800. /* Restores the reduction we did in tcp_mtup_probe() */
  2801. tp->snd_cwnd++;
  2802. tcp_simple_retransmit(sk);
  2803. return;
  2804. }
  2805. /* Otherwise enter Recovery state */
  2806. if (tcp_is_reno(tp))
  2807. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2808. else
  2809. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2810. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2811. tp->high_seq = tp->snd_nxt;
  2812. tp->prior_ssthresh = 0;
  2813. tp->undo_marker = tp->snd_una;
  2814. tp->undo_retrans = tp->retrans_out ? : -1;
  2815. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2816. if (!(flag & FLAG_ECE))
  2817. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2818. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2819. TCP_ECN_queue_cwr(tp);
  2820. }
  2821. tp->snd_cwnd_cnt = 0;
  2822. tp->prior_cwnd = tp->snd_cwnd;
  2823. tp->prr_delivered = 0;
  2824. tp->prr_out = 0;
  2825. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2826. fast_rexmit = 1;
  2827. }
  2828. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2829. tcp_update_scoreboard(sk, fast_rexmit);
  2830. tp->prr_delivered += newly_acked_sacked;
  2831. tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
  2832. tcp_xmit_retransmit_queue(sk);
  2833. }
  2834. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2835. {
  2836. tcp_rtt_estimator(sk, seq_rtt);
  2837. tcp_set_rto(sk);
  2838. inet_csk(sk)->icsk_backoff = 0;
  2839. }
  2840. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2841. /* Read draft-ietf-tcplw-high-performance before mucking
  2842. * with this code. (Supersedes RFC1323)
  2843. */
  2844. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2845. {
  2846. /* RTTM Rule: A TSecr value received in a segment is used to
  2847. * update the averaged RTT measurement only if the segment
  2848. * acknowledges some new data, i.e., only if it advances the
  2849. * left edge of the send window.
  2850. *
  2851. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2852. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2853. *
  2854. * Changed: reset backoff as soon as we see the first valid sample.
  2855. * If we do not, we get strongly overestimated rto. With timestamps
  2856. * samples are accepted even from very old segments: f.e., when rtt=1
  2857. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2858. * answer arrives rto becomes 120 seconds! If at least one of segments
  2859. * in window is lost... Voila. --ANK (010210)
  2860. */
  2861. struct tcp_sock *tp = tcp_sk(sk);
  2862. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2863. }
  2864. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2865. {
  2866. /* We don't have a timestamp. Can only use
  2867. * packets that are not retransmitted to determine
  2868. * rtt estimates. Also, we must not reset the
  2869. * backoff for rto until we get a non-retransmitted
  2870. * packet. This allows us to deal with a situation
  2871. * where the network delay has increased suddenly.
  2872. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2873. */
  2874. if (flag & FLAG_RETRANS_DATA_ACKED)
  2875. return;
  2876. tcp_valid_rtt_meas(sk, seq_rtt);
  2877. }
  2878. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2879. const s32 seq_rtt)
  2880. {
  2881. const struct tcp_sock *tp = tcp_sk(sk);
  2882. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2883. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2884. tcp_ack_saw_tstamp(sk, flag);
  2885. else if (seq_rtt >= 0)
  2886. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2887. }
  2888. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2889. {
  2890. const struct inet_connection_sock *icsk = inet_csk(sk);
  2891. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2892. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2893. }
  2894. /* Restart timer after forward progress on connection.
  2895. * RFC2988 recommends to restart timer to now+rto.
  2896. */
  2897. static void tcp_rearm_rto(struct sock *sk)
  2898. {
  2899. const struct tcp_sock *tp = tcp_sk(sk);
  2900. if (!tp->packets_out) {
  2901. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2902. } else {
  2903. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2904. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2905. }
  2906. }
  2907. /* If we get here, the whole TSO packet has not been acked. */
  2908. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2909. {
  2910. struct tcp_sock *tp = tcp_sk(sk);
  2911. u32 packets_acked;
  2912. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2913. packets_acked = tcp_skb_pcount(skb);
  2914. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2915. return 0;
  2916. packets_acked -= tcp_skb_pcount(skb);
  2917. if (packets_acked) {
  2918. BUG_ON(tcp_skb_pcount(skb) == 0);
  2919. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2920. }
  2921. return packets_acked;
  2922. }
  2923. /* Remove acknowledged frames from the retransmission queue. If our packet
  2924. * is before the ack sequence we can discard it as it's confirmed to have
  2925. * arrived at the other end.
  2926. */
  2927. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2928. u32 prior_snd_una)
  2929. {
  2930. struct tcp_sock *tp = tcp_sk(sk);
  2931. const struct inet_connection_sock *icsk = inet_csk(sk);
  2932. struct sk_buff *skb;
  2933. u32 now = tcp_time_stamp;
  2934. int fully_acked = 1;
  2935. int flag = 0;
  2936. u32 pkts_acked = 0;
  2937. u32 reord = tp->packets_out;
  2938. u32 prior_sacked = tp->sacked_out;
  2939. s32 seq_rtt = -1;
  2940. s32 ca_seq_rtt = -1;
  2941. ktime_t last_ackt = net_invalid_timestamp();
  2942. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2943. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2944. u32 acked_pcount;
  2945. u8 sacked = scb->sacked;
  2946. /* Determine how many packets and what bytes were acked, tso and else */
  2947. if (after(scb->end_seq, tp->snd_una)) {
  2948. if (tcp_skb_pcount(skb) == 1 ||
  2949. !after(tp->snd_una, scb->seq))
  2950. break;
  2951. acked_pcount = tcp_tso_acked(sk, skb);
  2952. if (!acked_pcount)
  2953. break;
  2954. fully_acked = 0;
  2955. } else {
  2956. acked_pcount = tcp_skb_pcount(skb);
  2957. }
  2958. if (sacked & TCPCB_RETRANS) {
  2959. if (sacked & TCPCB_SACKED_RETRANS)
  2960. tp->retrans_out -= acked_pcount;
  2961. flag |= FLAG_RETRANS_DATA_ACKED;
  2962. ca_seq_rtt = -1;
  2963. seq_rtt = -1;
  2964. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2965. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2966. } else {
  2967. ca_seq_rtt = now - scb->when;
  2968. last_ackt = skb->tstamp;
  2969. if (seq_rtt < 0) {
  2970. seq_rtt = ca_seq_rtt;
  2971. }
  2972. if (!(sacked & TCPCB_SACKED_ACKED))
  2973. reord = min(pkts_acked, reord);
  2974. }
  2975. if (sacked & TCPCB_SACKED_ACKED)
  2976. tp->sacked_out -= acked_pcount;
  2977. if (sacked & TCPCB_LOST)
  2978. tp->lost_out -= acked_pcount;
  2979. tp->packets_out -= acked_pcount;
  2980. pkts_acked += acked_pcount;
  2981. /* Initial outgoing SYN's get put onto the write_queue
  2982. * just like anything else we transmit. It is not
  2983. * true data, and if we misinform our callers that
  2984. * this ACK acks real data, we will erroneously exit
  2985. * connection startup slow start one packet too
  2986. * quickly. This is severely frowned upon behavior.
  2987. */
  2988. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2989. flag |= FLAG_DATA_ACKED;
  2990. } else {
  2991. flag |= FLAG_SYN_ACKED;
  2992. tp->retrans_stamp = 0;
  2993. }
  2994. if (!fully_acked)
  2995. break;
  2996. tcp_unlink_write_queue(skb, sk);
  2997. sk_wmem_free_skb(sk, skb);
  2998. tp->scoreboard_skb_hint = NULL;
  2999. if (skb == tp->retransmit_skb_hint)
  3000. tp->retransmit_skb_hint = NULL;
  3001. if (skb == tp->lost_skb_hint)
  3002. tp->lost_skb_hint = NULL;
  3003. }
  3004. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  3005. tp->snd_up = tp->snd_una;
  3006. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  3007. flag |= FLAG_SACK_RENEGING;
  3008. if (flag & FLAG_ACKED) {
  3009. const struct tcp_congestion_ops *ca_ops
  3010. = inet_csk(sk)->icsk_ca_ops;
  3011. if (unlikely(icsk->icsk_mtup.probe_size &&
  3012. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  3013. tcp_mtup_probe_success(sk);
  3014. }
  3015. tcp_ack_update_rtt(sk, flag, seq_rtt);
  3016. tcp_rearm_rto(sk);
  3017. if (tcp_is_reno(tp)) {
  3018. tcp_remove_reno_sacks(sk, pkts_acked);
  3019. } else {
  3020. int delta;
  3021. /* Non-retransmitted hole got filled? That's reordering */
  3022. if (reord < prior_fackets)
  3023. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  3024. delta = tcp_is_fack(tp) ? pkts_acked :
  3025. prior_sacked - tp->sacked_out;
  3026. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  3027. }
  3028. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  3029. if (ca_ops->pkts_acked) {
  3030. s32 rtt_us = -1;
  3031. /* Is the ACK triggering packet unambiguous? */
  3032. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  3033. /* High resolution needed and available? */
  3034. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  3035. !ktime_equal(last_ackt,
  3036. net_invalid_timestamp()))
  3037. rtt_us = ktime_us_delta(ktime_get_real(),
  3038. last_ackt);
  3039. else if (ca_seq_rtt >= 0)
  3040. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  3041. }
  3042. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  3043. }
  3044. }
  3045. #if FASTRETRANS_DEBUG > 0
  3046. WARN_ON((int)tp->sacked_out < 0);
  3047. WARN_ON((int)tp->lost_out < 0);
  3048. WARN_ON((int)tp->retrans_out < 0);
  3049. if (!tp->packets_out && tcp_is_sack(tp)) {
  3050. icsk = inet_csk(sk);
  3051. if (tp->lost_out) {
  3052. printk(KERN_DEBUG "Leak l=%u %d\n",
  3053. tp->lost_out, icsk->icsk_ca_state);
  3054. tp->lost_out = 0;
  3055. }
  3056. if (tp->sacked_out) {
  3057. printk(KERN_DEBUG "Leak s=%u %d\n",
  3058. tp->sacked_out, icsk->icsk_ca_state);
  3059. tp->sacked_out = 0;
  3060. }
  3061. if (tp->retrans_out) {
  3062. printk(KERN_DEBUG "Leak r=%u %d\n",
  3063. tp->retrans_out, icsk->icsk_ca_state);
  3064. tp->retrans_out = 0;
  3065. }
  3066. }
  3067. #endif
  3068. return flag;
  3069. }
  3070. static void tcp_ack_probe(struct sock *sk)
  3071. {
  3072. const struct tcp_sock *tp = tcp_sk(sk);
  3073. struct inet_connection_sock *icsk = inet_csk(sk);
  3074. /* Was it a usable window open? */
  3075. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  3076. icsk->icsk_backoff = 0;
  3077. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  3078. /* Socket must be waked up by subsequent tcp_data_snd_check().
  3079. * This function is not for random using!
  3080. */
  3081. } else {
  3082. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3083. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  3084. TCP_RTO_MAX);
  3085. }
  3086. }
  3087. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  3088. {
  3089. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  3090. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  3091. }
  3092. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  3093. {
  3094. const struct tcp_sock *tp = tcp_sk(sk);
  3095. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  3096. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  3097. }
  3098. /* Check that window update is acceptable.
  3099. * The function assumes that snd_una<=ack<=snd_next.
  3100. */
  3101. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  3102. const u32 ack, const u32 ack_seq,
  3103. const u32 nwin)
  3104. {
  3105. return after(ack, tp->snd_una) ||
  3106. after(ack_seq, tp->snd_wl1) ||
  3107. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  3108. }
  3109. /* If we update tp->snd_una, also update tp->bytes_acked */
  3110. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  3111. {
  3112. u32 delta = ack - tp->snd_una;
  3113. u64_stats_update_begin(&tp->syncp);
  3114. tp->bytes_acked += delta;
  3115. u64_stats_update_end(&tp->syncp);
  3116. tp->snd_una = ack;
  3117. }
  3118. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  3119. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  3120. {
  3121. u32 delta = seq - tp->rcv_nxt;
  3122. u64_stats_update_begin(&tp->syncp);
  3123. tp->bytes_received += delta;
  3124. u64_stats_update_end(&tp->syncp);
  3125. tp->rcv_nxt = seq;
  3126. }
  3127. /* Update our send window.
  3128. *
  3129. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  3130. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  3131. */
  3132. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  3133. u32 ack_seq)
  3134. {
  3135. struct tcp_sock *tp = tcp_sk(sk);
  3136. int flag = 0;
  3137. u32 nwin = ntohs(tcp_hdr(skb)->window);
  3138. if (likely(!tcp_hdr(skb)->syn))
  3139. nwin <<= tp->rx_opt.snd_wscale;
  3140. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  3141. flag |= FLAG_WIN_UPDATE;
  3142. tcp_update_wl(tp, ack_seq);
  3143. if (tp->snd_wnd != nwin) {
  3144. tp->snd_wnd = nwin;
  3145. /* Note, it is the only place, where
  3146. * fast path is recovered for sending TCP.
  3147. */
  3148. tp->pred_flags = 0;
  3149. tcp_fast_path_check(sk);
  3150. if (nwin > tp->max_window) {
  3151. tp->max_window = nwin;
  3152. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  3153. }
  3154. }
  3155. }
  3156. tcp_snd_una_update(tp, ack);
  3157. return flag;
  3158. }
  3159. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  3160. * continue in congestion avoidance.
  3161. */
  3162. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  3163. {
  3164. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  3165. tp->snd_cwnd_cnt = 0;
  3166. TCP_ECN_queue_cwr(tp);
  3167. tcp_moderate_cwnd(tp);
  3168. }
  3169. /* A conservative spurious RTO response algorithm: reduce cwnd using
  3170. * rate halving and continue in congestion avoidance.
  3171. */
  3172. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  3173. {
  3174. tcp_enter_cwr(sk, 0);
  3175. }
  3176. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  3177. {
  3178. if (flag & FLAG_ECE)
  3179. tcp_ratehalving_spur_to_response(sk);
  3180. else
  3181. tcp_undo_cwr(sk, true);
  3182. }
  3183. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3184. *
  3185. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3186. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3187. * window (but not to or beyond highest sequence sent before RTO):
  3188. * On First ACK, send two new segments out.
  3189. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3190. * algorithm is not part of the F-RTO detection algorithm
  3191. * given in RFC4138 but can be selected separately).
  3192. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3193. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3194. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3195. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3196. *
  3197. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3198. * original window even after we transmit two new data segments.
  3199. *
  3200. * SACK version:
  3201. * on first step, wait until first cumulative ACK arrives, then move to
  3202. * the second step. In second step, the next ACK decides.
  3203. *
  3204. * F-RTO is implemented (mainly) in four functions:
  3205. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3206. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3207. * called when tcp_use_frto() showed green light
  3208. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3209. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3210. * to prove that the RTO is indeed spurious. It transfers the control
  3211. * from F-RTO to the conventional RTO recovery
  3212. */
  3213. static int tcp_process_frto(struct sock *sk, int flag)
  3214. {
  3215. struct tcp_sock *tp = tcp_sk(sk);
  3216. tcp_verify_left_out(tp);
  3217. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3218. if (flag & FLAG_DATA_ACKED)
  3219. inet_csk(sk)->icsk_retransmits = 0;
  3220. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3221. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3222. tp->undo_marker = 0;
  3223. if (!before(tp->snd_una, tp->frto_highmark)) {
  3224. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3225. return 1;
  3226. }
  3227. if (!tcp_is_sackfrto(tp)) {
  3228. /* RFC4138 shortcoming in step 2; should also have case c):
  3229. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3230. * data, winupdate
  3231. */
  3232. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3233. return 1;
  3234. if (!(flag & FLAG_DATA_ACKED)) {
  3235. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3236. flag);
  3237. return 1;
  3238. }
  3239. } else {
  3240. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3241. if (!tcp_packets_in_flight(tp)) {
  3242. tcp_enter_frto_loss(sk, 2, flag);
  3243. return true;
  3244. }
  3245. /* Prevent sending of new data. */
  3246. tp->snd_cwnd = min(tp->snd_cwnd,
  3247. tcp_packets_in_flight(tp));
  3248. return 1;
  3249. }
  3250. if ((tp->frto_counter >= 2) &&
  3251. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3252. ((flag & FLAG_DATA_SACKED) &&
  3253. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3254. /* RFC4138 shortcoming (see comment above) */
  3255. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3256. (flag & FLAG_NOT_DUP))
  3257. return 1;
  3258. tcp_enter_frto_loss(sk, 3, flag);
  3259. return 1;
  3260. }
  3261. }
  3262. if (tp->frto_counter == 1) {
  3263. /* tcp_may_send_now needs to see updated state */
  3264. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3265. tp->frto_counter = 2;
  3266. if (!tcp_may_send_now(sk))
  3267. tcp_enter_frto_loss(sk, 2, flag);
  3268. return 1;
  3269. } else {
  3270. switch (sysctl_tcp_frto_response) {
  3271. case 2:
  3272. tcp_undo_spur_to_response(sk, flag);
  3273. break;
  3274. case 1:
  3275. tcp_conservative_spur_to_response(tp);
  3276. break;
  3277. default:
  3278. tcp_ratehalving_spur_to_response(sk);
  3279. break;
  3280. }
  3281. tp->frto_counter = 0;
  3282. tp->undo_marker = 0;
  3283. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3284. }
  3285. return 0;
  3286. }
  3287. /* RFC 5961 7 [ACK Throttling] */
  3288. static void tcp_send_challenge_ack(struct sock *sk)
  3289. {
  3290. /* unprotected vars, we dont care of overwrites */
  3291. static u32 challenge_timestamp;
  3292. static unsigned int challenge_count;
  3293. u32 count, now = jiffies / HZ;
  3294. if (now != challenge_timestamp) {
  3295. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  3296. challenge_timestamp = now;
  3297. ACCESS_ONCE(challenge_count) = half +
  3298. (u32)(((u64)random32() * sysctl_tcp_challenge_ack_limit) >> 32);
  3299. }
  3300. count = ACCESS_ONCE(challenge_count);
  3301. if (count > 0) {
  3302. ACCESS_ONCE(challenge_count) = count - 1;
  3303. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  3304. tcp_send_ack(sk);
  3305. }
  3306. }
  3307. static void tcp_store_ts_recent(struct tcp_sock *tp)
  3308. {
  3309. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3310. tp->rx_opt.ts_recent_stamp = get_seconds();
  3311. }
  3312. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3313. {
  3314. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3315. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3316. * extra check below makes sure this can only happen
  3317. * for pure ACK frames. -DaveM
  3318. *
  3319. * Not only, also it occurs for expired timestamps.
  3320. */
  3321. if (tcp_paws_check(&tp->rx_opt, 0))
  3322. tcp_store_ts_recent(tp);
  3323. }
  3324. }
  3325. /* This routine deals with incoming acks, but not outgoing ones. */
  3326. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3327. {
  3328. struct inet_connection_sock *icsk = inet_csk(sk);
  3329. struct tcp_sock *tp = tcp_sk(sk);
  3330. u32 prior_snd_una = tp->snd_una;
  3331. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3332. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3333. bool is_dupack = false;
  3334. u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
  3335. u32 prior_fackets;
  3336. int prior_packets = tp->packets_out;
  3337. int prior_sacked = tp->sacked_out;
  3338. int pkts_acked = 0;
  3339. int previous_packets_out = 0;
  3340. int frto_cwnd = 0;
  3341. /* If the ack is older than previous acks
  3342. * then we can probably ignore it.
  3343. */
  3344. if (before(ack, prior_snd_una)) {
  3345. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3346. if (before(ack, prior_snd_una - tp->max_window)) {
  3347. tcp_send_challenge_ack(sk);
  3348. return -1;
  3349. }
  3350. goto old_ack;
  3351. }
  3352. /* If the ack includes data we haven't sent yet, discard
  3353. * this segment (RFC793 Section 3.9).
  3354. */
  3355. if (after(ack, tp->snd_nxt))
  3356. goto invalid_ack;
  3357. if (after(ack, prior_snd_una))
  3358. flag |= FLAG_SND_UNA_ADVANCED;
  3359. prior_fackets = tp->fackets_out;
  3360. prior_in_flight = tcp_packets_in_flight(tp);
  3361. /* ts_recent update must be made after we are sure that the packet
  3362. * is in window.
  3363. */
  3364. if (flag & FLAG_UPDATE_TS_RECENT)
  3365. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3366. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3367. /* Window is constant, pure forward advance.
  3368. * No more checks are required.
  3369. * Note, we use the fact that SND.UNA>=SND.WL2.
  3370. */
  3371. tcp_update_wl(tp, ack_seq);
  3372. tcp_snd_una_update(tp, ack);
  3373. flag |= FLAG_WIN_UPDATE;
  3374. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3375. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3376. } else {
  3377. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3378. flag |= FLAG_DATA;
  3379. else
  3380. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3381. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3382. if (TCP_SKB_CB(skb)->sacked)
  3383. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3384. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3385. flag |= FLAG_ECE;
  3386. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3387. }
  3388. /* We passed data and got it acked, remove any soft error
  3389. * log. Something worked...
  3390. */
  3391. sk->sk_err_soft = 0;
  3392. icsk->icsk_probes_out = 0;
  3393. tp->rcv_tstamp = tcp_time_stamp;
  3394. if (!prior_packets)
  3395. goto no_queue;
  3396. /* See if we can take anything off of the retransmit queue. */
  3397. previous_packets_out = tp->packets_out;
  3398. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3399. pkts_acked = previous_packets_out - tp->packets_out;
  3400. if (tp->frto_counter)
  3401. frto_cwnd = tcp_process_frto(sk, flag);
  3402. /* Guarantee sacktag reordering detection against wrap-arounds */
  3403. if (before(tp->frto_highmark, tp->snd_una))
  3404. tp->frto_highmark = 0;
  3405. if (tcp_ack_is_dubious(sk, flag)) {
  3406. /* Advance CWND, if state allows this. */
  3407. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3408. tcp_may_raise_cwnd(sk, flag))
  3409. tcp_cong_avoid(sk, ack, prior_in_flight);
  3410. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3411. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3412. prior_packets, is_dupack, flag);
  3413. } else {
  3414. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3415. tcp_cong_avoid(sk, ack, prior_in_flight);
  3416. }
  3417. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3418. struct dst_entry *dst = __sk_dst_get(sk);
  3419. if (dst)
  3420. dst_confirm(dst);
  3421. }
  3422. if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
  3423. tcp_update_pacing_rate(sk);
  3424. return 1;
  3425. no_queue:
  3426. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3427. if (flag & FLAG_DSACKING_ACK)
  3428. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3429. prior_packets, is_dupack, flag);
  3430. /* If this ack opens up a zero window, clear backoff. It was
  3431. * being used to time the probes, and is probably far higher than
  3432. * it needs to be for normal retransmission.
  3433. */
  3434. if (tcp_send_head(sk))
  3435. tcp_ack_probe(sk);
  3436. return 1;
  3437. invalid_ack:
  3438. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3439. return -1;
  3440. old_ack:
  3441. /* If data was SACKed, tag it and see if we should send more data.
  3442. * If data was DSACKed, see if we can undo a cwnd reduction.
  3443. */
  3444. if (TCP_SKB_CB(skb)->sacked) {
  3445. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3446. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3447. prior_packets, is_dupack, flag);
  3448. }
  3449. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3450. return 0;
  3451. }
  3452. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3453. * But, this can also be called on packets in the established flow when
  3454. * the fast version below fails.
  3455. */
  3456. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3457. const u8 **hvpp, int estab)
  3458. {
  3459. const unsigned char *ptr;
  3460. const struct tcphdr *th = tcp_hdr(skb);
  3461. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3462. ptr = (const unsigned char *)(th + 1);
  3463. opt_rx->saw_tstamp = 0;
  3464. while (length > 0) {
  3465. int opcode = *ptr++;
  3466. int opsize;
  3467. switch (opcode) {
  3468. case TCPOPT_EOL:
  3469. return;
  3470. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3471. length--;
  3472. continue;
  3473. default:
  3474. opsize = *ptr++;
  3475. if (opsize < 2) /* "silly options" */
  3476. return;
  3477. if (opsize > length)
  3478. return; /* don't parse partial options */
  3479. switch (opcode) {
  3480. case TCPOPT_MSS:
  3481. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3482. u16 in_mss = get_unaligned_be16(ptr);
  3483. if (in_mss) {
  3484. if (opt_rx->user_mss &&
  3485. opt_rx->user_mss < in_mss)
  3486. in_mss = opt_rx->user_mss;
  3487. opt_rx->mss_clamp = in_mss;
  3488. }
  3489. }
  3490. break;
  3491. case TCPOPT_WINDOW:
  3492. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3493. !estab && sysctl_tcp_window_scaling) {
  3494. __u8 snd_wscale = *(__u8 *)ptr;
  3495. opt_rx->wscale_ok = 1;
  3496. if (snd_wscale > 14) {
  3497. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3498. __func__,
  3499. snd_wscale);
  3500. snd_wscale = 14;
  3501. }
  3502. opt_rx->snd_wscale = snd_wscale;
  3503. }
  3504. break;
  3505. case TCPOPT_TIMESTAMP:
  3506. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3507. ((estab && opt_rx->tstamp_ok) ||
  3508. (!estab && sysctl_tcp_timestamps))) {
  3509. opt_rx->saw_tstamp = 1;
  3510. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3511. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3512. }
  3513. break;
  3514. case TCPOPT_SACK_PERM:
  3515. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3516. !estab && sysctl_tcp_sack) {
  3517. opt_rx->sack_ok = TCP_SACK_SEEN;
  3518. tcp_sack_reset(opt_rx);
  3519. }
  3520. break;
  3521. case TCPOPT_SACK:
  3522. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3523. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3524. opt_rx->sack_ok) {
  3525. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3526. }
  3527. break;
  3528. #ifdef CONFIG_TCP_MD5SIG
  3529. case TCPOPT_MD5SIG:
  3530. /*
  3531. * The MD5 Hash has already been
  3532. * checked (see tcp_v{4,6}_do_rcv()).
  3533. */
  3534. break;
  3535. #endif
  3536. case TCPOPT_COOKIE:
  3537. /* This option is variable length.
  3538. */
  3539. switch (opsize) {
  3540. case TCPOLEN_COOKIE_BASE:
  3541. /* not yet implemented */
  3542. break;
  3543. case TCPOLEN_COOKIE_PAIR:
  3544. /* not yet implemented */
  3545. break;
  3546. case TCPOLEN_COOKIE_MIN+0:
  3547. case TCPOLEN_COOKIE_MIN+2:
  3548. case TCPOLEN_COOKIE_MIN+4:
  3549. case TCPOLEN_COOKIE_MIN+6:
  3550. case TCPOLEN_COOKIE_MAX:
  3551. /* 16-bit multiple */
  3552. opt_rx->cookie_plus = opsize;
  3553. *hvpp = ptr;
  3554. break;
  3555. default:
  3556. /* ignore option */
  3557. break;
  3558. }
  3559. break;
  3560. }
  3561. ptr += opsize-2;
  3562. length -= opsize;
  3563. }
  3564. }
  3565. }
  3566. EXPORT_SYMBOL(tcp_parse_options);
  3567. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3568. {
  3569. const __be32 *ptr = (const __be32 *)(th + 1);
  3570. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3571. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3572. tp->rx_opt.saw_tstamp = 1;
  3573. ++ptr;
  3574. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3575. ++ptr;
  3576. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3577. return 1;
  3578. }
  3579. return 0;
  3580. }
  3581. /* Fast parse options. This hopes to only see timestamps.
  3582. * If it is wrong it falls back on tcp_parse_options().
  3583. */
  3584. static int tcp_fast_parse_options(const struct sk_buff *skb,
  3585. const struct tcphdr *th,
  3586. struct tcp_sock *tp, const u8 **hvpp)
  3587. {
  3588. /* In the spirit of fast parsing, compare doff directly to constant
  3589. * values. Because equality is used, short doff can be ignored here.
  3590. */
  3591. if (th->doff == (sizeof(*th) / 4)) {
  3592. tp->rx_opt.saw_tstamp = 0;
  3593. return 0;
  3594. } else if (tp->rx_opt.tstamp_ok &&
  3595. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3596. if (tcp_parse_aligned_timestamp(tp, th))
  3597. return 1;
  3598. }
  3599. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
  3600. return 1;
  3601. }
  3602. #ifdef CONFIG_TCP_MD5SIG
  3603. /*
  3604. * Parse MD5 Signature option
  3605. */
  3606. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3607. {
  3608. int length = (th->doff << 2) - sizeof(*th);
  3609. const u8 *ptr = (const u8 *)(th + 1);
  3610. /* If the TCP option is too short, we can short cut */
  3611. if (length < TCPOLEN_MD5SIG)
  3612. return NULL;
  3613. while (length > 0) {
  3614. int opcode = *ptr++;
  3615. int opsize;
  3616. switch (opcode) {
  3617. case TCPOPT_EOL:
  3618. return NULL;
  3619. case TCPOPT_NOP:
  3620. length--;
  3621. continue;
  3622. default:
  3623. opsize = *ptr++;
  3624. if (opsize < 2 || opsize > length)
  3625. return NULL;
  3626. if (opcode == TCPOPT_MD5SIG)
  3627. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3628. }
  3629. ptr += opsize - 2;
  3630. length -= opsize;
  3631. }
  3632. return NULL;
  3633. }
  3634. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3635. #endif
  3636. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3637. *
  3638. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3639. * it can pass through stack. So, the following predicate verifies that
  3640. * this segment is not used for anything but congestion avoidance or
  3641. * fast retransmit. Moreover, we even are able to eliminate most of such
  3642. * second order effects, if we apply some small "replay" window (~RTO)
  3643. * to timestamp space.
  3644. *
  3645. * All these measures still do not guarantee that we reject wrapped ACKs
  3646. * on networks with high bandwidth, when sequence space is recycled fastly,
  3647. * but it guarantees that such events will be very rare and do not affect
  3648. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3649. * buggy extension.
  3650. *
  3651. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3652. * states that events when retransmit arrives after original data are rare.
  3653. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3654. * the biggest problem on large power networks even with minor reordering.
  3655. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3656. * up to bandwidth of 18Gigabit/sec. 8) ]
  3657. */
  3658. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3659. {
  3660. const struct tcp_sock *tp = tcp_sk(sk);
  3661. const struct tcphdr *th = tcp_hdr(skb);
  3662. u32 seq = TCP_SKB_CB(skb)->seq;
  3663. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3664. return (/* 1. Pure ACK with correct sequence number. */
  3665. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3666. /* 2. ... and duplicate ACK. */
  3667. ack == tp->snd_una &&
  3668. /* 3. ... and does not update window. */
  3669. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3670. /* 4. ... and sits in replay window. */
  3671. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3672. }
  3673. static inline int tcp_paws_discard(const struct sock *sk,
  3674. const struct sk_buff *skb)
  3675. {
  3676. const struct tcp_sock *tp = tcp_sk(sk);
  3677. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3678. !tcp_disordered_ack(sk, skb);
  3679. }
  3680. /* Check segment sequence number for validity.
  3681. *
  3682. * Segment controls are considered valid, if the segment
  3683. * fits to the window after truncation to the window. Acceptability
  3684. * of data (and SYN, FIN, of course) is checked separately.
  3685. * See tcp_data_queue(), for example.
  3686. *
  3687. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3688. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3689. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3690. * (borrowed from freebsd)
  3691. */
  3692. static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3693. {
  3694. return !before(end_seq, tp->rcv_wup) &&
  3695. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3696. }
  3697. /* When we get a reset we do this. */
  3698. static void tcp_reset(struct sock *sk)
  3699. {
  3700. /* We want the right error as BSD sees it (and indeed as we do). */
  3701. switch (sk->sk_state) {
  3702. case TCP_SYN_SENT:
  3703. sk->sk_err = ECONNREFUSED;
  3704. break;
  3705. case TCP_CLOSE_WAIT:
  3706. sk->sk_err = EPIPE;
  3707. break;
  3708. case TCP_CLOSE:
  3709. return;
  3710. default:
  3711. sk->sk_err = ECONNRESET;
  3712. }
  3713. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3714. smp_wmb();
  3715. if (!sock_flag(sk, SOCK_DEAD))
  3716. sk->sk_error_report(sk);
  3717. tcp_done(sk);
  3718. }
  3719. /*
  3720. * Process the FIN bit. This now behaves as it is supposed to work
  3721. * and the FIN takes effect when it is validly part of sequence
  3722. * space. Not before when we get holes.
  3723. *
  3724. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3725. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3726. * TIME-WAIT)
  3727. *
  3728. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3729. * close and we go into CLOSING (and later onto TIME-WAIT)
  3730. *
  3731. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3732. */
  3733. static void tcp_fin(struct sock *sk)
  3734. {
  3735. struct tcp_sock *tp = tcp_sk(sk);
  3736. inet_csk_schedule_ack(sk);
  3737. sk->sk_shutdown |= RCV_SHUTDOWN;
  3738. sock_set_flag(sk, SOCK_DONE);
  3739. switch (sk->sk_state) {
  3740. case TCP_SYN_RECV:
  3741. case TCP_ESTABLISHED:
  3742. /* Move to CLOSE_WAIT */
  3743. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3744. inet_csk(sk)->icsk_ack.pingpong = 1;
  3745. break;
  3746. case TCP_CLOSE_WAIT:
  3747. case TCP_CLOSING:
  3748. /* Received a retransmission of the FIN, do
  3749. * nothing.
  3750. */
  3751. break;
  3752. case TCP_LAST_ACK:
  3753. /* RFC793: Remain in the LAST-ACK state. */
  3754. break;
  3755. case TCP_FIN_WAIT1:
  3756. /* This case occurs when a simultaneous close
  3757. * happens, we must ack the received FIN and
  3758. * enter the CLOSING state.
  3759. */
  3760. tcp_send_ack(sk);
  3761. tcp_set_state(sk, TCP_CLOSING);
  3762. break;
  3763. case TCP_FIN_WAIT2:
  3764. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3765. tcp_send_ack(sk);
  3766. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3767. break;
  3768. default:
  3769. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3770. * cases we should never reach this piece of code.
  3771. */
  3772. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3773. __func__, sk->sk_state);
  3774. break;
  3775. }
  3776. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3777. * Probably, we should reset in this case. For now drop them.
  3778. */
  3779. __skb_queue_purge(&tp->out_of_order_queue);
  3780. if (tcp_is_sack(tp))
  3781. tcp_sack_reset(&tp->rx_opt);
  3782. sk_mem_reclaim(sk);
  3783. if (!sock_flag(sk, SOCK_DEAD)) {
  3784. sk->sk_state_change(sk);
  3785. /* Do not send POLL_HUP for half duplex close. */
  3786. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3787. sk->sk_state == TCP_CLOSE)
  3788. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3789. else
  3790. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3791. }
  3792. }
  3793. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3794. u32 end_seq)
  3795. {
  3796. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3797. if (before(seq, sp->start_seq))
  3798. sp->start_seq = seq;
  3799. if (after(end_seq, sp->end_seq))
  3800. sp->end_seq = end_seq;
  3801. return 1;
  3802. }
  3803. return 0;
  3804. }
  3805. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3806. {
  3807. struct tcp_sock *tp = tcp_sk(sk);
  3808. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3809. int mib_idx;
  3810. if (before(seq, tp->rcv_nxt))
  3811. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3812. else
  3813. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3814. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3815. tp->rx_opt.dsack = 1;
  3816. tp->duplicate_sack[0].start_seq = seq;
  3817. tp->duplicate_sack[0].end_seq = end_seq;
  3818. }
  3819. }
  3820. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3821. {
  3822. struct tcp_sock *tp = tcp_sk(sk);
  3823. if (!tp->rx_opt.dsack)
  3824. tcp_dsack_set(sk, seq, end_seq);
  3825. else
  3826. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3827. }
  3828. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3829. {
  3830. struct tcp_sock *tp = tcp_sk(sk);
  3831. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3832. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3833. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3834. tcp_enter_quickack_mode(sk);
  3835. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3836. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3837. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3838. end_seq = tp->rcv_nxt;
  3839. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3840. }
  3841. }
  3842. tcp_send_ack(sk);
  3843. }
  3844. /* These routines update the SACK block as out-of-order packets arrive or
  3845. * in-order packets close up the sequence space.
  3846. */
  3847. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3848. {
  3849. int this_sack;
  3850. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3851. struct tcp_sack_block *swalk = sp + 1;
  3852. /* See if the recent change to the first SACK eats into
  3853. * or hits the sequence space of other SACK blocks, if so coalesce.
  3854. */
  3855. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3856. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3857. int i;
  3858. /* Zap SWALK, by moving every further SACK up by one slot.
  3859. * Decrease num_sacks.
  3860. */
  3861. tp->rx_opt.num_sacks--;
  3862. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3863. sp[i] = sp[i + 1];
  3864. continue;
  3865. }
  3866. this_sack++, swalk++;
  3867. }
  3868. }
  3869. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3870. {
  3871. struct tcp_sock *tp = tcp_sk(sk);
  3872. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3873. int cur_sacks = tp->rx_opt.num_sacks;
  3874. int this_sack;
  3875. if (!cur_sacks)
  3876. goto new_sack;
  3877. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3878. if (tcp_sack_extend(sp, seq, end_seq)) {
  3879. /* Rotate this_sack to the first one. */
  3880. for (; this_sack > 0; this_sack--, sp--)
  3881. swap(*sp, *(sp - 1));
  3882. if (cur_sacks > 1)
  3883. tcp_sack_maybe_coalesce(tp);
  3884. return;
  3885. }
  3886. }
  3887. /* Could not find an adjacent existing SACK, build a new one,
  3888. * put it at the front, and shift everyone else down. We
  3889. * always know there is at least one SACK present already here.
  3890. *
  3891. * If the sack array is full, forget about the last one.
  3892. */
  3893. if (this_sack >= TCP_NUM_SACKS) {
  3894. this_sack--;
  3895. tp->rx_opt.num_sacks--;
  3896. sp--;
  3897. }
  3898. for (; this_sack > 0; this_sack--, sp--)
  3899. *sp = *(sp - 1);
  3900. new_sack:
  3901. /* Build the new head SACK, and we're done. */
  3902. sp->start_seq = seq;
  3903. sp->end_seq = end_seq;
  3904. tp->rx_opt.num_sacks++;
  3905. }
  3906. /* RCV.NXT advances, some SACKs should be eaten. */
  3907. static void tcp_sack_remove(struct tcp_sock *tp)
  3908. {
  3909. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3910. int num_sacks = tp->rx_opt.num_sacks;
  3911. int this_sack;
  3912. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3913. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3914. tp->rx_opt.num_sacks = 0;
  3915. return;
  3916. }
  3917. for (this_sack = 0; this_sack < num_sacks;) {
  3918. /* Check if the start of the sack is covered by RCV.NXT. */
  3919. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3920. int i;
  3921. /* RCV.NXT must cover all the block! */
  3922. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3923. /* Zap this SACK, by moving forward any other SACKS. */
  3924. for (i = this_sack+1; i < num_sacks; i++)
  3925. tp->selective_acks[i-1] = tp->selective_acks[i];
  3926. num_sacks--;
  3927. continue;
  3928. }
  3929. this_sack++;
  3930. sp++;
  3931. }
  3932. tp->rx_opt.num_sacks = num_sacks;
  3933. }
  3934. /* This one checks to see if we can put data from the
  3935. * out_of_order queue into the receive_queue.
  3936. */
  3937. static void tcp_ofo_queue(struct sock *sk)
  3938. {
  3939. struct tcp_sock *tp = tcp_sk(sk);
  3940. __u32 dsack_high = tp->rcv_nxt;
  3941. struct sk_buff *skb;
  3942. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3943. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3944. break;
  3945. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3946. __u32 dsack = dsack_high;
  3947. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3948. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3949. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3950. }
  3951. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3952. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3953. __skb_unlink(skb, &tp->out_of_order_queue);
  3954. __kfree_skb(skb);
  3955. continue;
  3956. }
  3957. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3958. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3959. TCP_SKB_CB(skb)->end_seq);
  3960. __skb_unlink(skb, &tp->out_of_order_queue);
  3961. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3962. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3963. if (tcp_hdr(skb)->fin)
  3964. tcp_fin(sk);
  3965. }
  3966. }
  3967. static int tcp_prune_ofo_queue(struct sock *sk);
  3968. static int tcp_prune_queue(struct sock *sk);
  3969. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3970. {
  3971. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3972. !sk_rmem_schedule(sk, size)) {
  3973. if (tcp_prune_queue(sk) < 0)
  3974. return -1;
  3975. if (!sk_rmem_schedule(sk, size)) {
  3976. if (!tcp_prune_ofo_queue(sk))
  3977. return -1;
  3978. if (!sk_rmem_schedule(sk, size))
  3979. return -1;
  3980. }
  3981. }
  3982. return 0;
  3983. }
  3984. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3985. {
  3986. struct tcp_sock *tp = tcp_sk(sk);
  3987. struct sk_buff *skb1;
  3988. u32 seq, end_seq;
  3989. TCP_ECN_check_ce(tp, skb);
  3990. if (tcp_try_rmem_schedule(sk, skb->truesize)) {
  3991. /* TODO: should increment a counter */
  3992. __kfree_skb(skb);
  3993. return;
  3994. }
  3995. /* Disable header prediction. */
  3996. tp->pred_flags = 0;
  3997. inet_csk_schedule_ack(sk);
  3998. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3999. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4000. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  4001. if (!skb1) {
  4002. /* Initial out of order segment, build 1 SACK. */
  4003. if (tcp_is_sack(tp)) {
  4004. tp->rx_opt.num_sacks = 1;
  4005. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  4006. tp->selective_acks[0].end_seq =
  4007. TCP_SKB_CB(skb)->end_seq;
  4008. }
  4009. __skb_queue_head(&tp->out_of_order_queue, skb);
  4010. goto end;
  4011. }
  4012. seq = TCP_SKB_CB(skb)->seq;
  4013. end_seq = TCP_SKB_CB(skb)->end_seq;
  4014. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  4015. /* Packets in ofo can stay in queue a long time.
  4016. * Better try to coalesce them right now
  4017. * to avoid future tcp_collapse_ofo_queue(),
  4018. * probably the most expensive function in tcp stack.
  4019. */
  4020. if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
  4021. NET_INC_STATS_BH(sock_net(sk),
  4022. LINUX_MIB_TCPRCVCOALESCE);
  4023. BUG_ON(skb_copy_bits(skb, 0,
  4024. skb_put(skb1, skb->len),
  4025. skb->len));
  4026. TCP_SKB_CB(skb1)->end_seq = end_seq;
  4027. TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
  4028. __kfree_skb(skb);
  4029. skb = NULL;
  4030. } else {
  4031. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  4032. }
  4033. if (!tp->rx_opt.num_sacks ||
  4034. tp->selective_acks[0].end_seq != seq)
  4035. goto add_sack;
  4036. /* Common case: data arrive in order after hole. */
  4037. tp->selective_acks[0].end_seq = end_seq;
  4038. goto end;
  4039. }
  4040. /* Find place to insert this segment. */
  4041. while (1) {
  4042. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  4043. break;
  4044. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  4045. skb1 = NULL;
  4046. break;
  4047. }
  4048. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  4049. }
  4050. /* Do skb overlap to previous one? */
  4051. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  4052. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4053. /* All the bits are present. Drop. */
  4054. __kfree_skb(skb);
  4055. skb = NULL;
  4056. tcp_dsack_set(sk, seq, end_seq);
  4057. goto add_sack;
  4058. }
  4059. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  4060. /* Partial overlap. */
  4061. tcp_dsack_set(sk, seq,
  4062. TCP_SKB_CB(skb1)->end_seq);
  4063. } else {
  4064. if (skb_queue_is_first(&tp->out_of_order_queue,
  4065. skb1))
  4066. skb1 = NULL;
  4067. else
  4068. skb1 = skb_queue_prev(
  4069. &tp->out_of_order_queue,
  4070. skb1);
  4071. }
  4072. }
  4073. if (!skb1)
  4074. __skb_queue_head(&tp->out_of_order_queue, skb);
  4075. else
  4076. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  4077. /* And clean segments covered by new one as whole. */
  4078. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  4079. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  4080. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  4081. break;
  4082. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4083. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4084. end_seq);
  4085. break;
  4086. }
  4087. __skb_unlink(skb1, &tp->out_of_order_queue);
  4088. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4089. TCP_SKB_CB(skb1)->end_seq);
  4090. __kfree_skb(skb1);
  4091. }
  4092. add_sack:
  4093. if (tcp_is_sack(tp))
  4094. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  4095. end:
  4096. if (skb)
  4097. skb_set_owner_r(skb, sk);
  4098. }
  4099. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  4100. {
  4101. const struct tcphdr *th = tcp_hdr(skb);
  4102. struct tcp_sock *tp = tcp_sk(sk);
  4103. int eaten = -1;
  4104. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  4105. goto drop;
  4106. skb_dst_drop(skb);
  4107. __skb_pull(skb, th->doff * 4);
  4108. TCP_ECN_accept_cwr(tp, skb);
  4109. tp->rx_opt.dsack = 0;
  4110. /* Queue data for delivery to the user.
  4111. * Packets in sequence go to the receive queue.
  4112. * Out of sequence packets to the out_of_order_queue.
  4113. */
  4114. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4115. if (tcp_receive_window(tp) == 0)
  4116. goto out_of_window;
  4117. /* Ok. In sequence. In window. */
  4118. if (tp->ucopy.task == current &&
  4119. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  4120. sock_owned_by_user(sk) && !tp->urg_data) {
  4121. int chunk = min_t(unsigned int, skb->len,
  4122. tp->ucopy.len);
  4123. __set_current_state(TASK_RUNNING);
  4124. local_bh_enable();
  4125. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  4126. tp->ucopy.len -= chunk;
  4127. tp->copied_seq += chunk;
  4128. eaten = (chunk == skb->len);
  4129. tcp_rcv_space_adjust(sk);
  4130. }
  4131. local_bh_disable();
  4132. }
  4133. if (eaten <= 0) {
  4134. queue_and_out:
  4135. if (eaten < 0 &&
  4136. tcp_try_rmem_schedule(sk, skb->truesize))
  4137. goto drop;
  4138. skb_set_owner_r(skb, sk);
  4139. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4140. }
  4141. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4142. if (skb->len)
  4143. tcp_event_data_recv(sk, skb);
  4144. if (th->fin)
  4145. tcp_fin(sk);
  4146. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4147. tcp_ofo_queue(sk);
  4148. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4149. * gap in queue is filled.
  4150. */
  4151. if (skb_queue_empty(&tp->out_of_order_queue))
  4152. inet_csk(sk)->icsk_ack.pingpong = 0;
  4153. }
  4154. if (tp->rx_opt.num_sacks)
  4155. tcp_sack_remove(tp);
  4156. tcp_fast_path_check(sk);
  4157. if (eaten > 0)
  4158. __kfree_skb(skb);
  4159. else if (!sock_flag(sk, SOCK_DEAD))
  4160. sk->sk_data_ready(sk, 0);
  4161. return;
  4162. }
  4163. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4164. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4165. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4166. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4167. out_of_window:
  4168. tcp_enter_quickack_mode(sk);
  4169. inet_csk_schedule_ack(sk);
  4170. drop:
  4171. __kfree_skb(skb);
  4172. return;
  4173. }
  4174. /* Out of window. F.e. zero window probe. */
  4175. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4176. goto out_of_window;
  4177. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4178. /* Partial packet, seq < rcv_next < end_seq */
  4179. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4180. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4181. TCP_SKB_CB(skb)->end_seq);
  4182. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4183. /* If window is closed, drop tail of packet. But after
  4184. * remembering D-SACK for its head made in previous line.
  4185. */
  4186. if (!tcp_receive_window(tp))
  4187. goto out_of_window;
  4188. goto queue_and_out;
  4189. }
  4190. tcp_data_queue_ofo(sk, skb);
  4191. }
  4192. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4193. struct sk_buff_head *list)
  4194. {
  4195. struct sk_buff *next = NULL;
  4196. if (!skb_queue_is_last(list, skb))
  4197. next = skb_queue_next(list, skb);
  4198. __skb_unlink(skb, list);
  4199. __kfree_skb(skb);
  4200. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4201. return next;
  4202. }
  4203. /* Collapse contiguous sequence of skbs head..tail with
  4204. * sequence numbers start..end.
  4205. *
  4206. * If tail is NULL, this means until the end of the list.
  4207. *
  4208. * Segments with FIN/SYN are not collapsed (only because this
  4209. * simplifies code)
  4210. */
  4211. static void
  4212. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4213. struct sk_buff *head, struct sk_buff *tail,
  4214. u32 start, u32 end)
  4215. {
  4216. struct sk_buff *skb, *n;
  4217. bool end_of_skbs;
  4218. /* First, check that queue is collapsible and find
  4219. * the point where collapsing can be useful. */
  4220. skb = head;
  4221. restart:
  4222. end_of_skbs = true;
  4223. skb_queue_walk_from_safe(list, skb, n) {
  4224. if (skb == tail)
  4225. break;
  4226. /* No new bits? It is possible on ofo queue. */
  4227. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4228. skb = tcp_collapse_one(sk, skb, list);
  4229. if (!skb)
  4230. break;
  4231. goto restart;
  4232. }
  4233. /* The first skb to collapse is:
  4234. * - not SYN/FIN and
  4235. * - bloated or contains data before "start" or
  4236. * overlaps to the next one.
  4237. */
  4238. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4239. (tcp_win_from_space(skb->truesize) > skb->len ||
  4240. before(TCP_SKB_CB(skb)->seq, start))) {
  4241. end_of_skbs = false;
  4242. break;
  4243. }
  4244. if (!skb_queue_is_last(list, skb)) {
  4245. struct sk_buff *next = skb_queue_next(list, skb);
  4246. if (next != tail &&
  4247. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4248. end_of_skbs = false;
  4249. break;
  4250. }
  4251. }
  4252. /* Decided to skip this, advance start seq. */
  4253. start = TCP_SKB_CB(skb)->end_seq;
  4254. }
  4255. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4256. return;
  4257. while (before(start, end)) {
  4258. struct sk_buff *nskb;
  4259. unsigned int header = skb_headroom(skb);
  4260. int copy = SKB_MAX_ORDER(header, 0);
  4261. /* Too big header? This can happen with IPv6. */
  4262. if (copy < 0)
  4263. return;
  4264. if (end - start < copy)
  4265. copy = end - start;
  4266. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4267. if (!nskb)
  4268. return;
  4269. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4270. skb_set_network_header(nskb, (skb_network_header(skb) -
  4271. skb->head));
  4272. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4273. skb->head));
  4274. skb_reserve(nskb, header);
  4275. memcpy(nskb->head, skb->head, header);
  4276. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4277. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4278. __skb_queue_before(list, skb, nskb);
  4279. skb_set_owner_r(nskb, sk);
  4280. /* Copy data, releasing collapsed skbs. */
  4281. while (copy > 0) {
  4282. int offset = start - TCP_SKB_CB(skb)->seq;
  4283. int size = TCP_SKB_CB(skb)->end_seq - start;
  4284. BUG_ON(offset < 0);
  4285. if (size > 0) {
  4286. size = min(copy, size);
  4287. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4288. BUG();
  4289. TCP_SKB_CB(nskb)->end_seq += size;
  4290. copy -= size;
  4291. start += size;
  4292. }
  4293. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4294. skb = tcp_collapse_one(sk, skb, list);
  4295. if (!skb ||
  4296. skb == tail ||
  4297. tcp_hdr(skb)->syn ||
  4298. tcp_hdr(skb)->fin)
  4299. return;
  4300. }
  4301. }
  4302. }
  4303. }
  4304. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4305. * and tcp_collapse() them until all the queue is collapsed.
  4306. */
  4307. static void tcp_collapse_ofo_queue(struct sock *sk)
  4308. {
  4309. struct tcp_sock *tp = tcp_sk(sk);
  4310. u32 range_truesize, sum_tiny = 0;
  4311. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4312. struct sk_buff *head;
  4313. u32 start, end;
  4314. if (skb == NULL)
  4315. return;
  4316. start = TCP_SKB_CB(skb)->seq;
  4317. end = TCP_SKB_CB(skb)->end_seq;
  4318. range_truesize = skb->truesize;
  4319. head = skb;
  4320. for (;;) {
  4321. struct sk_buff *next = NULL;
  4322. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4323. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4324. skb = next;
  4325. /* Segment is terminated when we see gap or when
  4326. * we are at the end of all the queue. */
  4327. if (!skb ||
  4328. after(TCP_SKB_CB(skb)->seq, end) ||
  4329. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4330. /* Do not attempt collapsing tiny skbs */
  4331. if (range_truesize != head->truesize ||
  4332. end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
  4333. tcp_collapse(sk, &tp->out_of_order_queue,
  4334. head, skb, start, end);
  4335. } else {
  4336. sum_tiny += range_truesize;
  4337. if (sum_tiny > sk->sk_rcvbuf >> 3)
  4338. return;
  4339. }
  4340. head = skb;
  4341. if (!skb)
  4342. break;
  4343. /* Start new segment */
  4344. start = TCP_SKB_CB(skb)->seq;
  4345. end = TCP_SKB_CB(skb)->end_seq;
  4346. range_truesize = skb->truesize;
  4347. } else {
  4348. if (before(TCP_SKB_CB(skb)->seq, start))
  4349. start = TCP_SKB_CB(skb)->seq;
  4350. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4351. end = TCP_SKB_CB(skb)->end_seq;
  4352. }
  4353. }
  4354. }
  4355. /*
  4356. * Purge the out-of-order queue.
  4357. * Return true if queue was pruned.
  4358. */
  4359. static int tcp_prune_ofo_queue(struct sock *sk)
  4360. {
  4361. struct tcp_sock *tp = tcp_sk(sk);
  4362. int res = 0;
  4363. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4364. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4365. __skb_queue_purge(&tp->out_of_order_queue);
  4366. /* Reset SACK state. A conforming SACK implementation will
  4367. * do the same at a timeout based retransmit. When a connection
  4368. * is in a sad state like this, we care only about integrity
  4369. * of the connection not performance.
  4370. */
  4371. if (tp->rx_opt.sack_ok)
  4372. tcp_sack_reset(&tp->rx_opt);
  4373. sk_mem_reclaim(sk);
  4374. res = 1;
  4375. }
  4376. return res;
  4377. }
  4378. /* Reduce allocated memory if we can, trying to get
  4379. * the socket within its memory limits again.
  4380. *
  4381. * Return less than zero if we should start dropping frames
  4382. * until the socket owning process reads some of the data
  4383. * to stabilize the situation.
  4384. */
  4385. static int tcp_prune_queue(struct sock *sk)
  4386. {
  4387. struct tcp_sock *tp = tcp_sk(sk);
  4388. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4389. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4390. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4391. tcp_clamp_window(sk);
  4392. else if (sk_under_memory_pressure(sk))
  4393. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4394. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4395. return 0;
  4396. tcp_collapse_ofo_queue(sk);
  4397. if (!skb_queue_empty(&sk->sk_receive_queue))
  4398. tcp_collapse(sk, &sk->sk_receive_queue,
  4399. skb_peek(&sk->sk_receive_queue),
  4400. NULL,
  4401. tp->copied_seq, tp->rcv_nxt);
  4402. sk_mem_reclaim(sk);
  4403. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4404. return 0;
  4405. /* Collapsing did not help, destructive actions follow.
  4406. * This must not ever occur. */
  4407. tcp_prune_ofo_queue(sk);
  4408. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4409. return 0;
  4410. /* If we are really being abused, tell the caller to silently
  4411. * drop receive data on the floor. It will get retransmitted
  4412. * and hopefully then we'll have sufficient space.
  4413. */
  4414. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4415. /* Massive buffer overcommit. */
  4416. tp->pred_flags = 0;
  4417. return -1;
  4418. }
  4419. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4420. * As additional protections, we do not touch cwnd in retransmission phases,
  4421. * and if application hit its sndbuf limit recently.
  4422. */
  4423. void tcp_cwnd_application_limited(struct sock *sk)
  4424. {
  4425. struct tcp_sock *tp = tcp_sk(sk);
  4426. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4427. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4428. /* Limited by application or receiver window. */
  4429. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4430. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4431. if (win_used < tp->snd_cwnd) {
  4432. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4433. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4434. }
  4435. tp->snd_cwnd_used = 0;
  4436. }
  4437. tp->snd_cwnd_stamp = tcp_time_stamp;
  4438. }
  4439. static int tcp_should_expand_sndbuf(const struct sock *sk)
  4440. {
  4441. const struct tcp_sock *tp = tcp_sk(sk);
  4442. /* If the user specified a specific send buffer setting, do
  4443. * not modify it.
  4444. */
  4445. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4446. return 0;
  4447. /* If we are under global TCP memory pressure, do not expand. */
  4448. if (sk_under_memory_pressure(sk))
  4449. return 0;
  4450. /* If we are under soft global TCP memory pressure, do not expand. */
  4451. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4452. return 0;
  4453. /* If we filled the congestion window, do not expand. */
  4454. if (tp->packets_out >= tp->snd_cwnd)
  4455. return 0;
  4456. return 1;
  4457. }
  4458. /* When incoming ACK allowed to free some skb from write_queue,
  4459. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4460. * on the exit from tcp input handler.
  4461. *
  4462. * PROBLEM: sndbuf expansion does not work well with largesend.
  4463. */
  4464. static void tcp_new_space(struct sock *sk)
  4465. {
  4466. struct tcp_sock *tp = tcp_sk(sk);
  4467. if (tcp_should_expand_sndbuf(sk)) {
  4468. int sndmem = SKB_TRUESIZE(max_t(u32,
  4469. tp->rx_opt.mss_clamp,
  4470. tp->mss_cache) +
  4471. MAX_TCP_HEADER);
  4472. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4473. tp->reordering + 1);
  4474. sndmem *= 2 * demanded;
  4475. if (sndmem > sk->sk_sndbuf)
  4476. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4477. tp->snd_cwnd_stamp = tcp_time_stamp;
  4478. }
  4479. sk->sk_write_space(sk);
  4480. }
  4481. static void tcp_check_space(struct sock *sk)
  4482. {
  4483. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4484. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4485. if (sk->sk_socket &&
  4486. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4487. tcp_new_space(sk);
  4488. }
  4489. }
  4490. static inline void tcp_data_snd_check(struct sock *sk)
  4491. {
  4492. tcp_push_pending_frames(sk);
  4493. tcp_check_space(sk);
  4494. }
  4495. /*
  4496. * Check if sending an ack is needed.
  4497. */
  4498. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4499. {
  4500. struct tcp_sock *tp = tcp_sk(sk);
  4501. /* More than one full frame received... */
  4502. if (((tp->rcv_nxt - tp->rcv_wup) > (inet_csk(sk)->icsk_ack.rcv_mss) *
  4503. sysctl_tcp_delack_seg &&
  4504. /* ... and right edge of window advances far enough.
  4505. * (tcp_recvmsg() will send ACK otherwise). Or...
  4506. */
  4507. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4508. /* We ACK each frame or... */
  4509. tcp_in_quickack_mode(sk) ||
  4510. /* We have out of order data. */
  4511. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4512. /* Then ack it now */
  4513. tcp_send_ack(sk);
  4514. } else {
  4515. /* Else, send delayed ack. */
  4516. tcp_send_delayed_ack(sk);
  4517. }
  4518. }
  4519. static inline void tcp_ack_snd_check(struct sock *sk)
  4520. {
  4521. if (!inet_csk_ack_scheduled(sk)) {
  4522. /* We sent a data segment already. */
  4523. return;
  4524. }
  4525. __tcp_ack_snd_check(sk, 1);
  4526. }
  4527. /*
  4528. * This routine is only called when we have urgent data
  4529. * signaled. Its the 'slow' part of tcp_urg. It could be
  4530. * moved inline now as tcp_urg is only called from one
  4531. * place. We handle URGent data wrong. We have to - as
  4532. * BSD still doesn't use the correction from RFC961.
  4533. * For 1003.1g we should support a new option TCP_STDURG to permit
  4534. * either form (or just set the sysctl tcp_stdurg).
  4535. */
  4536. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4537. {
  4538. struct tcp_sock *tp = tcp_sk(sk);
  4539. u32 ptr = ntohs(th->urg_ptr);
  4540. if (ptr && !sysctl_tcp_stdurg)
  4541. ptr--;
  4542. ptr += ntohl(th->seq);
  4543. /* Ignore urgent data that we've already seen and read. */
  4544. if (after(tp->copied_seq, ptr))
  4545. return;
  4546. /* Do not replay urg ptr.
  4547. *
  4548. * NOTE: interesting situation not covered by specs.
  4549. * Misbehaving sender may send urg ptr, pointing to segment,
  4550. * which we already have in ofo queue. We are not able to fetch
  4551. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4552. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4553. * situations. But it is worth to think about possibility of some
  4554. * DoSes using some hypothetical application level deadlock.
  4555. */
  4556. if (before(ptr, tp->rcv_nxt))
  4557. return;
  4558. /* Do we already have a newer (or duplicate) urgent pointer? */
  4559. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4560. return;
  4561. /* Tell the world about our new urgent pointer. */
  4562. sk_send_sigurg(sk);
  4563. /* We may be adding urgent data when the last byte read was
  4564. * urgent. To do this requires some care. We cannot just ignore
  4565. * tp->copied_seq since we would read the last urgent byte again
  4566. * as data, nor can we alter copied_seq until this data arrives
  4567. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4568. *
  4569. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4570. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4571. * and expect that both A and B disappear from stream. This is _wrong_.
  4572. * Though this happens in BSD with high probability, this is occasional.
  4573. * Any application relying on this is buggy. Note also, that fix "works"
  4574. * only in this artificial test. Insert some normal data between A and B and we will
  4575. * decline of BSD again. Verdict: it is better to remove to trap
  4576. * buggy users.
  4577. */
  4578. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4579. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4580. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4581. tp->copied_seq++;
  4582. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4583. __skb_unlink(skb, &sk->sk_receive_queue);
  4584. __kfree_skb(skb);
  4585. }
  4586. }
  4587. tp->urg_data = TCP_URG_NOTYET;
  4588. tp->urg_seq = ptr;
  4589. /* Disable header prediction. */
  4590. tp->pred_flags = 0;
  4591. }
  4592. /* This is the 'fast' part of urgent handling. */
  4593. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4594. {
  4595. struct tcp_sock *tp = tcp_sk(sk);
  4596. /* Check if we get a new urgent pointer - normally not. */
  4597. if (th->urg)
  4598. tcp_check_urg(sk, th);
  4599. /* Do we wait for any urgent data? - normally not... */
  4600. if (tp->urg_data == TCP_URG_NOTYET) {
  4601. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4602. th->syn;
  4603. /* Is the urgent pointer pointing into this packet? */
  4604. if (ptr < skb->len) {
  4605. u8 tmp;
  4606. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4607. BUG();
  4608. tp->urg_data = TCP_URG_VALID | tmp;
  4609. if (!sock_flag(sk, SOCK_DEAD))
  4610. sk->sk_data_ready(sk, 0);
  4611. }
  4612. }
  4613. }
  4614. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4615. {
  4616. struct tcp_sock *tp = tcp_sk(sk);
  4617. int chunk = skb->len - hlen;
  4618. int err;
  4619. local_bh_enable();
  4620. if (skb_csum_unnecessary(skb))
  4621. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4622. else
  4623. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4624. tp->ucopy.iov, chunk);
  4625. if (!err) {
  4626. tp->ucopy.len -= chunk;
  4627. tp->copied_seq += chunk;
  4628. tcp_rcv_space_adjust(sk);
  4629. }
  4630. local_bh_disable();
  4631. return err;
  4632. }
  4633. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4634. struct sk_buff *skb)
  4635. {
  4636. __sum16 result;
  4637. if (sock_owned_by_user(sk)) {
  4638. local_bh_enable();
  4639. result = __tcp_checksum_complete(skb);
  4640. local_bh_disable();
  4641. } else {
  4642. result = __tcp_checksum_complete(skb);
  4643. }
  4644. return result;
  4645. }
  4646. static inline int tcp_checksum_complete_user(struct sock *sk,
  4647. struct sk_buff *skb)
  4648. {
  4649. return !skb_csum_unnecessary(skb) &&
  4650. __tcp_checksum_complete_user(sk, skb);
  4651. }
  4652. #ifdef CONFIG_NET_DMA
  4653. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4654. int hlen)
  4655. {
  4656. struct tcp_sock *tp = tcp_sk(sk);
  4657. int chunk = skb->len - hlen;
  4658. int dma_cookie;
  4659. int copied_early = 0;
  4660. if (tp->ucopy.wakeup)
  4661. return 0;
  4662. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4663. tp->ucopy.dma_chan = net_dma_find_channel();
  4664. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4665. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4666. skb, hlen,
  4667. tp->ucopy.iov, chunk,
  4668. tp->ucopy.pinned_list);
  4669. if (dma_cookie < 0)
  4670. goto out;
  4671. tp->ucopy.dma_cookie = dma_cookie;
  4672. copied_early = 1;
  4673. tp->ucopy.len -= chunk;
  4674. tp->copied_seq += chunk;
  4675. tcp_rcv_space_adjust(sk);
  4676. if ((tp->ucopy.len == 0) ||
  4677. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4678. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4679. tp->ucopy.wakeup = 1;
  4680. sk->sk_data_ready(sk, 0);
  4681. }
  4682. } else if (chunk > 0) {
  4683. tp->ucopy.wakeup = 1;
  4684. sk->sk_data_ready(sk, 0);
  4685. }
  4686. out:
  4687. return copied_early;
  4688. }
  4689. #endif /* CONFIG_NET_DMA */
  4690. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4691. * play significant role here.
  4692. */
  4693. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4694. const struct tcphdr *th, int syn_inerr)
  4695. {
  4696. const u8 *hash_location;
  4697. struct tcp_sock *tp = tcp_sk(sk);
  4698. /* RFC1323: H1. Apply PAWS check first. */
  4699. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4700. tp->rx_opt.saw_tstamp &&
  4701. tcp_paws_discard(sk, skb)) {
  4702. if (!th->rst) {
  4703. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4704. tcp_send_dupack(sk, skb);
  4705. goto discard;
  4706. }
  4707. /* Reset is accepted even if it did not pass PAWS. */
  4708. }
  4709. /* Step 1: check sequence number */
  4710. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4711. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4712. * (RST) segments are validated by checking their SEQ-fields."
  4713. * And page 69: "If an incoming segment is not acceptable,
  4714. * an acknowledgment should be sent in reply (unless the RST
  4715. * bit is set, if so drop the segment and return)".
  4716. */
  4717. if (!th->rst) {
  4718. if (th->syn)
  4719. goto syn_challenge;
  4720. tcp_send_dupack(sk, skb);
  4721. }
  4722. goto discard;
  4723. }
  4724. /* Step 2: check RST bit */
  4725. if (th->rst) {
  4726. /* RFC 5961 3.2 :
  4727. * If sequence number exactly matches RCV.NXT, then
  4728. * RESET the connection
  4729. * else
  4730. * Send a challenge ACK
  4731. */
  4732. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4733. tcp_reset(sk);
  4734. else
  4735. tcp_send_challenge_ack(sk);
  4736. goto discard;
  4737. }
  4738. /* step 3: check security and precedence [ignored] */
  4739. /* step 4: Check for a SYN
  4740. * RFC 5691 4.2 : Send a challenge ack
  4741. */
  4742. if (th->syn) {
  4743. syn_challenge:
  4744. if (syn_inerr)
  4745. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4746. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4747. tcp_send_challenge_ack(sk);
  4748. goto discard;
  4749. }
  4750. return true;
  4751. discard:
  4752. __kfree_skb(skb);
  4753. return false;
  4754. }
  4755. /*
  4756. * TCP receive function for the ESTABLISHED state.
  4757. *
  4758. * It is split into a fast path and a slow path. The fast path is
  4759. * disabled when:
  4760. * - A zero window was announced from us - zero window probing
  4761. * is only handled properly in the slow path.
  4762. * - Out of order segments arrived.
  4763. * - Urgent data is expected.
  4764. * - There is no buffer space left
  4765. * - Unexpected TCP flags/window values/header lengths are received
  4766. * (detected by checking the TCP header against pred_flags)
  4767. * - Data is sent in both directions. Fast path only supports pure senders
  4768. * or pure receivers (this means either the sequence number or the ack
  4769. * value must stay constant)
  4770. * - Unexpected TCP option.
  4771. *
  4772. * When these conditions are not satisfied it drops into a standard
  4773. * receive procedure patterned after RFC793 to handle all cases.
  4774. * The first three cases are guaranteed by proper pred_flags setting,
  4775. * the rest is checked inline. Fast processing is turned on in
  4776. * tcp_data_queue when everything is OK.
  4777. */
  4778. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4779. const struct tcphdr *th, unsigned int len)
  4780. {
  4781. struct tcp_sock *tp = tcp_sk(sk);
  4782. /*
  4783. * Header prediction.
  4784. * The code loosely follows the one in the famous
  4785. * "30 instruction TCP receive" Van Jacobson mail.
  4786. *
  4787. * Van's trick is to deposit buffers into socket queue
  4788. * on a device interrupt, to call tcp_recv function
  4789. * on the receive process context and checksum and copy
  4790. * the buffer to user space. smart...
  4791. *
  4792. * Our current scheme is not silly either but we take the
  4793. * extra cost of the net_bh soft interrupt processing...
  4794. * We do checksum and copy also but from device to kernel.
  4795. */
  4796. tp->rx_opt.saw_tstamp = 0;
  4797. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4798. * if header_prediction is to be made
  4799. * 'S' will always be tp->tcp_header_len >> 2
  4800. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4801. * turn it off (when there are holes in the receive
  4802. * space for instance)
  4803. * PSH flag is ignored.
  4804. */
  4805. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4806. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4807. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4808. int tcp_header_len = tp->tcp_header_len;
  4809. /* Timestamp header prediction: tcp_header_len
  4810. * is automatically equal to th->doff*4 due to pred_flags
  4811. * match.
  4812. */
  4813. /* Check timestamp */
  4814. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4815. /* No? Slow path! */
  4816. if (!tcp_parse_aligned_timestamp(tp, th))
  4817. goto slow_path;
  4818. /* If PAWS failed, check it more carefully in slow path */
  4819. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4820. goto slow_path;
  4821. /* DO NOT update ts_recent here, if checksum fails
  4822. * and timestamp was corrupted part, it will result
  4823. * in a hung connection since we will drop all
  4824. * future packets due to the PAWS test.
  4825. */
  4826. }
  4827. if (len <= tcp_header_len) {
  4828. /* Bulk data transfer: sender */
  4829. if (len == tcp_header_len) {
  4830. /* Predicted packet is in window by definition.
  4831. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4832. * Hence, check seq<=rcv_wup reduces to:
  4833. */
  4834. if (tcp_header_len ==
  4835. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4836. tp->rcv_nxt == tp->rcv_wup)
  4837. tcp_store_ts_recent(tp);
  4838. /* We know that such packets are checksummed
  4839. * on entry.
  4840. */
  4841. tcp_ack(sk, skb, 0);
  4842. __kfree_skb(skb);
  4843. tcp_data_snd_check(sk);
  4844. return;
  4845. } else { /* Header too small */
  4846. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4847. goto discard;
  4848. }
  4849. } else {
  4850. int eaten = 0;
  4851. int copied_early = 0;
  4852. if (tp->copied_seq == tp->rcv_nxt &&
  4853. len - tcp_header_len <= tp->ucopy.len) {
  4854. #ifdef CONFIG_NET_DMA
  4855. if (tp->ucopy.task == current &&
  4856. sock_owned_by_user(sk) &&
  4857. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4858. copied_early = 1;
  4859. eaten = 1;
  4860. }
  4861. #endif
  4862. if (tp->ucopy.task == current &&
  4863. sock_owned_by_user(sk) && !copied_early) {
  4864. __set_current_state(TASK_RUNNING);
  4865. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4866. eaten = 1;
  4867. }
  4868. if (eaten) {
  4869. /* Predicted packet is in window by definition.
  4870. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4871. * Hence, check seq<=rcv_wup reduces to:
  4872. */
  4873. if (tcp_header_len ==
  4874. (sizeof(struct tcphdr) +
  4875. TCPOLEN_TSTAMP_ALIGNED) &&
  4876. tp->rcv_nxt == tp->rcv_wup)
  4877. tcp_store_ts_recent(tp);
  4878. tcp_rcv_rtt_measure_ts(sk, skb);
  4879. __skb_pull(skb, tcp_header_len);
  4880. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4881. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4882. }
  4883. if (copied_early)
  4884. tcp_cleanup_rbuf(sk, skb->len);
  4885. }
  4886. if (!eaten) {
  4887. if (tcp_checksum_complete_user(sk, skb))
  4888. goto csum_error;
  4889. if ((int)skb->truesize > sk->sk_forward_alloc)
  4890. goto step5;
  4891. /* Predicted packet is in window by definition.
  4892. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4893. * Hence, check seq<=rcv_wup reduces to:
  4894. */
  4895. if (tcp_header_len ==
  4896. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4897. tp->rcv_nxt == tp->rcv_wup)
  4898. tcp_store_ts_recent(tp);
  4899. tcp_rcv_rtt_measure_ts(sk, skb);
  4900. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4901. /* Bulk data transfer: receiver */
  4902. __skb_pull(skb, tcp_header_len);
  4903. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4904. skb_set_owner_r(skb, sk);
  4905. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4906. }
  4907. tcp_event_data_recv(sk, skb);
  4908. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4909. /* Well, only one small jumplet in fast path... */
  4910. tcp_ack(sk, skb, FLAG_DATA);
  4911. tcp_data_snd_check(sk);
  4912. if (!inet_csk_ack_scheduled(sk))
  4913. goto no_ack;
  4914. }
  4915. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4916. __tcp_ack_snd_check(sk, 0);
  4917. no_ack:
  4918. #ifdef CONFIG_NET_DMA
  4919. if (copied_early)
  4920. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4921. else
  4922. #endif
  4923. if (eaten)
  4924. __kfree_skb(skb);
  4925. else
  4926. sk->sk_data_ready(sk, 0);
  4927. return;
  4928. }
  4929. }
  4930. slow_path:
  4931. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4932. goto csum_error;
  4933. /*
  4934. * Standard slow path.
  4935. */
  4936. if (!tcp_validate_incoming(sk, skb, th, 1))
  4937. return;
  4938. step5:
  4939. if (th->ack &&
  4940. tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4941. goto discard;
  4942. tcp_rcv_rtt_measure_ts(sk, skb);
  4943. /* Process urgent data. */
  4944. tcp_urg(sk, skb, th);
  4945. /* step 7: process the segment text */
  4946. tcp_data_queue(sk, skb);
  4947. tcp_data_snd_check(sk);
  4948. tcp_ack_snd_check(sk);
  4949. return;
  4950. csum_error:
  4951. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4952. discard:
  4953. __kfree_skb(skb);
  4954. }
  4955. EXPORT_SYMBOL(tcp_rcv_established);
  4956. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4957. const struct tcphdr *th, unsigned int len)
  4958. {
  4959. const u8 *hash_location;
  4960. struct inet_connection_sock *icsk = inet_csk(sk);
  4961. struct tcp_sock *tp = tcp_sk(sk);
  4962. struct tcp_cookie_values *cvp = tp->cookie_values;
  4963. int saved_clamp = tp->rx_opt.mss_clamp;
  4964. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
  4965. if (th->ack) {
  4966. /* rfc793:
  4967. * "If the state is SYN-SENT then
  4968. * first check the ACK bit
  4969. * If the ACK bit is set
  4970. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4971. * a reset (unless the RST bit is set, if so drop
  4972. * the segment and return)"
  4973. *
  4974. * We do not send data with SYN, so that RFC-correct
  4975. * test reduces to:
  4976. */
  4977. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4978. goto reset_and_undo;
  4979. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4980. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4981. tcp_time_stamp)) {
  4982. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4983. goto reset_and_undo;
  4984. }
  4985. /* Now ACK is acceptable.
  4986. *
  4987. * "If the RST bit is set
  4988. * If the ACK was acceptable then signal the user "error:
  4989. * connection reset", drop the segment, enter CLOSED state,
  4990. * delete TCB, and return."
  4991. */
  4992. if (th->rst) {
  4993. tcp_reset(sk);
  4994. goto discard;
  4995. }
  4996. /* rfc793:
  4997. * "fifth, if neither of the SYN or RST bits is set then
  4998. * drop the segment and return."
  4999. *
  5000. * See note below!
  5001. * --ANK(990513)
  5002. */
  5003. if (!th->syn)
  5004. goto discard_and_undo;
  5005. /* rfc793:
  5006. * "If the SYN bit is on ...
  5007. * are acceptable then ...
  5008. * (our SYN has been ACKed), change the connection
  5009. * state to ESTABLISHED..."
  5010. */
  5011. TCP_ECN_rcv_synack(tp, th);
  5012. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5013. tcp_ack(sk, skb, FLAG_SLOWPATH);
  5014. /* Ok.. it's good. Set up sequence numbers and
  5015. * move to established.
  5016. */
  5017. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5018. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5019. /* RFC1323: The window in SYN & SYN/ACK segments is
  5020. * never scaled.
  5021. */
  5022. tp->snd_wnd = ntohs(th->window);
  5023. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5024. if (!tp->rx_opt.wscale_ok) {
  5025. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  5026. tp->window_clamp = min(tp->window_clamp, 65535U);
  5027. }
  5028. if (tp->rx_opt.saw_tstamp) {
  5029. tp->rx_opt.tstamp_ok = 1;
  5030. tp->tcp_header_len =
  5031. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5032. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5033. tcp_store_ts_recent(tp);
  5034. } else {
  5035. tp->tcp_header_len = sizeof(struct tcphdr);
  5036. }
  5037. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  5038. tcp_enable_fack(tp);
  5039. tcp_mtup_init(sk);
  5040. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5041. tcp_initialize_rcv_mss(sk);
  5042. /* Remember, tcp_poll() does not lock socket!
  5043. * Change state from SYN-SENT only after copied_seq
  5044. * is initialized. */
  5045. tp->copied_seq = tp->rcv_nxt;
  5046. if (cvp != NULL &&
  5047. cvp->cookie_pair_size > 0 &&
  5048. tp->rx_opt.cookie_plus > 0) {
  5049. int cookie_size = tp->rx_opt.cookie_plus
  5050. - TCPOLEN_COOKIE_BASE;
  5051. int cookie_pair_size = cookie_size
  5052. + cvp->cookie_desired;
  5053. /* A cookie extension option was sent and returned.
  5054. * Note that each incoming SYNACK replaces the
  5055. * Responder cookie. The initial exchange is most
  5056. * fragile, as protection against spoofing relies
  5057. * entirely upon the sequence and timestamp (above).
  5058. * This replacement strategy allows the correct pair to
  5059. * pass through, while any others will be filtered via
  5060. * Responder verification later.
  5061. */
  5062. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  5063. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  5064. hash_location, cookie_size);
  5065. cvp->cookie_pair_size = cookie_pair_size;
  5066. }
  5067. }
  5068. smp_mb();
  5069. tcp_set_state(sk, TCP_ESTABLISHED);
  5070. security_inet_conn_established(sk, skb);
  5071. /* Make sure socket is routed, for correct metrics. */
  5072. icsk->icsk_af_ops->rebuild_header(sk);
  5073. tcp_init_metrics(sk);
  5074. tcp_init_congestion_control(sk);
  5075. /* Prevent spurious tcp_cwnd_restart() on first data
  5076. * packet.
  5077. */
  5078. tp->lsndtime = tcp_time_stamp;
  5079. tcp_init_buffer_space(sk);
  5080. if (sock_flag(sk, SOCK_KEEPOPEN))
  5081. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  5082. if (!tp->rx_opt.snd_wscale)
  5083. __tcp_fast_path_on(tp, tp->snd_wnd);
  5084. else
  5085. tp->pred_flags = 0;
  5086. if (!sock_flag(sk, SOCK_DEAD)) {
  5087. sk->sk_state_change(sk);
  5088. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5089. }
  5090. if (sk->sk_write_pending ||
  5091. icsk->icsk_accept_queue.rskq_defer_accept ||
  5092. icsk->icsk_ack.pingpong) {
  5093. /* Save one ACK. Data will be ready after
  5094. * several ticks, if write_pending is set.
  5095. *
  5096. * It may be deleted, but with this feature tcpdumps
  5097. * look so _wonderfully_ clever, that I was not able
  5098. * to stand against the temptation 8) --ANK
  5099. */
  5100. inet_csk_schedule_ack(sk);
  5101. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  5102. icsk->icsk_ack.ato = TCP_ATO_MIN;
  5103. tcp_incr_quickack(sk);
  5104. tcp_enter_quickack_mode(sk);
  5105. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  5106. TCP_DELACK_MAX, TCP_RTO_MAX);
  5107. discard:
  5108. __kfree_skb(skb);
  5109. return 0;
  5110. } else {
  5111. tcp_send_ack(sk);
  5112. }
  5113. return -1;
  5114. }
  5115. /* No ACK in the segment */
  5116. if (th->rst) {
  5117. /* rfc793:
  5118. * "If the RST bit is set
  5119. *
  5120. * Otherwise (no ACK) drop the segment and return."
  5121. */
  5122. goto discard_and_undo;
  5123. }
  5124. /* PAWS check. */
  5125. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  5126. tcp_paws_reject(&tp->rx_opt, 0))
  5127. goto discard_and_undo;
  5128. if (th->syn) {
  5129. /* We see SYN without ACK. It is attempt of
  5130. * simultaneous connect with crossed SYNs.
  5131. * Particularly, it can be connect to self.
  5132. */
  5133. tcp_set_state(sk, TCP_SYN_RECV);
  5134. if (tp->rx_opt.saw_tstamp) {
  5135. tp->rx_opt.tstamp_ok = 1;
  5136. tcp_store_ts_recent(tp);
  5137. tp->tcp_header_len =
  5138. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5139. } else {
  5140. tp->tcp_header_len = sizeof(struct tcphdr);
  5141. }
  5142. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5143. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5144. /* RFC1323: The window in SYN & SYN/ACK segments is
  5145. * never scaled.
  5146. */
  5147. tp->snd_wnd = ntohs(th->window);
  5148. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5149. tp->max_window = tp->snd_wnd;
  5150. TCP_ECN_rcv_syn(tp, th);
  5151. tcp_mtup_init(sk);
  5152. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5153. tcp_initialize_rcv_mss(sk);
  5154. tcp_send_synack(sk);
  5155. #if 0
  5156. /* Note, we could accept data and URG from this segment.
  5157. * There are no obstacles to make this.
  5158. *
  5159. * However, if we ignore data in ACKless segments sometimes,
  5160. * we have no reasons to accept it sometimes.
  5161. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5162. * is not flawless. So, discard packet for sanity.
  5163. * Uncomment this return to process the data.
  5164. */
  5165. return -1;
  5166. #else
  5167. goto discard;
  5168. #endif
  5169. }
  5170. /* "fifth, if neither of the SYN or RST bits is set then
  5171. * drop the segment and return."
  5172. */
  5173. discard_and_undo:
  5174. tcp_clear_options(&tp->rx_opt);
  5175. tp->rx_opt.mss_clamp = saved_clamp;
  5176. goto discard;
  5177. reset_and_undo:
  5178. tcp_clear_options(&tp->rx_opt);
  5179. tp->rx_opt.mss_clamp = saved_clamp;
  5180. return 1;
  5181. }
  5182. /*
  5183. * This function implements the receiving procedure of RFC 793 for
  5184. * all states except ESTABLISHED and TIME_WAIT.
  5185. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5186. * address independent.
  5187. */
  5188. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5189. const struct tcphdr *th, unsigned int len)
  5190. {
  5191. struct tcp_sock *tp = tcp_sk(sk);
  5192. struct inet_connection_sock *icsk = inet_csk(sk);
  5193. int queued = 0;
  5194. tp->rx_opt.saw_tstamp = 0;
  5195. switch (sk->sk_state) {
  5196. case TCP_CLOSE:
  5197. goto discard;
  5198. case TCP_LISTEN:
  5199. if (th->ack)
  5200. return 1;
  5201. if (th->rst)
  5202. goto discard;
  5203. if (th->syn) {
  5204. if (th->fin)
  5205. goto discard;
  5206. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5207. return 1;
  5208. /* Now we have several options: In theory there is
  5209. * nothing else in the frame. KA9Q has an option to
  5210. * send data with the syn, BSD accepts data with the
  5211. * syn up to the [to be] advertised window and
  5212. * Solaris 2.1 gives you a protocol error. For now
  5213. * we just ignore it, that fits the spec precisely
  5214. * and avoids incompatibilities. It would be nice in
  5215. * future to drop through and process the data.
  5216. *
  5217. * Now that TTCP is starting to be used we ought to
  5218. * queue this data.
  5219. * But, this leaves one open to an easy denial of
  5220. * service attack, and SYN cookies can't defend
  5221. * against this problem. So, we drop the data
  5222. * in the interest of security over speed unless
  5223. * it's still in use.
  5224. */
  5225. kfree_skb(skb);
  5226. return 0;
  5227. }
  5228. goto discard;
  5229. case TCP_SYN_SENT:
  5230. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5231. if (queued >= 0)
  5232. return queued;
  5233. /* Do step6 onward by hand. */
  5234. tcp_urg(sk, skb, th);
  5235. __kfree_skb(skb);
  5236. tcp_data_snd_check(sk);
  5237. return 0;
  5238. }
  5239. if (!tcp_validate_incoming(sk, skb, th, 0))
  5240. return 0;
  5241. /* step 5: check the ACK field */
  5242. if (th->ack) {
  5243. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5244. FLAG_UPDATE_TS_RECENT) > 0;
  5245. switch (sk->sk_state) {
  5246. case TCP_SYN_RECV:
  5247. if (acceptable) {
  5248. tp->copied_seq = tp->rcv_nxt;
  5249. smp_mb();
  5250. tcp_set_state(sk, TCP_ESTABLISHED);
  5251. sk->sk_state_change(sk);
  5252. /* Note, that this wakeup is only for marginal
  5253. * crossed SYN case. Passively open sockets
  5254. * are not waked up, because sk->sk_sleep ==
  5255. * NULL and sk->sk_socket == NULL.
  5256. */
  5257. if (sk->sk_socket)
  5258. sk_wake_async(sk,
  5259. SOCK_WAKE_IO, POLL_OUT);
  5260. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5261. tp->snd_wnd = ntohs(th->window) <<
  5262. tp->rx_opt.snd_wscale;
  5263. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5264. if (tp->rx_opt.tstamp_ok)
  5265. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5266. /* Make sure socket is routed, for
  5267. * correct metrics.
  5268. */
  5269. icsk->icsk_af_ops->rebuild_header(sk);
  5270. tcp_init_metrics(sk);
  5271. tcp_init_congestion_control(sk);
  5272. /* Prevent spurious tcp_cwnd_restart() on
  5273. * first data packet.
  5274. */
  5275. tp->lsndtime = tcp_time_stamp;
  5276. tcp_mtup_init(sk);
  5277. tcp_initialize_rcv_mss(sk);
  5278. tcp_fast_path_on(tp);
  5279. tcp_init_buffer_space(sk);
  5280. } else {
  5281. return 1;
  5282. }
  5283. break;
  5284. case TCP_FIN_WAIT1:
  5285. if (tp->snd_una == tp->write_seq) {
  5286. struct dst_entry *dst;
  5287. tcp_set_state(sk, TCP_FIN_WAIT2);
  5288. sk->sk_shutdown |= SEND_SHUTDOWN;
  5289. dst = __sk_dst_get(sk);
  5290. if (dst)
  5291. dst_confirm(dst);
  5292. if (!sock_flag(sk, SOCK_DEAD))
  5293. /* Wake up lingering close() */
  5294. sk->sk_state_change(sk);
  5295. else {
  5296. int tmo;
  5297. if (tp->linger2 < 0 ||
  5298. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5299. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5300. tcp_done(sk);
  5301. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5302. return 1;
  5303. }
  5304. tmo = tcp_fin_time(sk);
  5305. if (tmo > TCP_TIMEWAIT_LEN) {
  5306. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5307. } else if (th->fin || sock_owned_by_user(sk)) {
  5308. /* Bad case. We could lose such FIN otherwise.
  5309. * It is not a big problem, but it looks confusing
  5310. * and not so rare event. We still can lose it now,
  5311. * if it spins in bh_lock_sock(), but it is really
  5312. * marginal case.
  5313. */
  5314. inet_csk_reset_keepalive_timer(sk, tmo);
  5315. } else {
  5316. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5317. goto discard;
  5318. }
  5319. }
  5320. }
  5321. break;
  5322. case TCP_CLOSING:
  5323. if (tp->snd_una == tp->write_seq) {
  5324. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5325. goto discard;
  5326. }
  5327. break;
  5328. case TCP_LAST_ACK:
  5329. if (tp->snd_una == tp->write_seq) {
  5330. tcp_update_metrics(sk);
  5331. tcp_done(sk);
  5332. goto discard;
  5333. }
  5334. break;
  5335. }
  5336. } else
  5337. goto discard;
  5338. /* step 6: check the URG bit */
  5339. tcp_urg(sk, skb, th);
  5340. /* step 7: process the segment text */
  5341. switch (sk->sk_state) {
  5342. case TCP_CLOSE_WAIT:
  5343. case TCP_CLOSING:
  5344. case TCP_LAST_ACK:
  5345. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5346. break;
  5347. case TCP_FIN_WAIT1:
  5348. case TCP_FIN_WAIT2:
  5349. /* RFC 793 says to queue data in these states,
  5350. * RFC 1122 says we MUST send a reset.
  5351. * BSD 4.4 also does reset.
  5352. */
  5353. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5354. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5355. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5356. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5357. tcp_reset(sk);
  5358. return 1;
  5359. }
  5360. }
  5361. /* Fall through */
  5362. case TCP_ESTABLISHED:
  5363. tcp_data_queue(sk, skb);
  5364. queued = 1;
  5365. break;
  5366. }
  5367. /* tcp_data could move socket to TIME-WAIT */
  5368. if (sk->sk_state != TCP_CLOSE) {
  5369. tcp_data_snd_check(sk);
  5370. tcp_ack_snd_check(sk);
  5371. }
  5372. if (!queued) {
  5373. discard:
  5374. __kfree_skb(skb);
  5375. }
  5376. return 0;
  5377. }
  5378. EXPORT_SYMBOL(tcp_rcv_state_process);