1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561 |
- /*
- * linux/mm/slab.c
- * Written by Mark Hemment, 1996/97.
- * (markhe@nextd.demon.co.uk)
- *
- * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
- *
- * Major cleanup, different bufctl logic, per-cpu arrays
- * (c) 2000 Manfred Spraul
- *
- * Cleanup, make the head arrays unconditional, preparation for NUMA
- * (c) 2002 Manfred Spraul
- *
- * An implementation of the Slab Allocator as described in outline in;
- * UNIX Internals: The New Frontiers by Uresh Vahalia
- * Pub: Prentice Hall ISBN 0-13-101908-2
- * or with a little more detail in;
- * The Slab Allocator: An Object-Caching Kernel Memory Allocator
- * Jeff Bonwick (Sun Microsystems).
- * Presented at: USENIX Summer 1994 Technical Conference
- *
- * The memory is organized in caches, one cache for each object type.
- * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
- * Each cache consists out of many slabs (they are small (usually one
- * page long) and always contiguous), and each slab contains multiple
- * initialized objects.
- *
- * This means, that your constructor is used only for newly allocated
- * slabs and you must pass objects with the same initializations to
- * kmem_cache_free.
- *
- * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
- * normal). If you need a special memory type, then must create a new
- * cache for that memory type.
- *
- * In order to reduce fragmentation, the slabs are sorted in 3 groups:
- * full slabs with 0 free objects
- * partial slabs
- * empty slabs with no allocated objects
- *
- * If partial slabs exist, then new allocations come from these slabs,
- * otherwise from empty slabs or new slabs are allocated.
- *
- * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
- * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
- *
- * Each cache has a short per-cpu head array, most allocs
- * and frees go into that array, and if that array overflows, then 1/2
- * of the entries in the array are given back into the global cache.
- * The head array is strictly LIFO and should improve the cache hit rates.
- * On SMP, it additionally reduces the spinlock operations.
- *
- * The c_cpuarray may not be read with enabled local interrupts -
- * it's changed with a smp_call_function().
- *
- * SMP synchronization:
- * constructors and destructors are called without any locking.
- * Several members in struct kmem_cache and struct slab never change, they
- * are accessed without any locking.
- * The per-cpu arrays are never accessed from the wrong cpu, no locking,
- * and local interrupts are disabled so slab code is preempt-safe.
- * The non-constant members are protected with a per-cache irq spinlock.
- *
- * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
- * in 2000 - many ideas in the current implementation are derived from
- * his patch.
- *
- * Further notes from the original documentation:
- *
- * 11 April '97. Started multi-threading - markhe
- * The global cache-chain is protected by the mutex 'slab_mutex'.
- * The sem is only needed when accessing/extending the cache-chain, which
- * can never happen inside an interrupt (kmem_cache_create(),
- * kmem_cache_shrink() and kmem_cache_reap()).
- *
- * At present, each engine can be growing a cache. This should be blocked.
- *
- * 15 March 2005. NUMA slab allocator.
- * Shai Fultheim <shai@scalex86.org>.
- * Shobhit Dayal <shobhit@calsoftinc.com>
- * Alok N Kataria <alokk@calsoftinc.com>
- * Christoph Lameter <christoph@lameter.com>
- *
- * Modified the slab allocator to be node aware on NUMA systems.
- * Each node has its own list of partial, free and full slabs.
- * All object allocations for a node occur from node specific slab lists.
- */
- #include <linux/slab.h>
- #include <linux/mm.h>
- #include <linux/poison.h>
- #include <linux/swap.h>
- #include <linux/cache.h>
- #include <linux/interrupt.h>
- #include <linux/init.h>
- #include <linux/compiler.h>
- #include <linux/cpuset.h>
- #include <linux/proc_fs.h>
- #include <linux/seq_file.h>
- #include <linux/notifier.h>
- #include <linux/kallsyms.h>
- #include <linux/cpu.h>
- #include <linux/sysctl.h>
- #include <linux/module.h>
- #include <linux/rcupdate.h>
- #include <linux/string.h>
- #include <linux/uaccess.h>
- #include <linux/nodemask.h>
- #include <linux/kmemleak.h>
- #include <linux/mempolicy.h>
- #include <linux/mutex.h>
- #include <linux/fault-inject.h>
- #include <linux/rtmutex.h>
- #include <linux/reciprocal_div.h>
- #include <linux/debugobjects.h>
- #include <linux/kmemcheck.h>
- #include <linux/memory.h>
- #include <linux/prefetch.h>
- #include <asm/cacheflush.h>
- #include <asm/tlbflush.h>
- #include <asm/page.h>
- #include <trace/events/kmem.h>
- #include "internal.h"
- #include "slab.h"
- /*
- * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * STATS - 1 to collect stats for /proc/slabinfo.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
- */
- #ifdef CONFIG_DEBUG_SLAB
- #define DEBUG 1
- #define STATS 1
- #define FORCED_DEBUG 1
- #else
- #define DEBUG 0
- #define STATS 0
- #define FORCED_DEBUG 0
- #endif
- /* Shouldn't this be in a header file somewhere? */
- #define BYTES_PER_WORD sizeof(void *)
- #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
- #ifndef ARCH_KMALLOC_FLAGS
- #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
- #endif
- /*
- * true if a page was allocated from pfmemalloc reserves for network-based
- * swap
- */
- static bool pfmemalloc_active __read_mostly;
- /*
- * kmem_bufctl_t:
- *
- * Bufctl's are used for linking objs within a slab
- * linked offsets.
- *
- * This implementation relies on "struct page" for locating the cache &
- * slab an object belongs to.
- * This allows the bufctl structure to be small (one int), but limits
- * the number of objects a slab (not a cache) can contain when off-slab
- * bufctls are used. The limit is the size of the largest general cache
- * that does not use off-slab slabs.
- * For 32bit archs with 4 kB pages, is this 56.
- * This is not serious, as it is only for large objects, when it is unwise
- * to have too many per slab.
- * Note: This limit can be raised by introducing a general cache whose size
- * is less than 512 (PAGE_SIZE<<3), but greater than 256.
- */
- typedef unsigned int kmem_bufctl_t;
- #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
- #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
- #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
- #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
- /*
- * struct slab_rcu
- *
- * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
- * arrange for kmem_freepages to be called via RCU. This is useful if
- * we need to approach a kernel structure obliquely, from its address
- * obtained without the usual locking. We can lock the structure to
- * stabilize it and check it's still at the given address, only if we
- * can be sure that the memory has not been meanwhile reused for some
- * other kind of object (which our subsystem's lock might corrupt).
- *
- * rcu_read_lock before reading the address, then rcu_read_unlock after
- * taking the spinlock within the structure expected at that address.
- */
- struct slab_rcu {
- struct rcu_head head;
- struct kmem_cache *cachep;
- void *addr;
- };
- /*
- * struct slab
- *
- * Manages the objs in a slab. Placed either at the beginning of mem allocated
- * for a slab, or allocated from an general cache.
- * Slabs are chained into three list: fully used, partial, fully free slabs.
- */
- struct slab {
- union {
- struct {
- struct list_head list;
- unsigned long colouroff;
- void *s_mem; /* including colour offset */
- unsigned int inuse; /* num of objs active in slab */
- kmem_bufctl_t free;
- unsigned short nodeid;
- };
- struct slab_rcu __slab_cover_slab_rcu;
- };
- };
- /*
- * struct array_cache
- *
- * Purpose:
- * - LIFO ordering, to hand out cache-warm objects from _alloc
- * - reduce the number of linked list operations
- * - reduce spinlock operations
- *
- * The limit is stored in the per-cpu structure to reduce the data cache
- * footprint.
- *
- */
- struct array_cache {
- unsigned int avail;
- unsigned int limit;
- unsigned int batchcount;
- unsigned int touched;
- spinlock_t lock;
- void *entry[]; /*
- * Must have this definition in here for the proper
- * alignment of array_cache. Also simplifies accessing
- * the entries.
- *
- * Entries should not be directly dereferenced as
- * entries belonging to slabs marked pfmemalloc will
- * have the lower bits set SLAB_OBJ_PFMEMALLOC
- */
- };
- #define SLAB_OBJ_PFMEMALLOC 1
- static inline bool is_obj_pfmemalloc(void *objp)
- {
- return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
- }
- static inline void set_obj_pfmemalloc(void **objp)
- {
- *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
- return;
- }
- static inline void clear_obj_pfmemalloc(void **objp)
- {
- *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
- }
- /*
- * bootstrap: The caches do not work without cpuarrays anymore, but the
- * cpuarrays are allocated from the generic caches...
- */
- #define BOOT_CPUCACHE_ENTRIES 1
- struct arraycache_init {
- struct array_cache cache;
- void *entries[BOOT_CPUCACHE_ENTRIES];
- };
- /*
- * The slab lists for all objects.
- */
- struct kmem_list3 {
- struct list_head slabs_partial; /* partial list first, better asm code */
- struct list_head slabs_full;
- struct list_head slabs_free;
- unsigned long free_objects;
- unsigned int free_limit;
- unsigned int colour_next; /* Per-node cache coloring */
- spinlock_t list_lock;
- struct array_cache *shared; /* shared per node */
- struct array_cache **alien; /* on other nodes */
- unsigned long next_reap; /* updated without locking */
- int free_touched; /* updated without locking */
- };
- /*
- * Need this for bootstrapping a per node allocator.
- */
- #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
- static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
- #define CACHE_CACHE 0
- #define SIZE_AC MAX_NUMNODES
- #define SIZE_L3 (2 * MAX_NUMNODES)
- static int drain_freelist(struct kmem_cache *cache,
- struct kmem_list3 *l3, int tofree);
- static void free_block(struct kmem_cache *cachep, void **objpp, int len,
- int node);
- static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
- static void cache_reap(struct work_struct *unused);
- /*
- * This function must be completely optimized away if a constant is passed to
- * it. Mostly the same as what is in linux/slab.h except it returns an index.
- */
- static __always_inline int index_of(const size_t size)
- {
- extern void __bad_size(void);
- if (__builtin_constant_p(size)) {
- int i = 0;
- #define CACHE(x) \
- if (size <=x) \
- return i; \
- else \
- i++;
- #include <linux/kmalloc_sizes.h>
- #undef CACHE
- __bad_size();
- } else
- __bad_size();
- return 0;
- }
- static int slab_early_init = 1;
- #define INDEX_AC index_of(sizeof(struct arraycache_init))
- #define INDEX_L3 index_of(sizeof(struct kmem_list3))
- static void kmem_list3_init(struct kmem_list3 *parent)
- {
- INIT_LIST_HEAD(&parent->slabs_full);
- INIT_LIST_HEAD(&parent->slabs_partial);
- INIT_LIST_HEAD(&parent->slabs_free);
- parent->shared = NULL;
- parent->alien = NULL;
- parent->colour_next = 0;
- spin_lock_init(&parent->list_lock);
- parent->free_objects = 0;
- parent->free_touched = 0;
- }
- #define MAKE_LIST(cachep, listp, slab, nodeid) \
- do { \
- INIT_LIST_HEAD(listp); \
- list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
- } while (0)
- #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
- do { \
- MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
- MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
- MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
- } while (0)
- #define CFLGS_OFF_SLAB (0x80000000UL)
- #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
- #define BATCHREFILL_LIMIT 16
- /*
- * Optimization question: fewer reaps means less probability for unnessary
- * cpucache drain/refill cycles.
- *
- * OTOH the cpuarrays can contain lots of objects,
- * which could lock up otherwise freeable slabs.
- */
- #define REAPTIMEOUT_CPUC (2*HZ)
- #define REAPTIMEOUT_LIST3 (4*HZ)
- #if STATS
- #define STATS_INC_ACTIVE(x) ((x)->num_active++)
- #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
- #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
- #define STATS_INC_GROWN(x) ((x)->grown++)
- #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
- #define STATS_SET_HIGH(x) \
- do { \
- if ((x)->num_active > (x)->high_mark) \
- (x)->high_mark = (x)->num_active; \
- } while (0)
- #define STATS_INC_ERR(x) ((x)->errors++)
- #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
- #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
- #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
- #define STATS_SET_FREEABLE(x, i) \
- do { \
- if ((x)->max_freeable < i) \
- (x)->max_freeable = i; \
- } while (0)
- #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
- #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
- #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
- #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
- #else
- #define STATS_INC_ACTIVE(x) do { } while (0)
- #define STATS_DEC_ACTIVE(x) do { } while (0)
- #define STATS_INC_ALLOCED(x) do { } while (0)
- #define STATS_INC_GROWN(x) do { } while (0)
- #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
- #define STATS_SET_HIGH(x) do { } while (0)
- #define STATS_INC_ERR(x) do { } while (0)
- #define STATS_INC_NODEALLOCS(x) do { } while (0)
- #define STATS_INC_NODEFREES(x) do { } while (0)
- #define STATS_INC_ACOVERFLOW(x) do { } while (0)
- #define STATS_SET_FREEABLE(x, i) do { } while (0)
- #define STATS_INC_ALLOCHIT(x) do { } while (0)
- #define STATS_INC_ALLOCMISS(x) do { } while (0)
- #define STATS_INC_FREEHIT(x) do { } while (0)
- #define STATS_INC_FREEMISS(x) do { } while (0)
- #endif
- #if DEBUG
- /*
- * memory layout of objects:
- * 0 : objp
- * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
- * the end of an object is aligned with the end of the real
- * allocation. Catches writes behind the end of the allocation.
- * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
- * redzone word.
- * cachep->obj_offset: The real object.
- * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
- * cachep->size - 1* BYTES_PER_WORD: last caller address
- * [BYTES_PER_WORD long]
- */
- static int obj_offset(struct kmem_cache *cachep)
- {
- return cachep->obj_offset;
- }
- static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
- {
- BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- return (unsigned long long*) (objp + obj_offset(cachep) -
- sizeof(unsigned long long));
- }
- static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
- {
- BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- if (cachep->flags & SLAB_STORE_USER)
- return (unsigned long long *)(objp + cachep->size -
- sizeof(unsigned long long) -
- REDZONE_ALIGN);
- return (unsigned long long *) (objp + cachep->size -
- sizeof(unsigned long long));
- }
- static void **dbg_userword(struct kmem_cache *cachep, void *objp)
- {
- BUG_ON(!(cachep->flags & SLAB_STORE_USER));
- return (void **)(objp + cachep->size - BYTES_PER_WORD);
- }
- #else
- #define obj_offset(x) 0
- #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
- #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
- #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
- #endif
- /*
- * Do not go above this order unless 0 objects fit into the slab or
- * overridden on the command line.
- */
- #define SLAB_MAX_ORDER_HI 1
- #define SLAB_MAX_ORDER_LO 0
- static int slab_max_order = SLAB_MAX_ORDER_LO;
- static bool slab_max_order_set __initdata;
- static inline struct kmem_cache *virt_to_cache(const void *obj)
- {
- struct page *page = virt_to_head_page(obj);
- return page->slab_cache;
- }
- static inline struct slab *virt_to_slab(const void *obj)
- {
- struct page *page = virt_to_head_page(obj);
- VM_BUG_ON(!PageSlab(page));
- return page->slab_page;
- }
- static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
- unsigned int idx)
- {
- return slab->s_mem + cache->size * idx;
- }
- /*
- * We want to avoid an expensive divide : (offset / cache->size)
- * Using the fact that size is a constant for a particular cache,
- * we can replace (offset / cache->size) by
- * reciprocal_divide(offset, cache->reciprocal_buffer_size)
- */
- static inline unsigned int obj_to_index(const struct kmem_cache *cache,
- const struct slab *slab, void *obj)
- {
- u32 offset = (obj - slab->s_mem);
- return reciprocal_divide(offset, cache->reciprocal_buffer_size);
- }
- /*
- * These are the default caches for kmalloc. Custom caches can have other sizes.
- */
- struct cache_sizes malloc_sizes[] = {
- #define CACHE(x) { .cs_size = (x) },
- #include <linux/kmalloc_sizes.h>
- CACHE(ULONG_MAX)
- #undef CACHE
- };
- EXPORT_SYMBOL(malloc_sizes);
- /* Must match cache_sizes above. Out of line to keep cache footprint low. */
- struct cache_names {
- char *name;
- char *name_dma;
- };
- static struct cache_names __initdata cache_names[] = {
- #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
- #include <linux/kmalloc_sizes.h>
- {NULL,}
- #undef CACHE
- };
- static struct arraycache_init initarray_generic =
- { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
- /* internal cache of cache description objs */
- static struct kmem_cache kmem_cache_boot = {
- .batchcount = 1,
- .limit = BOOT_CPUCACHE_ENTRIES,
- .shared = 1,
- .size = sizeof(struct kmem_cache),
- .name = "kmem_cache",
- };
- #define BAD_ALIEN_MAGIC 0x01020304ul
- #ifdef CONFIG_LOCKDEP
- /*
- * Slab sometimes uses the kmalloc slabs to store the slab headers
- * for other slabs "off slab".
- * The locking for this is tricky in that it nests within the locks
- * of all other slabs in a few places; to deal with this special
- * locking we put on-slab caches into a separate lock-class.
- *
- * We set lock class for alien array caches which are up during init.
- * The lock annotation will be lost if all cpus of a node goes down and
- * then comes back up during hotplug
- */
- static struct lock_class_key on_slab_l3_key;
- static struct lock_class_key on_slab_alc_key;
- static struct lock_class_key debugobj_l3_key;
- static struct lock_class_key debugobj_alc_key;
- static void slab_set_lock_classes(struct kmem_cache *cachep,
- struct lock_class_key *l3_key, struct lock_class_key *alc_key,
- int q)
- {
- struct array_cache **alc;
- struct kmem_list3 *l3;
- int r;
- l3 = cachep->nodelists[q];
- if (!l3)
- return;
- lockdep_set_class(&l3->list_lock, l3_key);
- alc = l3->alien;
- /*
- * FIXME: This check for BAD_ALIEN_MAGIC
- * should go away when common slab code is taught to
- * work even without alien caches.
- * Currently, non NUMA code returns BAD_ALIEN_MAGIC
- * for alloc_alien_cache,
- */
- if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
- return;
- for_each_node(r) {
- if (alc[r])
- lockdep_set_class(&alc[r]->lock, alc_key);
- }
- }
- static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
- {
- slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
- }
- static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
- {
- int node;
- for_each_online_node(node)
- slab_set_debugobj_lock_classes_node(cachep, node);
- }
- static void init_node_lock_keys(int q)
- {
- struct cache_sizes *s = malloc_sizes;
- if (slab_state < UP)
- return;
- for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
- struct kmem_list3 *l3;
- l3 = s->cs_cachep->nodelists[q];
- if (!l3 || OFF_SLAB(s->cs_cachep))
- continue;
- slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
- &on_slab_alc_key, q);
- }
- }
- static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
- {
- struct kmem_list3 *l3;
- l3 = cachep->nodelists[q];
- if (!l3)
- return;
- slab_set_lock_classes(cachep, &on_slab_l3_key,
- &on_slab_alc_key, q);
- }
- static inline void on_slab_lock_classes(struct kmem_cache *cachep)
- {
- int node;
- VM_BUG_ON(OFF_SLAB(cachep));
- for_each_node(node)
- on_slab_lock_classes_node(cachep, node);
- }
- static inline void init_lock_keys(void)
- {
- int node;
- for_each_node(node)
- init_node_lock_keys(node);
- }
- #else
- static void init_node_lock_keys(int q)
- {
- }
- static inline void init_lock_keys(void)
- {
- }
- static inline void on_slab_lock_classes(struct kmem_cache *cachep)
- {
- }
- static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
- {
- }
- static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
- {
- }
- static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
- {
- }
- #endif
- static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
- static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
- {
- return cachep->array[smp_processor_id()];
- }
- static inline struct kmem_cache *__find_general_cachep(size_t size,
- gfp_t gfpflags)
- {
- struct cache_sizes *csizep = malloc_sizes;
- #if DEBUG
- /* This happens if someone tries to call
- * kmem_cache_create(), or __kmalloc(), before
- * the generic caches are initialized.
- */
- BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
- #endif
- if (!size)
- return ZERO_SIZE_PTR;
- while (size > csizep->cs_size)
- csizep++;
- /*
- * Really subtle: The last entry with cs->cs_size==ULONG_MAX
- * has cs_{dma,}cachep==NULL. Thus no special case
- * for large kmalloc calls required.
- */
- #ifdef CONFIG_ZONE_DMA
- if (unlikely(gfpflags & GFP_DMA))
- return csizep->cs_dmacachep;
- #endif
- return csizep->cs_cachep;
- }
- static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
- {
- return __find_general_cachep(size, gfpflags);
- }
- static size_t slab_mgmt_size(size_t nr_objs, size_t align)
- {
- return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
- }
- /*
- * Calculate the number of objects and left-over bytes for a given buffer size.
- */
- static void cache_estimate(unsigned long gfporder, size_t buffer_size,
- size_t align, int flags, size_t *left_over,
- unsigned int *num)
- {
- int nr_objs;
- size_t mgmt_size;
- size_t slab_size = PAGE_SIZE << gfporder;
- /*
- * The slab management structure can be either off the slab or
- * on it. For the latter case, the memory allocated for a
- * slab is used for:
- *
- * - The struct slab
- * - One kmem_bufctl_t for each object
- * - Padding to respect alignment of @align
- * - @buffer_size bytes for each object
- *
- * If the slab management structure is off the slab, then the
- * alignment will already be calculated into the size. Because
- * the slabs are all pages aligned, the objects will be at the
- * correct alignment when allocated.
- */
- if (flags & CFLGS_OFF_SLAB) {
- mgmt_size = 0;
- nr_objs = slab_size / buffer_size;
- if (nr_objs > SLAB_LIMIT)
- nr_objs = SLAB_LIMIT;
- } else {
- /*
- * Ignore padding for the initial guess. The padding
- * is at most @align-1 bytes, and @buffer_size is at
- * least @align. In the worst case, this result will
- * be one greater than the number of objects that fit
- * into the memory allocation when taking the padding
- * into account.
- */
- nr_objs = (slab_size - sizeof(struct slab)) /
- (buffer_size + sizeof(kmem_bufctl_t));
- /*
- * This calculated number will be either the right
- * amount, or one greater than what we want.
- */
- if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
- > slab_size)
- nr_objs--;
- if (nr_objs > SLAB_LIMIT)
- nr_objs = SLAB_LIMIT;
- mgmt_size = slab_mgmt_size(nr_objs, align);
- }
- *num = nr_objs;
- *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
- }
- #if DEBUG
- #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
- static void __slab_error(const char *function, struct kmem_cache *cachep,
- char *msg)
- {
- printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
- function, cachep->name, msg);
- dump_stack();
- add_taint(TAINT_BAD_PAGE);
- }
- #endif
- /*
- * By default on NUMA we use alien caches to stage the freeing of
- * objects allocated from other nodes. This causes massive memory
- * inefficiencies when using fake NUMA setup to split memory into a
- * large number of small nodes, so it can be disabled on the command
- * line
- */
- static int use_alien_caches __read_mostly = 1;
- static int __init noaliencache_setup(char *s)
- {
- use_alien_caches = 0;
- return 1;
- }
- __setup("noaliencache", noaliencache_setup);
- static int __init slab_max_order_setup(char *str)
- {
- get_option(&str, &slab_max_order);
- slab_max_order = slab_max_order < 0 ? 0 :
- min(slab_max_order, MAX_ORDER - 1);
- slab_max_order_set = true;
- return 1;
- }
- __setup("slab_max_order=", slab_max_order_setup);
- #ifdef CONFIG_NUMA
- /*
- * Special reaping functions for NUMA systems called from cache_reap().
- * These take care of doing round robin flushing of alien caches (containing
- * objects freed on different nodes from which they were allocated) and the
- * flushing of remote pcps by calling drain_node_pages.
- */
- static DEFINE_PER_CPU(unsigned long, slab_reap_node);
- static void init_reap_node(int cpu)
- {
- int node;
- node = next_node(cpu_to_mem(cpu), node_online_map);
- if (node == MAX_NUMNODES)
- node = first_node(node_online_map);
- per_cpu(slab_reap_node, cpu) = node;
- }
- static void next_reap_node(void)
- {
- int node = __this_cpu_read(slab_reap_node);
- node = next_node(node, node_online_map);
- if (unlikely(node >= MAX_NUMNODES))
- node = first_node(node_online_map);
- __this_cpu_write(slab_reap_node, node);
- }
- #else
- #define init_reap_node(cpu) do { } while (0)
- #define next_reap_node(void) do { } while (0)
- #endif
- /*
- * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
- * via the workqueue/eventd.
- * Add the CPU number into the expiration time to minimize the possibility of
- * the CPUs getting into lockstep and contending for the global cache chain
- * lock.
- */
- static void __cpuinit start_cpu_timer(int cpu)
- {
- struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
- /*
- * When this gets called from do_initcalls via cpucache_init(),
- * init_workqueues() has already run, so keventd will be setup
- * at that time.
- */
- if (keventd_up() && reap_work->work.func == NULL) {
- init_reap_node(cpu);
- INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
- schedule_delayed_work_on(cpu, reap_work,
- __round_jiffies_relative(HZ, cpu));
- }
- }
- static struct array_cache *alloc_arraycache(int node, int entries,
- int batchcount, gfp_t gfp)
- {
- int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
- struct array_cache *nc = NULL;
- nc = kmalloc_node(memsize, gfp, node);
- /*
- * The array_cache structures contain pointers to free object.
- * However, when such objects are allocated or transferred to another
- * cache the pointers are not cleared and they could be counted as
- * valid references during a kmemleak scan. Therefore, kmemleak must
- * not scan such objects.
- */
- kmemleak_no_scan(nc);
- if (nc) {
- nc->avail = 0;
- nc->limit = entries;
- nc->batchcount = batchcount;
- nc->touched = 0;
- spin_lock_init(&nc->lock);
- }
- return nc;
- }
- static inline bool is_slab_pfmemalloc(struct slab *slabp)
- {
- struct page *page = virt_to_page(slabp->s_mem);
- return PageSlabPfmemalloc(page);
- }
- /* Clears pfmemalloc_active if no slabs have pfmalloc set */
- static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
- struct array_cache *ac)
- {
- struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
- struct slab *slabp;
- unsigned long flags;
- if (!pfmemalloc_active)
- return;
- spin_lock_irqsave(&l3->list_lock, flags);
- list_for_each_entry(slabp, &l3->slabs_full, list)
- if (is_slab_pfmemalloc(slabp))
- goto out;
- list_for_each_entry(slabp, &l3->slabs_partial, list)
- if (is_slab_pfmemalloc(slabp))
- goto out;
- list_for_each_entry(slabp, &l3->slabs_free, list)
- if (is_slab_pfmemalloc(slabp))
- goto out;
- pfmemalloc_active = false;
- out:
- spin_unlock_irqrestore(&l3->list_lock, flags);
- }
- static void *ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
- gfp_t flags, bool force_refill)
- {
- int i;
- void *objp = ac->entry[--ac->avail];
- /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
- if (unlikely(is_obj_pfmemalloc(objp))) {
- struct kmem_list3 *l3;
- if (gfp_pfmemalloc_allowed(flags)) {
- clear_obj_pfmemalloc(&objp);
- return objp;
- }
- /* The caller cannot use PFMEMALLOC objects, find another one */
- for (i = 0; i < ac->avail; i++) {
- /* If a !PFMEMALLOC object is found, swap them */
- if (!is_obj_pfmemalloc(ac->entry[i])) {
- objp = ac->entry[i];
- ac->entry[i] = ac->entry[ac->avail];
- ac->entry[ac->avail] = objp;
- return objp;
- }
- }
- /*
- * If there are empty slabs on the slabs_free list and we are
- * being forced to refill the cache, mark this one !pfmemalloc.
- */
- l3 = cachep->nodelists[numa_mem_id()];
- if (!list_empty(&l3->slabs_free) && force_refill) {
- struct slab *slabp = virt_to_slab(objp);
- ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
- clear_obj_pfmemalloc(&objp);
- recheck_pfmemalloc_active(cachep, ac);
- return objp;
- }
- /* No !PFMEMALLOC objects available */
- ac->avail++;
- objp = NULL;
- }
- return objp;
- }
- static void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
- void *objp)
- {
- if (unlikely(pfmemalloc_active)) {
- /* Some pfmemalloc slabs exist, check if this is one */
- struct page *page = virt_to_head_page(objp);
- if (PageSlabPfmemalloc(page))
- set_obj_pfmemalloc(&objp);
- }
- ac->entry[ac->avail++] = objp;
- }
- /*
- * Transfer objects in one arraycache to another.
- * Locking must be handled by the caller.
- *
- * Return the number of entries transferred.
- */
- static int transfer_objects(struct array_cache *to,
- struct array_cache *from, unsigned int max)
- {
- /* Figure out how many entries to transfer */
- int nr = min3(from->avail, max, to->limit - to->avail);
- if (!nr)
- return 0;
- memcpy(to->entry + to->avail, from->entry + from->avail -nr,
- sizeof(void *) *nr);
- from->avail -= nr;
- to->avail += nr;
- return nr;
- }
- #ifndef CONFIG_NUMA
- #define drain_alien_cache(cachep, alien) do { } while (0)
- #define reap_alien(cachep, l3) do { } while (0)
- static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
- {
- return (struct array_cache **)BAD_ALIEN_MAGIC;
- }
- static inline void free_alien_cache(struct array_cache **ac_ptr)
- {
- }
- static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
- {
- return 0;
- }
- static inline void *alternate_node_alloc(struct kmem_cache *cachep,
- gfp_t flags)
- {
- return NULL;
- }
- static inline void *____cache_alloc_node(struct kmem_cache *cachep,
- gfp_t flags, int nodeid)
- {
- return NULL;
- }
- #else /* CONFIG_NUMA */
- static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
- static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
- static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
- {
- struct array_cache **ac_ptr;
- int memsize = sizeof(void *) * nr_node_ids;
- int i;
- if (limit > 1)
- limit = 12;
- ac_ptr = kzalloc_node(memsize, gfp, node);
- if (ac_ptr) {
- for_each_node(i) {
- if (i == node || !node_online(i))
- continue;
- ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
- if (!ac_ptr[i]) {
- for (i--; i >= 0; i--)
- kfree(ac_ptr[i]);
- kfree(ac_ptr);
- return NULL;
- }
- }
- }
- return ac_ptr;
- }
- static void free_alien_cache(struct array_cache **ac_ptr)
- {
- int i;
- if (!ac_ptr)
- return;
- for_each_node(i)
- kfree(ac_ptr[i]);
- kfree(ac_ptr);
- }
- static void __drain_alien_cache(struct kmem_cache *cachep,
- struct array_cache *ac, int node)
- {
- struct kmem_list3 *rl3 = cachep->nodelists[node];
- if (ac->avail) {
- spin_lock(&rl3->list_lock);
- /*
- * Stuff objects into the remote nodes shared array first.
- * That way we could avoid the overhead of putting the objects
- * into the free lists and getting them back later.
- */
- if (rl3->shared)
- transfer_objects(rl3->shared, ac, ac->limit);
- free_block(cachep, ac->entry, ac->avail, node);
- ac->avail = 0;
- spin_unlock(&rl3->list_lock);
- }
- }
- /*
- * Called from cache_reap() to regularly drain alien caches round robin.
- */
- static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
- {
- int node = __this_cpu_read(slab_reap_node);
- if (l3->alien) {
- struct array_cache *ac = l3->alien[node];
- if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
- __drain_alien_cache(cachep, ac, node);
- spin_unlock_irq(&ac->lock);
- }
- }
- }
- static void drain_alien_cache(struct kmem_cache *cachep,
- struct array_cache **alien)
- {
- int i = 0;
- struct array_cache *ac;
- unsigned long flags;
- for_each_online_node(i) {
- ac = alien[i];
- if (ac) {
- spin_lock_irqsave(&ac->lock, flags);
- __drain_alien_cache(cachep, ac, i);
- spin_unlock_irqrestore(&ac->lock, flags);
- }
- }
- }
- static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
- {
- struct slab *slabp = virt_to_slab(objp);
- int nodeid = slabp->nodeid;
- struct kmem_list3 *l3;
- struct array_cache *alien = NULL;
- int node;
- node = numa_mem_id();
- /*
- * Make sure we are not freeing a object from another node to the array
- * cache on this cpu.
- */
- if (likely(slabp->nodeid == node))
- return 0;
- l3 = cachep->nodelists[node];
- STATS_INC_NODEFREES(cachep);
- if (l3->alien && l3->alien[nodeid]) {
- alien = l3->alien[nodeid];
- spin_lock(&alien->lock);
- if (unlikely(alien->avail == alien->limit)) {
- STATS_INC_ACOVERFLOW(cachep);
- __drain_alien_cache(cachep, alien, nodeid);
- }
- ac_put_obj(cachep, alien, objp);
- spin_unlock(&alien->lock);
- } else {
- spin_lock(&(cachep->nodelists[nodeid])->list_lock);
- free_block(cachep, &objp, 1, nodeid);
- spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
- }
- return 1;
- }
- #endif
- /*
- * Allocates and initializes nodelists for a node on each slab cache, used for
- * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
- * will be allocated off-node since memory is not yet online for the new node.
- * When hotplugging memory or a cpu, existing nodelists are not replaced if
- * already in use.
- *
- * Must hold slab_mutex.
- */
- static int init_cache_nodelists_node(int node)
- {
- struct kmem_cache *cachep;
- struct kmem_list3 *l3;
- const int memsize = sizeof(struct kmem_list3);
- list_for_each_entry(cachep, &slab_caches, list) {
- /*
- * Set up the size64 kmemlist for cpu before we can
- * begin anything. Make sure some other cpu on this
- * node has not already allocated this
- */
- if (!cachep->nodelists[node]) {
- l3 = kmalloc_node(memsize, GFP_KERNEL, node);
- if (!l3)
- return -ENOMEM;
- kmem_list3_init(l3);
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- /*
- * The l3s don't come and go as CPUs come and
- * go. slab_mutex is sufficient
- * protection here.
- */
- cachep->nodelists[node] = l3;
- }
- spin_lock_irq(&cachep->nodelists[node]->list_lock);
- cachep->nodelists[node]->free_limit =
- (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- spin_unlock_irq(&cachep->nodelists[node]->list_lock);
- }
- return 0;
- }
- static void __cpuinit cpuup_canceled(long cpu)
- {
- struct kmem_cache *cachep;
- struct kmem_list3 *l3 = NULL;
- int node = cpu_to_mem(cpu);
- const struct cpumask *mask = cpumask_of_node(node);
- list_for_each_entry(cachep, &slab_caches, list) {
- struct array_cache *nc;
- struct array_cache *shared;
- struct array_cache **alien;
- /* cpu is dead; no one can alloc from it. */
- nc = cachep->array[cpu];
- cachep->array[cpu] = NULL;
- l3 = cachep->nodelists[node];
- if (!l3)
- goto free_array_cache;
- spin_lock_irq(&l3->list_lock);
- /* Free limit for this kmem_list3 */
- l3->free_limit -= cachep->batchcount;
- if (nc)
- free_block(cachep, nc->entry, nc->avail, node);
- if (!cpumask_empty(mask)) {
- spin_unlock_irq(&l3->list_lock);
- goto free_array_cache;
- }
- shared = l3->shared;
- if (shared) {
- free_block(cachep, shared->entry,
- shared->avail, node);
- l3->shared = NULL;
- }
- alien = l3->alien;
- l3->alien = NULL;
- spin_unlock_irq(&l3->list_lock);
- kfree(shared);
- if (alien) {
- drain_alien_cache(cachep, alien);
- free_alien_cache(alien);
- }
- free_array_cache:
- kfree(nc);
- }
- /*
- * In the previous loop, all the objects were freed to
- * the respective cache's slabs, now we can go ahead and
- * shrink each nodelist to its limit.
- */
- list_for_each_entry(cachep, &slab_caches, list) {
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
- drain_freelist(cachep, l3, l3->free_objects);
- }
- }
- static int __cpuinit cpuup_prepare(long cpu)
- {
- struct kmem_cache *cachep;
- struct kmem_list3 *l3 = NULL;
- int node = cpu_to_mem(cpu);
- int err;
- /*
- * We need to do this right in the beginning since
- * alloc_arraycache's are going to use this list.
- * kmalloc_node allows us to add the slab to the right
- * kmem_list3 and not this cpu's kmem_list3
- */
- err = init_cache_nodelists_node(node);
- if (err < 0)
- goto bad;
- /*
- * Now we can go ahead with allocating the shared arrays and
- * array caches
- */
- list_for_each_entry(cachep, &slab_caches, list) {
- struct array_cache *nc;
- struct array_cache *shared = NULL;
- struct array_cache **alien = NULL;
- nc = alloc_arraycache(node, cachep->limit,
- cachep->batchcount, GFP_KERNEL);
- if (!nc)
- goto bad;
- if (cachep->shared) {
- shared = alloc_arraycache(node,
- cachep->shared * cachep->batchcount,
- 0xbaadf00d, GFP_KERNEL);
- if (!shared) {
- kfree(nc);
- goto bad;
- }
- }
- if (use_alien_caches) {
- alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
- if (!alien) {
- kfree(shared);
- kfree(nc);
- goto bad;
- }
- }
- cachep->array[cpu] = nc;
- l3 = cachep->nodelists[node];
- BUG_ON(!l3);
- spin_lock_irq(&l3->list_lock);
- if (!l3->shared) {
- /*
- * We are serialised from CPU_DEAD or
- * CPU_UP_CANCELLED by the cpucontrol lock
- */
- l3->shared = shared;
- shared = NULL;
- }
- #ifdef CONFIG_NUMA
- if (!l3->alien) {
- l3->alien = alien;
- alien = NULL;
- }
- #endif
- spin_unlock_irq(&l3->list_lock);
- kfree(shared);
- free_alien_cache(alien);
- if (cachep->flags & SLAB_DEBUG_OBJECTS)
- slab_set_debugobj_lock_classes_node(cachep, node);
- else if (!OFF_SLAB(cachep) &&
- !(cachep->flags & SLAB_DESTROY_BY_RCU))
- on_slab_lock_classes_node(cachep, node);
- }
- init_node_lock_keys(node);
- return 0;
- bad:
- cpuup_canceled(cpu);
- return -ENOMEM;
- }
- static int __cpuinit cpuup_callback(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
- {
- long cpu = (long)hcpu;
- int err = 0;
- switch (action) {
- case CPU_UP_PREPARE:
- case CPU_UP_PREPARE_FROZEN:
- mutex_lock(&slab_mutex);
- err = cpuup_prepare(cpu);
- mutex_unlock(&slab_mutex);
- break;
- case CPU_ONLINE:
- case CPU_ONLINE_FROZEN:
- start_cpu_timer(cpu);
- break;
- #ifdef CONFIG_HOTPLUG_CPU
- case CPU_DOWN_PREPARE:
- case CPU_DOWN_PREPARE_FROZEN:
- /*
- * Shutdown cache reaper. Note that the slab_mutex is
- * held so that if cache_reap() is invoked it cannot do
- * anything expensive but will only modify reap_work
- * and reschedule the timer.
- */
- cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
- /* Now the cache_reaper is guaranteed to be not running. */
- per_cpu(slab_reap_work, cpu).work.func = NULL;
- break;
- case CPU_DOWN_FAILED:
- case CPU_DOWN_FAILED_FROZEN:
- start_cpu_timer(cpu);
- break;
- case CPU_DEAD:
- case CPU_DEAD_FROZEN:
- /*
- * Even if all the cpus of a node are down, we don't free the
- * kmem_list3 of any cache. This to avoid a race between
- * cpu_down, and a kmalloc allocation from another cpu for
- * memory from the node of the cpu going down. The list3
- * structure is usually allocated from kmem_cache_create() and
- * gets destroyed at kmem_cache_destroy().
- */
- /* fall through */
- #endif
- case CPU_UP_CANCELED:
- case CPU_UP_CANCELED_FROZEN:
- mutex_lock(&slab_mutex);
- cpuup_canceled(cpu);
- mutex_unlock(&slab_mutex);
- break;
- }
- return notifier_from_errno(err);
- }
- static struct notifier_block __cpuinitdata cpucache_notifier = {
- &cpuup_callback, NULL, 0
- };
- #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
- /*
- * Drains freelist for a node on each slab cache, used for memory hot-remove.
- * Returns -EBUSY if all objects cannot be drained so that the node is not
- * removed.
- *
- * Must hold slab_mutex.
- */
- static int __meminit drain_cache_nodelists_node(int node)
- {
- struct kmem_cache *cachep;
- int ret = 0;
- list_for_each_entry(cachep, &slab_caches, list) {
- struct kmem_list3 *l3;
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
- drain_freelist(cachep, l3, l3->free_objects);
- if (!list_empty(&l3->slabs_full) ||
- !list_empty(&l3->slabs_partial)) {
- ret = -EBUSY;
- break;
- }
- }
- return ret;
- }
- static int __meminit slab_memory_callback(struct notifier_block *self,
- unsigned long action, void *arg)
- {
- struct memory_notify *mnb = arg;
- int ret = 0;
- int nid;
- nid = mnb->status_change_nid;
- if (nid < 0)
- goto out;
- switch (action) {
- case MEM_GOING_ONLINE:
- mutex_lock(&slab_mutex);
- ret = init_cache_nodelists_node(nid);
- mutex_unlock(&slab_mutex);
- break;
- case MEM_GOING_OFFLINE:
- mutex_lock(&slab_mutex);
- ret = drain_cache_nodelists_node(nid);
- mutex_unlock(&slab_mutex);
- break;
- case MEM_ONLINE:
- case MEM_OFFLINE:
- case MEM_CANCEL_ONLINE:
- case MEM_CANCEL_OFFLINE:
- break;
- }
- out:
- return notifier_from_errno(ret);
- }
- #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
- /*
- * swap the static kmem_list3 with kmalloced memory
- */
- static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
- int nodeid)
- {
- struct kmem_list3 *ptr;
- ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
- BUG_ON(!ptr);
- memcpy(ptr, list, sizeof(struct kmem_list3));
- /*
- * Do not assume that spinlocks can be initialized via memcpy:
- */
- spin_lock_init(&ptr->list_lock);
- MAKE_ALL_LISTS(cachep, ptr, nodeid);
- cachep->nodelists[nodeid] = ptr;
- }
- /*
- * For setting up all the kmem_list3s for cache whose buffer_size is same as
- * size of kmem_list3.
- */
- static void __init set_up_list3s(struct kmem_cache *cachep, int index)
- {
- int node;
- for_each_online_node(node) {
- cachep->nodelists[node] = &initkmem_list3[index + node];
- cachep->nodelists[node]->next_reap = jiffies +
- REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- }
- }
- /*
- * The memory after the last cpu cache pointer is used for the
- * the nodelists pointer.
- */
- static void setup_nodelists_pointer(struct kmem_cache *cachep)
- {
- cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
- }
- /*
- * Initialisation. Called after the page allocator have been initialised and
- * before smp_init().
- */
- void __init kmem_cache_init(void)
- {
- struct cache_sizes *sizes;
- struct cache_names *names;
- int i;
- kmem_cache = &kmem_cache_boot;
- setup_nodelists_pointer(kmem_cache);
- if (num_possible_nodes() == 1)
- use_alien_caches = 0;
- for (i = 0; i < NUM_INIT_LISTS; i++)
- kmem_list3_init(&initkmem_list3[i]);
- set_up_list3s(kmem_cache, CACHE_CACHE);
- /*
- * Fragmentation resistance on low memory - only use bigger
- * page orders on machines with more than 32MB of memory if
- * not overridden on the command line.
- */
- if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
- slab_max_order = SLAB_MAX_ORDER_HI;
- /* Bootstrap is tricky, because several objects are allocated
- * from caches that do not exist yet:
- * 1) initialize the kmem_cache cache: it contains the struct
- * kmem_cache structures of all caches, except kmem_cache itself:
- * kmem_cache is statically allocated.
- * Initially an __init data area is used for the head array and the
- * kmem_list3 structures, it's replaced with a kmalloc allocated
- * array at the end of the bootstrap.
- * 2) Create the first kmalloc cache.
- * The struct kmem_cache for the new cache is allocated normally.
- * An __init data area is used for the head array.
- * 3) Create the remaining kmalloc caches, with minimally sized
- * head arrays.
- * 4) Replace the __init data head arrays for kmem_cache and the first
- * kmalloc cache with kmalloc allocated arrays.
- * 5) Replace the __init data for kmem_list3 for kmem_cache and
- * the other cache's with kmalloc allocated memory.
- * 6) Resize the head arrays of the kmalloc caches to their final sizes.
- */
- /* 1) create the kmem_cache */
- /*
- * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
- */
- create_boot_cache(kmem_cache, "kmem_cache",
- offsetof(struct kmem_cache, array[nr_cpu_ids]) +
- nr_node_ids * sizeof(struct kmem_list3 *),
- SLAB_HWCACHE_ALIGN);
- list_add(&kmem_cache->list, &slab_caches);
- /* 2+3) create the kmalloc caches */
- sizes = malloc_sizes;
- names = cache_names;
- /*
- * Initialize the caches that provide memory for the array cache and the
- * kmem_list3 structures first. Without this, further allocations will
- * bug.
- */
- sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name,
- sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS);
- if (INDEX_AC != INDEX_L3)
- sizes[INDEX_L3].cs_cachep =
- create_kmalloc_cache(names[INDEX_L3].name,
- sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS);
- slab_early_init = 0;
- while (sizes->cs_size != ULONG_MAX) {
- /*
- * For performance, all the general caches are L1 aligned.
- * This should be particularly beneficial on SMP boxes, as it
- * eliminates "false sharing".
- * Note for systems short on memory removing the alignment will
- * allow tighter packing of the smaller caches.
- */
- if (!sizes->cs_cachep)
- sizes->cs_cachep = create_kmalloc_cache(names->name,
- sizes->cs_size, ARCH_KMALLOC_FLAGS);
- #ifdef CONFIG_ZONE_DMA
- sizes->cs_dmacachep = create_kmalloc_cache(
- names->name_dma, sizes->cs_size,
- SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
- #endif
- sizes++;
- names++;
- }
- /* 4) Replace the bootstrap head arrays */
- {
- struct array_cache *ptr;
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
- memcpy(ptr, cpu_cache_get(kmem_cache),
- sizeof(struct arraycache_init));
- /*
- * Do not assume that spinlocks can be initialized via memcpy:
- */
- spin_lock_init(&ptr->lock);
- kmem_cache->array[smp_processor_id()] = ptr;
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
- BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
- != &initarray_generic.cache);
- memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
- sizeof(struct arraycache_init));
- /*
- * Do not assume that spinlocks can be initialized via memcpy:
- */
- spin_lock_init(&ptr->lock);
- malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
- ptr;
- }
- /* 5) Replace the bootstrap kmem_list3's */
- {
- int nid;
- for_each_online_node(nid) {
- init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
- init_list(malloc_sizes[INDEX_AC].cs_cachep,
- &initkmem_list3[SIZE_AC + nid], nid);
- if (INDEX_AC != INDEX_L3) {
- init_list(malloc_sizes[INDEX_L3].cs_cachep,
- &initkmem_list3[SIZE_L3 + nid], nid);
- }
- }
- }
- slab_state = UP;
- }
- void __init kmem_cache_init_late(void)
- {
- struct kmem_cache *cachep;
- slab_state = UP;
- /* 6) resize the head arrays to their final sizes */
- mutex_lock(&slab_mutex);
- list_for_each_entry(cachep, &slab_caches, list)
- if (enable_cpucache(cachep, GFP_NOWAIT))
- BUG();
- mutex_unlock(&slab_mutex);
- /* Annotate slab for lockdep -- annotate the malloc caches */
- init_lock_keys();
- /* Done! */
- slab_state = FULL;
- /*
- * Register a cpu startup notifier callback that initializes
- * cpu_cache_get for all new cpus
- */
- register_cpu_notifier(&cpucache_notifier);
- #ifdef CONFIG_NUMA
- /*
- * Register a memory hotplug callback that initializes and frees
- * nodelists.
- */
- hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
- #endif
- /*
- * The reap timers are started later, with a module init call: That part
- * of the kernel is not yet operational.
- */
- }
- static int __init cpucache_init(void)
- {
- int cpu;
- /*
- * Register the timers that return unneeded pages to the page allocator
- */
- for_each_online_cpu(cpu)
- start_cpu_timer(cpu);
- /* Done! */
- slab_state = FULL;
- return 0;
- }
- __initcall(cpucache_init);
- static noinline void
- slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
- {
- struct kmem_list3 *l3;
- struct slab *slabp;
- unsigned long flags;
- int node;
- printk(KERN_WARNING
- "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
- nodeid, gfpflags);
- printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
- cachep->name, cachep->size, cachep->gfporder);
- for_each_online_node(node) {
- unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
- unsigned long active_slabs = 0, num_slabs = 0;
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
- spin_lock_irqsave(&l3->list_lock, flags);
- list_for_each_entry(slabp, &l3->slabs_full, list) {
- active_objs += cachep->num;
- active_slabs++;
- }
- list_for_each_entry(slabp, &l3->slabs_partial, list) {
- active_objs += slabp->inuse;
- active_slabs++;
- }
- list_for_each_entry(slabp, &l3->slabs_free, list)
- num_slabs++;
- free_objects += l3->free_objects;
- spin_unlock_irqrestore(&l3->list_lock, flags);
- num_slabs += active_slabs;
- num_objs = num_slabs * cachep->num;
- printk(KERN_WARNING
- " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
- node, active_slabs, num_slabs, active_objs, num_objs,
- free_objects);
- }
- }
- /*
- * Interface to system's page allocator. No need to hold the cache-lock.
- *
- * If we requested dmaable memory, we will get it. Even if we
- * did not request dmaable memory, we might get it, but that
- * would be relatively rare and ignorable.
- */
- static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
- {
- struct page *page;
- int nr_pages;
- int i;
- #ifndef CONFIG_MMU
- /*
- * Nommu uses slab's for process anonymous memory allocations, and thus
- * requires __GFP_COMP to properly refcount higher order allocations
- */
- flags |= __GFP_COMP;
- #endif
- flags |= cachep->allocflags;
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- flags |= __GFP_RECLAIMABLE;
- page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
- if (!page) {
- if (!(flags & __GFP_NOWARN) && printk_ratelimit())
- slab_out_of_memory(cachep, flags, nodeid);
- return NULL;
- }
- /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
- if (unlikely(page->pfmemalloc))
- pfmemalloc_active = true;
- nr_pages = (1 << cachep->gfporder);
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- add_zone_page_state(page_zone(page),
- NR_SLAB_RECLAIMABLE, nr_pages);
- else
- add_zone_page_state(page_zone(page),
- NR_SLAB_UNRECLAIMABLE, nr_pages);
- for (i = 0; i < nr_pages; i++) {
- __SetPageSlab(page + i);
- if (page->pfmemalloc)
- SetPageSlabPfmemalloc(page + i);
- }
- if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
- kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
- if (cachep->ctor)
- kmemcheck_mark_uninitialized_pages(page, nr_pages);
- else
- kmemcheck_mark_unallocated_pages(page, nr_pages);
- }
- return page_address(page);
- }
- /*
- * Interface to system's page release.
- */
- static void kmem_freepages(struct kmem_cache *cachep, void *addr)
- {
- unsigned long i = (1 << cachep->gfporder);
- struct page *page = virt_to_page(addr);
- const unsigned long nr_freed = i;
- kmemcheck_free_shadow(page, cachep->gfporder);
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- sub_zone_page_state(page_zone(page),
- NR_SLAB_RECLAIMABLE, nr_freed);
- else
- sub_zone_page_state(page_zone(page),
- NR_SLAB_UNRECLAIMABLE, nr_freed);
- while (i--) {
- BUG_ON(!PageSlab(page));
- __ClearPageSlabPfmemalloc(page);
- __ClearPageSlab(page);
- page++;
- }
- if (current->reclaim_state)
- current->reclaim_state->reclaimed_slab += nr_freed;
- free_pages((unsigned long)addr, cachep->gfporder);
- }
- static void kmem_rcu_free(struct rcu_head *head)
- {
- struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
- struct kmem_cache *cachep = slab_rcu->cachep;
- kmem_freepages(cachep, slab_rcu->addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slab_rcu);
- }
- #if DEBUG
- #ifdef CONFIG_DEBUG_PAGEALLOC
- static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
- unsigned long caller)
- {
- int size = cachep->object_size;
- addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
- if (size < 5 * sizeof(unsigned long))
- return;
- *addr++ = 0x12345678;
- *addr++ = caller;
- *addr++ = smp_processor_id();
- size -= 3 * sizeof(unsigned long);
- {
- unsigned long *sptr = &caller;
- unsigned long svalue;
- while (!kstack_end(sptr)) {
- svalue = *sptr++;
- if (kernel_text_address(svalue)) {
- *addr++ = svalue;
- size -= sizeof(unsigned long);
- if (size <= sizeof(unsigned long))
- break;
- }
- }
- }
- *addr++ = 0x87654321;
- }
- #endif
- static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
- {
- int size = cachep->object_size;
- addr = &((char *)addr)[obj_offset(cachep)];
- memset(addr, val, size);
- *(unsigned char *)(addr + size - 1) = POISON_END;
- }
- static void dump_line(char *data, int offset, int limit)
- {
- int i;
- unsigned char error = 0;
- int bad_count = 0;
- printk(KERN_ERR "%03x: ", offset);
- for (i = 0; i < limit; i++) {
- if (data[offset + i] != POISON_FREE) {
- error = data[offset + i];
- bad_count++;
- }
- }
- print_hex_dump(KERN_CONT, "", 0, 16, 1,
- &data[offset], limit, 1);
- if (bad_count == 1) {
- error ^= POISON_FREE;
- if (!(error & (error - 1))) {
- printk(KERN_ERR "Single bit error detected. Probably "
- "bad RAM.\n");
- #ifdef CONFIG_X86
- printk(KERN_ERR "Run memtest86+ or a similar memory "
- "test tool.\n");
- #else
- printk(KERN_ERR "Run a memory test tool.\n");
- #endif
- }
- }
- }
- #endif
- #if DEBUG
- static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
- {
- int i, size;
- char *realobj;
- if (cachep->flags & SLAB_RED_ZONE) {
- printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
- *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
- }
- if (cachep->flags & SLAB_STORE_USER) {
- printk(KERN_ERR "Last user: [<%p>]",
- *dbg_userword(cachep, objp));
- print_symbol("(%s)",
- (unsigned long)*dbg_userword(cachep, objp));
- printk("\n");
- }
- realobj = (char *)objp + obj_offset(cachep);
- size = cachep->object_size;
- for (i = 0; i < size && lines; i += 16, lines--) {
- int limit;
- limit = 16;
- if (i + limit > size)
- limit = size - i;
- dump_line(realobj, i, limit);
- }
- }
- static void check_poison_obj(struct kmem_cache *cachep, void *objp)
- {
- char *realobj;
- int size, i;
- int lines = 0;
- realobj = (char *)objp + obj_offset(cachep);
- size = cachep->object_size;
- for (i = 0; i < size; i++) {
- char exp = POISON_FREE;
- if (i == size - 1)
- exp = POISON_END;
- if (realobj[i] != exp) {
- int limit;
- /* Mismatch ! */
- /* Print header */
- if (lines == 0) {
- printk(KERN_ERR
- "Slab corruption (%s): %s start=%p, len=%d\n",
- print_tainted(), cachep->name, realobj, size);
- print_objinfo(cachep, objp, 0);
- }
- /* Hexdump the affected line */
- i = (i / 16) * 16;
- limit = 16;
- if (i + limit > size)
- limit = size - i;
- dump_line(realobj, i, limit);
- i += 16;
- lines++;
- /* Limit to 5 lines */
- if (lines > 5)
- break;
- }
- }
- if (lines != 0) {
- /* Print some data about the neighboring objects, if they
- * exist:
- */
- struct slab *slabp = virt_to_slab(objp);
- unsigned int objnr;
- objnr = obj_to_index(cachep, slabp, objp);
- if (objnr) {
- objp = index_to_obj(cachep, slabp, objnr - 1);
- realobj = (char *)objp + obj_offset(cachep);
- printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
- realobj, size);
- print_objinfo(cachep, objp, 2);
- }
- if (objnr + 1 < cachep->num) {
- objp = index_to_obj(cachep, slabp, objnr + 1);
- realobj = (char *)objp + obj_offset(cachep);
- printk(KERN_ERR "Next obj: start=%p, len=%d\n",
- realobj, size);
- print_objinfo(cachep, objp, 2);
- }
- }
- }
- #endif
- #if DEBUG
- static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
- {
- int i;
- for (i = 0; i < cachep->num; i++) {
- void *objp = index_to_obj(cachep, slabp, i);
- if (cachep->flags & SLAB_POISON) {
- #ifdef CONFIG_DEBUG_PAGEALLOC
- if (cachep->size % PAGE_SIZE == 0 &&
- OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp),
- cachep->size / PAGE_SIZE, 1);
- else
- check_poison_obj(cachep, objp);
- #else
- check_poison_obj(cachep, objp);
- #endif
- }
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "start of a freed object "
- "was overwritten");
- if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "end of a freed object "
- "was overwritten");
- }
- }
- }
- #else
- static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
- {
- }
- #endif
- /**
- * slab_destroy - destroy and release all objects in a slab
- * @cachep: cache pointer being destroyed
- * @slabp: slab pointer being destroyed
- *
- * Destroy all the objs in a slab, and release the mem back to the system.
- * Before calling the slab must have been unlinked from the cache. The
- * cache-lock is not held/needed.
- */
- static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
- {
- void *addr = slabp->s_mem - slabp->colouroff;
- slab_destroy_debugcheck(cachep, slabp);
- if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
- struct slab_rcu *slab_rcu;
- slab_rcu = (struct slab_rcu *)slabp;
- slab_rcu->cachep = cachep;
- slab_rcu->addr = addr;
- call_rcu(&slab_rcu->head, kmem_rcu_free);
- } else {
- kmem_freepages(cachep, addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slabp);
- }
- }
- /**
- * calculate_slab_order - calculate size (page order) of slabs
- * @cachep: pointer to the cache that is being created
- * @size: size of objects to be created in this cache.
- * @align: required alignment for the objects.
- * @flags: slab allocation flags
- *
- * Also calculates the number of objects per slab.
- *
- * This could be made much more intelligent. For now, try to avoid using
- * high order pages for slabs. When the gfp() functions are more friendly
- * towards high-order requests, this should be changed.
- */
- static size_t calculate_slab_order(struct kmem_cache *cachep,
- size_t size, size_t align, unsigned long flags)
- {
- unsigned long offslab_limit;
- size_t left_over = 0;
- int gfporder;
- for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
- unsigned int num;
- size_t remainder;
- cache_estimate(gfporder, size, align, flags, &remainder, &num);
- if (!num)
- continue;
- if (flags & CFLGS_OFF_SLAB) {
- /*
- * Max number of objs-per-slab for caches which
- * use off-slab slabs. Needed to avoid a possible
- * looping condition in cache_grow().
- */
- offslab_limit = size - sizeof(struct slab);
- offslab_limit /= sizeof(kmem_bufctl_t);
- if (num > offslab_limit)
- break;
- }
- /* Found something acceptable - save it away */
- cachep->num = num;
- cachep->gfporder = gfporder;
- left_over = remainder;
- /*
- * A VFS-reclaimable slab tends to have most allocations
- * as GFP_NOFS and we really don't want to have to be allocating
- * higher-order pages when we are unable to shrink dcache.
- */
- if (flags & SLAB_RECLAIM_ACCOUNT)
- break;
- /*
- * Large number of objects is good, but very large slabs are
- * currently bad for the gfp()s.
- */
- if (gfporder >= slab_max_order)
- break;
- /*
- * Acceptable internal fragmentation?
- */
- if (left_over * 8 <= (PAGE_SIZE << gfporder))
- break;
- }
- return left_over;
- }
- static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
- {
- if (slab_state >= FULL)
- return enable_cpucache(cachep, gfp);
- if (slab_state == DOWN) {
- /*
- * Note: Creation of first cache (kmem_cache).
- * The setup_list3s is taken care
- * of by the caller of __kmem_cache_create
- */
- cachep->array[smp_processor_id()] = &initarray_generic.cache;
- slab_state = PARTIAL;
- } else if (slab_state == PARTIAL) {
- /*
- * Note: the second kmem_cache_create must create the cache
- * that's used by kmalloc(24), otherwise the creation of
- * further caches will BUG().
- */
- cachep->array[smp_processor_id()] = &initarray_generic.cache;
- /*
- * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
- * the second cache, then we need to set up all its list3s,
- * otherwise the creation of further caches will BUG().
- */
- set_up_list3s(cachep, SIZE_AC);
- if (INDEX_AC == INDEX_L3)
- slab_state = PARTIAL_L3;
- else
- slab_state = PARTIAL_ARRAYCACHE;
- } else {
- /* Remaining boot caches */
- cachep->array[smp_processor_id()] =
- kmalloc(sizeof(struct arraycache_init), gfp);
- if (slab_state == PARTIAL_ARRAYCACHE) {
- set_up_list3s(cachep, SIZE_L3);
- slab_state = PARTIAL_L3;
- } else {
- int node;
- for_each_online_node(node) {
- cachep->nodelists[node] =
- kmalloc_node(sizeof(struct kmem_list3),
- gfp, node);
- BUG_ON(!cachep->nodelists[node]);
- kmem_list3_init(cachep->nodelists[node]);
- }
- }
- }
- cachep->nodelists[numa_mem_id()]->next_reap =
- jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- cpu_cache_get(cachep)->avail = 0;
- cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
- cpu_cache_get(cachep)->batchcount = 1;
- cpu_cache_get(cachep)->touched = 0;
- cachep->batchcount = 1;
- cachep->limit = BOOT_CPUCACHE_ENTRIES;
- return 0;
- }
- /**
- * __kmem_cache_create - Create a cache.
- * @cachep: cache management descriptor
- * @flags: SLAB flags
- *
- * Returns a ptr to the cache on success, NULL on failure.
- * Cannot be called within a int, but can be interrupted.
- * The @ctor is run when new pages are allocated by the cache.
- *
- * The flags are
- *
- * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
- * to catch references to uninitialised memory.
- *
- * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
- * for buffer overruns.
- *
- * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
- * cacheline. This can be beneficial if you're counting cycles as closely
- * as davem.
- */
- int
- __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
- {
- size_t left_over, slab_size, ralign;
- gfp_t gfp;
- int err;
- size_t size = cachep->size;
- #if DEBUG
- #if FORCED_DEBUG
- /*
- * Enable redzoning and last user accounting, except for caches with
- * large objects, if the increased size would increase the object size
- * above the next power of two: caches with object sizes just above a
- * power of two have a significant amount of internal fragmentation.
- */
- if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
- 2 * sizeof(unsigned long long)))
- flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
- if (!(flags & SLAB_DESTROY_BY_RCU))
- flags |= SLAB_POISON;
- #endif
- if (flags & SLAB_DESTROY_BY_RCU)
- BUG_ON(flags & SLAB_POISON);
- #endif
- /*
- * Check that size is in terms of words. This is needed to avoid
- * unaligned accesses for some archs when redzoning is used, and makes
- * sure any on-slab bufctl's are also correctly aligned.
- */
- if (size & (BYTES_PER_WORD - 1)) {
- size += (BYTES_PER_WORD - 1);
- size &= ~(BYTES_PER_WORD - 1);
- }
- /*
- * Redzoning and user store require word alignment or possibly larger.
- * Note this will be overridden by architecture or caller mandated
- * alignment if either is greater than BYTES_PER_WORD.
- */
- if (flags & SLAB_STORE_USER)
- ralign = BYTES_PER_WORD;
- if (flags & SLAB_RED_ZONE) {
- ralign = REDZONE_ALIGN;
- /* If redzoning, ensure that the second redzone is suitably
- * aligned, by adjusting the object size accordingly. */
- size += REDZONE_ALIGN - 1;
- size &= ~(REDZONE_ALIGN - 1);
- }
- /* 3) caller mandated alignment */
- if (ralign < cachep->align) {
- ralign = cachep->align;
- }
- /* disable debug if necessary */
- if (ralign > __alignof__(unsigned long long))
- flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
- /*
- * 4) Store it.
- */
- cachep->align = ralign;
- if (slab_is_available())
- gfp = GFP_KERNEL;
- else
- gfp = GFP_NOWAIT;
- setup_nodelists_pointer(cachep);
- #if DEBUG
- /*
- * Both debugging options require word-alignment which is calculated
- * into align above.
- */
- if (flags & SLAB_RED_ZONE) {
- /* add space for red zone words */
- cachep->obj_offset += sizeof(unsigned long long);
- size += 2 * sizeof(unsigned long long);
- }
- if (flags & SLAB_STORE_USER) {
- /* user store requires one word storage behind the end of
- * the real object. But if the second red zone needs to be
- * aligned to 64 bits, we must allow that much space.
- */
- if (flags & SLAB_RED_ZONE)
- size += REDZONE_ALIGN;
- else
- size += BYTES_PER_WORD;
- }
- #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
- if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
- && cachep->object_size > cache_line_size()
- && ALIGN(size, cachep->align) < PAGE_SIZE) {
- cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
- size = PAGE_SIZE;
- }
- #endif
- #endif
- /*
- * Determine if the slab management is 'on' or 'off' slab.
- * (bootstrapping cannot cope with offslab caches so don't do
- * it too early on. Always use on-slab management when
- * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
- */
- if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
- !(flags & SLAB_NOLEAKTRACE))
- /*
- * Size is large, assume best to place the slab management obj
- * off-slab (should allow better packing of objs).
- */
- flags |= CFLGS_OFF_SLAB;
- size = ALIGN(size, cachep->align);
- left_over = calculate_slab_order(cachep, size, cachep->align, flags);
- if (!cachep->num)
- return -E2BIG;
- slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
- + sizeof(struct slab), cachep->align);
- /*
- * If the slab has been placed off-slab, and we have enough space then
- * move it on-slab. This is at the expense of any extra colouring.
- */
- if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
- flags &= ~CFLGS_OFF_SLAB;
- left_over -= slab_size;
- }
- if (flags & CFLGS_OFF_SLAB) {
- /* really off slab. No need for manual alignment */
- slab_size =
- cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
- #ifdef CONFIG_PAGE_POISONING
- /* If we're going to use the generic kernel_map_pages()
- * poisoning, then it's going to smash the contents of
- * the redzone and userword anyhow, so switch them off.
- */
- if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
- flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
- #endif
- }
- cachep->colour_off = cache_line_size();
- /* Offset must be a multiple of the alignment. */
- if (cachep->colour_off < cachep->align)
- cachep->colour_off = cachep->align;
- cachep->colour = left_over / cachep->colour_off;
- cachep->slab_size = slab_size;
- cachep->flags = flags;
- cachep->allocflags = 0;
- if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
- cachep->allocflags |= GFP_DMA;
- cachep->size = size;
- cachep->reciprocal_buffer_size = reciprocal_value(size);
- if (flags & CFLGS_OFF_SLAB) {
- cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
- /*
- * This is a possibility for one of the malloc_sizes caches.
- * But since we go off slab only for object size greater than
- * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
- * this should not happen at all.
- * But leave a BUG_ON for some lucky dude.
- */
- BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
- }
- err = setup_cpu_cache(cachep, gfp);
- if (err) {
- __kmem_cache_shutdown(cachep);
- return err;
- }
- if (flags & SLAB_DEBUG_OBJECTS) {
- /*
- * Would deadlock through slab_destroy()->call_rcu()->
- * debug_object_activate()->kmem_cache_alloc().
- */
- WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
- slab_set_debugobj_lock_classes(cachep);
- } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
- on_slab_lock_classes(cachep);
- return 0;
- }
- #if DEBUG
- static void check_irq_off(void)
- {
- BUG_ON(!irqs_disabled());
- }
- static void check_irq_on(void)
- {
- BUG_ON(irqs_disabled());
- }
- static void check_spinlock_acquired(struct kmem_cache *cachep)
- {
- #ifdef CONFIG_SMP
- check_irq_off();
- assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
- #endif
- }
- static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
- {
- #ifdef CONFIG_SMP
- check_irq_off();
- assert_spin_locked(&cachep->nodelists[node]->list_lock);
- #endif
- }
- #else
- #define check_irq_off() do { } while(0)
- #define check_irq_on() do { } while(0)
- #define check_spinlock_acquired(x) do { } while(0)
- #define check_spinlock_acquired_node(x, y) do { } while(0)
- #endif
- static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
- struct array_cache *ac,
- int force, int node);
- static void do_drain(void *arg)
- {
- struct kmem_cache *cachep = arg;
- struct array_cache *ac;
- int node = numa_mem_id();
- check_irq_off();
- ac = cpu_cache_get(cachep);
- spin_lock(&cachep->nodelists[node]->list_lock);
- free_block(cachep, ac->entry, ac->avail, node);
- spin_unlock(&cachep->nodelists[node]->list_lock);
- ac->avail = 0;
- }
- static void drain_cpu_caches(struct kmem_cache *cachep)
- {
- struct kmem_list3 *l3;
- int node;
- on_each_cpu(do_drain, cachep, 1);
- check_irq_on();
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (l3 && l3->alien)
- drain_alien_cache(cachep, l3->alien);
- }
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (l3)
- drain_array(cachep, l3, l3->shared, 1, node);
- }
- }
- /*
- * Remove slabs from the list of free slabs.
- * Specify the number of slabs to drain in tofree.
- *
- * Returns the actual number of slabs released.
- */
- static int drain_freelist(struct kmem_cache *cache,
- struct kmem_list3 *l3, int tofree)
- {
- struct list_head *p;
- int nr_freed;
- struct slab *slabp;
- nr_freed = 0;
- while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
- spin_lock_irq(&l3->list_lock);
- p = l3->slabs_free.prev;
- if (p == &l3->slabs_free) {
- spin_unlock_irq(&l3->list_lock);
- goto out;
- }
- slabp = list_entry(p, struct slab, list);
- #if DEBUG
- BUG_ON(slabp->inuse);
- #endif
- list_del(&slabp->list);
- /*
- * Safe to drop the lock. The slab is no longer linked
- * to the cache.
- */
- l3->free_objects -= cache->num;
- spin_unlock_irq(&l3->list_lock);
- slab_destroy(cache, slabp);
- nr_freed++;
- }
- out:
- return nr_freed;
- }
- /* Called with slab_mutex held to protect against cpu hotplug */
- static int __cache_shrink(struct kmem_cache *cachep)
- {
- int ret = 0, i = 0;
- struct kmem_list3 *l3;
- drain_cpu_caches(cachep);
- check_irq_on();
- for_each_online_node(i) {
- l3 = cachep->nodelists[i];
- if (!l3)
- continue;
- drain_freelist(cachep, l3, l3->free_objects);
- ret += !list_empty(&l3->slabs_full) ||
- !list_empty(&l3->slabs_partial);
- }
- return (ret ? 1 : 0);
- }
- /**
- * kmem_cache_shrink - Shrink a cache.
- * @cachep: The cache to shrink.
- *
- * Releases as many slabs as possible for a cache.
- * To help debugging, a zero exit status indicates all slabs were released.
- */
- int kmem_cache_shrink(struct kmem_cache *cachep)
- {
- int ret;
- BUG_ON(!cachep || in_interrupt());
- get_online_cpus();
- mutex_lock(&slab_mutex);
- ret = __cache_shrink(cachep);
- mutex_unlock(&slab_mutex);
- put_online_cpus();
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_shrink);
- int __kmem_cache_shutdown(struct kmem_cache *cachep)
- {
- int i;
- struct kmem_list3 *l3;
- int rc = __cache_shrink(cachep);
- if (rc)
- return rc;
- for_each_online_cpu(i)
- kfree(cachep->array[i]);
- /* NUMA: free the list3 structures */
- for_each_online_node(i) {
- l3 = cachep->nodelists[i];
- if (l3) {
- kfree(l3->shared);
- free_alien_cache(l3->alien);
- kfree(l3);
- }
- }
- return 0;
- }
- /*
- * Get the memory for a slab management obj.
- * For a slab cache when the slab descriptor is off-slab, slab descriptors
- * always come from malloc_sizes caches. The slab descriptor cannot
- * come from the same cache which is getting created because,
- * when we are searching for an appropriate cache for these
- * descriptors in kmem_cache_create, we search through the malloc_sizes array.
- * If we are creating a malloc_sizes cache here it would not be visible to
- * kmem_find_general_cachep till the initialization is complete.
- * Hence we cannot have slabp_cache same as the original cache.
- */
- static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
- int colour_off, gfp_t local_flags,
- int nodeid)
- {
- struct slab *slabp;
- if (OFF_SLAB(cachep)) {
- /* Slab management obj is off-slab. */
- slabp = kmem_cache_alloc_node(cachep->slabp_cache,
- local_flags, nodeid);
- /*
- * If the first object in the slab is leaked (it's allocated
- * but no one has a reference to it), we want to make sure
- * kmemleak does not treat the ->s_mem pointer as a reference
- * to the object. Otherwise we will not report the leak.
- */
- kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
- local_flags);
- if (!slabp)
- return NULL;
- } else {
- slabp = objp + colour_off;
- colour_off += cachep->slab_size;
- }
- slabp->inuse = 0;
- slabp->colouroff = colour_off;
- slabp->s_mem = objp + colour_off;
- slabp->nodeid = nodeid;
- slabp->free = 0;
- return slabp;
- }
- static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
- {
- return (kmem_bufctl_t *) (slabp + 1);
- }
- static void cache_init_objs(struct kmem_cache *cachep,
- struct slab *slabp)
- {
- int i;
- for (i = 0; i < cachep->num; i++) {
- void *objp = index_to_obj(cachep, slabp, i);
- #if DEBUG
- /* need to poison the objs? */
- if (cachep->flags & SLAB_POISON)
- poison_obj(cachep, objp, POISON_FREE);
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = NULL;
- if (cachep->flags & SLAB_RED_ZONE) {
- *dbg_redzone1(cachep, objp) = RED_INACTIVE;
- *dbg_redzone2(cachep, objp) = RED_INACTIVE;
- }
- /*
- * Constructors are not allowed to allocate memory from the same
- * cache which they are a constructor for. Otherwise, deadlock.
- * They must also be threaded.
- */
- if (cachep->ctor && !(cachep->flags & SLAB_POISON))
- cachep->ctor(objp + obj_offset(cachep));
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "constructor overwrote the"
- " end of an object");
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "constructor overwrote the"
- " start of an object");
- }
- if ((cachep->size % PAGE_SIZE) == 0 &&
- OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
- kernel_map_pages(virt_to_page(objp),
- cachep->size / PAGE_SIZE, 0);
- #else
- if (cachep->ctor)
- cachep->ctor(objp);
- #endif
- slab_bufctl(slabp)[i] = i + 1;
- }
- slab_bufctl(slabp)[i - 1] = BUFCTL_END;
- }
- static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
- {
- if (CONFIG_ZONE_DMA_FLAG) {
- if (flags & GFP_DMA)
- BUG_ON(!(cachep->allocflags & GFP_DMA));
- else
- BUG_ON(cachep->allocflags & GFP_DMA);
- }
- }
- static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
- int nodeid)
- {
- void *objp = index_to_obj(cachep, slabp, slabp->free);
- kmem_bufctl_t next;
- slabp->inuse++;
- next = slab_bufctl(slabp)[slabp->free];
- #if DEBUG
- slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
- WARN_ON(slabp->nodeid != nodeid);
- #endif
- slabp->free = next;
- return objp;
- }
- static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
- void *objp, int nodeid)
- {
- unsigned int objnr = obj_to_index(cachep, slabp, objp);
- #if DEBUG
- /* Verify that the slab belongs to the intended node */
- WARN_ON(slabp->nodeid != nodeid);
- if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
- printk(KERN_ERR "slab: double free detected in cache "
- "'%s', objp %p\n", cachep->name, objp);
- BUG();
- }
- #endif
- slab_bufctl(slabp)[objnr] = slabp->free;
- slabp->free = objnr;
- slabp->inuse--;
- }
- /*
- * Map pages beginning at addr to the given cache and slab. This is required
- * for the slab allocator to be able to lookup the cache and slab of a
- * virtual address for kfree, ksize, and slab debugging.
- */
- static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
- void *addr)
- {
- int nr_pages;
- struct page *page;
- page = virt_to_page(addr);
- nr_pages = 1;
- if (likely(!PageCompound(page)))
- nr_pages <<= cache->gfporder;
- do {
- page->slab_cache = cache;
- page->slab_page = slab;
- page++;
- } while (--nr_pages);
- }
- /*
- * Grow (by 1) the number of slabs within a cache. This is called by
- * kmem_cache_alloc() when there are no active objs left in a cache.
- */
- static int cache_grow(struct kmem_cache *cachep,
- gfp_t flags, int nodeid, void *objp)
- {
- struct slab *slabp;
- size_t offset;
- gfp_t local_flags;
- struct kmem_list3 *l3;
- /*
- * Be lazy and only check for valid flags here, keeping it out of the
- * critical path in kmem_cache_alloc().
- */
- BUG_ON(flags & GFP_SLAB_BUG_MASK);
- local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
- /* Take the l3 list lock to change the colour_next on this node */
- check_irq_off();
- l3 = cachep->nodelists[nodeid];
- spin_lock(&l3->list_lock);
- /* Get colour for the slab, and cal the next value. */
- offset = l3->colour_next;
- l3->colour_next++;
- if (l3->colour_next >= cachep->colour)
- l3->colour_next = 0;
- spin_unlock(&l3->list_lock);
- offset *= cachep->colour_off;
- if (local_flags & __GFP_WAIT)
- local_irq_enable();
- /*
- * The test for missing atomic flag is performed here, rather than
- * the more obvious place, simply to reduce the critical path length
- * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
- * will eventually be caught here (where it matters).
- */
- kmem_flagcheck(cachep, flags);
- /*
- * Get mem for the objs. Attempt to allocate a physical page from
- * 'nodeid'.
- */
- if (!objp)
- objp = kmem_getpages(cachep, local_flags, nodeid);
- if (!objp)
- goto failed;
- /* Get slab management. */
- slabp = alloc_slabmgmt(cachep, objp, offset,
- local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
- if (!slabp)
- goto opps1;
- slab_map_pages(cachep, slabp, objp);
- cache_init_objs(cachep, slabp);
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- check_irq_off();
- spin_lock(&l3->list_lock);
- /* Make slab active. */
- list_add_tail(&slabp->list, &(l3->slabs_free));
- STATS_INC_GROWN(cachep);
- l3->free_objects += cachep->num;
- spin_unlock(&l3->list_lock);
- return 1;
- opps1:
- kmem_freepages(cachep, objp);
- failed:
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- return 0;
- }
- #if DEBUG
- /*
- * Perform extra freeing checks:
- * - detect bad pointers.
- * - POISON/RED_ZONE checking
- */
- static void kfree_debugcheck(const void *objp)
- {
- if (!virt_addr_valid(objp)) {
- printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
- (unsigned long)objp);
- BUG();
- }
- }
- static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
- {
- unsigned long long redzone1, redzone2;
- redzone1 = *dbg_redzone1(cache, obj);
- redzone2 = *dbg_redzone2(cache, obj);
- /*
- * Redzone is ok.
- */
- if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
- return;
- if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
- slab_error(cache, "double free detected");
- else
- slab_error(cache, "memory outside object was overwritten");
- printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
- obj, redzone1, redzone2);
- }
- static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
- unsigned long caller)
- {
- struct page *page;
- unsigned int objnr;
- struct slab *slabp;
- BUG_ON(virt_to_cache(objp) != cachep);
- objp -= obj_offset(cachep);
- kfree_debugcheck(objp);
- page = virt_to_head_page(objp);
- slabp = page->slab_page;
- if (cachep->flags & SLAB_RED_ZONE) {
- verify_redzone_free(cachep, objp);
- *dbg_redzone1(cachep, objp) = RED_INACTIVE;
- *dbg_redzone2(cachep, objp) = RED_INACTIVE;
- }
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = (void *)caller;
- objnr = obj_to_index(cachep, slabp, objp);
- BUG_ON(objnr >= cachep->num);
- BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
- #ifdef CONFIG_DEBUG_SLAB_LEAK
- slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
- #endif
- if (cachep->flags & SLAB_POISON) {
- #ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
- store_stackinfo(cachep, objp, caller);
- kernel_map_pages(virt_to_page(objp),
- cachep->size / PAGE_SIZE, 0);
- } else {
- poison_obj(cachep, objp, POISON_FREE);
- }
- #else
- poison_obj(cachep, objp, POISON_FREE);
- #endif
- }
- return objp;
- }
- static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
- {
- kmem_bufctl_t i;
- int entries = 0;
- /* Check slab's freelist to see if this obj is there. */
- for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
- entries++;
- if (entries > cachep->num || i >= cachep->num)
- goto bad;
- }
- if (entries != cachep->num - slabp->inuse) {
- bad:
- printk(KERN_ERR "slab: Internal list corruption detected in "
- "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
- cachep->name, cachep->num, slabp, slabp->inuse,
- print_tainted());
- print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
- sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
- 1);
- BUG();
- }
- }
- #else
- #define kfree_debugcheck(x) do { } while(0)
- #define cache_free_debugcheck(x,objp,z) (objp)
- #define check_slabp(x,y) do { } while(0)
- #endif
- static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
- bool force_refill)
- {
- int batchcount;
- struct kmem_list3 *l3;
- struct array_cache *ac;
- int node;
- check_irq_off();
- node = numa_mem_id();
- if (unlikely(force_refill))
- goto force_grow;
- retry:
- ac = cpu_cache_get(cachep);
- batchcount = ac->batchcount;
- if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
- /*
- * If there was little recent activity on this cache, then
- * perform only a partial refill. Otherwise we could generate
- * refill bouncing.
- */
- batchcount = BATCHREFILL_LIMIT;
- }
- l3 = cachep->nodelists[node];
- BUG_ON(ac->avail > 0 || !l3);
- spin_lock(&l3->list_lock);
- /* See if we can refill from the shared array */
- if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
- l3->shared->touched = 1;
- goto alloc_done;
- }
- while (batchcount > 0) {
- struct list_head *entry;
- struct slab *slabp;
- /* Get slab alloc is to come from. */
- entry = l3->slabs_partial.next;
- if (entry == &l3->slabs_partial) {
- l3->free_touched = 1;
- entry = l3->slabs_free.next;
- if (entry == &l3->slabs_free)
- goto must_grow;
- }
- slabp = list_entry(entry, struct slab, list);
- check_slabp(cachep, slabp);
- check_spinlock_acquired(cachep);
- /*
- * The slab was either on partial or free list so
- * there must be at least one object available for
- * allocation.
- */
- BUG_ON(slabp->inuse >= cachep->num);
- while (slabp->inuse < cachep->num && batchcount--) {
- STATS_INC_ALLOCED(cachep);
- STATS_INC_ACTIVE(cachep);
- STATS_SET_HIGH(cachep);
- ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
- node));
- }
- check_slabp(cachep, slabp);
- /* move slabp to correct slabp list: */
- list_del(&slabp->list);
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &l3->slabs_full);
- else
- list_add(&slabp->list, &l3->slabs_partial);
- }
- must_grow:
- l3->free_objects -= ac->avail;
- alloc_done:
- spin_unlock(&l3->list_lock);
- if (unlikely(!ac->avail)) {
- int x;
- force_grow:
- x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
- /* cache_grow can reenable interrupts, then ac could change. */
- ac = cpu_cache_get(cachep);
- node = numa_mem_id();
- /* no objects in sight? abort */
- if (!x && (ac->avail == 0 || force_refill))
- return NULL;
- if (!ac->avail) /* objects refilled by interrupt? */
- goto retry;
- }
- ac->touched = 1;
- return ac_get_obj(cachep, ac, flags, force_refill);
- }
- static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
- gfp_t flags)
- {
- might_sleep_if(flags & __GFP_WAIT);
- #if DEBUG
- kmem_flagcheck(cachep, flags);
- #endif
- }
- #if DEBUG
- static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
- gfp_t flags, void *objp, unsigned long caller)
- {
- if (!objp)
- return objp;
- if (cachep->flags & SLAB_POISON) {
- #ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp),
- cachep->size / PAGE_SIZE, 1);
- else
- check_poison_obj(cachep, objp);
- #else
- check_poison_obj(cachep, objp);
- #endif
- poison_obj(cachep, objp, POISON_INUSE);
- }
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = (void *)caller;
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
- *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
- slab_error(cachep, "double free, or memory outside"
- " object was overwritten");
- printk(KERN_ERR
- "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
- objp, *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
- }
- *dbg_redzone1(cachep, objp) = RED_ACTIVE;
- *dbg_redzone2(cachep, objp) = RED_ACTIVE;
- }
- #ifdef CONFIG_DEBUG_SLAB_LEAK
- {
- struct slab *slabp;
- unsigned objnr;
- slabp = virt_to_head_page(objp)->slab_page;
- objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
- slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
- }
- #endif
- objp += obj_offset(cachep);
- if (cachep->ctor && cachep->flags & SLAB_POISON)
- cachep->ctor(objp);
- if (ARCH_SLAB_MINALIGN &&
- ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
- printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
- objp, (int)ARCH_SLAB_MINALIGN);
- }
- return objp;
- }
- #else
- #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
- #endif
- static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
- {
- if (cachep == kmem_cache)
- return false;
- return should_failslab(cachep->object_size, flags, cachep->flags);
- }
- static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
- {
- void *objp;
- struct array_cache *ac;
- bool force_refill = false;
- check_irq_off();
- ac = cpu_cache_get(cachep);
- if (likely(ac->avail)) {
- ac->touched = 1;
- objp = ac_get_obj(cachep, ac, flags, false);
- /*
- * Allow for the possibility all avail objects are not allowed
- * by the current flags
- */
- if (objp) {
- STATS_INC_ALLOCHIT(cachep);
- goto out;
- }
- force_refill = true;
- }
- STATS_INC_ALLOCMISS(cachep);
- objp = cache_alloc_refill(cachep, flags, force_refill);
- /*
- * the 'ac' may be updated by cache_alloc_refill(),
- * and kmemleak_erase() requires its correct value.
- */
- ac = cpu_cache_get(cachep);
- out:
- /*
- * To avoid a false negative, if an object that is in one of the
- * per-CPU caches is leaked, we need to make sure kmemleak doesn't
- * treat the array pointers as a reference to the object.
- */
- if (objp)
- kmemleak_erase(&ac->entry[ac->avail]);
- return objp;
- }
- #ifdef CONFIG_NUMA
- /*
- * Try allocating on another node if PFA_SPREAD_SLAB|PF_MEMPOLICY.
- *
- * If we are in_interrupt, then process context, including cpusets and
- * mempolicy, may not apply and should not be used for allocation policy.
- */
- static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
- {
- int nid_alloc, nid_here;
- if (in_interrupt() || (flags & __GFP_THISNODE))
- return NULL;
- nid_alloc = nid_here = numa_mem_id();
- if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
- nid_alloc = cpuset_slab_spread_node();
- else if (current->mempolicy)
- nid_alloc = slab_node();
- if (nid_alloc != nid_here)
- return ____cache_alloc_node(cachep, flags, nid_alloc);
- return NULL;
- }
- /*
- * Fallback function if there was no memory available and no objects on a
- * certain node and fall back is permitted. First we scan all the
- * available nodelists for available objects. If that fails then we
- * perform an allocation without specifying a node. This allows the page
- * allocator to do its reclaim / fallback magic. We then insert the
- * slab into the proper nodelist and then allocate from it.
- */
- static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
- {
- struct zonelist *zonelist;
- gfp_t local_flags;
- struct zoneref *z;
- struct zone *zone;
- enum zone_type high_zoneidx = gfp_zone(flags);
- void *obj = NULL;
- int nid;
- unsigned int cpuset_mems_cookie;
- if (flags & __GFP_THISNODE)
- return NULL;
- local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
- retry_cpuset:
- cpuset_mems_cookie = get_mems_allowed();
- zonelist = node_zonelist(slab_node(), flags);
- retry:
- /*
- * Look through allowed nodes for objects available
- * from existing per node queues.
- */
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
- nid = zone_to_nid(zone);
- if (cpuset_zone_allowed_hardwall(zone, flags) &&
- cache->nodelists[nid] &&
- cache->nodelists[nid]->free_objects) {
- obj = ____cache_alloc_node(cache,
- flags | GFP_THISNODE, nid);
- if (obj)
- break;
- }
- }
- if (!obj) {
- /*
- * This allocation will be performed within the constraints
- * of the current cpuset / memory policy requirements.
- * We may trigger various forms of reclaim on the allowed
- * set and go into memory reserves if necessary.
- */
- if (local_flags & __GFP_WAIT)
- local_irq_enable();
- kmem_flagcheck(cache, flags);
- obj = kmem_getpages(cache, local_flags, numa_mem_id());
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- if (obj) {
- /*
- * Insert into the appropriate per node queues
- */
- nid = page_to_nid(virt_to_page(obj));
- if (cache_grow(cache, flags, nid, obj)) {
- obj = ____cache_alloc_node(cache,
- flags | GFP_THISNODE, nid);
- if (!obj)
- /*
- * Another processor may allocate the
- * objects in the slab since we are
- * not holding any locks.
- */
- goto retry;
- } else {
- /* cache_grow already freed obj */
- obj = NULL;
- }
- }
- }
- if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
- goto retry_cpuset;
- return obj;
- }
- /*
- * A interface to enable slab creation on nodeid
- */
- static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
- int nodeid)
- {
- struct list_head *entry;
- struct slab *slabp;
- struct kmem_list3 *l3;
- void *obj;
- int x;
- l3 = cachep->nodelists[nodeid];
- BUG_ON(!l3);
- retry:
- check_irq_off();
- spin_lock(&l3->list_lock);
- entry = l3->slabs_partial.next;
- if (entry == &l3->slabs_partial) {
- l3->free_touched = 1;
- entry = l3->slabs_free.next;
- if (entry == &l3->slabs_free)
- goto must_grow;
- }
- slabp = list_entry(entry, struct slab, list);
- check_spinlock_acquired_node(cachep, nodeid);
- check_slabp(cachep, slabp);
- STATS_INC_NODEALLOCS(cachep);
- STATS_INC_ACTIVE(cachep);
- STATS_SET_HIGH(cachep);
- BUG_ON(slabp->inuse == cachep->num);
- obj = slab_get_obj(cachep, slabp, nodeid);
- check_slabp(cachep, slabp);
- l3->free_objects--;
- /* move slabp to correct slabp list: */
- list_del(&slabp->list);
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &l3->slabs_full);
- else
- list_add(&slabp->list, &l3->slabs_partial);
- spin_unlock(&l3->list_lock);
- goto done;
- must_grow:
- spin_unlock(&l3->list_lock);
- x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
- if (x)
- goto retry;
- return fallback_alloc(cachep, flags);
- done:
- return obj;
- }
- /**
- * kmem_cache_alloc_node - Allocate an object on the specified node
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- * @nodeid: node number of the target node.
- * @caller: return address of caller, used for debug information
- *
- * Identical to kmem_cache_alloc but it will allocate memory on the given
- * node, which can improve the performance for cpu bound structures.
- *
- * Fallback to other node is possible if __GFP_THISNODE is not set.
- */
- static __always_inline void *
- slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
- unsigned long caller)
- {
- unsigned long save_flags;
- void *ptr;
- int slab_node = numa_mem_id();
- flags &= gfp_allowed_mask;
- lockdep_trace_alloc(flags);
- if (slab_should_failslab(cachep, flags))
- return NULL;
- cache_alloc_debugcheck_before(cachep, flags);
- local_irq_save(save_flags);
- if (nodeid == NUMA_NO_NODE)
- nodeid = slab_node;
- if (unlikely(!cachep->nodelists[nodeid])) {
- /* Node not bootstrapped yet */
- ptr = fallback_alloc(cachep, flags);
- goto out;
- }
- if (nodeid == slab_node) {
- /*
- * Use the locally cached objects if possible.
- * However ____cache_alloc does not allow fallback
- * to other nodes. It may fail while we still have
- * objects on other nodes available.
- */
- ptr = ____cache_alloc(cachep, flags);
- if (ptr)
- goto out;
- }
- /* ___cache_alloc_node can fall back to other nodes */
- ptr = ____cache_alloc_node(cachep, flags, nodeid);
- out:
- local_irq_restore(save_flags);
- ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
- kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
- flags);
- if (likely(ptr))
- kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
- if (unlikely((flags & __GFP_ZERO) && ptr))
- memset(ptr, 0, cachep->object_size);
- return ptr;
- }
- static __always_inline void *
- __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
- {
- void *objp;
- if (unlikely((current->flags & PF_MEMPOLICY) || cpuset_do_slab_mem_spread())) {
- objp = alternate_node_alloc(cache, flags);
- if (objp)
- goto out;
- }
- objp = ____cache_alloc(cache, flags);
- /*
- * We may just have run out of memory on the local node.
- * ____cache_alloc_node() knows how to locate memory on other nodes
- */
- if (!objp)
- objp = ____cache_alloc_node(cache, flags, numa_mem_id());
- out:
- return objp;
- }
- #else
- static __always_inline void *
- __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
- {
- return ____cache_alloc(cachep, flags);
- }
- #endif /* CONFIG_NUMA */
- static __always_inline void *
- slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
- {
- unsigned long save_flags;
- void *objp;
- flags &= gfp_allowed_mask;
- lockdep_trace_alloc(flags);
- if (slab_should_failslab(cachep, flags))
- return NULL;
- cache_alloc_debugcheck_before(cachep, flags);
- local_irq_save(save_flags);
- objp = __do_cache_alloc(cachep, flags);
- local_irq_restore(save_flags);
- objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
- kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
- flags);
- prefetchw(objp);
- if (likely(objp))
- kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
- if (unlikely((flags & __GFP_ZERO) && objp))
- memset(objp, 0, cachep->object_size);
- return objp;
- }
- /*
- * Caller needs to acquire correct kmem_list's list_lock
- */
- static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
- int node)
- {
- int i;
- struct kmem_list3 *l3;
- for (i = 0; i < nr_objects; i++) {
- void *objp;
- struct slab *slabp;
- clear_obj_pfmemalloc(&objpp[i]);
- objp = objpp[i];
- slabp = virt_to_slab(objp);
- l3 = cachep->nodelists[node];
- list_del(&slabp->list);
- check_spinlock_acquired_node(cachep, node);
- check_slabp(cachep, slabp);
- slab_put_obj(cachep, slabp, objp, node);
- STATS_DEC_ACTIVE(cachep);
- l3->free_objects++;
- check_slabp(cachep, slabp);
- /* fixup slab chains */
- if (slabp->inuse == 0) {
- if (l3->free_objects > l3->free_limit) {
- l3->free_objects -= cachep->num;
- /* No need to drop any previously held
- * lock here, even if we have a off-slab slab
- * descriptor it is guaranteed to come from
- * a different cache, refer to comments before
- * alloc_slabmgmt.
- */
- slab_destroy(cachep, slabp);
- } else {
- list_add(&slabp->list, &l3->slabs_free);
- }
- } else {
- /* Unconditionally move a slab to the end of the
- * partial list on free - maximum time for the
- * other objects to be freed, too.
- */
- list_add_tail(&slabp->list, &l3->slabs_partial);
- }
- }
- }
- static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
- {
- int batchcount;
- struct kmem_list3 *l3;
- int node = numa_mem_id();
- batchcount = ac->batchcount;
- #if DEBUG
- BUG_ON(!batchcount || batchcount > ac->avail);
- #endif
- check_irq_off();
- l3 = cachep->nodelists[node];
- spin_lock(&l3->list_lock);
- if (l3->shared) {
- struct array_cache *shared_array = l3->shared;
- int max = shared_array->limit - shared_array->avail;
- if (max) {
- if (batchcount > max)
- batchcount = max;
- memcpy(&(shared_array->entry[shared_array->avail]),
- ac->entry, sizeof(void *) * batchcount);
- shared_array->avail += batchcount;
- goto free_done;
- }
- }
- free_block(cachep, ac->entry, batchcount, node);
- free_done:
- #if STATS
- {
- int i = 0;
- struct list_head *p;
- p = l3->slabs_free.next;
- while (p != &(l3->slabs_free)) {
- struct slab *slabp;
- slabp = list_entry(p, struct slab, list);
- BUG_ON(slabp->inuse);
- i++;
- p = p->next;
- }
- STATS_SET_FREEABLE(cachep, i);
- }
- #endif
- spin_unlock(&l3->list_lock);
- ac->avail -= batchcount;
- memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
- }
- /*
- * Release an obj back to its cache. If the obj has a constructed state, it must
- * be in this state _before_ it is released. Called with disabled ints.
- */
- static inline void __cache_free(struct kmem_cache *cachep, void *objp,
- unsigned long caller)
- {
- struct array_cache *ac = cpu_cache_get(cachep);
- check_irq_off();
- kmemleak_free_recursive(objp, cachep->flags);
- objp = cache_free_debugcheck(cachep, objp, caller);
- kmemcheck_slab_free(cachep, objp, cachep->object_size);
- /*
- * Skip calling cache_free_alien() when the platform is not numa.
- * This will avoid cache misses that happen while accessing slabp (which
- * is per page memory reference) to get nodeid. Instead use a global
- * variable to skip the call, which is mostly likely to be present in
- * the cache.
- */
- if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
- return;
- if (likely(ac->avail < ac->limit)) {
- STATS_INC_FREEHIT(cachep);
- } else {
- STATS_INC_FREEMISS(cachep);
- cache_flusharray(cachep, ac);
- }
- ac_put_obj(cachep, ac, objp);
- }
- /**
- * kmem_cache_alloc - Allocate an object
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- *
- * Allocate an object from this cache. The flags are only relevant
- * if the cache has no available objects.
- */
- void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
- {
- void *ret = slab_alloc(cachep, flags, _RET_IP_);
- trace_kmem_cache_alloc(_RET_IP_, ret,
- cachep->object_size, cachep->size, flags);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc);
- #ifdef CONFIG_TRACING
- void *
- kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
- {
- void *ret;
- ret = slab_alloc(cachep, flags, _RET_IP_);
- trace_kmalloc(_RET_IP_, ret,
- size, cachep->size, flags);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_trace);
- #endif
- #ifdef CONFIG_NUMA
- void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
- {
- void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
- trace_kmem_cache_alloc_node(_RET_IP_, ret,
- cachep->object_size, cachep->size,
- flags, nodeid);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node);
- #ifdef CONFIG_TRACING
- void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
- gfp_t flags,
- int nodeid,
- size_t size)
- {
- void *ret;
- ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
- trace_kmalloc_node(_RET_IP_, ret,
- size, cachep->size,
- flags, nodeid);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
- #endif
- static __always_inline void *
- __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
- {
- struct kmem_cache *cachep;
- cachep = kmem_find_general_cachep(size, flags);
- if (unlikely(ZERO_OR_NULL_PTR(cachep)))
- return cachep;
- return kmem_cache_alloc_node_trace(cachep, flags, node, size);
- }
- #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
- void *__kmalloc_node(size_t size, gfp_t flags, int node)
- {
- return __do_kmalloc_node(size, flags, node, _RET_IP_);
- }
- EXPORT_SYMBOL(__kmalloc_node);
- void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
- int node, unsigned long caller)
- {
- return __do_kmalloc_node(size, flags, node, caller);
- }
- EXPORT_SYMBOL(__kmalloc_node_track_caller);
- #else
- void *__kmalloc_node(size_t size, gfp_t flags, int node)
- {
- return __do_kmalloc_node(size, flags, node, 0);
- }
- EXPORT_SYMBOL(__kmalloc_node);
- #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
- #endif /* CONFIG_NUMA */
- /**
- * __do_kmalloc - allocate memory
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate (see kmalloc).
- * @caller: function caller for debug tracking of the caller
- */
- static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
- unsigned long caller)
- {
- struct kmem_cache *cachep;
- void *ret;
- /* If you want to save a few bytes .text space: replace
- * __ with kmem_.
- * Then kmalloc uses the uninlined functions instead of the inline
- * functions.
- */
- cachep = __find_general_cachep(size, flags);
- if (unlikely(ZERO_OR_NULL_PTR(cachep)))
- return cachep;
- ret = slab_alloc(cachep, flags, caller);
- trace_kmalloc(caller, ret,
- size, cachep->size, flags);
- return ret;
- }
- #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
- void *__kmalloc(size_t size, gfp_t flags)
- {
- return __do_kmalloc(size, flags, _RET_IP_);
- }
- EXPORT_SYMBOL(__kmalloc);
- void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
- {
- return __do_kmalloc(size, flags, caller);
- }
- EXPORT_SYMBOL(__kmalloc_track_caller);
- #else
- void *__kmalloc(size_t size, gfp_t flags)
- {
- return __do_kmalloc(size, flags, 0);
- }
- EXPORT_SYMBOL(__kmalloc);
- #endif
- /**
- * kmem_cache_free - Deallocate an object
- * @cachep: The cache the allocation was from.
- * @objp: The previously allocated object.
- *
- * Free an object which was previously allocated from this
- * cache.
- */
- void kmem_cache_free(struct kmem_cache *cachep, void *objp)
- {
- unsigned long flags;
- cachep = cache_from_obj(cachep, objp);
- if (!cachep)
- return;
- local_irq_save(flags);
- debug_check_no_locks_freed(objp, cachep->object_size);
- if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
- debug_check_no_obj_freed(objp, cachep->object_size);
- __cache_free(cachep, objp, _RET_IP_);
- local_irq_restore(flags);
- trace_kmem_cache_free(_RET_IP_, objp);
- }
- EXPORT_SYMBOL(kmem_cache_free);
- /**
- * kfree - free previously allocated memory
- * @objp: pointer returned by kmalloc.
- *
- * If @objp is NULL, no operation is performed.
- *
- * Don't free memory not originally allocated by kmalloc()
- * or you will run into trouble.
- */
- void kfree(const void *objp)
- {
- struct kmem_cache *c;
- unsigned long flags;
- trace_kfree(_RET_IP_, objp);
- if (unlikely(ZERO_OR_NULL_PTR(objp)))
- return;
- local_irq_save(flags);
- kfree_debugcheck(objp);
- c = virt_to_cache(objp);
- debug_check_no_locks_freed(objp, c->object_size);
- debug_check_no_obj_freed(objp, c->object_size);
- __cache_free(c, (void *)objp, _RET_IP_);
- local_irq_restore(flags);
- }
- EXPORT_SYMBOL(kfree);
- /*
- * This initializes kmem_list3 or resizes various caches for all nodes.
- */
- static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
- {
- int node;
- struct kmem_list3 *l3;
- struct array_cache *new_shared;
- struct array_cache **new_alien = NULL;
- for_each_online_node(node) {
- if (use_alien_caches) {
- new_alien = alloc_alien_cache(node, cachep->limit, gfp);
- if (!new_alien)
- goto fail;
- }
- new_shared = NULL;
- if (cachep->shared) {
- new_shared = alloc_arraycache(node,
- cachep->shared*cachep->batchcount,
- 0xbaadf00d, gfp);
- if (!new_shared) {
- free_alien_cache(new_alien);
- goto fail;
- }
- }
- l3 = cachep->nodelists[node];
- if (l3) {
- struct array_cache *shared = l3->shared;
- spin_lock_irq(&l3->list_lock);
- if (shared)
- free_block(cachep, shared->entry,
- shared->avail, node);
- l3->shared = new_shared;
- if (!l3->alien) {
- l3->alien = new_alien;
- new_alien = NULL;
- }
- l3->free_limit = (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- spin_unlock_irq(&l3->list_lock);
- kfree(shared);
- free_alien_cache(new_alien);
- continue;
- }
- l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
- if (!l3) {
- free_alien_cache(new_alien);
- kfree(new_shared);
- goto fail;
- }
- kmem_list3_init(l3);
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- l3->shared = new_shared;
- l3->alien = new_alien;
- l3->free_limit = (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- cachep->nodelists[node] = l3;
- }
- return 0;
- fail:
- if (!cachep->list.next) {
- /* Cache is not active yet. Roll back what we did */
- node--;
- while (node >= 0) {
- if (cachep->nodelists[node]) {
- l3 = cachep->nodelists[node];
- kfree(l3->shared);
- free_alien_cache(l3->alien);
- kfree(l3);
- cachep->nodelists[node] = NULL;
- }
- node--;
- }
- }
- return -ENOMEM;
- }
- struct ccupdate_struct {
- struct kmem_cache *cachep;
- struct array_cache *new[0];
- };
- static void do_ccupdate_local(void *info)
- {
- struct ccupdate_struct *new = info;
- struct array_cache *old;
- check_irq_off();
- old = cpu_cache_get(new->cachep);
- new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
- new->new[smp_processor_id()] = old;
- }
- /* Always called with the slab_mutex held */
- static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
- int batchcount, int shared, gfp_t gfp)
- {
- struct ccupdate_struct *new;
- int i;
- new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
- gfp);
- if (!new)
- return -ENOMEM;
- for_each_online_cpu(i) {
- new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
- batchcount, gfp);
- if (!new->new[i]) {
- for (i--; i >= 0; i--)
- kfree(new->new[i]);
- kfree(new);
- return -ENOMEM;
- }
- }
- new->cachep = cachep;
- on_each_cpu(do_ccupdate_local, (void *)new, 1);
- check_irq_on();
- cachep->batchcount = batchcount;
- cachep->limit = limit;
- cachep->shared = shared;
- for_each_online_cpu(i) {
- struct array_cache *ccold = new->new[i];
- if (!ccold)
- continue;
- spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
- free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
- spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
- kfree(ccold);
- }
- kfree(new);
- return alloc_kmemlist(cachep, gfp);
- }
- /* Called with slab_mutex held always */
- static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
- {
- int err;
- int limit, shared;
- /*
- * The head array serves three purposes:
- * - create a LIFO ordering, i.e. return objects that are cache-warm
- * - reduce the number of spinlock operations.
- * - reduce the number of linked list operations on the slab and
- * bufctl chains: array operations are cheaper.
- * The numbers are guessed, we should auto-tune as described by
- * Bonwick.
- */
- if (cachep->size > 131072)
- limit = 1;
- else if (cachep->size > PAGE_SIZE)
- limit = 8;
- else if (cachep->size > 1024)
- limit = 24;
- else if (cachep->size > 256)
- limit = 54;
- else
- limit = 120;
- /*
- * CPU bound tasks (e.g. network routing) can exhibit cpu bound
- * allocation behaviour: Most allocs on one cpu, most free operations
- * on another cpu. For these cases, an efficient object passing between
- * cpus is necessary. This is provided by a shared array. The array
- * replaces Bonwick's magazine layer.
- * On uniprocessor, it's functionally equivalent (but less efficient)
- * to a larger limit. Thus disabled by default.
- */
- shared = 0;
- if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
- shared = 8;
- #if DEBUG
- /*
- * With debugging enabled, large batchcount lead to excessively long
- * periods with disabled local interrupts. Limit the batchcount
- */
- if (limit > 32)
- limit = 32;
- #endif
- err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
- if (err)
- printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
- cachep->name, -err);
- return err;
- }
- /*
- * Drain an array if it contains any elements taking the l3 lock only if
- * necessary. Note that the l3 listlock also protects the array_cache
- * if drain_array() is used on the shared array.
- */
- static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
- struct array_cache *ac, int force, int node)
- {
- int tofree;
- if (!ac || !ac->avail)
- return;
- if (ac->touched && !force) {
- ac->touched = 0;
- } else {
- spin_lock_irq(&l3->list_lock);
- if (ac->avail) {
- tofree = force ? ac->avail : (ac->limit + 4) / 5;
- if (tofree > ac->avail)
- tofree = (ac->avail + 1) / 2;
- free_block(cachep, ac->entry, tofree, node);
- ac->avail -= tofree;
- memmove(ac->entry, &(ac->entry[tofree]),
- sizeof(void *) * ac->avail);
- }
- spin_unlock_irq(&l3->list_lock);
- }
- }
- /**
- * cache_reap - Reclaim memory from caches.
- * @w: work descriptor
- *
- * Called from workqueue/eventd every few seconds.
- * Purpose:
- * - clear the per-cpu caches for this CPU.
- * - return freeable pages to the main free memory pool.
- *
- * If we cannot acquire the cache chain mutex then just give up - we'll try
- * again on the next iteration.
- */
- static void cache_reap(struct work_struct *w)
- {
- struct kmem_cache *searchp;
- struct kmem_list3 *l3;
- int node = numa_mem_id();
- struct delayed_work *work = to_delayed_work(w);
- if (!mutex_trylock(&slab_mutex))
- /* Give up. Setup the next iteration. */
- goto out;
- list_for_each_entry(searchp, &slab_caches, list) {
- check_irq_on();
- /*
- * We only take the l3 lock if absolutely necessary and we
- * have established with reasonable certainty that
- * we can do some work if the lock was obtained.
- */
- l3 = searchp->nodelists[node];
- reap_alien(searchp, l3);
- drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
- /*
- * These are racy checks but it does not matter
- * if we skip one check or scan twice.
- */
- if (time_after(l3->next_reap, jiffies))
- goto next;
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
- drain_array(searchp, l3, l3->shared, 0, node);
- if (l3->free_touched)
- l3->free_touched = 0;
- else {
- int freed;
- freed = drain_freelist(searchp, l3, (l3->free_limit +
- 5 * searchp->num - 1) / (5 * searchp->num));
- STATS_ADD_REAPED(searchp, freed);
- }
- next:
- cond_resched();
- }
- check_irq_on();
- mutex_unlock(&slab_mutex);
- next_reap_node();
- out:
- /* Set up the next iteration */
- schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
- }
- #ifdef CONFIG_SLABINFO
- void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
- {
- struct slab *slabp;
- unsigned long active_objs;
- unsigned long num_objs;
- unsigned long active_slabs = 0;
- unsigned long num_slabs, free_objects = 0, shared_avail = 0;
- const char *name;
- char *error = NULL;
- int node;
- struct kmem_list3 *l3;
- active_objs = 0;
- num_slabs = 0;
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
- check_irq_on();
- spin_lock_irq(&l3->list_lock);
- list_for_each_entry(slabp, &l3->slabs_full, list) {
- if (slabp->inuse != cachep->num && !error)
- error = "slabs_full accounting error";
- active_objs += cachep->num;
- active_slabs++;
- }
- list_for_each_entry(slabp, &l3->slabs_partial, list) {
- if (slabp->inuse == cachep->num && !error)
- error = "slabs_partial inuse accounting error";
- if (!slabp->inuse && !error)
- error = "slabs_partial/inuse accounting error";
- active_objs += slabp->inuse;
- active_slabs++;
- }
- list_for_each_entry(slabp, &l3->slabs_free, list) {
- if (slabp->inuse && !error)
- error = "slabs_free/inuse accounting error";
- num_slabs++;
- }
- free_objects += l3->free_objects;
- if (l3->shared)
- shared_avail += l3->shared->avail;
- spin_unlock_irq(&l3->list_lock);
- }
- num_slabs += active_slabs;
- num_objs = num_slabs * cachep->num;
- if (num_objs - active_objs != free_objects && !error)
- error = "free_objects accounting error";
- name = cachep->name;
- if (error)
- printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
- sinfo->active_objs = active_objs;
- sinfo->num_objs = num_objs;
- sinfo->active_slabs = active_slabs;
- sinfo->num_slabs = num_slabs;
- sinfo->shared_avail = shared_avail;
- sinfo->limit = cachep->limit;
- sinfo->batchcount = cachep->batchcount;
- sinfo->shared = cachep->shared;
- sinfo->objects_per_slab = cachep->num;
- sinfo->cache_order = cachep->gfporder;
- }
- void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
- {
- #if STATS
- { /* list3 stats */
- unsigned long high = cachep->high_mark;
- unsigned long allocs = cachep->num_allocations;
- unsigned long grown = cachep->grown;
- unsigned long reaped = cachep->reaped;
- unsigned long errors = cachep->errors;
- unsigned long max_freeable = cachep->max_freeable;
- unsigned long node_allocs = cachep->node_allocs;
- unsigned long node_frees = cachep->node_frees;
- unsigned long overflows = cachep->node_overflow;
- seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
- "%4lu %4lu %4lu %4lu %4lu",
- allocs, high, grown,
- reaped, errors, max_freeable, node_allocs,
- node_frees, overflows);
- }
- /* cpu stats */
- {
- unsigned long allochit = atomic_read(&cachep->allochit);
- unsigned long allocmiss = atomic_read(&cachep->allocmiss);
- unsigned long freehit = atomic_read(&cachep->freehit);
- unsigned long freemiss = atomic_read(&cachep->freemiss);
- seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
- allochit, allocmiss, freehit, freemiss);
- }
- #endif
- }
- #define MAX_SLABINFO_WRITE 128
- /**
- * slabinfo_write - Tuning for the slab allocator
- * @file: unused
- * @buffer: user buffer
- * @count: data length
- * @ppos: unused
- */
- ssize_t slabinfo_write(struct file *file, const char __user *buffer,
- size_t count, loff_t *ppos)
- {
- char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
- int limit, batchcount, shared, res;
- struct kmem_cache *cachep;
- if (count > MAX_SLABINFO_WRITE)
- return -EINVAL;
- if (copy_from_user(&kbuf, buffer, count))
- return -EFAULT;
- kbuf[MAX_SLABINFO_WRITE] = '\0';
- tmp = strchr(kbuf, ' ');
- if (!tmp)
- return -EINVAL;
- *tmp = '\0';
- tmp++;
- if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
- return -EINVAL;
- /* Find the cache in the chain of caches. */
- mutex_lock(&slab_mutex);
- res = -EINVAL;
- list_for_each_entry(cachep, &slab_caches, list) {
- if (!strcmp(cachep->name, kbuf)) {
- if (limit < 1 || batchcount < 1 ||
- batchcount > limit || shared < 0) {
- res = 0;
- } else {
- res = do_tune_cpucache(cachep, limit,
- batchcount, shared,
- GFP_KERNEL);
- }
- break;
- }
- }
- mutex_unlock(&slab_mutex);
- if (res >= 0)
- res = count;
- return res;
- }
- #ifdef CONFIG_DEBUG_SLAB_LEAK
- static void *leaks_start(struct seq_file *m, loff_t *pos)
- {
- mutex_lock(&slab_mutex);
- return seq_list_start(&slab_caches, *pos);
- }
- static inline int add_caller(unsigned long *n, unsigned long v)
- {
- unsigned long *p;
- int l;
- if (!v)
- return 1;
- l = n[1];
- p = n + 2;
- while (l) {
- int i = l/2;
- unsigned long *q = p + 2 * i;
- if (*q == v) {
- q[1]++;
- return 1;
- }
- if (*q > v) {
- l = i;
- } else {
- p = q + 2;
- l -= i + 1;
- }
- }
- if (++n[1] == n[0])
- return 0;
- memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
- p[0] = v;
- p[1] = 1;
- return 1;
- }
- static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
- {
- void *p;
- int i;
- if (n[0] == n[1])
- return;
- for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
- if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
- continue;
- if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
- return;
- }
- }
- static void show_symbol(struct seq_file *m, unsigned long address)
- {
- #ifdef CONFIG_KALLSYMS
- unsigned long offset, size;
- char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
- if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
- seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
- if (modname[0])
- seq_printf(m, " [%s]", modname);
- return;
- }
- #endif
- seq_printf(m, "%p", (void *)address);
- }
- static int leaks_show(struct seq_file *m, void *p)
- {
- struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
- struct slab *slabp;
- struct kmem_list3 *l3;
- const char *name;
- unsigned long *n = m->private;
- int node;
- int i;
- if (!(cachep->flags & SLAB_STORE_USER))
- return 0;
- if (!(cachep->flags & SLAB_RED_ZONE))
- return 0;
- /* OK, we can do it */
- n[1] = 0;
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
- check_irq_on();
- spin_lock_irq(&l3->list_lock);
- list_for_each_entry(slabp, &l3->slabs_full, list)
- handle_slab(n, cachep, slabp);
- list_for_each_entry(slabp, &l3->slabs_partial, list)
- handle_slab(n, cachep, slabp);
- spin_unlock_irq(&l3->list_lock);
- }
- name = cachep->name;
- if (n[0] == n[1]) {
- /* Increase the buffer size */
- mutex_unlock(&slab_mutex);
- m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
- if (!m->private) {
- /* Too bad, we are really out */
- m->private = n;
- mutex_lock(&slab_mutex);
- return -ENOMEM;
- }
- *(unsigned long *)m->private = n[0] * 2;
- kfree(n);
- mutex_lock(&slab_mutex);
- /* Now make sure this entry will be retried */
- m->count = m->size;
- return 0;
- }
- for (i = 0; i < n[1]; i++) {
- seq_printf(m, "%s: %lu ", name, n[2*i+3]);
- show_symbol(m, n[2*i+2]);
- seq_putc(m, '\n');
- }
- return 0;
- }
- static void *s_next(struct seq_file *m, void *p, loff_t *pos)
- {
- return seq_list_next(p, &slab_caches, pos);
- }
- static void s_stop(struct seq_file *m, void *p)
- {
- mutex_unlock(&slab_mutex);
- }
- static const struct seq_operations slabstats_op = {
- .start = leaks_start,
- .next = s_next,
- .stop = s_stop,
- .show = leaks_show,
- };
- static int slabstats_open(struct inode *inode, struct file *file)
- {
- unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
- int ret = -ENOMEM;
- if (n) {
- ret = seq_open(file, &slabstats_op);
- if (!ret) {
- struct seq_file *m = file->private_data;
- *n = PAGE_SIZE / (2 * sizeof(unsigned long));
- m->private = n;
- n = NULL;
- }
- kfree(n);
- }
- return ret;
- }
- static const struct file_operations proc_slabstats_operations = {
- .open = slabstats_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = seq_release_private,
- };
- #endif
- static int __init slab_proc_init(void)
- {
- #ifdef CONFIG_DEBUG_SLAB_LEAK
- proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
- #endif
- return 0;
- }
- module_init(slab_proc_init);
- #endif
- /**
- * ksize - get the actual amount of memory allocated for a given object
- * @objp: Pointer to the object
- *
- * kmalloc may internally round up allocations and return more memory
- * than requested. ksize() can be used to determine the actual amount of
- * memory allocated. The caller may use this additional memory, even though
- * a smaller amount of memory was initially specified with the kmalloc call.
- * The caller must guarantee that objp points to a valid object previously
- * allocated with either kmalloc() or kmem_cache_alloc(). The object
- * must not be freed during the duration of the call.
- */
- size_t ksize(const void *objp)
- {
- BUG_ON(!objp);
- if (unlikely(objp == ZERO_SIZE_PTR))
- return 0;
- return virt_to_cache(objp)->object_size;
- }
- EXPORT_SYMBOL(ksize);
|