page_alloc.c 175 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/memory.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <linux/ftrace_event.h>
  57. #include <linux/memcontrol.h>
  58. #include <linux/prefetch.h>
  59. #include <linux/mm_inline.h>
  60. #include <linux/migrate.h>
  61. #include <linux/page-debug-flags.h>
  62. #include <asm/tlbflush.h>
  63. #include <asm/div64.h>
  64. #include "internal.h"
  65. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  66. DEFINE_PER_CPU(int, numa_node);
  67. EXPORT_PER_CPU_SYMBOL(numa_node);
  68. #endif
  69. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  70. /*
  71. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  72. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  73. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  74. * defined in <linux/topology.h>.
  75. */
  76. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  77. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  78. #endif
  79. /*
  80. * Array of node states.
  81. */
  82. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  83. [N_POSSIBLE] = NODE_MASK_ALL,
  84. [N_ONLINE] = { { [0] = 1UL } },
  85. #ifndef CONFIG_NUMA
  86. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  87. #ifdef CONFIG_HIGHMEM
  88. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  89. #endif
  90. [N_CPU] = { { [0] = 1UL } },
  91. #endif /* NUMA */
  92. };
  93. EXPORT_SYMBOL(node_states);
  94. unsigned long totalram_pages __read_mostly;
  95. unsigned long totalreserve_pages __read_mostly;
  96. /*
  97. * When calculating the number of globally allowed dirty pages, there
  98. * is a certain number of per-zone reserves that should not be
  99. * considered dirtyable memory. This is the sum of those reserves
  100. * over all existing zones that contribute dirtyable memory.
  101. */
  102. unsigned long dirty_balance_reserve __read_mostly;
  103. #ifdef CONFIG_FIX_MOVABLE_ZONE
  104. unsigned long total_unmovable_pages __read_mostly;
  105. #endif
  106. int percpu_pagelist_fraction;
  107. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  108. static unsigned int boot_mode = 0;
  109. static int __init setup_bootmode(char *str)
  110. {
  111. if (get_option(&str, &boot_mode)) {
  112. printk("%s: boot_mode is %u\n", __func__, boot_mode);
  113. return 0;
  114. }
  115. return -EINVAL;
  116. }
  117. early_param("androidboot.boot_recovery", setup_bootmode);
  118. #ifdef CONFIG_PM_SLEEP
  119. /*
  120. * The following functions are used by the suspend/hibernate code to temporarily
  121. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  122. * while devices are suspended. To avoid races with the suspend/hibernate code,
  123. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  124. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  125. * guaranteed not to run in parallel with that modification).
  126. */
  127. static gfp_t saved_gfp_mask;
  128. void pm_restore_gfp_mask(void)
  129. {
  130. WARN_ON(!mutex_is_locked(&pm_mutex));
  131. if (saved_gfp_mask) {
  132. gfp_allowed_mask = saved_gfp_mask;
  133. saved_gfp_mask = 0;
  134. }
  135. }
  136. void pm_restrict_gfp_mask(void)
  137. {
  138. WARN_ON(!mutex_is_locked(&pm_mutex));
  139. WARN_ON(saved_gfp_mask);
  140. saved_gfp_mask = gfp_allowed_mask;
  141. gfp_allowed_mask &= ~GFP_IOFS;
  142. }
  143. bool pm_suspended_storage(void)
  144. {
  145. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  146. return false;
  147. return true;
  148. }
  149. #endif /* CONFIG_PM_SLEEP */
  150. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  151. int pageblock_order __read_mostly;
  152. #endif
  153. static void __free_pages_ok(struct page *page, unsigned int order);
  154. /*
  155. * results with 256, 32 in the lowmem_reserve sysctl:
  156. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  157. * 1G machine -> (16M dma, 784M normal, 224M high)
  158. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  159. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  160. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  161. *
  162. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  163. * don't need any ZONE_NORMAL reservation
  164. */
  165. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  166. #ifdef CONFIG_ZONE_DMA
  167. 256,
  168. #endif
  169. #ifdef CONFIG_ZONE_DMA32
  170. 256,
  171. #endif
  172. #ifdef CONFIG_HIGHMEM
  173. 96,
  174. #endif
  175. 96,
  176. };
  177. EXPORT_SYMBOL(totalram_pages);
  178. #ifdef CONFIG_FIX_MOVABLE_ZONE
  179. EXPORT_SYMBOL(total_unmovable_pages);
  180. #endif
  181. static char * const zone_names[MAX_NR_ZONES] = {
  182. #ifdef CONFIG_ZONE_DMA
  183. "DMA",
  184. #endif
  185. #ifdef CONFIG_ZONE_DMA32
  186. "DMA32",
  187. #endif
  188. "Normal",
  189. #ifdef CONFIG_HIGHMEM
  190. "HighMem",
  191. #endif
  192. "Movable",
  193. };
  194. /*
  195. * Try to keep at least this much lowmem free. Do not allow normal
  196. * allocations below this point, only high priority ones. Automatically
  197. * tuned according to the amount of memory in the system.
  198. */
  199. int min_free_kbytes = 1024;
  200. int min_free_order_shift = 1;
  201. /*
  202. * Extra memory for the system to try freeing. Used to temporarily
  203. * free memory, to make space for new workloads. Anyone can allocate
  204. * down to the min watermarks controlled by min_free_kbytes above.
  205. */
  206. int extra_free_kbytes = 0;
  207. static unsigned long __meminitdata nr_kernel_pages;
  208. static unsigned long __meminitdata nr_all_pages;
  209. static unsigned long __meminitdata dma_reserve;
  210. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  211. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  212. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  213. static unsigned long __initdata required_kernelcore;
  214. static unsigned long __initdata required_movablecore;
  215. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  216. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  217. int movable_zone;
  218. EXPORT_SYMBOL(movable_zone);
  219. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  220. #if MAX_NUMNODES > 1
  221. int nr_node_ids __read_mostly = MAX_NUMNODES;
  222. int nr_online_nodes __read_mostly = 1;
  223. EXPORT_SYMBOL(nr_node_ids);
  224. EXPORT_SYMBOL(nr_online_nodes);
  225. #endif
  226. int page_group_by_mobility_disabled __read_mostly;
  227. static void set_pageblock_migratetype(struct page *page, int migratetype)
  228. {
  229. if (unlikely(page_group_by_mobility_disabled))
  230. migratetype = MIGRATE_UNMOVABLE;
  231. set_pageblock_flags_group(page, (unsigned long)migratetype,
  232. PB_migrate, PB_migrate_end);
  233. }
  234. bool oom_killer_disabled __read_mostly;
  235. #ifdef CONFIG_DEBUG_VM
  236. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  237. {
  238. int ret = 0;
  239. unsigned seq;
  240. unsigned long pfn = page_to_pfn(page);
  241. do {
  242. seq = zone_span_seqbegin(zone);
  243. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  244. ret = 1;
  245. else if (pfn < zone->zone_start_pfn)
  246. ret = 1;
  247. } while (zone_span_seqretry(zone, seq));
  248. return ret;
  249. }
  250. static int page_is_consistent(struct zone *zone, struct page *page)
  251. {
  252. if (!pfn_valid_within(page_to_pfn(page)))
  253. return 0;
  254. if (zone != page_zone(page))
  255. return 0;
  256. return 1;
  257. }
  258. /*
  259. * Temporary debugging check for pages not lying within a given zone.
  260. */
  261. static int bad_range(struct zone *zone, struct page *page)
  262. {
  263. if (page_outside_zone_boundaries(zone, page))
  264. return 1;
  265. if (!page_is_consistent(zone, page))
  266. return 1;
  267. return 0;
  268. }
  269. #else
  270. static inline int bad_range(struct zone *zone, struct page *page)
  271. {
  272. return 0;
  273. }
  274. #endif
  275. static void bad_page(struct page *page)
  276. {
  277. static unsigned long resume;
  278. static unsigned long nr_shown;
  279. static unsigned long nr_unshown;
  280. /* Don't complain about poisoned pages */
  281. if (PageHWPoison(page)) {
  282. reset_page_mapcount(page); /* remove PageBuddy */
  283. return;
  284. }
  285. /*
  286. * Allow a burst of 60 reports, then keep quiet for that minute;
  287. * or allow a steady drip of one report per second.
  288. */
  289. if (nr_shown == 60) {
  290. if (time_before(jiffies, resume)) {
  291. nr_unshown++;
  292. goto out;
  293. }
  294. if (nr_unshown) {
  295. printk(KERN_ALERT
  296. "BUG: Bad page state: %lu messages suppressed\n",
  297. nr_unshown);
  298. nr_unshown = 0;
  299. }
  300. nr_shown = 0;
  301. }
  302. if (nr_shown++ == 0)
  303. resume = jiffies + 60 * HZ;
  304. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  305. current->comm, page_to_pfn(page));
  306. dump_page(page);
  307. print_modules();
  308. dump_stack();
  309. out:
  310. /* Leave bad fields for debug, except PageBuddy could make trouble */
  311. reset_page_mapcount(page); /* remove PageBuddy */
  312. add_taint(TAINT_BAD_PAGE);
  313. }
  314. /*
  315. * Higher-order pages are called "compound pages". They are structured thusly:
  316. *
  317. * The first PAGE_SIZE page is called the "head page".
  318. *
  319. * The remaining PAGE_SIZE pages are called "tail pages".
  320. *
  321. * All pages have PG_compound set. All tail pages have their ->first_page
  322. * pointing at the head page.
  323. *
  324. * The first tail page's ->lru.next holds the address of the compound page's
  325. * put_page() function. Its ->lru.prev holds the order of allocation.
  326. * This usage means that zero-order pages may not be compound.
  327. */
  328. static void free_compound_page(struct page *page)
  329. {
  330. __free_pages_ok(page, compound_order(page));
  331. }
  332. void prep_compound_page(struct page *page, unsigned long order)
  333. {
  334. int i;
  335. int nr_pages = 1 << order;
  336. set_compound_page_dtor(page, free_compound_page);
  337. set_compound_order(page, order);
  338. __SetPageHead(page);
  339. for (i = 1; i < nr_pages; i++) {
  340. struct page *p = page + i;
  341. __SetPageTail(p);
  342. set_page_count(p, 0);
  343. p->first_page = page;
  344. }
  345. }
  346. /* update __split_huge_page_refcount if you change this function */
  347. static int destroy_compound_page(struct page *page, unsigned long order)
  348. {
  349. int i;
  350. int nr_pages = 1 << order;
  351. int bad = 0;
  352. if (unlikely(compound_order(page) != order) ||
  353. unlikely(!PageHead(page))) {
  354. bad_page(page);
  355. bad++;
  356. }
  357. __ClearPageHead(page);
  358. for (i = 1; i < nr_pages; i++) {
  359. struct page *p = page + i;
  360. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  361. bad_page(page);
  362. bad++;
  363. }
  364. __ClearPageTail(p);
  365. }
  366. return bad;
  367. }
  368. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  369. {
  370. int i;
  371. /*
  372. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  373. * and __GFP_HIGHMEM from hard or soft interrupt context.
  374. */
  375. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  376. for (i = 0; i < (1 << order); i++)
  377. clear_highpage(page + i);
  378. }
  379. #ifdef CONFIG_DEBUG_PAGEALLOC
  380. unsigned int _debug_guardpage_minorder;
  381. static int __init debug_guardpage_minorder_setup(char *buf)
  382. {
  383. unsigned long res;
  384. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  385. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  386. return 0;
  387. }
  388. _debug_guardpage_minorder = res;
  389. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  390. return 0;
  391. }
  392. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  393. static inline void set_page_guard_flag(struct page *page)
  394. {
  395. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  396. }
  397. static inline void clear_page_guard_flag(struct page *page)
  398. {
  399. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  400. }
  401. #else
  402. static inline void set_page_guard_flag(struct page *page) { }
  403. static inline void clear_page_guard_flag(struct page *page) { }
  404. #endif
  405. static inline void set_page_order(struct page *page, int order)
  406. {
  407. set_page_private(page, order);
  408. __SetPageBuddy(page);
  409. }
  410. static inline void rmv_page_order(struct page *page)
  411. {
  412. __ClearPageBuddy(page);
  413. set_page_private(page, 0);
  414. }
  415. /*
  416. * Locate the struct page for both the matching buddy in our
  417. * pair (buddy1) and the combined O(n+1) page they form (page).
  418. *
  419. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  420. * the following equation:
  421. * B2 = B1 ^ (1 << O)
  422. * For example, if the starting buddy (buddy2) is #8 its order
  423. * 1 buddy is #10:
  424. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  425. *
  426. * 2) Any buddy B will have an order O+1 parent P which
  427. * satisfies the following equation:
  428. * P = B & ~(1 << O)
  429. *
  430. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  431. */
  432. static inline unsigned long
  433. __find_buddy_index(unsigned long page_idx, unsigned int order)
  434. {
  435. return page_idx ^ (1 << order);
  436. }
  437. /*
  438. * This function checks whether a page is free && is the buddy
  439. * we can do coalesce a page and its buddy if
  440. * (a) the buddy is not in a hole &&
  441. * (b) the buddy is in the buddy system &&
  442. * (c) a page and its buddy have the same order &&
  443. * (d) a page and its buddy are in the same zone.
  444. *
  445. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  446. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  447. *
  448. * For recording page's order, we use page_private(page).
  449. */
  450. static inline int page_is_buddy(struct page *page, struct page *buddy,
  451. int order)
  452. {
  453. if (!pfn_valid_within(page_to_pfn(buddy)))
  454. return 0;
  455. if (page_zone_id(page) != page_zone_id(buddy))
  456. return 0;
  457. if (page_is_guard(buddy) && page_order(buddy) == order) {
  458. VM_BUG_ON(page_count(buddy) != 0);
  459. return 1;
  460. }
  461. if (PageBuddy(buddy) && page_order(buddy) == order) {
  462. VM_BUG_ON(page_count(buddy) != 0);
  463. return 1;
  464. }
  465. return 0;
  466. }
  467. /*
  468. * Freeing function for a buddy system allocator.
  469. *
  470. * The concept of a buddy system is to maintain direct-mapped table
  471. * (containing bit values) for memory blocks of various "orders".
  472. * The bottom level table contains the map for the smallest allocatable
  473. * units of memory (here, pages), and each level above it describes
  474. * pairs of units from the levels below, hence, "buddies".
  475. * At a high level, all that happens here is marking the table entry
  476. * at the bottom level available, and propagating the changes upward
  477. * as necessary, plus some accounting needed to play nicely with other
  478. * parts of the VM system.
  479. * At each level, we keep a list of pages, which are heads of continuous
  480. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  481. * order is recorded in page_private(page) field.
  482. * So when we are allocating or freeing one, we can derive the state of the
  483. * other. That is, if we allocate a small block, and both were
  484. * free, the remainder of the region must be split into blocks.
  485. * If a block is freed, and its buddy is also free, then this
  486. * triggers coalescing into a block of larger size.
  487. *
  488. * -- wli
  489. */
  490. static inline void __free_one_page(struct page *page,
  491. struct zone *zone, unsigned int order,
  492. int migratetype)
  493. {
  494. unsigned long page_idx;
  495. unsigned long combined_idx;
  496. unsigned long uninitialized_var(buddy_idx);
  497. struct page *buddy = NULL;
  498. if (unlikely(PageCompound(page)))
  499. if (unlikely(destroy_compound_page(page, order)))
  500. return;
  501. VM_BUG_ON(migratetype == -1);
  502. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  503. VM_BUG_ON(page_idx & ((1 << order) - 1));
  504. VM_BUG_ON(bad_range(zone, page));
  505. while (order < MAX_ORDER-1) {
  506. buddy_idx = __find_buddy_index(page_idx, order);
  507. buddy = page + (buddy_idx - page_idx);
  508. if (!page_is_buddy(page, buddy, order))
  509. break;
  510. /*
  511. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  512. * merge with it and move up one order.
  513. */
  514. if (page_is_guard(buddy)) {
  515. clear_page_guard_flag(buddy);
  516. set_page_private(page, 0);
  517. __mod_zone_freepage_state(zone, 1 << order,
  518. migratetype);
  519. } else {
  520. list_del(&buddy->lru);
  521. zone->free_area[order].nr_free--;
  522. rmv_page_order(buddy);
  523. }
  524. combined_idx = buddy_idx & page_idx;
  525. page = page + (combined_idx - page_idx);
  526. page_idx = combined_idx;
  527. order++;
  528. }
  529. set_page_order(page, order);
  530. /*
  531. * If this is not the largest possible page, check if the buddy
  532. * of the next-highest order is free. If it is, it's possible
  533. * that pages are being freed that will coalesce soon. In case,
  534. * that is happening, add the free page to the tail of the list
  535. * so it's less likely to be used soon and more likely to be merged
  536. * as a higher order page
  537. */
  538. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  539. struct page *higher_page, *higher_buddy;
  540. combined_idx = buddy_idx & page_idx;
  541. higher_page = page + (combined_idx - page_idx);
  542. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  543. higher_buddy = higher_page + (buddy_idx - combined_idx);
  544. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  545. list_add_tail(&page->lru,
  546. &zone->free_area[order].free_list[migratetype]);
  547. goto out;
  548. }
  549. }
  550. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  551. out:
  552. zone->free_area[order].nr_free++;
  553. }
  554. /*
  555. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  556. * Page should not be on lru, so no need to fix that up.
  557. * free_pages_check() will verify...
  558. */
  559. static inline void free_page_mlock(struct page *page)
  560. {
  561. __dec_zone_page_state(page, NR_MLOCK);
  562. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  563. }
  564. static inline int free_pages_check(struct page *page)
  565. {
  566. if (unlikely(page_mapcount(page) |
  567. (page->mapping != NULL) |
  568. (atomic_read(&page->_count) != 0) |
  569. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  570. (mem_cgroup_bad_page_check(page)))) {
  571. bad_page(page);
  572. return 1;
  573. }
  574. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  575. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  576. return 0;
  577. }
  578. /*
  579. * Frees a number of pages from the PCP lists
  580. * Assumes all pages on list are in same zone, and of same order.
  581. * count is the number of pages to free.
  582. *
  583. * If the zone was previously in an "all pages pinned" state then look to
  584. * see if this freeing clears that state.
  585. *
  586. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  587. * pinned" detection logic.
  588. */
  589. static void free_pcppages_bulk(struct zone *zone, int count,
  590. struct per_cpu_pages *pcp)
  591. {
  592. int migratetype = 0;
  593. int batch_free = 0;
  594. int to_free = count;
  595. spin_lock(&zone->lock);
  596. zone->pages_scanned = 0;
  597. while (to_free) {
  598. struct page *page;
  599. struct list_head *list;
  600. /*
  601. * Remove pages from lists in a round-robin fashion. A
  602. * batch_free count is maintained that is incremented when an
  603. * empty list is encountered. This is so more pages are freed
  604. * off fuller lists instead of spinning excessively around empty
  605. * lists
  606. */
  607. do {
  608. batch_free++;
  609. if (++migratetype == MIGRATE_PCPTYPES)
  610. migratetype = 0;
  611. list = &pcp->lists[migratetype];
  612. } while (list_empty(list));
  613. /* This is the only non-empty list. Free them all. */
  614. if (batch_free == MIGRATE_PCPTYPES)
  615. batch_free = to_free;
  616. do {
  617. int mt; /* migratetype of the to-be-freed page */
  618. page = list_entry(list->prev, struct page, lru);
  619. /* must delete as __free_one_page list manipulates */
  620. list_del(&page->lru);
  621. mt = get_freepage_migratetype(page);
  622. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  623. __free_one_page(page, zone, 0, mt);
  624. trace_mm_page_pcpu_drain(page, 0, mt);
  625. if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
  626. __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
  627. if (is_migrate_cma(mt))
  628. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  629. }
  630. } while (--to_free && --batch_free && !list_empty(list));
  631. }
  632. spin_unlock(&zone->lock);
  633. }
  634. static void free_one_page(struct zone *zone, struct page *page, int order,
  635. int migratetype)
  636. {
  637. spin_lock(&zone->lock);
  638. zone->pages_scanned = 0;
  639. __free_one_page(page, zone, order, migratetype);
  640. if (unlikely(migratetype != MIGRATE_ISOLATE))
  641. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  642. spin_unlock(&zone->lock);
  643. }
  644. static bool free_pages_prepare(struct page *page, unsigned int order)
  645. {
  646. int i;
  647. int bad = 0;
  648. trace_mm_page_free(page, order);
  649. kmemcheck_free_shadow(page, order);
  650. if (PageAnon(page))
  651. page->mapping = NULL;
  652. for (i = 0; i < (1 << order); i++)
  653. bad += free_pages_check(page + i);
  654. if (bad)
  655. return false;
  656. if (!PageHighMem(page)) {
  657. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  658. debug_check_no_obj_freed(page_address(page),
  659. PAGE_SIZE << order);
  660. }
  661. arch_free_page(page, order);
  662. kernel_map_pages(page, 1 << order, 0);
  663. return true;
  664. }
  665. static void __free_pages_ok(struct page *page, unsigned int order)
  666. {
  667. unsigned long flags;
  668. int wasMlocked = __TestClearPageMlocked(page);
  669. int migratetype;
  670. if (!free_pages_prepare(page, order))
  671. return;
  672. local_irq_save(flags);
  673. if (unlikely(wasMlocked))
  674. free_page_mlock(page);
  675. __count_vm_events(PGFREE, 1 << order);
  676. migratetype = get_pageblock_migratetype(page);
  677. set_freepage_migratetype(page, migratetype);
  678. free_one_page(page_zone(page), page, order, migratetype);
  679. local_irq_restore(flags);
  680. }
  681. void __free_pages_bootmem(struct page *page, unsigned int order)
  682. {
  683. unsigned int nr_pages = 1 << order;
  684. unsigned int loop;
  685. prefetchw(page);
  686. for (loop = 0; loop < nr_pages; loop++) {
  687. struct page *p = &page[loop];
  688. if (loop + 1 < nr_pages)
  689. prefetchw(p + 1);
  690. __ClearPageReserved(p);
  691. set_page_count(p, 0);
  692. }
  693. set_page_refcounted(page);
  694. __free_pages(page, order);
  695. }
  696. #ifdef CONFIG_CMA
  697. bool is_cma_pageblock(struct page *page)
  698. {
  699. return get_pageblock_migratetype(page) == MIGRATE_CMA;
  700. }
  701. /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
  702. void __init init_cma_reserved_pageblock(struct page *page)
  703. {
  704. unsigned i = pageblock_nr_pages;
  705. struct page *p = page;
  706. do {
  707. __ClearPageReserved(p);
  708. set_page_count(p, 0);
  709. #if defined(CONFIG_CMA_PAGE_COUNTING)
  710. SetPageCMA(p);
  711. #endif
  712. } while (++p, --i);
  713. set_page_refcounted(page);
  714. set_pageblock_migratetype(page, MIGRATE_CMA);
  715. __free_pages(page, pageblock_order);
  716. totalram_pages += pageblock_nr_pages;
  717. #ifdef CONFIG_HIGHMEM
  718. if (PageHighMem(page))
  719. totalhigh_pages += pageblock_nr_pages;
  720. #endif
  721. }
  722. #endif
  723. /*
  724. * The order of subdivision here is critical for the IO subsystem.
  725. * Please do not alter this order without good reasons and regression
  726. * testing. Specifically, as large blocks of memory are subdivided,
  727. * the order in which smaller blocks are delivered depends on the order
  728. * they're subdivided in this function. This is the primary factor
  729. * influencing the order in which pages are delivered to the IO
  730. * subsystem according to empirical testing, and this is also justified
  731. * by considering the behavior of a buddy system containing a single
  732. * large block of memory acted on by a series of small allocations.
  733. * This behavior is a critical factor in sglist merging's success.
  734. *
  735. * -- wli
  736. */
  737. static inline void expand(struct zone *zone, struct page *page,
  738. int low, int high, struct free_area *area,
  739. int migratetype)
  740. {
  741. unsigned long size = 1 << high;
  742. while (high > low) {
  743. area--;
  744. high--;
  745. size >>= 1;
  746. VM_BUG_ON(bad_range(zone, &page[size]));
  747. #ifdef CONFIG_DEBUG_PAGEALLOC
  748. if (high < debug_guardpage_minorder()) {
  749. /*
  750. * Mark as guard pages (or page), that will allow to
  751. * merge back to allocator when buddy will be freed.
  752. * Corresponding page table entries will not be touched,
  753. * pages will stay not present in virtual address space
  754. */
  755. INIT_LIST_HEAD(&page[size].lru);
  756. set_page_guard_flag(&page[size]);
  757. set_page_private(&page[size], high);
  758. /* Guard pages are not available for any usage */
  759. __mod_zone_freepage_state(zone, -(1 << high),
  760. migratetype);
  761. continue;
  762. }
  763. #endif
  764. list_add(&page[size].lru, &area->free_list[migratetype]);
  765. area->nr_free++;
  766. set_page_order(&page[size], high);
  767. }
  768. }
  769. /*
  770. * This page is about to be returned from the page allocator
  771. */
  772. static inline int check_new_page(struct page *page)
  773. {
  774. if (unlikely(page_mapcount(page) |
  775. (page->mapping != NULL) |
  776. (atomic_read(&page->_count) != 0) |
  777. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  778. (mem_cgroup_bad_page_check(page)))) {
  779. bad_page(page);
  780. return 1;
  781. }
  782. return 0;
  783. }
  784. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  785. {
  786. int i;
  787. for (i = 0; i < (1 << order); i++) {
  788. struct page *p = page + i;
  789. if (unlikely(check_new_page(p)))
  790. return 1;
  791. }
  792. set_page_private(page, 0);
  793. set_page_refcounted(page);
  794. arch_alloc_page(page, order);
  795. kernel_map_pages(page, 1 << order, 1);
  796. if (gfp_flags & __GFP_ZERO)
  797. prep_zero_page(page, order, gfp_flags);
  798. if (order && (gfp_flags & __GFP_COMP))
  799. prep_compound_page(page, order);
  800. return 0;
  801. }
  802. /*
  803. * Go through the free lists for the given migratetype and remove
  804. * the smallest available page from the freelists
  805. */
  806. static inline
  807. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  808. int migratetype)
  809. {
  810. unsigned int current_order;
  811. struct free_area * area;
  812. struct page *page;
  813. /* Find a page of the appropriate size in the preferred list */
  814. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  815. area = &(zone->free_area[current_order]);
  816. if (list_empty(&area->free_list[migratetype]))
  817. continue;
  818. page = list_entry(area->free_list[migratetype].next,
  819. struct page, lru);
  820. list_del(&page->lru);
  821. rmv_page_order(page);
  822. area->nr_free--;
  823. expand(zone, page, order, current_order, area, migratetype);
  824. return page;
  825. }
  826. return NULL;
  827. }
  828. /*
  829. * This array describes the order lists are fallen back to when
  830. * the free lists for the desirable migrate type are depleted
  831. */
  832. static int fallbacks[MIGRATE_TYPES][4] = {
  833. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  834. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  835. #ifdef CONFIG_CMA
  836. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  837. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  838. #else
  839. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  840. #endif
  841. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  842. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  843. };
  844. int *get_migratetype_fallbacks(int mtype)
  845. {
  846. return fallbacks[mtype];
  847. }
  848. /*
  849. * Move the free pages in a range to the free lists of the requested type.
  850. * Note that start_page and end_pages are not aligned on a pageblock
  851. * boundary. If alignment is required, use move_freepages_block()
  852. */
  853. int move_freepages(struct zone *zone,
  854. struct page *start_page, struct page *end_page,
  855. int migratetype)
  856. {
  857. struct page *page;
  858. unsigned long order;
  859. int pages_moved = 0;
  860. #ifndef CONFIG_HOLES_IN_ZONE
  861. /*
  862. * page_zone is not safe to call in this context when
  863. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  864. * anyway as we check zone boundaries in move_freepages_block().
  865. * Remove at a later date when no bug reports exist related to
  866. * grouping pages by mobility
  867. */
  868. BUG_ON(page_zone(start_page) != page_zone(end_page));
  869. #endif
  870. for (page = start_page; page <= end_page;) {
  871. /* Make sure we are not inadvertently changing nodes */
  872. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  873. if (!pfn_valid_within(page_to_pfn(page))) {
  874. page++;
  875. continue;
  876. }
  877. if (!PageBuddy(page)) {
  878. page++;
  879. continue;
  880. }
  881. order = page_order(page);
  882. list_move(&page->lru,
  883. &zone->free_area[order].free_list[migratetype]);
  884. set_freepage_migratetype(page, migratetype);
  885. page += 1 << order;
  886. pages_moved += 1 << order;
  887. }
  888. return pages_moved;
  889. }
  890. static int move_freepages_block(struct zone *zone, struct page *page,
  891. int migratetype)
  892. {
  893. unsigned long start_pfn, end_pfn;
  894. struct page *start_page, *end_page;
  895. start_pfn = page_to_pfn(page);
  896. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  897. start_page = pfn_to_page(start_pfn);
  898. end_page = start_page + pageblock_nr_pages - 1;
  899. end_pfn = start_pfn + pageblock_nr_pages - 1;
  900. /* Do not cross zone boundaries */
  901. if (start_pfn < zone->zone_start_pfn)
  902. start_page = page;
  903. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  904. return 0;
  905. return move_freepages(zone, start_page, end_page, migratetype);
  906. }
  907. static void change_pageblock_range(struct page *pageblock_page,
  908. int start_order, int migratetype)
  909. {
  910. int nr_pageblocks = 1 << (start_order - pageblock_order);
  911. while (nr_pageblocks--) {
  912. set_pageblock_migratetype(pageblock_page, migratetype);
  913. pageblock_page += pageblock_nr_pages;
  914. }
  915. }
  916. /* Remove an element from the buddy allocator from the fallback list */
  917. static inline struct page *
  918. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  919. {
  920. struct free_area * area;
  921. int current_order;
  922. struct page *page;
  923. int migratetype, i;
  924. /* Find the largest possible block of pages in the other list */
  925. for (current_order = MAX_ORDER-1; current_order >= order;
  926. --current_order) {
  927. for (i = 0;; i++) {
  928. migratetype = fallbacks[start_migratetype][i];
  929. /* MIGRATE_RESERVE handled later if necessary */
  930. if (migratetype == MIGRATE_RESERVE)
  931. break;
  932. area = &(zone->free_area[current_order]);
  933. if (list_empty(&area->free_list[migratetype]))
  934. continue;
  935. page = list_entry(area->free_list[migratetype].next,
  936. struct page, lru);
  937. area->nr_free--;
  938. /*
  939. * If breaking a large block of pages, move all free
  940. * pages to the preferred allocation list. If falling
  941. * back for a reclaimable kernel allocation, be more
  942. * aggressive about taking ownership of free pages
  943. *
  944. * On the other hand, never change migration
  945. * type of MIGRATE_CMA pageblocks nor move CMA
  946. * pages on different free lists. We don't
  947. * want unmovable pages to be allocated from
  948. * MIGRATE_CMA areas.
  949. */
  950. if (!is_migrate_cma(migratetype) &&
  951. (unlikely(current_order >= pageblock_order / 2) ||
  952. start_migratetype == MIGRATE_RECLAIMABLE ||
  953. start_migratetype == MIGRATE_UNMOVABLE ||
  954. start_migratetype == MIGRATE_MOVABLE ||
  955. page_group_by_mobility_disabled)) {
  956. int pages;
  957. pages = move_freepages_block(zone, page,
  958. start_migratetype);
  959. /* Claim the whole block if over half of it is free */
  960. if (pages >= (1 << (pageblock_order-1)) ||
  961. start_migratetype == MIGRATE_MOVABLE ||
  962. page_group_by_mobility_disabled)
  963. set_pageblock_migratetype(page,
  964. start_migratetype);
  965. migratetype = start_migratetype;
  966. }
  967. /* Remove the page from the freelists */
  968. list_del(&page->lru);
  969. rmv_page_order(page);
  970. /* Take ownership for orders >= pageblock_order */
  971. if (current_order >= pageblock_order &&
  972. !is_migrate_cma(migratetype))
  973. change_pageblock_range(page, current_order,
  974. start_migratetype);
  975. expand(zone, page, order, current_order, area,
  976. is_migrate_cma(migratetype)
  977. ? migratetype : start_migratetype);
  978. trace_mm_page_alloc_extfrag(page, order, current_order,
  979. start_migratetype, migratetype);
  980. return page;
  981. }
  982. }
  983. return NULL;
  984. }
  985. /*
  986. * Do the hard work of removing an element from the buddy allocator.
  987. * Call me with the zone->lock already held.
  988. */
  989. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  990. int migratetype)
  991. {
  992. struct page *page;
  993. retry_reserve:
  994. page = __rmqueue_smallest(zone, order, migratetype);
  995. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  996. page = __rmqueue_fallback(zone, order, migratetype);
  997. /*
  998. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  999. * is used because __rmqueue_smallest is an inline function
  1000. * and we want just one call site
  1001. */
  1002. if (!page) {
  1003. migratetype = MIGRATE_RESERVE;
  1004. goto retry_reserve;
  1005. }
  1006. }
  1007. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1008. return page;
  1009. }
  1010. static struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
  1011. int migratetype)
  1012. {
  1013. struct page *page = 0;
  1014. #ifdef CONFIG_CMA
  1015. if (migratetype == MIGRATE_MOVABLE && !zone->cma_alloc)
  1016. page = __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1017. if (!page)
  1018. #endif
  1019. retry_reserve :
  1020. page = __rmqueue_smallest(zone, order, migratetype);
  1021. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  1022. page = __rmqueue_fallback(zone, order, migratetype);
  1023. /*
  1024. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  1025. * is used because __rmqueue_smallest is an inline function
  1026. * and we want just one call site
  1027. */
  1028. if (!page) {
  1029. migratetype = MIGRATE_RESERVE;
  1030. goto retry_reserve;
  1031. }
  1032. }
  1033. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1034. return page;
  1035. }
  1036. /*
  1037. * Obtain a specified number of elements from the buddy allocator, all under
  1038. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1039. * Returns the number of new pages which were placed at *list.
  1040. */
  1041. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1042. unsigned long count, struct list_head *list,
  1043. int migratetype, int cold, int cma)
  1044. {
  1045. int mt = migratetype, i;
  1046. spin_lock(&zone->lock);
  1047. for (i = 0; i < count; ++i) {
  1048. struct page *page;
  1049. if (cma)
  1050. page = __rmqueue_cma(zone, order, migratetype);
  1051. else
  1052. page = __rmqueue(zone, order, migratetype);
  1053. if (unlikely(page == NULL))
  1054. break;
  1055. /*
  1056. * Split buddy pages returned by expand() are received here
  1057. * in physical page order. The page is added to the callers and
  1058. * list and the list head then moves forward. From the callers
  1059. * perspective, the linked list is ordered by page number in
  1060. * some conditions. This is useful for IO devices that can
  1061. * merge IO requests if the physical pages are ordered
  1062. * properly.
  1063. */
  1064. if (likely(cold == 0))
  1065. list_add(&page->lru, list);
  1066. else
  1067. list_add_tail(&page->lru, list);
  1068. if (IS_ENABLED(CONFIG_CMA)) {
  1069. mt = get_pageblock_migratetype(page);
  1070. if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
  1071. mt = migratetype;
  1072. }
  1073. set_freepage_migratetype(page, mt);
  1074. list = &page->lru;
  1075. if (is_migrate_cma(mt))
  1076. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1077. -(1 << order));
  1078. }
  1079. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1080. spin_unlock(&zone->lock);
  1081. return i;
  1082. }
  1083. #ifdef CONFIG_NUMA
  1084. /*
  1085. * Called from the vmstat counter updater to drain pagesets of this
  1086. * currently executing processor on remote nodes after they have
  1087. * expired.
  1088. *
  1089. * Note that this function must be called with the thread pinned to
  1090. * a single processor.
  1091. */
  1092. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1093. {
  1094. unsigned long flags;
  1095. int to_drain;
  1096. local_irq_save(flags);
  1097. if (pcp->count >= pcp->batch)
  1098. to_drain = pcp->batch;
  1099. else
  1100. to_drain = pcp->count;
  1101. free_pcppages_bulk(zone, to_drain, pcp);
  1102. pcp->count -= to_drain;
  1103. local_irq_restore(flags);
  1104. }
  1105. #endif
  1106. /*
  1107. * Drain pages of the indicated processor.
  1108. *
  1109. * The processor must either be the current processor and the
  1110. * thread pinned to the current processor or a processor that
  1111. * is not online.
  1112. */
  1113. static void drain_pages(unsigned int cpu)
  1114. {
  1115. unsigned long flags;
  1116. struct zone *zone;
  1117. for_each_populated_zone(zone) {
  1118. struct per_cpu_pageset *pset;
  1119. struct per_cpu_pages *pcp;
  1120. local_irq_save(flags);
  1121. pset = per_cpu_ptr(zone->pageset, cpu);
  1122. pcp = &pset->pcp;
  1123. if (pcp->count) {
  1124. free_pcppages_bulk(zone, pcp->count, pcp);
  1125. pcp->count = 0;
  1126. }
  1127. local_irq_restore(flags);
  1128. }
  1129. }
  1130. /*
  1131. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1132. */
  1133. void drain_local_pages(void *arg)
  1134. {
  1135. drain_pages(smp_processor_id());
  1136. }
  1137. /*
  1138. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1139. *
  1140. * Note that this code is protected against sending an IPI to an offline
  1141. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1142. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1143. * nothing keeps CPUs from showing up after we populated the cpumask and
  1144. * before the call to on_each_cpu_mask().
  1145. */
  1146. void drain_all_pages(void)
  1147. {
  1148. int cpu;
  1149. struct per_cpu_pageset *pcp;
  1150. struct zone *zone;
  1151. /*
  1152. * Allocate in the BSS so we wont require allocation in
  1153. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1154. */
  1155. static cpumask_t cpus_with_pcps;
  1156. /*
  1157. * We don't care about racing with CPU hotplug event
  1158. * as offline notification will cause the notified
  1159. * cpu to drain that CPU pcps and on_each_cpu_mask
  1160. * disables preemption as part of its processing
  1161. */
  1162. for_each_online_cpu(cpu) {
  1163. bool has_pcps = false;
  1164. for_each_populated_zone(zone) {
  1165. pcp = per_cpu_ptr(zone->pageset, cpu);
  1166. if (pcp->pcp.count) {
  1167. has_pcps = true;
  1168. break;
  1169. }
  1170. }
  1171. if (has_pcps)
  1172. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1173. else
  1174. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1175. }
  1176. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1177. }
  1178. #ifdef CONFIG_HIBERNATION
  1179. void mark_free_pages(struct zone *zone)
  1180. {
  1181. unsigned long pfn, max_zone_pfn;
  1182. unsigned long flags;
  1183. int order, t;
  1184. struct list_head *curr;
  1185. if (!zone->spanned_pages)
  1186. return;
  1187. spin_lock_irqsave(&zone->lock, flags);
  1188. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1189. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1190. if (pfn_valid(pfn)) {
  1191. struct page *page = pfn_to_page(pfn);
  1192. if (!swsusp_page_is_forbidden(page))
  1193. swsusp_unset_page_free(page);
  1194. }
  1195. for_each_migratetype_order(order, t) {
  1196. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1197. unsigned long i;
  1198. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1199. for (i = 0; i < (1UL << order); i++)
  1200. swsusp_set_page_free(pfn_to_page(pfn + i));
  1201. }
  1202. }
  1203. spin_unlock_irqrestore(&zone->lock, flags);
  1204. }
  1205. #endif /* CONFIG_PM */
  1206. /*
  1207. * Free a 0-order page
  1208. * cold == 1 ? free a cold page : free a hot page
  1209. */
  1210. void free_hot_cold_page(struct page *page, int cold)
  1211. {
  1212. struct zone *zone = page_zone(page);
  1213. struct per_cpu_pages *pcp;
  1214. unsigned long flags;
  1215. int migratetype;
  1216. int wasMlocked = __TestClearPageMlocked(page);
  1217. #ifdef CONFIG_SCFS_LOWER_PAGECACHE_INVALIDATION
  1218. /*
  1219. struct scfs_sb_info *sbi;
  1220. if (PageScfslower(page) || PageNocache(page)) {
  1221. sbi = SCFS_S(page->mapping->host->i_sb);
  1222. sbi->scfs_lowerpage_reclaim_count++;
  1223. }
  1224. */
  1225. #endif
  1226. if (!free_pages_prepare(page, 0))
  1227. return;
  1228. migratetype = get_pageblock_migratetype(page);
  1229. set_freepage_migratetype(page, migratetype);
  1230. local_irq_save(flags);
  1231. if (unlikely(wasMlocked))
  1232. free_page_mlock(page);
  1233. __count_vm_event(PGFREE);
  1234. /*
  1235. * We only track unmovable, reclaimable and movable on pcp lists.
  1236. * Free ISOLATE pages back to the allocator because they are being
  1237. * offlined but treat RESERVE as movable pages so we can get those
  1238. * areas back if necessary. Otherwise, we may have to free
  1239. * excessively into the page allocator
  1240. */
  1241. if (migratetype >= MIGRATE_PCPTYPES) {
  1242. if (unlikely(migratetype == MIGRATE_ISOLATE) ||
  1243. is_migrate_cma(migratetype)) {
  1244. free_one_page(zone, page, 0, migratetype);
  1245. goto out;
  1246. }
  1247. migratetype = MIGRATE_MOVABLE;
  1248. }
  1249. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1250. if (cold)
  1251. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1252. else
  1253. list_add(&page->lru, &pcp->lists[migratetype]);
  1254. pcp->count++;
  1255. if (pcp->count >= pcp->high) {
  1256. free_pcppages_bulk(zone, pcp->batch, pcp);
  1257. pcp->count -= pcp->batch;
  1258. }
  1259. out:
  1260. local_irq_restore(flags);
  1261. }
  1262. /*
  1263. * Free a list of 0-order pages
  1264. */
  1265. void free_hot_cold_page_list(struct list_head *list, int cold)
  1266. {
  1267. struct page *page, *next;
  1268. list_for_each_entry_safe(page, next, list, lru) {
  1269. trace_mm_page_free_batched(page, cold);
  1270. free_hot_cold_page(page, cold);
  1271. }
  1272. }
  1273. /*
  1274. * split_page takes a non-compound higher-order page, and splits it into
  1275. * n (1<<order) sub-pages: page[0..n]
  1276. * Each sub-page must be freed individually.
  1277. *
  1278. * Note: this is probably too low level an operation for use in drivers.
  1279. * Please consult with lkml before using this in your driver.
  1280. */
  1281. void split_page(struct page *page, unsigned int order)
  1282. {
  1283. int i;
  1284. VM_BUG_ON(PageCompound(page));
  1285. VM_BUG_ON(!page_count(page));
  1286. #ifdef CONFIG_KMEMCHECK
  1287. /*
  1288. * Split shadow pages too, because free(page[0]) would
  1289. * otherwise free the whole shadow.
  1290. */
  1291. if (kmemcheck_page_is_tracked(page))
  1292. split_page(virt_to_page(page[0].shadow), order);
  1293. #endif
  1294. for (i = 1; i < (1 << order); i++)
  1295. set_page_refcounted(page + i);
  1296. }
  1297. static int __isolate_free_page(struct page *page, unsigned int order)
  1298. {
  1299. unsigned long watermark;
  1300. struct zone *zone;
  1301. int mt;
  1302. BUG_ON(!PageBuddy(page));
  1303. zone = page_zone(page);
  1304. mt = get_pageblock_migratetype(page);
  1305. if (mt != MIGRATE_ISOLATE) {
  1306. /* Obey watermarks as if the page was being allocated */
  1307. watermark = low_wmark_pages(zone) + (1 << order);
  1308. if (!is_migrate_cma(mt) &&
  1309. !zone_watermark_ok(zone, 0, watermark, 0, 0))
  1310. return 0;
  1311. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1312. }
  1313. /* Remove page from free list */
  1314. list_del(&page->lru);
  1315. zone->free_area[order].nr_free--;
  1316. rmv_page_order(page);
  1317. /* Set the pageblock if the isolated page is at least a pageblock */
  1318. if (order >= pageblock_order - 1) {
  1319. struct page *endpage = page + (1 << order) - 1;
  1320. for (; page < endpage; page += pageblock_nr_pages) {
  1321. mt = get_pageblock_migratetype(page);
  1322. if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
  1323. set_pageblock_migratetype(page,
  1324. MIGRATE_MOVABLE);
  1325. }
  1326. }
  1327. return 1UL << order;
  1328. }
  1329. /*
  1330. * Similar to split_page except the page is already free. As this is only
  1331. * being used for migration, the migratetype of the block also changes.
  1332. * As this is called with interrupts disabled, the caller is responsible
  1333. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1334. * are enabled.
  1335. *
  1336. * Note: this is probably too low level an operation for use in drivers.
  1337. * Please consult with lkml before using this in your driver.
  1338. */
  1339. int split_free_page(struct page *page)
  1340. {
  1341. unsigned int order;
  1342. int nr_pages;
  1343. order = page_order(page);
  1344. nr_pages = __isolate_free_page(page, order);
  1345. if (!nr_pages)
  1346. return 0;
  1347. /* Split into individual pages */
  1348. set_page_refcounted(page);
  1349. split_page(page, order);
  1350. return nr_pages;
  1351. }
  1352. /*
  1353. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1354. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1355. * or two.
  1356. */
  1357. static inline
  1358. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1359. struct zone *zone, int order, gfp_t gfp_flags,
  1360. int migratetype)
  1361. {
  1362. unsigned long flags;
  1363. struct page *page;
  1364. int cold = !!(gfp_flags & __GFP_COLD);
  1365. again:
  1366. if (likely(order == 0)) {
  1367. struct per_cpu_pages *pcp;
  1368. struct list_head *list;
  1369. local_irq_save(flags);
  1370. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1371. list = &pcp->lists[migratetype];
  1372. if (list_empty(list)) {
  1373. pcp->count += rmqueue_bulk(zone, 0,
  1374. pcp->batch, list,
  1375. migratetype, cold,
  1376. gfp_flags & __GFP_CMA);
  1377. if (unlikely(list_empty(list)))
  1378. goto failed;
  1379. }
  1380. if (cold)
  1381. page = list_entry(list->prev, struct page, lru);
  1382. else
  1383. page = list_entry(list->next, struct page, lru);
  1384. list_del(&page->lru);
  1385. pcp->count--;
  1386. } else {
  1387. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1388. /*
  1389. * __GFP_NOFAIL is not to be used in new code.
  1390. *
  1391. * All __GFP_NOFAIL callers should be fixed so that they
  1392. * properly detect and handle allocation failures.
  1393. *
  1394. * We most definitely don't want callers attempting to
  1395. * allocate greater than order-1 page units with
  1396. * __GFP_NOFAIL.
  1397. */
  1398. WARN_ON_ONCE(order > 1);
  1399. }
  1400. spin_lock_irqsave(&zone->lock, flags);
  1401. if (gfp_flags & __GFP_CMA)
  1402. page = __rmqueue_cma(zone, order, migratetype);
  1403. else
  1404. page = __rmqueue(zone, order, migratetype);
  1405. spin_unlock(&zone->lock);
  1406. if (!page)
  1407. goto failed;
  1408. __mod_zone_freepage_state(zone, -(1 << order),
  1409. get_pageblock_migratetype(page));
  1410. }
  1411. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1412. zone_statistics(preferred_zone, zone, gfp_flags);
  1413. local_irq_restore(flags);
  1414. VM_BUG_ON(bad_range(zone, page));
  1415. if (prep_new_page(page, order, gfp_flags))
  1416. goto again;
  1417. return page;
  1418. failed:
  1419. local_irq_restore(flags);
  1420. return NULL;
  1421. }
  1422. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1423. static struct {
  1424. struct fault_attr attr;
  1425. u32 ignore_gfp_highmem;
  1426. u32 ignore_gfp_wait;
  1427. u32 min_order;
  1428. } fail_page_alloc = {
  1429. .attr = FAULT_ATTR_INITIALIZER,
  1430. .ignore_gfp_wait = 1,
  1431. .ignore_gfp_highmem = 1,
  1432. .min_order = 1,
  1433. };
  1434. static int __init setup_fail_page_alloc(char *str)
  1435. {
  1436. return setup_fault_attr(&fail_page_alloc.attr, str);
  1437. }
  1438. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1439. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1440. {
  1441. if (order < fail_page_alloc.min_order)
  1442. return 0;
  1443. if (gfp_mask & __GFP_NOFAIL)
  1444. return 0;
  1445. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1446. return 0;
  1447. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1448. return 0;
  1449. return should_fail(&fail_page_alloc.attr, 1 << order);
  1450. }
  1451. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1452. static int __init fail_page_alloc_debugfs(void)
  1453. {
  1454. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1455. struct dentry *dir;
  1456. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1457. &fail_page_alloc.attr);
  1458. if (IS_ERR(dir))
  1459. return PTR_ERR(dir);
  1460. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1461. &fail_page_alloc.ignore_gfp_wait))
  1462. goto fail;
  1463. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1464. &fail_page_alloc.ignore_gfp_highmem))
  1465. goto fail;
  1466. if (!debugfs_create_u32("min-order", mode, dir,
  1467. &fail_page_alloc.min_order))
  1468. goto fail;
  1469. return 0;
  1470. fail:
  1471. debugfs_remove_recursive(dir);
  1472. return -ENOMEM;
  1473. }
  1474. late_initcall(fail_page_alloc_debugfs);
  1475. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1476. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1477. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1478. {
  1479. return 0;
  1480. }
  1481. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1482. /*
  1483. * Return true if free pages are above 'mark'. This takes into account the order
  1484. * of the allocation.
  1485. */
  1486. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1487. int classzone_idx, int alloc_flags, long free_pages)
  1488. {
  1489. /* free_pages may go negative - that's OK */
  1490. long min = mark;
  1491. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1492. int o;
  1493. long free_cma = 0;
  1494. free_pages -= (1 << order) - 1;
  1495. if (alloc_flags & ALLOC_HIGH)
  1496. min -= min / 2;
  1497. if (alloc_flags & ALLOC_HARDER)
  1498. min -= min / 4;
  1499. #ifdef CONFIG_CMA
  1500. /* If allocation can't use CMA areas don't use free CMA pages */
  1501. if (!(alloc_flags & ALLOC_CMA))
  1502. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1503. #endif
  1504. if (free_pages - free_cma <= min + lowmem_reserve)
  1505. return false;
  1506. for (o = 0; o < order; o++) {
  1507. /* At the next order, this order's pages become unavailable */
  1508. free_pages -= z->free_area[o].nr_free << o;
  1509. /* Require fewer higher order pages to be free */
  1510. min >>= min_free_order_shift;
  1511. if (free_pages <= min)
  1512. return false;
  1513. }
  1514. return true;
  1515. }
  1516. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1517. int classzone_idx, int alloc_flags)
  1518. {
  1519. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1520. zone_page_state(z, NR_FREE_PAGES));
  1521. }
  1522. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1523. int classzone_idx, int alloc_flags)
  1524. {
  1525. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1526. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1527. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1528. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1529. free_pages);
  1530. }
  1531. #ifdef CONFIG_NUMA
  1532. /*
  1533. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1534. * skip over zones that are not allowed by the cpuset, or that have
  1535. * been recently (in last second) found to be nearly full. See further
  1536. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1537. * that have to skip over a lot of full or unallowed zones.
  1538. *
  1539. * If the zonelist cache is present in the passed in zonelist, then
  1540. * returns a pointer to the allowed node mask (either the current
  1541. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1542. *
  1543. * If the zonelist cache is not available for this zonelist, does
  1544. * nothing and returns NULL.
  1545. *
  1546. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1547. * a second since last zap'd) then we zap it out (clear its bits.)
  1548. *
  1549. * We hold off even calling zlc_setup, until after we've checked the
  1550. * first zone in the zonelist, on the theory that most allocations will
  1551. * be satisfied from that first zone, so best to examine that zone as
  1552. * quickly as we can.
  1553. */
  1554. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1555. {
  1556. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1557. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1558. zlc = zonelist->zlcache_ptr;
  1559. if (!zlc)
  1560. return NULL;
  1561. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1562. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1563. zlc->last_full_zap = jiffies;
  1564. }
  1565. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1566. &cpuset_current_mems_allowed :
  1567. &node_states[N_HIGH_MEMORY];
  1568. return allowednodes;
  1569. }
  1570. /*
  1571. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1572. * if it is worth looking at further for free memory:
  1573. * 1) Check that the zone isn't thought to be full (doesn't have its
  1574. * bit set in the zonelist_cache fullzones BITMAP).
  1575. * 2) Check that the zones node (obtained from the zonelist_cache
  1576. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1577. * Return true (non-zero) if zone is worth looking at further, or
  1578. * else return false (zero) if it is not.
  1579. *
  1580. * This check -ignores- the distinction between various watermarks,
  1581. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1582. * found to be full for any variation of these watermarks, it will
  1583. * be considered full for up to one second by all requests, unless
  1584. * we are so low on memory on all allowed nodes that we are forced
  1585. * into the second scan of the zonelist.
  1586. *
  1587. * In the second scan we ignore this zonelist cache and exactly
  1588. * apply the watermarks to all zones, even it is slower to do so.
  1589. * We are low on memory in the second scan, and should leave no stone
  1590. * unturned looking for a free page.
  1591. */
  1592. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1593. nodemask_t *allowednodes)
  1594. {
  1595. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1596. int i; /* index of *z in zonelist zones */
  1597. int n; /* node that zone *z is on */
  1598. zlc = zonelist->zlcache_ptr;
  1599. if (!zlc)
  1600. return 1;
  1601. i = z - zonelist->_zonerefs;
  1602. n = zlc->z_to_n[i];
  1603. /* This zone is worth trying if it is allowed but not full */
  1604. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1605. }
  1606. /*
  1607. * Given 'z' scanning a zonelist, set the corresponding bit in
  1608. * zlc->fullzones, so that subsequent attempts to allocate a page
  1609. * from that zone don't waste time re-examining it.
  1610. */
  1611. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1612. {
  1613. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1614. int i; /* index of *z in zonelist zones */
  1615. zlc = zonelist->zlcache_ptr;
  1616. if (!zlc)
  1617. return;
  1618. i = z - zonelist->_zonerefs;
  1619. set_bit(i, zlc->fullzones);
  1620. }
  1621. /*
  1622. * clear all zones full, called after direct reclaim makes progress so that
  1623. * a zone that was recently full is not skipped over for up to a second
  1624. */
  1625. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1626. {
  1627. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1628. zlc = zonelist->zlcache_ptr;
  1629. if (!zlc)
  1630. return;
  1631. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1632. }
  1633. #else /* CONFIG_NUMA */
  1634. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1635. {
  1636. return NULL;
  1637. }
  1638. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1639. nodemask_t *allowednodes)
  1640. {
  1641. return 1;
  1642. }
  1643. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1644. {
  1645. }
  1646. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1647. {
  1648. }
  1649. #endif /* CONFIG_NUMA */
  1650. /*
  1651. * get_page_from_freelist goes through the zonelist trying to allocate
  1652. * a page.
  1653. */
  1654. static struct page *
  1655. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1656. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1657. struct zone *preferred_zone, int migratetype)
  1658. {
  1659. struct zoneref *z;
  1660. struct page *page = NULL;
  1661. int classzone_idx;
  1662. struct zone *zone;
  1663. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1664. int zlc_active = 0; /* set if using zonelist_cache */
  1665. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1666. classzone_idx = zone_idx(preferred_zone);
  1667. zonelist_scan:
  1668. /*
  1669. * Scan zonelist, looking for a zone with enough free.
  1670. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1671. */
  1672. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1673. high_zoneidx, nodemask) {
  1674. if (NUMA_BUILD && zlc_active &&
  1675. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1676. continue;
  1677. if ((alloc_flags & ALLOC_CPUSET) &&
  1678. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1679. continue;
  1680. /*
  1681. * When allocating a page cache page for writing, we
  1682. * want to get it from a zone that is within its dirty
  1683. * limit, such that no single zone holds more than its
  1684. * proportional share of globally allowed dirty pages.
  1685. * The dirty limits take into account the zone's
  1686. * lowmem reserves and high watermark so that kswapd
  1687. * should be able to balance it without having to
  1688. * write pages from its LRU list.
  1689. *
  1690. * This may look like it could increase pressure on
  1691. * lower zones by failing allocations in higher zones
  1692. * before they are full. But the pages that do spill
  1693. * over are limited as the lower zones are protected
  1694. * by this very same mechanism. It should not become
  1695. * a practical burden to them.
  1696. *
  1697. * XXX: For now, allow allocations to potentially
  1698. * exceed the per-zone dirty limit in the slowpath
  1699. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1700. * which is important when on a NUMA setup the allowed
  1701. * zones are together not big enough to reach the
  1702. * global limit. The proper fix for these situations
  1703. * will require awareness of zones in the
  1704. * dirty-throttling and the flusher threads.
  1705. */
  1706. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1707. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1708. goto this_zone_full;
  1709. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1710. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1711. unsigned long mark;
  1712. int ret;
  1713. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1714. if (zone_watermark_ok(zone, order, mark,
  1715. classzone_idx, alloc_flags))
  1716. goto try_this_zone;
  1717. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1718. /*
  1719. * we do zlc_setup if there are multiple nodes
  1720. * and before considering the first zone allowed
  1721. * by the cpuset.
  1722. */
  1723. allowednodes = zlc_setup(zonelist, alloc_flags);
  1724. zlc_active = 1;
  1725. did_zlc_setup = 1;
  1726. }
  1727. if (zone_reclaim_mode == 0)
  1728. goto this_zone_full;
  1729. /*
  1730. * As we may have just activated ZLC, check if the first
  1731. * eligible zone has failed zone_reclaim recently.
  1732. */
  1733. if (NUMA_BUILD && zlc_active &&
  1734. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1735. continue;
  1736. ret = zone_reclaim(zone, gfp_mask, order);
  1737. switch (ret) {
  1738. case ZONE_RECLAIM_NOSCAN:
  1739. /* did not scan */
  1740. continue;
  1741. case ZONE_RECLAIM_FULL:
  1742. /* scanned but unreclaimable */
  1743. continue;
  1744. default:
  1745. /* did we reclaim enough */
  1746. if (!zone_watermark_ok(zone, order, mark,
  1747. classzone_idx, alloc_flags))
  1748. goto this_zone_full;
  1749. }
  1750. }
  1751. try_this_zone:
  1752. page = buffered_rmqueue(preferred_zone, zone, order,
  1753. gfp_mask, migratetype);
  1754. if (page)
  1755. break;
  1756. this_zone_full:
  1757. if (NUMA_BUILD)
  1758. zlc_mark_zone_full(zonelist, z);
  1759. }
  1760. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1761. /* Disable zlc cache for second zonelist scan */
  1762. zlc_active = 0;
  1763. goto zonelist_scan;
  1764. }
  1765. return page;
  1766. }
  1767. /*
  1768. * Large machines with many possible nodes should not always dump per-node
  1769. * meminfo in irq context.
  1770. */
  1771. static inline bool should_suppress_show_mem(void)
  1772. {
  1773. bool ret = false;
  1774. #if NODES_SHIFT > 8
  1775. ret = in_interrupt();
  1776. #endif
  1777. return ret;
  1778. }
  1779. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1780. DEFAULT_RATELIMIT_INTERVAL,
  1781. DEFAULT_RATELIMIT_BURST);
  1782. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1783. {
  1784. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1785. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1786. debug_guardpage_minorder() > 0)
  1787. return;
  1788. /*
  1789. * Walking all memory to count page types is very expensive and should
  1790. * be inhibited in non-blockable contexts.
  1791. */
  1792. if (!(gfp_mask & __GFP_WAIT))
  1793. filter |= SHOW_MEM_FILTER_PAGE_COUNT;
  1794. /*
  1795. * This documents exceptions given to allocations in certain
  1796. * contexts that are allowed to allocate outside current's set
  1797. * of allowed nodes.
  1798. */
  1799. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1800. if (test_thread_flag(TIF_MEMDIE) ||
  1801. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1802. filter &= ~SHOW_MEM_FILTER_NODES;
  1803. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1804. filter &= ~SHOW_MEM_FILTER_NODES;
  1805. if (fmt) {
  1806. struct va_format vaf;
  1807. va_list args;
  1808. va_start(args, fmt);
  1809. vaf.fmt = fmt;
  1810. vaf.va = &args;
  1811. pr_warn("%pV", &vaf);
  1812. va_end(args);
  1813. }
  1814. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1815. current->comm, order, gfp_mask);
  1816. dump_stack();
  1817. if (!should_suppress_show_mem())
  1818. show_mem(filter);
  1819. }
  1820. static inline int
  1821. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1822. unsigned long did_some_progress,
  1823. unsigned long pages_reclaimed)
  1824. {
  1825. /* Do not loop if specifically requested */
  1826. if (gfp_mask & __GFP_NORETRY)
  1827. return 0;
  1828. /* Always retry if specifically requested */
  1829. if (gfp_mask & __GFP_NOFAIL)
  1830. return 1;
  1831. /*
  1832. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1833. * making forward progress without invoking OOM. Suspend also disables
  1834. * storage devices so kswapd will not help. Bail if we are suspending.
  1835. */
  1836. if (!did_some_progress && pm_suspended_storage())
  1837. return 0;
  1838. /*
  1839. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1840. * means __GFP_NOFAIL, but that may not be true in other
  1841. * implementations.
  1842. */
  1843. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1844. return 1;
  1845. /*
  1846. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1847. * specified, then we retry until we no longer reclaim any pages
  1848. * (above), or we've reclaimed an order of pages at least as
  1849. * large as the allocation's order. In both cases, if the
  1850. * allocation still fails, we stop retrying.
  1851. */
  1852. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1853. return 1;
  1854. return 0;
  1855. }
  1856. static inline struct page *
  1857. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1858. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1859. nodemask_t *nodemask, struct zone *preferred_zone,
  1860. int migratetype)
  1861. {
  1862. struct page *page;
  1863. /* Acquire the OOM killer lock for the zones in zonelist */
  1864. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1865. schedule_timeout_uninterruptible(1);
  1866. return NULL;
  1867. }
  1868. /*
  1869. * PM-freezer should be notified that there might be an OOM killer on
  1870. * its way to kill and wake somebody up. This is too early and we might
  1871. * end up not killing anything but false positives are acceptable.
  1872. * See freeze_processes.
  1873. */
  1874. note_oom_kill();
  1875. /*
  1876. * Go through the zonelist yet one more time, keep very high watermark
  1877. * here, this is only to catch a parallel oom killing, we must fail if
  1878. * we're still under heavy pressure.
  1879. */
  1880. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1881. order, zonelist, high_zoneidx,
  1882. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1883. preferred_zone, migratetype);
  1884. if (page)
  1885. goto out;
  1886. if (!(gfp_mask & __GFP_NOFAIL)) {
  1887. /* The OOM killer will not help higher order allocs */
  1888. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1889. goto out;
  1890. /* The OOM killer does not needlessly kill tasks for lowmem */
  1891. if (high_zoneidx < ZONE_NORMAL)
  1892. goto out;
  1893. /*
  1894. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1895. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1896. * The caller should handle page allocation failure by itself if
  1897. * it specifies __GFP_THISNODE.
  1898. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1899. */
  1900. if (gfp_mask & __GFP_THISNODE)
  1901. goto out;
  1902. }
  1903. /* Exhausted what can be done so it's blamo time */
  1904. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1905. out:
  1906. clear_zonelist_oom(zonelist, gfp_mask);
  1907. return page;
  1908. }
  1909. #ifdef CONFIG_COMPACTION
  1910. /* Try memory compaction for high-order allocations before reclaim */
  1911. static struct page *
  1912. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1913. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1914. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1915. int migratetype, bool sync_migration,
  1916. bool *contended_compaction, bool *deferred_compaction,
  1917. unsigned long *did_some_progress)
  1918. {
  1919. if (!order)
  1920. return NULL;
  1921. if (compaction_deferred(preferred_zone, order)) {
  1922. *deferred_compaction = true;
  1923. return NULL;
  1924. }
  1925. current->flags |= PF_MEMALLOC;
  1926. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1927. nodemask, sync_migration,
  1928. contended_compaction);
  1929. current->flags &= ~PF_MEMALLOC;
  1930. if (*did_some_progress != COMPACT_SKIPPED) {
  1931. struct page *page;
  1932. /* Page migration frees to the PCP lists but we want merging */
  1933. drain_pages(get_cpu());
  1934. put_cpu();
  1935. page = get_page_from_freelist(gfp_mask, nodemask,
  1936. order, zonelist, high_zoneidx,
  1937. alloc_flags, preferred_zone,
  1938. migratetype);
  1939. if (page) {
  1940. preferred_zone->compact_blockskip_flush = false;
  1941. preferred_zone->compact_considered = 0;
  1942. preferred_zone->compact_defer_shift = 0;
  1943. if (order >= preferred_zone->compact_order_failed)
  1944. preferred_zone->compact_order_failed = order + 1;
  1945. count_vm_event(COMPACTSUCCESS);
  1946. return page;
  1947. }
  1948. /*
  1949. * It's bad if compaction run occurs and fails.
  1950. * The most likely reason is that pages exist,
  1951. * but not enough to satisfy watermarks.
  1952. */
  1953. count_vm_event(COMPACTFAIL);
  1954. /*
  1955. * As async compaction considers a subset of pageblocks, only
  1956. * defer if the failure was a sync compaction failure.
  1957. */
  1958. if (sync_migration)
  1959. defer_compaction(preferred_zone, order);
  1960. cond_resched();
  1961. }
  1962. return NULL;
  1963. }
  1964. #else
  1965. static inline struct page *
  1966. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1967. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1968. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1969. int migratetype, bool sync_migration,
  1970. bool *contended_compaction, bool *deferred_compaction,
  1971. unsigned long *did_some_progress)
  1972. {
  1973. return NULL;
  1974. }
  1975. #endif /* CONFIG_COMPACTION */
  1976. /* Perform direct synchronous page reclaim */
  1977. static int
  1978. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1979. nodemask_t *nodemask)
  1980. {
  1981. struct reclaim_state reclaim_state;
  1982. int progress;
  1983. cond_resched();
  1984. /* We now go into synchronous reclaim */
  1985. cpuset_memory_pressure_bump();
  1986. current->flags |= PF_MEMALLOC;
  1987. lockdep_set_current_reclaim_state(gfp_mask);
  1988. reclaim_state.reclaimed_slab = 0;
  1989. current->reclaim_state = &reclaim_state;
  1990. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1991. current->reclaim_state = NULL;
  1992. lockdep_clear_current_reclaim_state();
  1993. current->flags &= ~PF_MEMALLOC;
  1994. cond_resched();
  1995. return progress;
  1996. }
  1997. /* The really slow allocator path where we enter direct reclaim */
  1998. static inline struct page *
  1999. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2000. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2001. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2002. int migratetype, unsigned long *did_some_progress)
  2003. {
  2004. struct page *page = NULL;
  2005. bool drained = false;
  2006. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  2007. nodemask);
  2008. if (unlikely(!(*did_some_progress)))
  2009. return NULL;
  2010. /* After successful reclaim, reconsider all zones for allocation */
  2011. if (NUMA_BUILD)
  2012. zlc_clear_zones_full(zonelist);
  2013. retry:
  2014. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2015. zonelist, high_zoneidx,
  2016. alloc_flags, preferred_zone,
  2017. migratetype);
  2018. /*
  2019. * If an allocation failed after direct reclaim, it could be because
  2020. * pages are pinned on the per-cpu lists. Drain them and try again
  2021. */
  2022. if (!page && !drained) {
  2023. drain_all_pages();
  2024. drained = true;
  2025. goto retry;
  2026. }
  2027. return page;
  2028. }
  2029. /*
  2030. * This is called in the allocator slow-path if the allocation request is of
  2031. * sufficient urgency to ignore watermarks and take other desperate measures
  2032. */
  2033. static inline struct page *
  2034. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2035. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2036. nodemask_t *nodemask, struct zone *preferred_zone,
  2037. int migratetype)
  2038. {
  2039. struct page *page;
  2040. do {
  2041. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2042. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  2043. preferred_zone, migratetype);
  2044. if (!page && gfp_mask & __GFP_NOFAIL)
  2045. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2046. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2047. return page;
  2048. }
  2049. static inline
  2050. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  2051. enum zone_type high_zoneidx,
  2052. enum zone_type classzone_idx)
  2053. {
  2054. struct zoneref *z;
  2055. struct zone *zone;
  2056. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  2057. wakeup_kswapd(zone, order, classzone_idx);
  2058. }
  2059. static inline int
  2060. gfp_to_alloc_flags(gfp_t gfp_mask)
  2061. {
  2062. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2063. const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
  2064. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2065. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2066. /*
  2067. * The caller may dip into page reserves a bit more if the caller
  2068. * cannot run direct reclaim, or if the caller has realtime scheduling
  2069. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2070. * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
  2071. */
  2072. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2073. if (atomic) {
  2074. /*
  2075. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2076. * if it can't schedule.
  2077. */
  2078. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2079. alloc_flags |= ALLOC_HARDER;
  2080. /*
  2081. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2082. * comment for __cpuset_node_allowed_softwall().
  2083. */
  2084. alloc_flags &= ~ALLOC_CPUSET;
  2085. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2086. alloc_flags |= ALLOC_HARDER;
  2087. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2088. if (gfp_mask & __GFP_MEMALLOC)
  2089. alloc_flags |= ALLOC_NO_WATERMARKS;
  2090. else if (likely(!(gfp_mask & __GFP_NOMEMALLOC)) && !in_interrupt())
  2091. alloc_flags |= ALLOC_NO_WATERMARKS;
  2092. }
  2093. #ifdef CONFIG_CMA
  2094. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2095. alloc_flags |= ALLOC_CMA;
  2096. #endif
  2097. return alloc_flags;
  2098. }
  2099. #if defined(CONFIG_SEC_SLOWPATH)
  2100. unsigned int oomk_state; /* 0 none, bit_0 time's up, bit_1 OOMK */
  2101. struct slowpath_pressure {
  2102. unsigned int total_jiffies;
  2103. struct mutex slow_lock;
  2104. } slowpath;
  2105. /* slowtime - milliseconds time spend int __alloc_pages_slowpath() */
  2106. static void slowpath_pressure(unsigned int slowtime)
  2107. {
  2108. mutex_lock(&slowpath.slow_lock);
  2109. if (unlikely(slowpath.total_jiffies + slowtime >= UINT_MAX))
  2110. slowpath.total_jiffies = UINT_MAX;
  2111. else
  2112. slowpath.total_jiffies += slowtime;
  2113. mutex_unlock(&slowpath.slow_lock);
  2114. }
  2115. unsigned int get_and_reset_timeup(void)
  2116. {
  2117. bool val = 0;
  2118. val = oomk_state;
  2119. oomk_state = 0;
  2120. pr_debug("%s: timeup %u\n", __func__, val);
  2121. return val;
  2122. }
  2123. unsigned int get_and_reset_slowtime(void)
  2124. {
  2125. static bool first_read = false;
  2126. unsigned int slowtime = 0;
  2127. slowtime = slowpath.total_jiffies;
  2128. if (unlikely(first_read == false)) {
  2129. first_read = true;
  2130. slowtime = 0;
  2131. }
  2132. slowpath.total_jiffies = 0;
  2133. pr_debug("%s: slowtime %u\n", __func__, slowtime);
  2134. return slowtime;
  2135. }
  2136. static int __init slowpath_init(void)
  2137. {
  2138. mutex_init(&slowpath.slow_lock);
  2139. return 0;
  2140. }
  2141. module_init(slowpath_init)
  2142. #endif
  2143. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2144. {
  2145. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2146. }
  2147. static inline struct page *
  2148. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2149. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2150. nodemask_t *nodemask, struct zone *preferred_zone,
  2151. int migratetype)
  2152. {
  2153. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2154. struct page *page = NULL;
  2155. int alloc_flags;
  2156. unsigned long pages_reclaimed = 0;
  2157. unsigned long did_some_progress;
  2158. bool sync_migration = false;
  2159. bool deferred_compaction = false;
  2160. bool contended_compaction = false;
  2161. #ifdef CONFIG_SEC_OOM_KILLER
  2162. unsigned long oom_invoke_timeout = jiffies + HZ/32;
  2163. #endif
  2164. #ifdef CONFIG_SEC_SLOWPATH
  2165. unsigned long slowpath_time = jiffies;
  2166. #endif
  2167. /*
  2168. * In the slowpath, we sanity check order to avoid ever trying to
  2169. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2170. * be using allocators in order of preference for an area that is
  2171. * too large.
  2172. */
  2173. if (order >= MAX_ORDER) {
  2174. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2175. return NULL;
  2176. }
  2177. /*
  2178. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2179. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2180. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2181. * using a larger set of nodes after it has established that the
  2182. * allowed per node queues are empty and that nodes are
  2183. * over allocated.
  2184. */
  2185. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2186. goto nopage;
  2187. restart:
  2188. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2189. wake_all_kswapd(order, zonelist, high_zoneidx,
  2190. zone_idx(preferred_zone));
  2191. /*
  2192. * OK, we're below the kswapd watermark and have kicked background
  2193. * reclaim. Now things get more complex, so set up alloc_flags according
  2194. * to how we want to proceed.
  2195. */
  2196. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2197. /*
  2198. * Find the true preferred zone if the allocation is unconstrained by
  2199. * cpusets.
  2200. */
  2201. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2202. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2203. &preferred_zone);
  2204. rebalance:
  2205. /* This is the last chance, in general, before the goto nopage. */
  2206. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2207. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2208. preferred_zone, migratetype);
  2209. if (page)
  2210. goto got_pg;
  2211. /* Allocate without watermarks if the context allows */
  2212. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2213. page = __alloc_pages_high_priority(gfp_mask, order,
  2214. zonelist, high_zoneidx, nodemask,
  2215. preferred_zone, migratetype);
  2216. if (page)
  2217. goto got_pg;
  2218. }
  2219. /* Atomic allocations - we can't balance anything */
  2220. if (!wait)
  2221. goto nopage;
  2222. /* Avoid recursion of direct reclaim */
  2223. if (current->flags & PF_MEMALLOC)
  2224. goto nopage;
  2225. /* Avoid allocations with no watermarks from looping endlessly */
  2226. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2227. goto nopage;
  2228. /*
  2229. * Try direct compaction. The first pass is asynchronous. Subsequent
  2230. * attempts after direct reclaim are synchronous
  2231. */
  2232. page = __alloc_pages_direct_compact(gfp_mask, order,
  2233. zonelist, high_zoneidx,
  2234. nodemask,
  2235. alloc_flags, preferred_zone,
  2236. migratetype, sync_migration,
  2237. &contended_compaction,
  2238. &deferred_compaction,
  2239. &did_some_progress);
  2240. if (page)
  2241. goto got_pg;
  2242. sync_migration = true;
  2243. /*
  2244. * If compaction is deferred for high-order allocations, it is because
  2245. * sync compaction recently failed. In this is the case and the caller
  2246. * requested a movable allocation that does not heavily disrupt the
  2247. * system then fail the allocation instead of entering direct reclaim.
  2248. */
  2249. if ((deferred_compaction || contended_compaction) &&
  2250. (gfp_mask & __GFP_NO_KSWAPD))
  2251. goto nopage;
  2252. /* Try direct reclaim and then allocating */
  2253. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2254. zonelist, high_zoneidx,
  2255. nodemask,
  2256. alloc_flags, preferred_zone,
  2257. migratetype, &did_some_progress);
  2258. if (page)
  2259. goto got_pg;
  2260. /*
  2261. * If we failed to make any progress reclaiming, then we are
  2262. * running out of options and have to consider going OOM
  2263. */
  2264. #ifdef CONFIG_SEC_OOM_KILLER
  2265. #define SHOULD_CONSIDER_OOM (!did_some_progress \
  2266. || time_after(jiffies, oom_invoke_timeout)) && boot_mode != 1
  2267. #else
  2268. #define SHOULD_CONSIDER_OOM !did_some_progress && boot_mode != 1
  2269. #endif
  2270. if (SHOULD_CONSIDER_OOM) {
  2271. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2272. if (oom_killer_disabled)
  2273. goto nopage;
  2274. /* Coredumps can quickly deplete all memory reserves */
  2275. if ((current->flags & PF_DUMPCORE) &&
  2276. !(gfp_mask & __GFP_NOFAIL))
  2277. goto nopage;
  2278. #ifdef CONFIG_SEC_OOM_KILLER
  2279. if (did_some_progress) {
  2280. pr_info("time's up : calling "
  2281. "__alloc_pages_may_oom(o:%d, gfp:0x%x)\n", order, gfp_mask);
  2282. #if defined(CONFIG_SEC_SLOWPATH)
  2283. oomk_state |= 0x01;
  2284. #endif
  2285. }
  2286. #endif
  2287. page = __alloc_pages_may_oom(gfp_mask, order,
  2288. zonelist, high_zoneidx,
  2289. nodemask, preferred_zone,
  2290. migratetype);
  2291. if (page)
  2292. goto got_pg;
  2293. if (!(gfp_mask & __GFP_NOFAIL)) {
  2294. /*
  2295. * The oom killer is not called for high-order
  2296. * allocations that may fail, so if no progress
  2297. * is being made, there are no other options and
  2298. * retrying is unlikely to help.
  2299. */
  2300. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2301. goto nopage;
  2302. /*
  2303. * The oom killer is not called for lowmem
  2304. * allocations to prevent needlessly killing
  2305. * innocent tasks.
  2306. */
  2307. if (high_zoneidx < ZONE_NORMAL)
  2308. goto nopage;
  2309. }
  2310. #ifdef CONFIG_SEC_OOM_KILLER
  2311. oom_invoke_timeout = jiffies + HZ/32;
  2312. #endif
  2313. goto restart;
  2314. }
  2315. }
  2316. /* Check if we should retry the allocation */
  2317. pages_reclaimed += did_some_progress;
  2318. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2319. pages_reclaimed)) {
  2320. /* Wait for some write requests to complete then retry */
  2321. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2322. goto rebalance;
  2323. } else {
  2324. /*
  2325. * High-order allocations do not necessarily loop after
  2326. * direct reclaim and reclaim/compaction depends on compaction
  2327. * being called after reclaim so call directly if necessary
  2328. */
  2329. page = __alloc_pages_direct_compact(gfp_mask, order,
  2330. zonelist, high_zoneidx,
  2331. nodemask,
  2332. alloc_flags, preferred_zone,
  2333. migratetype, sync_migration,
  2334. &contended_compaction,
  2335. &deferred_compaction,
  2336. &did_some_progress);
  2337. if (page)
  2338. goto got_pg;
  2339. }
  2340. nopage:
  2341. warn_alloc_failed(gfp_mask, order, NULL);
  2342. #if defined(CONFIG_SEC_SLOWPATH)
  2343. slowpath_time = jiffies - slowpath_time;
  2344. if (wait && slowpath_time)
  2345. slowpath_pressure(slowpath_time);
  2346. #endif
  2347. return page;
  2348. got_pg:
  2349. /*
  2350. * page->pfmemalloc is set when the caller had PFMEMALLOC set, is
  2351. * been OOM killed or specified __GFP_MEMALLOC. The expectation is
  2352. * that the caller is taking steps that will free more memory. The
  2353. * caller should avoid the page being used for !PFMEMALLOC purposes.
  2354. */
  2355. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  2356. if (kmemcheck_enabled)
  2357. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2358. #if defined(CONFIG_SEC_SLOWPATH)
  2359. slowpath_time = jiffies - slowpath_time;
  2360. if (wait && slowpath_time)
  2361. slowpath_pressure(slowpath_time);
  2362. #endif
  2363. return page;
  2364. }
  2365. /*
  2366. * This is the 'heart' of the zoned buddy allocator.
  2367. */
  2368. struct page *
  2369. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2370. struct zonelist *zonelist, nodemask_t *nodemask)
  2371. {
  2372. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2373. struct zone *preferred_zone;
  2374. struct page *page = NULL;
  2375. int migratetype = allocflags_to_migratetype(gfp_mask);
  2376. unsigned int cpuset_mems_cookie;
  2377. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
  2378. gfp_mask &= gfp_allowed_mask;
  2379. lockdep_trace_alloc(gfp_mask);
  2380. might_sleep_if(gfp_mask & __GFP_WAIT);
  2381. if (should_fail_alloc_page(gfp_mask, order))
  2382. return NULL;
  2383. /*
  2384. * Check the zones suitable for the gfp_mask contain at least one
  2385. * valid zone. It's possible to have an empty zonelist as a result
  2386. * of GFP_THISNODE and a memoryless node
  2387. */
  2388. if (unlikely(!zonelist->_zonerefs->zone))
  2389. return NULL;
  2390. retry_cpuset:
  2391. cpuset_mems_cookie = get_mems_allowed();
  2392. /* The preferred zone is used for statistics later */
  2393. first_zones_zonelist(zonelist, high_zoneidx,
  2394. nodemask ? : &cpuset_current_mems_allowed,
  2395. &preferred_zone);
  2396. if (!preferred_zone)
  2397. goto out;
  2398. #ifdef CONFIG_CMA
  2399. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2400. alloc_flags |= ALLOC_CMA;
  2401. #endif
  2402. /* First allocation attempt */
  2403. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2404. zonelist, high_zoneidx, alloc_flags,
  2405. preferred_zone, migratetype);
  2406. if (unlikely(!page))
  2407. page = __alloc_pages_slowpath(gfp_mask, order,
  2408. zonelist, high_zoneidx, nodemask,
  2409. preferred_zone, migratetype);
  2410. else
  2411. page->pfmemalloc = false;
  2412. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2413. out:
  2414. /*
  2415. * When updating a task's mems_allowed, it is possible to race with
  2416. * parallel threads in such a way that an allocation can fail while
  2417. * the mask is being updated. If a page allocation is about to fail,
  2418. * check if the cpuset changed during allocation and if so, retry.
  2419. */
  2420. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2421. goto retry_cpuset;
  2422. return page;
  2423. }
  2424. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2425. /*
  2426. * Common helper functions.
  2427. */
  2428. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2429. {
  2430. struct page *page;
  2431. /*
  2432. * __get_free_pages() returns a 32-bit address, which cannot represent
  2433. * a highmem page
  2434. */
  2435. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2436. page = alloc_pages(gfp_mask, order);
  2437. if (!page)
  2438. return 0;
  2439. return (unsigned long) page_address(page);
  2440. }
  2441. EXPORT_SYMBOL(__get_free_pages);
  2442. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2443. {
  2444. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2445. }
  2446. EXPORT_SYMBOL(get_zeroed_page);
  2447. void __free_pages(struct page *page, unsigned int order)
  2448. {
  2449. if (put_page_testzero(page)) {
  2450. if (order == 0)
  2451. free_hot_cold_page(page, 0);
  2452. else
  2453. __free_pages_ok(page, order);
  2454. }
  2455. }
  2456. EXPORT_SYMBOL(__free_pages);
  2457. void free_pages(unsigned long addr, unsigned int order)
  2458. {
  2459. if (addr != 0) {
  2460. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2461. __free_pages(virt_to_page((void *)addr), order);
  2462. }
  2463. }
  2464. EXPORT_SYMBOL(free_pages);
  2465. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2466. {
  2467. if (addr) {
  2468. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2469. unsigned long used = addr + PAGE_ALIGN(size);
  2470. split_page(virt_to_page((void *)addr), order);
  2471. while (used < alloc_end) {
  2472. free_page(used);
  2473. used += PAGE_SIZE;
  2474. }
  2475. }
  2476. return (void *)addr;
  2477. }
  2478. /**
  2479. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2480. * @size: the number of bytes to allocate
  2481. * @gfp_mask: GFP flags for the allocation
  2482. *
  2483. * This function is similar to alloc_pages(), except that it allocates the
  2484. * minimum number of pages to satisfy the request. alloc_pages() can only
  2485. * allocate memory in power-of-two pages.
  2486. *
  2487. * This function is also limited by MAX_ORDER.
  2488. *
  2489. * Memory allocated by this function must be released by free_pages_exact().
  2490. */
  2491. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2492. {
  2493. unsigned int order = get_order(size);
  2494. unsigned long addr;
  2495. addr = __get_free_pages(gfp_mask, order);
  2496. return make_alloc_exact(addr, order, size);
  2497. }
  2498. EXPORT_SYMBOL(alloc_pages_exact);
  2499. /**
  2500. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2501. * pages on a node.
  2502. * @nid: the preferred node ID where memory should be allocated
  2503. * @size: the number of bytes to allocate
  2504. * @gfp_mask: GFP flags for the allocation
  2505. *
  2506. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2507. * back.
  2508. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2509. * but is not exact.
  2510. */
  2511. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2512. {
  2513. unsigned order = get_order(size);
  2514. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2515. if (!p)
  2516. return NULL;
  2517. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2518. }
  2519. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2520. /**
  2521. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2522. * @virt: the value returned by alloc_pages_exact.
  2523. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2524. *
  2525. * Release the memory allocated by a previous call to alloc_pages_exact.
  2526. */
  2527. void free_pages_exact(void *virt, size_t size)
  2528. {
  2529. unsigned long addr = (unsigned long)virt;
  2530. unsigned long end = addr + PAGE_ALIGN(size);
  2531. while (addr < end) {
  2532. free_page(addr);
  2533. addr += PAGE_SIZE;
  2534. }
  2535. }
  2536. EXPORT_SYMBOL(free_pages_exact);
  2537. static unsigned int nr_free_zone_pages(int offset)
  2538. {
  2539. struct zoneref *z;
  2540. struct zone *zone;
  2541. /* Just pick one node, since fallback list is circular */
  2542. unsigned int sum = 0;
  2543. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2544. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2545. unsigned long size = zone->present_pages;
  2546. unsigned long high = high_wmark_pages(zone);
  2547. if (size > high)
  2548. sum += size - high;
  2549. }
  2550. return sum;
  2551. }
  2552. /*
  2553. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2554. */
  2555. unsigned int nr_free_buffer_pages(void)
  2556. {
  2557. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2558. }
  2559. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2560. /*
  2561. * Amount of free RAM allocatable within all zones
  2562. */
  2563. unsigned int nr_free_pagecache_pages(void)
  2564. {
  2565. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2566. }
  2567. static inline void show_node(struct zone *zone)
  2568. {
  2569. if (NUMA_BUILD)
  2570. printk("Node %d ", zone_to_nid(zone));
  2571. }
  2572. long si_mem_available(void)
  2573. {
  2574. long available;
  2575. unsigned long pagecache;
  2576. unsigned long wmark_low = 0;
  2577. unsigned long pages[NR_LRU_LISTS];
  2578. struct zone *zone;
  2579. int lru;
  2580. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  2581. pages[lru] = global_page_state(NR_LRU_BASE + lru);
  2582. for_each_zone(zone)
  2583. wmark_low += zone->watermark[WMARK_LOW];
  2584. /*
  2585. * Estimate the amount of memory available for userspace allocations,
  2586. * without causing swapping.
  2587. */
  2588. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  2589. /*
  2590. * Not all the page cache can be freed, otherwise the system will
  2591. * start swapping. Assume at least half of the page cache, or the
  2592. * low watermark worth of cache, needs to stay.
  2593. */
  2594. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  2595. pagecache -= min(pagecache / 2, wmark_low);
  2596. available += pagecache;
  2597. /*
  2598. * Part of the reclaimable slab consists of items that are in use,
  2599. * and cannot be freed. Cap this estimate at the low watermark.
  2600. */
  2601. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  2602. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  2603. if (available < 0)
  2604. available = 0;
  2605. return available;
  2606. }
  2607. EXPORT_SYMBOL_GPL(si_mem_available);
  2608. void si_meminfo(struct sysinfo *val)
  2609. {
  2610. val->totalram = totalram_pages;
  2611. val->sharedram = global_page_state(NR_SHMEM);
  2612. val->freeram = global_page_state(NR_FREE_PAGES);
  2613. val->bufferram = nr_blockdev_pages();
  2614. val->totalhigh = totalhigh_pages;
  2615. val->freehigh = nr_free_highpages();
  2616. val->mem_unit = PAGE_SIZE;
  2617. }
  2618. EXPORT_SYMBOL(si_meminfo);
  2619. #ifdef CONFIG_NUMA
  2620. void si_meminfo_node(struct sysinfo *val, int nid)
  2621. {
  2622. pg_data_t *pgdat = NODE_DATA(nid);
  2623. val->totalram = pgdat->node_present_pages;
  2624. val->sharedram = node_page_state(nid, NR_SHMEM);
  2625. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2626. #ifdef CONFIG_HIGHMEM
  2627. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2628. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2629. NR_FREE_PAGES);
  2630. #else
  2631. val->totalhigh = 0;
  2632. val->freehigh = 0;
  2633. #endif
  2634. val->mem_unit = PAGE_SIZE;
  2635. }
  2636. #endif
  2637. /*
  2638. * Determine whether the node should be displayed or not, depending on whether
  2639. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2640. */
  2641. bool skip_free_areas_node(unsigned int flags, int nid)
  2642. {
  2643. bool ret = false;
  2644. unsigned int cpuset_mems_cookie;
  2645. if (!(flags & SHOW_MEM_FILTER_NODES))
  2646. goto out;
  2647. do {
  2648. cpuset_mems_cookie = get_mems_allowed();
  2649. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2650. } while (!put_mems_allowed(cpuset_mems_cookie));
  2651. out:
  2652. return ret;
  2653. }
  2654. #define K(x) ((x) << (PAGE_SHIFT-10))
  2655. static void show_migration_types(unsigned char type)
  2656. {
  2657. static const char types[MIGRATE_TYPES] = {
  2658. [MIGRATE_UNMOVABLE] = 'U',
  2659. [MIGRATE_RECLAIMABLE] = 'E',
  2660. [MIGRATE_MOVABLE] = 'M',
  2661. [MIGRATE_RESERVE] = 'R',
  2662. #ifdef CONFIG_CMA
  2663. [MIGRATE_CMA] = 'C',
  2664. #endif
  2665. [MIGRATE_ISOLATE] = 'I',
  2666. };
  2667. char tmp[MIGRATE_TYPES + 1];
  2668. char *p = tmp;
  2669. int i;
  2670. for (i = 0; i < MIGRATE_TYPES; i++) {
  2671. if (type & (1 << i))
  2672. *p++ = types[i];
  2673. }
  2674. *p = '\0';
  2675. printk("(%s) ", tmp);
  2676. }
  2677. /*
  2678. * Show free area list (used inside shift_scroll-lock stuff)
  2679. * We also calculate the percentage fragmentation. We do this by counting the
  2680. * memory on each free list with the exception of the first item on the list.
  2681. * Suppresses nodes that are not allowed by current's cpuset if
  2682. * SHOW_MEM_FILTER_NODES is passed.
  2683. */
  2684. void show_free_areas(unsigned int filter)
  2685. {
  2686. int cpu;
  2687. struct zone *zone;
  2688. for_each_populated_zone(zone) {
  2689. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2690. continue;
  2691. show_node(zone);
  2692. printk("%s per-cpu:\n", zone->name);
  2693. for_each_online_cpu(cpu) {
  2694. struct per_cpu_pageset *pageset;
  2695. pageset = per_cpu_ptr(zone->pageset, cpu);
  2696. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2697. cpu, pageset->pcp.high,
  2698. pageset->pcp.batch, pageset->pcp.count);
  2699. }
  2700. }
  2701. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2702. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2703. " unevictable:%lu"
  2704. " dirty:%lu writeback:%lu unstable:%lu\n"
  2705. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2706. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2707. #if defined(CONFIG_CMA_PAGE_COUNTING)
  2708. " free_cma:%lu cma_active_anon:%lu cma_inactive_anon:%lu\n"
  2709. " cma_active_file:%lu cma_inactive_file:%lu\n",
  2710. #else
  2711. " free cma:%lu\n",
  2712. #endif
  2713. global_page_state(NR_ACTIVE_ANON),
  2714. global_page_state(NR_INACTIVE_ANON),
  2715. global_page_state(NR_ISOLATED_ANON),
  2716. global_page_state(NR_ACTIVE_FILE),
  2717. global_page_state(NR_INACTIVE_FILE),
  2718. global_page_state(NR_ISOLATED_FILE),
  2719. global_page_state(NR_UNEVICTABLE),
  2720. global_page_state(NR_FILE_DIRTY),
  2721. global_page_state(NR_WRITEBACK),
  2722. global_page_state(NR_UNSTABLE_NFS),
  2723. global_page_state(NR_FREE_PAGES),
  2724. global_page_state(NR_SLAB_RECLAIMABLE),
  2725. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2726. global_page_state(NR_FILE_MAPPED),
  2727. global_page_state(NR_SHMEM),
  2728. global_page_state(NR_PAGETABLE),
  2729. global_page_state(NR_BOUNCE),
  2730. #if defined(CONFIG_CMA_PAGE_COUNTING)
  2731. global_page_state(NR_FREE_CMA_PAGES),
  2732. global_page_state(NR_CMA_ACTIVE_ANON),
  2733. global_page_state(NR_CMA_INACTIVE_ANON),
  2734. global_page_state(NR_CMA_ACTIVE_FILE),
  2735. global_page_state(NR_CMA_INACTIVE_FILE));
  2736. #else
  2737. global_page_state(NR_FREE_CMA_PAGES));
  2738. #endif
  2739. for_each_populated_zone(zone) {
  2740. int i;
  2741. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2742. continue;
  2743. show_node(zone);
  2744. printk("%s"
  2745. " free:%lukB"
  2746. " min:%lukB"
  2747. " low:%lukB"
  2748. " high:%lukB"
  2749. " active_anon:%lukB"
  2750. " inactive_anon:%lukB"
  2751. " active_file:%lukB"
  2752. " inactive_file:%lukB"
  2753. " unevictable:%lukB"
  2754. " isolated(anon):%lukB"
  2755. " isolated(file):%lukB"
  2756. " present:%lukB"
  2757. " mlocked:%lukB"
  2758. " dirty:%lukB"
  2759. " writeback:%lukB"
  2760. " mapped:%lukB"
  2761. " shmem:%lukB"
  2762. " slab_reclaimable:%lukB"
  2763. " slab_unreclaimable:%lukB"
  2764. " kernel_stack:%lukB"
  2765. " pagetables:%lukB"
  2766. " unstable:%lukB"
  2767. " bounce:%lukB"
  2768. " free_cma:%lukB"
  2769. " writeback_tmp:%lukB"
  2770. " pages_scanned:%lu"
  2771. " all_unreclaimable? %s"
  2772. "\n",
  2773. zone->name,
  2774. K(zone_page_state(zone, NR_FREE_PAGES)),
  2775. K(min_wmark_pages(zone)),
  2776. K(low_wmark_pages(zone)),
  2777. K(high_wmark_pages(zone)),
  2778. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2779. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2780. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2781. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2782. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2783. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2784. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2785. K(zone->present_pages),
  2786. K(zone_page_state(zone, NR_MLOCK)),
  2787. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2788. K(zone_page_state(zone, NR_WRITEBACK)),
  2789. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2790. K(zone_page_state(zone, NR_SHMEM)),
  2791. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2792. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2793. zone_page_state(zone, NR_KERNEL_STACK) *
  2794. THREAD_SIZE / 1024,
  2795. K(zone_page_state(zone, NR_PAGETABLE)),
  2796. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2797. K(zone_page_state(zone, NR_BOUNCE)),
  2798. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2799. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2800. zone->pages_scanned,
  2801. (!zone_reclaimable(zone) ? "yes" : "no")
  2802. );
  2803. printk("lowmem_reserve[]:");
  2804. for (i = 0; i < MAX_NR_ZONES; i++)
  2805. printk(" %lu", zone->lowmem_reserve[i]);
  2806. printk("\n");
  2807. }
  2808. for_each_populated_zone(zone) {
  2809. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2810. unsigned char types[MAX_ORDER];
  2811. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2812. continue;
  2813. show_node(zone);
  2814. printk("%s: ", zone->name);
  2815. spin_lock_irqsave(&zone->lock, flags);
  2816. for (order = 0; order < MAX_ORDER; order++) {
  2817. struct free_area *area = &zone->free_area[order];
  2818. int type;
  2819. nr[order] = area->nr_free;
  2820. total += nr[order] << order;
  2821. types[order] = 0;
  2822. for (type = 0; type < MIGRATE_TYPES; type++) {
  2823. if (!list_empty(&area->free_list[type]))
  2824. types[order] |= 1 << type;
  2825. }
  2826. }
  2827. spin_unlock_irqrestore(&zone->lock, flags);
  2828. for (order = 0; order < MAX_ORDER; order++) {
  2829. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2830. if (nr[order])
  2831. show_migration_types(types[order]);
  2832. }
  2833. printk("= %lukB\n", K(total));
  2834. }
  2835. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2836. show_swap_cache_info();
  2837. }
  2838. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2839. {
  2840. zoneref->zone = zone;
  2841. zoneref->zone_idx = zone_idx(zone);
  2842. }
  2843. /*
  2844. * Builds allocation fallback zone lists.
  2845. *
  2846. * Add all populated zones of a node to the zonelist.
  2847. */
  2848. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2849. int nr_zones, enum zone_type zone_type)
  2850. {
  2851. struct zone *zone;
  2852. BUG_ON(zone_type >= MAX_NR_ZONES);
  2853. zone_type++;
  2854. do {
  2855. zone_type--;
  2856. zone = pgdat->node_zones + zone_type;
  2857. if (populated_zone(zone)) {
  2858. zoneref_set_zone(zone,
  2859. &zonelist->_zonerefs[nr_zones++]);
  2860. check_highest_zone(zone_type);
  2861. }
  2862. } while (zone_type);
  2863. return nr_zones;
  2864. }
  2865. /*
  2866. * zonelist_order:
  2867. * 0 = automatic detection of better ordering.
  2868. * 1 = order by ([node] distance, -zonetype)
  2869. * 2 = order by (-zonetype, [node] distance)
  2870. *
  2871. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2872. * the same zonelist. So only NUMA can configure this param.
  2873. */
  2874. #define ZONELIST_ORDER_DEFAULT 0
  2875. #define ZONELIST_ORDER_NODE 1
  2876. #define ZONELIST_ORDER_ZONE 2
  2877. /* zonelist order in the kernel.
  2878. * set_zonelist_order() will set this to NODE or ZONE.
  2879. */
  2880. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2881. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2882. #ifdef CONFIG_NUMA
  2883. /* The value user specified ....changed by config */
  2884. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2885. /* string for sysctl */
  2886. #define NUMA_ZONELIST_ORDER_LEN 16
  2887. char numa_zonelist_order[16] = "default";
  2888. /*
  2889. * interface for configure zonelist ordering.
  2890. * command line option "numa_zonelist_order"
  2891. * = "[dD]efault - default, automatic configuration.
  2892. * = "[nN]ode - order by node locality, then by zone within node
  2893. * = "[zZ]one - order by zone, then by locality within zone
  2894. */
  2895. static int __parse_numa_zonelist_order(char *s)
  2896. {
  2897. if (*s == 'd' || *s == 'D') {
  2898. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2899. } else if (*s == 'n' || *s == 'N') {
  2900. user_zonelist_order = ZONELIST_ORDER_NODE;
  2901. } else if (*s == 'z' || *s == 'Z') {
  2902. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2903. } else {
  2904. printk(KERN_WARNING
  2905. "Ignoring invalid numa_zonelist_order value: "
  2906. "%s\n", s);
  2907. return -EINVAL;
  2908. }
  2909. return 0;
  2910. }
  2911. static __init int setup_numa_zonelist_order(char *s)
  2912. {
  2913. int ret;
  2914. if (!s)
  2915. return 0;
  2916. ret = __parse_numa_zonelist_order(s);
  2917. if (ret == 0)
  2918. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2919. return ret;
  2920. }
  2921. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2922. /*
  2923. * sysctl handler for numa_zonelist_order
  2924. */
  2925. int numa_zonelist_order_handler(ctl_table *table, int write,
  2926. void __user *buffer, size_t *length,
  2927. loff_t *ppos)
  2928. {
  2929. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2930. int ret;
  2931. static DEFINE_MUTEX(zl_order_mutex);
  2932. mutex_lock(&zl_order_mutex);
  2933. if (write)
  2934. strcpy(saved_string, (char*)table->data);
  2935. ret = proc_dostring(table, write, buffer, length, ppos);
  2936. if (ret)
  2937. goto out;
  2938. if (write) {
  2939. int oldval = user_zonelist_order;
  2940. if (__parse_numa_zonelist_order((char*)table->data)) {
  2941. /*
  2942. * bogus value. restore saved string
  2943. */
  2944. strncpy((char*)table->data, saved_string,
  2945. NUMA_ZONELIST_ORDER_LEN);
  2946. user_zonelist_order = oldval;
  2947. } else if (oldval != user_zonelist_order) {
  2948. mutex_lock(&zonelists_mutex);
  2949. build_all_zonelists(NULL);
  2950. mutex_unlock(&zonelists_mutex);
  2951. }
  2952. }
  2953. out:
  2954. mutex_unlock(&zl_order_mutex);
  2955. return ret;
  2956. }
  2957. #define MAX_NODE_LOAD (nr_online_nodes)
  2958. static int node_load[MAX_NUMNODES];
  2959. /**
  2960. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2961. * @node: node whose fallback list we're appending
  2962. * @used_node_mask: nodemask_t of already used nodes
  2963. *
  2964. * We use a number of factors to determine which is the next node that should
  2965. * appear on a given node's fallback list. The node should not have appeared
  2966. * already in @node's fallback list, and it should be the next closest node
  2967. * according to the distance array (which contains arbitrary distance values
  2968. * from each node to each node in the system), and should also prefer nodes
  2969. * with no CPUs, since presumably they'll have very little allocation pressure
  2970. * on them otherwise.
  2971. * It returns -1 if no node is found.
  2972. */
  2973. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2974. {
  2975. int n, val;
  2976. int min_val = INT_MAX;
  2977. int best_node = -1;
  2978. const struct cpumask *tmp = cpumask_of_node(0);
  2979. /* Use the local node if we haven't already */
  2980. if (!node_isset(node, *used_node_mask)) {
  2981. node_set(node, *used_node_mask);
  2982. return node;
  2983. }
  2984. for_each_node_state(n, N_HIGH_MEMORY) {
  2985. /* Don't want a node to appear more than once */
  2986. if (node_isset(n, *used_node_mask))
  2987. continue;
  2988. /* Use the distance array to find the distance */
  2989. val = node_distance(node, n);
  2990. /* Penalize nodes under us ("prefer the next node") */
  2991. val += (n < node);
  2992. /* Give preference to headless and unused nodes */
  2993. tmp = cpumask_of_node(n);
  2994. if (!cpumask_empty(tmp))
  2995. val += PENALTY_FOR_NODE_WITH_CPUS;
  2996. /* Slight preference for less loaded node */
  2997. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2998. val += node_load[n];
  2999. if (val < min_val) {
  3000. min_val = val;
  3001. best_node = n;
  3002. }
  3003. }
  3004. if (best_node >= 0)
  3005. node_set(best_node, *used_node_mask);
  3006. return best_node;
  3007. }
  3008. /*
  3009. * Build zonelists ordered by node and zones within node.
  3010. * This results in maximum locality--normal zone overflows into local
  3011. * DMA zone, if any--but risks exhausting DMA zone.
  3012. */
  3013. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3014. {
  3015. int j;
  3016. struct zonelist *zonelist;
  3017. zonelist = &pgdat->node_zonelists[0];
  3018. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3019. ;
  3020. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3021. MAX_NR_ZONES - 1);
  3022. zonelist->_zonerefs[j].zone = NULL;
  3023. zonelist->_zonerefs[j].zone_idx = 0;
  3024. }
  3025. /*
  3026. * Build gfp_thisnode zonelists
  3027. */
  3028. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3029. {
  3030. int j;
  3031. struct zonelist *zonelist;
  3032. zonelist = &pgdat->node_zonelists[1];
  3033. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  3034. zonelist->_zonerefs[j].zone = NULL;
  3035. zonelist->_zonerefs[j].zone_idx = 0;
  3036. }
  3037. /*
  3038. * Build zonelists ordered by zone and nodes within zones.
  3039. * This results in conserving DMA zone[s] until all Normal memory is
  3040. * exhausted, but results in overflowing to remote node while memory
  3041. * may still exist in local DMA zone.
  3042. */
  3043. static int node_order[MAX_NUMNODES];
  3044. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3045. {
  3046. int pos, j, node;
  3047. int zone_type; /* needs to be signed */
  3048. struct zone *z;
  3049. struct zonelist *zonelist;
  3050. zonelist = &pgdat->node_zonelists[0];
  3051. pos = 0;
  3052. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3053. for (j = 0; j < nr_nodes; j++) {
  3054. node = node_order[j];
  3055. z = &NODE_DATA(node)->node_zones[zone_type];
  3056. if (populated_zone(z)) {
  3057. zoneref_set_zone(z,
  3058. &zonelist->_zonerefs[pos++]);
  3059. check_highest_zone(zone_type);
  3060. }
  3061. }
  3062. }
  3063. zonelist->_zonerefs[pos].zone = NULL;
  3064. zonelist->_zonerefs[pos].zone_idx = 0;
  3065. }
  3066. static int default_zonelist_order(void)
  3067. {
  3068. int nid, zone_type;
  3069. unsigned long low_kmem_size,total_size;
  3070. struct zone *z;
  3071. int average_size;
  3072. /*
  3073. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  3074. * If they are really small and used heavily, the system can fall
  3075. * into OOM very easily.
  3076. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  3077. */
  3078. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  3079. low_kmem_size = 0;
  3080. total_size = 0;
  3081. for_each_online_node(nid) {
  3082. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3083. z = &NODE_DATA(nid)->node_zones[zone_type];
  3084. if (populated_zone(z)) {
  3085. if (zone_type < ZONE_NORMAL)
  3086. low_kmem_size += z->present_pages;
  3087. total_size += z->present_pages;
  3088. } else if (zone_type == ZONE_NORMAL) {
  3089. /*
  3090. * If any node has only lowmem, then node order
  3091. * is preferred to allow kernel allocations
  3092. * locally; otherwise, they can easily infringe
  3093. * on other nodes when there is an abundance of
  3094. * lowmem available to allocate from.
  3095. */
  3096. return ZONELIST_ORDER_NODE;
  3097. }
  3098. }
  3099. }
  3100. if (!low_kmem_size || /* there are no DMA area. */
  3101. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  3102. return ZONELIST_ORDER_NODE;
  3103. /*
  3104. * look into each node's config.
  3105. * If there is a node whose DMA/DMA32 memory is very big area on
  3106. * local memory, NODE_ORDER may be suitable.
  3107. */
  3108. average_size = total_size /
  3109. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  3110. for_each_online_node(nid) {
  3111. low_kmem_size = 0;
  3112. total_size = 0;
  3113. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3114. z = &NODE_DATA(nid)->node_zones[zone_type];
  3115. if (populated_zone(z)) {
  3116. if (zone_type < ZONE_NORMAL)
  3117. low_kmem_size += z->present_pages;
  3118. total_size += z->present_pages;
  3119. }
  3120. }
  3121. if (low_kmem_size &&
  3122. total_size > average_size && /* ignore small node */
  3123. low_kmem_size > total_size * 70/100)
  3124. return ZONELIST_ORDER_NODE;
  3125. }
  3126. return ZONELIST_ORDER_ZONE;
  3127. }
  3128. static void set_zonelist_order(void)
  3129. {
  3130. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3131. current_zonelist_order = default_zonelist_order();
  3132. else
  3133. current_zonelist_order = user_zonelist_order;
  3134. }
  3135. static void build_zonelists(pg_data_t *pgdat)
  3136. {
  3137. int j, node, load;
  3138. enum zone_type i;
  3139. nodemask_t used_mask;
  3140. int local_node, prev_node;
  3141. struct zonelist *zonelist;
  3142. int order = current_zonelist_order;
  3143. /* initialize zonelists */
  3144. for (i = 0; i < MAX_ZONELISTS; i++) {
  3145. zonelist = pgdat->node_zonelists + i;
  3146. zonelist->_zonerefs[0].zone = NULL;
  3147. zonelist->_zonerefs[0].zone_idx = 0;
  3148. }
  3149. /* NUMA-aware ordering of nodes */
  3150. local_node = pgdat->node_id;
  3151. load = nr_online_nodes;
  3152. prev_node = local_node;
  3153. nodes_clear(used_mask);
  3154. memset(node_order, 0, sizeof(node_order));
  3155. j = 0;
  3156. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3157. int distance = node_distance(local_node, node);
  3158. /*
  3159. * If another node is sufficiently far away then it is better
  3160. * to reclaim pages in a zone before going off node.
  3161. */
  3162. if (distance > RECLAIM_DISTANCE)
  3163. zone_reclaim_mode = 1;
  3164. /*
  3165. * We don't want to pressure a particular node.
  3166. * So adding penalty to the first node in same
  3167. * distance group to make it round-robin.
  3168. */
  3169. if (distance != node_distance(local_node, prev_node))
  3170. node_load[node] = load;
  3171. prev_node = node;
  3172. load--;
  3173. if (order == ZONELIST_ORDER_NODE)
  3174. build_zonelists_in_node_order(pgdat, node);
  3175. else
  3176. node_order[j++] = node; /* remember order */
  3177. }
  3178. if (order == ZONELIST_ORDER_ZONE) {
  3179. /* calculate node order -- i.e., DMA last! */
  3180. build_zonelists_in_zone_order(pgdat, j);
  3181. }
  3182. build_thisnode_zonelists(pgdat);
  3183. }
  3184. /* Construct the zonelist performance cache - see further mmzone.h */
  3185. static void build_zonelist_cache(pg_data_t *pgdat)
  3186. {
  3187. struct zonelist *zonelist;
  3188. struct zonelist_cache *zlc;
  3189. struct zoneref *z;
  3190. zonelist = &pgdat->node_zonelists[0];
  3191. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3192. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3193. for (z = zonelist->_zonerefs; z->zone; z++)
  3194. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3195. }
  3196. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3197. /*
  3198. * Return node id of node used for "local" allocations.
  3199. * I.e., first node id of first zone in arg node's generic zonelist.
  3200. * Used for initializing percpu 'numa_mem', which is used primarily
  3201. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3202. */
  3203. int local_memory_node(int node)
  3204. {
  3205. struct zone *zone;
  3206. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3207. gfp_zone(GFP_KERNEL),
  3208. NULL,
  3209. &zone);
  3210. return zone->node;
  3211. }
  3212. #endif
  3213. #else /* CONFIG_NUMA */
  3214. static void set_zonelist_order(void)
  3215. {
  3216. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3217. }
  3218. static void build_zonelists(pg_data_t *pgdat)
  3219. {
  3220. int node, local_node;
  3221. enum zone_type j;
  3222. struct zonelist *zonelist;
  3223. local_node = pgdat->node_id;
  3224. zonelist = &pgdat->node_zonelists[0];
  3225. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  3226. /*
  3227. * Now we build the zonelist so that it contains the zones
  3228. * of all the other nodes.
  3229. * We don't want to pressure a particular node, so when
  3230. * building the zones for node N, we make sure that the
  3231. * zones coming right after the local ones are those from
  3232. * node N+1 (modulo N)
  3233. */
  3234. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3235. if (!node_online(node))
  3236. continue;
  3237. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3238. MAX_NR_ZONES - 1);
  3239. }
  3240. for (node = 0; node < local_node; node++) {
  3241. if (!node_online(node))
  3242. continue;
  3243. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3244. MAX_NR_ZONES - 1);
  3245. }
  3246. zonelist->_zonerefs[j].zone = NULL;
  3247. zonelist->_zonerefs[j].zone_idx = 0;
  3248. }
  3249. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3250. static void build_zonelist_cache(pg_data_t *pgdat)
  3251. {
  3252. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3253. }
  3254. #endif /* CONFIG_NUMA */
  3255. /*
  3256. * Boot pageset table. One per cpu which is going to be used for all
  3257. * zones and all nodes. The parameters will be set in such a way
  3258. * that an item put on a list will immediately be handed over to
  3259. * the buddy list. This is safe since pageset manipulation is done
  3260. * with interrupts disabled.
  3261. *
  3262. * The boot_pagesets must be kept even after bootup is complete for
  3263. * unused processors and/or zones. They do play a role for bootstrapping
  3264. * hotplugged processors.
  3265. *
  3266. * zoneinfo_show() and maybe other functions do
  3267. * not check if the processor is online before following the pageset pointer.
  3268. * Other parts of the kernel may not check if the zone is available.
  3269. */
  3270. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3271. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3272. static void setup_zone_pageset(struct zone *zone);
  3273. /*
  3274. * Global mutex to protect against size modification of zonelists
  3275. * as well as to serialize pageset setup for the new populated zone.
  3276. */
  3277. DEFINE_MUTEX(zonelists_mutex);
  3278. /* return values int ....just for stop_machine() */
  3279. static __init_refok int __build_all_zonelists(void *data)
  3280. {
  3281. int nid;
  3282. int cpu;
  3283. #ifdef CONFIG_NUMA
  3284. memset(node_load, 0, sizeof(node_load));
  3285. #endif
  3286. for_each_online_node(nid) {
  3287. pg_data_t *pgdat = NODE_DATA(nid);
  3288. build_zonelists(pgdat);
  3289. build_zonelist_cache(pgdat);
  3290. }
  3291. /*
  3292. * Initialize the boot_pagesets that are going to be used
  3293. * for bootstrapping processors. The real pagesets for
  3294. * each zone will be allocated later when the per cpu
  3295. * allocator is available.
  3296. *
  3297. * boot_pagesets are used also for bootstrapping offline
  3298. * cpus if the system is already booted because the pagesets
  3299. * are needed to initialize allocators on a specific cpu too.
  3300. * F.e. the percpu allocator needs the page allocator which
  3301. * needs the percpu allocator in order to allocate its pagesets
  3302. * (a chicken-egg dilemma).
  3303. */
  3304. for_each_possible_cpu(cpu) {
  3305. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3306. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3307. /*
  3308. * We now know the "local memory node" for each node--
  3309. * i.e., the node of the first zone in the generic zonelist.
  3310. * Set up numa_mem percpu variable for on-line cpus. During
  3311. * boot, only the boot cpu should be on-line; we'll init the
  3312. * secondary cpus' numa_mem as they come on-line. During
  3313. * node/memory hotplug, we'll fixup all on-line cpus.
  3314. */
  3315. if (cpu_online(cpu))
  3316. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3317. #endif
  3318. }
  3319. return 0;
  3320. }
  3321. /*
  3322. * Called with zonelists_mutex held always
  3323. * unless system_state == SYSTEM_BOOTING.
  3324. */
  3325. void __ref build_all_zonelists(void *data)
  3326. {
  3327. set_zonelist_order();
  3328. if (system_state == SYSTEM_BOOTING) {
  3329. __build_all_zonelists(NULL);
  3330. mminit_verify_zonelist();
  3331. cpuset_init_current_mems_allowed();
  3332. } else {
  3333. /* we have to stop all cpus to guarantee there is no user
  3334. of zonelist */
  3335. #ifdef CONFIG_MEMORY_HOTPLUG
  3336. if (data)
  3337. setup_zone_pageset((struct zone *)data);
  3338. #endif
  3339. stop_machine(__build_all_zonelists, NULL, NULL);
  3340. /* cpuset refresh routine should be here */
  3341. }
  3342. vm_total_pages = nr_free_pagecache_pages();
  3343. /*
  3344. * Disable grouping by mobility if the number of pages in the
  3345. * system is too low to allow the mechanism to work. It would be
  3346. * more accurate, but expensive to check per-zone. This check is
  3347. * made on memory-hotadd so a system can start with mobility
  3348. * disabled and enable it later
  3349. */
  3350. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3351. page_group_by_mobility_disabled = 1;
  3352. else
  3353. page_group_by_mobility_disabled = 0;
  3354. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3355. "Total pages: %ld\n",
  3356. nr_online_nodes,
  3357. zonelist_order_name[current_zonelist_order],
  3358. page_group_by_mobility_disabled ? "off" : "on",
  3359. vm_total_pages);
  3360. #ifdef CONFIG_NUMA
  3361. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3362. #endif
  3363. }
  3364. /*
  3365. * Helper functions to size the waitqueue hash table.
  3366. * Essentially these want to choose hash table sizes sufficiently
  3367. * large so that collisions trying to wait on pages are rare.
  3368. * But in fact, the number of active page waitqueues on typical
  3369. * systems is ridiculously low, less than 200. So this is even
  3370. * conservative, even though it seems large.
  3371. *
  3372. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3373. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3374. */
  3375. #define PAGES_PER_WAITQUEUE 256
  3376. #ifndef CONFIG_MEMORY_HOTPLUG
  3377. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3378. {
  3379. unsigned long size = 1;
  3380. pages /= PAGES_PER_WAITQUEUE;
  3381. while (size < pages)
  3382. size <<= 1;
  3383. /*
  3384. * Once we have dozens or even hundreds of threads sleeping
  3385. * on IO we've got bigger problems than wait queue collision.
  3386. * Limit the size of the wait table to a reasonable size.
  3387. */
  3388. size = min(size, 4096UL);
  3389. return max(size, 4UL);
  3390. }
  3391. #else
  3392. /*
  3393. * A zone's size might be changed by hot-add, so it is not possible to determine
  3394. * a suitable size for its wait_table. So we use the maximum size now.
  3395. *
  3396. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3397. *
  3398. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3399. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3400. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3401. *
  3402. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3403. * or more by the traditional way. (See above). It equals:
  3404. *
  3405. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3406. * ia64(16K page size) : = ( 8G + 4M)byte.
  3407. * powerpc (64K page size) : = (32G +16M)byte.
  3408. */
  3409. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3410. {
  3411. return 4096UL;
  3412. }
  3413. #endif
  3414. /*
  3415. * This is an integer logarithm so that shifts can be used later
  3416. * to extract the more random high bits from the multiplicative
  3417. * hash function before the remainder is taken.
  3418. */
  3419. static inline unsigned long wait_table_bits(unsigned long size)
  3420. {
  3421. return ffz(~size);
  3422. }
  3423. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3424. /*
  3425. * Check if a pageblock contains reserved pages
  3426. */
  3427. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3428. {
  3429. unsigned long pfn;
  3430. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3431. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3432. return 1;
  3433. }
  3434. return 0;
  3435. }
  3436. /*
  3437. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3438. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3439. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3440. * higher will lead to a bigger reserve which will get freed as contiguous
  3441. * blocks as reclaim kicks in
  3442. */
  3443. static void setup_zone_migrate_reserve(struct zone *zone)
  3444. {
  3445. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3446. struct page *page;
  3447. unsigned long block_migratetype;
  3448. int reserve;
  3449. /*
  3450. * Get the start pfn, end pfn and the number of blocks to reserve
  3451. * We have to be careful to be aligned to pageblock_nr_pages to
  3452. * make sure that we always check pfn_valid for the first page in
  3453. * the block.
  3454. */
  3455. start_pfn = zone->zone_start_pfn;
  3456. end_pfn = start_pfn + zone->spanned_pages;
  3457. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3458. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3459. pageblock_order;
  3460. /*
  3461. * Reserve blocks are generally in place to help high-order atomic
  3462. * allocations that are short-lived. A min_free_kbytes value that
  3463. * would result in more than 2 reserve blocks for atomic allocations
  3464. * is assumed to be in place to help anti-fragmentation for the
  3465. * future allocation of hugepages at runtime.
  3466. */
  3467. reserve = min(2, reserve);
  3468. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3469. if (!pfn_valid(pfn))
  3470. continue;
  3471. page = pfn_to_page(pfn);
  3472. /* Watch out for overlapping nodes */
  3473. if (page_to_nid(page) != zone_to_nid(zone))
  3474. continue;
  3475. block_migratetype = get_pageblock_migratetype(page);
  3476. /* Only test what is necessary when the reserves are not met */
  3477. if (reserve > 0) {
  3478. /*
  3479. * Blocks with reserved pages will never free, skip
  3480. * them.
  3481. */
  3482. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3483. if (pageblock_is_reserved(pfn, block_end_pfn))
  3484. continue;
  3485. /* If this block is reserved, account for it */
  3486. if (block_migratetype == MIGRATE_RESERVE) {
  3487. reserve--;
  3488. continue;
  3489. }
  3490. /* Suitable for reserving if this block is movable */
  3491. if (block_migratetype == MIGRATE_MOVABLE) {
  3492. set_pageblock_migratetype(page,
  3493. MIGRATE_RESERVE);
  3494. move_freepages_block(zone, page,
  3495. MIGRATE_RESERVE);
  3496. reserve--;
  3497. continue;
  3498. }
  3499. }
  3500. /*
  3501. * If the reserve is met and this is a previous reserved block,
  3502. * take it back
  3503. */
  3504. if (block_migratetype == MIGRATE_RESERVE) {
  3505. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3506. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3507. }
  3508. }
  3509. }
  3510. /*
  3511. * Initially all pages are reserved - free ones are freed
  3512. * up by free_all_bootmem() once the early boot process is
  3513. * done. Non-atomic initialization, single-pass.
  3514. */
  3515. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3516. unsigned long start_pfn, enum memmap_context context)
  3517. {
  3518. struct page *page;
  3519. unsigned long end_pfn = start_pfn + size;
  3520. unsigned long pfn;
  3521. struct zone *z;
  3522. if (highest_memmap_pfn < end_pfn - 1)
  3523. highest_memmap_pfn = end_pfn - 1;
  3524. z = &NODE_DATA(nid)->node_zones[zone];
  3525. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3526. /*
  3527. * There can be holes in boot-time mem_map[]s
  3528. * handed to this function. They do not
  3529. * exist on hotplugged memory.
  3530. */
  3531. if (context == MEMMAP_EARLY) {
  3532. if (!early_pfn_valid(pfn))
  3533. continue;
  3534. if (!early_pfn_in_nid(pfn, nid))
  3535. continue;
  3536. }
  3537. page = pfn_to_page(pfn);
  3538. set_page_links(page, zone, nid, pfn);
  3539. mminit_verify_page_links(page, zone, nid, pfn);
  3540. init_page_count(page);
  3541. reset_page_mapcount(page);
  3542. SetPageReserved(page);
  3543. /*
  3544. * Mark the block movable so that blocks are reserved for
  3545. * movable at startup. This will force kernel allocations
  3546. * to reserve their blocks rather than leaking throughout
  3547. * the address space during boot when many long-lived
  3548. * kernel allocations are made. Later some blocks near
  3549. * the start are marked MIGRATE_RESERVE by
  3550. * setup_zone_migrate_reserve()
  3551. *
  3552. * bitmap is created for zone's valid pfn range. but memmap
  3553. * can be created for invalid pages (for alignment)
  3554. * check here not to call set_pageblock_migratetype() against
  3555. * pfn out of zone.
  3556. */
  3557. if ((z->zone_start_pfn <= pfn)
  3558. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3559. && !(pfn & (pageblock_nr_pages - 1)))
  3560. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3561. INIT_LIST_HEAD(&page->lru);
  3562. #ifdef WANT_PAGE_VIRTUAL
  3563. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3564. if (!is_highmem_idx(zone))
  3565. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3566. #endif
  3567. }
  3568. }
  3569. static void __meminit zone_init_free_lists(struct zone *zone)
  3570. {
  3571. int order, t;
  3572. for_each_migratetype_order(order, t) {
  3573. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3574. zone->free_area[order].nr_free = 0;
  3575. }
  3576. }
  3577. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3578. #define memmap_init(size, nid, zone, start_pfn) \
  3579. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3580. #endif
  3581. static int zone_batchsize(struct zone *zone)
  3582. {
  3583. #ifdef CONFIG_MMU
  3584. int batch;
  3585. /*
  3586. * The per-cpu-pages pools are set to around 1000th of the
  3587. * size of the zone. But no more than 1/2 of a meg.
  3588. *
  3589. * OK, so we don't know how big the cache is. So guess.
  3590. */
  3591. batch = zone->present_pages / 1024;
  3592. if (batch * PAGE_SIZE > 512 * 1024)
  3593. batch = (512 * 1024) / PAGE_SIZE;
  3594. batch /= 4; /* We effectively *= 4 below */
  3595. if (batch < 1)
  3596. batch = 1;
  3597. /*
  3598. * Clamp the batch to a 2^n - 1 value. Having a power
  3599. * of 2 value was found to be more likely to have
  3600. * suboptimal cache aliasing properties in some cases.
  3601. *
  3602. * For example if 2 tasks are alternately allocating
  3603. * batches of pages, one task can end up with a lot
  3604. * of pages of one half of the possible page colors
  3605. * and the other with pages of the other colors.
  3606. */
  3607. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3608. return batch;
  3609. #else
  3610. /* The deferral and batching of frees should be suppressed under NOMMU
  3611. * conditions.
  3612. *
  3613. * The problem is that NOMMU needs to be able to allocate large chunks
  3614. * of contiguous memory as there's no hardware page translation to
  3615. * assemble apparent contiguous memory from discontiguous pages.
  3616. *
  3617. * Queueing large contiguous runs of pages for batching, however,
  3618. * causes the pages to actually be freed in smaller chunks. As there
  3619. * can be a significant delay between the individual batches being
  3620. * recycled, this leads to the once large chunks of space being
  3621. * fragmented and becoming unavailable for high-order allocations.
  3622. */
  3623. return 0;
  3624. #endif
  3625. }
  3626. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3627. {
  3628. struct per_cpu_pages *pcp;
  3629. int migratetype;
  3630. memset(p, 0, sizeof(*p));
  3631. pcp = &p->pcp;
  3632. pcp->count = 0;
  3633. pcp->high = 6 * batch;
  3634. pcp->batch = max(1UL, 1 * batch);
  3635. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3636. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3637. }
  3638. /*
  3639. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3640. * to the value high for the pageset p.
  3641. */
  3642. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3643. unsigned long high)
  3644. {
  3645. struct per_cpu_pages *pcp;
  3646. pcp = &p->pcp;
  3647. pcp->high = high;
  3648. pcp->batch = max(1UL, high/4);
  3649. if ((high/4) > (PAGE_SHIFT * 8))
  3650. pcp->batch = PAGE_SHIFT * 8;
  3651. }
  3652. static void setup_zone_pageset(struct zone *zone)
  3653. {
  3654. int cpu;
  3655. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3656. for_each_possible_cpu(cpu) {
  3657. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3658. setup_pageset(pcp, zone_batchsize(zone));
  3659. if (percpu_pagelist_fraction)
  3660. setup_pagelist_highmark(pcp,
  3661. (zone->present_pages /
  3662. percpu_pagelist_fraction));
  3663. }
  3664. }
  3665. /*
  3666. * Allocate per cpu pagesets and initialize them.
  3667. * Before this call only boot pagesets were available.
  3668. */
  3669. void __init setup_per_cpu_pageset(void)
  3670. {
  3671. struct zone *zone;
  3672. for_each_populated_zone(zone)
  3673. setup_zone_pageset(zone);
  3674. }
  3675. static noinline __init_refok
  3676. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3677. {
  3678. int i;
  3679. struct pglist_data *pgdat = zone->zone_pgdat;
  3680. size_t alloc_size;
  3681. /*
  3682. * The per-page waitqueue mechanism uses hashed waitqueues
  3683. * per zone.
  3684. */
  3685. zone->wait_table_hash_nr_entries =
  3686. wait_table_hash_nr_entries(zone_size_pages);
  3687. zone->wait_table_bits =
  3688. wait_table_bits(zone->wait_table_hash_nr_entries);
  3689. alloc_size = zone->wait_table_hash_nr_entries
  3690. * sizeof(wait_queue_head_t);
  3691. if (!slab_is_available()) {
  3692. zone->wait_table = (wait_queue_head_t *)
  3693. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3694. } else {
  3695. /*
  3696. * This case means that a zone whose size was 0 gets new memory
  3697. * via memory hot-add.
  3698. * But it may be the case that a new node was hot-added. In
  3699. * this case vmalloc() will not be able to use this new node's
  3700. * memory - this wait_table must be initialized to use this new
  3701. * node itself as well.
  3702. * To use this new node's memory, further consideration will be
  3703. * necessary.
  3704. */
  3705. zone->wait_table = vmalloc(alloc_size);
  3706. }
  3707. if (!zone->wait_table)
  3708. return -ENOMEM;
  3709. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3710. init_waitqueue_head(zone->wait_table + i);
  3711. return 0;
  3712. }
  3713. static int __zone_pcp_update(void *data)
  3714. {
  3715. struct zone *zone = data;
  3716. int cpu;
  3717. unsigned long batch = zone_batchsize(zone), flags;
  3718. for_each_possible_cpu(cpu) {
  3719. struct per_cpu_pageset *pset;
  3720. struct per_cpu_pages *pcp;
  3721. pset = per_cpu_ptr(zone->pageset, cpu);
  3722. pcp = &pset->pcp;
  3723. local_irq_save(flags);
  3724. free_pcppages_bulk(zone, pcp->count, pcp);
  3725. setup_pageset(pset, batch);
  3726. local_irq_restore(flags);
  3727. }
  3728. return 0;
  3729. }
  3730. void zone_pcp_update(struct zone *zone)
  3731. {
  3732. stop_machine(__zone_pcp_update, zone, NULL);
  3733. }
  3734. static __meminit void zone_pcp_init(struct zone *zone)
  3735. {
  3736. /*
  3737. * per cpu subsystem is not up at this point. The following code
  3738. * relies on the ability of the linker to provide the
  3739. * offset of a (static) per cpu variable into the per cpu area.
  3740. */
  3741. zone->pageset = &boot_pageset;
  3742. if (zone->present_pages)
  3743. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3744. zone->name, zone->present_pages,
  3745. zone_batchsize(zone));
  3746. }
  3747. __meminit int init_currently_empty_zone(struct zone *zone,
  3748. unsigned long zone_start_pfn,
  3749. unsigned long size,
  3750. enum memmap_context context)
  3751. {
  3752. struct pglist_data *pgdat = zone->zone_pgdat;
  3753. int ret;
  3754. ret = zone_wait_table_init(zone, size);
  3755. if (ret)
  3756. return ret;
  3757. pgdat->nr_zones = zone_idx(zone) + 1;
  3758. zone->zone_start_pfn = zone_start_pfn;
  3759. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3760. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3761. pgdat->node_id,
  3762. (unsigned long)zone_idx(zone),
  3763. zone_start_pfn, (zone_start_pfn + size));
  3764. zone_init_free_lists(zone);
  3765. return 0;
  3766. }
  3767. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3768. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3769. /*
  3770. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3771. * Architectures may implement their own version but if add_active_range()
  3772. * was used and there are no special requirements, this is a convenient
  3773. * alternative
  3774. */
  3775. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3776. {
  3777. unsigned long start_pfn, end_pfn;
  3778. int i, nid;
  3779. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3780. if (start_pfn <= pfn && pfn < end_pfn)
  3781. return nid;
  3782. /* This is a memory hole */
  3783. return -1;
  3784. }
  3785. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3786. int __meminit early_pfn_to_nid(unsigned long pfn)
  3787. {
  3788. int nid;
  3789. nid = __early_pfn_to_nid(pfn);
  3790. if (nid >= 0)
  3791. return nid;
  3792. /* just returns 0 */
  3793. return 0;
  3794. }
  3795. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3796. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3797. {
  3798. int nid;
  3799. nid = __early_pfn_to_nid(pfn);
  3800. if (nid >= 0 && nid != node)
  3801. return false;
  3802. return true;
  3803. }
  3804. #endif
  3805. /**
  3806. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3807. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3808. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3809. *
  3810. * If an architecture guarantees that all ranges registered with
  3811. * add_active_ranges() contain no holes and may be freed, this
  3812. * this function may be used instead of calling free_bootmem() manually.
  3813. */
  3814. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3815. {
  3816. unsigned long start_pfn, end_pfn;
  3817. int i, this_nid;
  3818. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3819. start_pfn = min(start_pfn, max_low_pfn);
  3820. end_pfn = min(end_pfn, max_low_pfn);
  3821. if (start_pfn < end_pfn)
  3822. free_bootmem_node(NODE_DATA(this_nid),
  3823. PFN_PHYS(start_pfn),
  3824. (end_pfn - start_pfn) << PAGE_SHIFT);
  3825. }
  3826. }
  3827. /**
  3828. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3829. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3830. *
  3831. * If an architecture guarantees that all ranges registered with
  3832. * add_active_ranges() contain no holes and may be freed, this
  3833. * function may be used instead of calling memory_present() manually.
  3834. */
  3835. void __init sparse_memory_present_with_active_regions(int nid)
  3836. {
  3837. unsigned long start_pfn, end_pfn;
  3838. int i, this_nid;
  3839. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3840. memory_present(this_nid, start_pfn, end_pfn);
  3841. }
  3842. /**
  3843. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3844. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3845. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3846. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3847. *
  3848. * It returns the start and end page frame of a node based on information
  3849. * provided by an arch calling add_active_range(). If called for a node
  3850. * with no available memory, a warning is printed and the start and end
  3851. * PFNs will be 0.
  3852. */
  3853. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3854. unsigned long *start_pfn, unsigned long *end_pfn)
  3855. {
  3856. unsigned long this_start_pfn, this_end_pfn;
  3857. int i;
  3858. *start_pfn = -1UL;
  3859. *end_pfn = 0;
  3860. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3861. *start_pfn = min(*start_pfn, this_start_pfn);
  3862. *end_pfn = max(*end_pfn, this_end_pfn);
  3863. }
  3864. if (*start_pfn == -1UL)
  3865. *start_pfn = 0;
  3866. }
  3867. /*
  3868. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3869. * assumption is made that zones within a node are ordered in monotonic
  3870. * increasing memory addresses so that the "highest" populated zone is used
  3871. */
  3872. static void __init find_usable_zone_for_movable(void)
  3873. {
  3874. int zone_index;
  3875. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3876. if (zone_index == ZONE_MOVABLE)
  3877. continue;
  3878. if (arch_zone_highest_possible_pfn[zone_index] >
  3879. arch_zone_lowest_possible_pfn[zone_index])
  3880. break;
  3881. }
  3882. VM_BUG_ON(zone_index == -1);
  3883. movable_zone = zone_index;
  3884. }
  3885. /*
  3886. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3887. * because it is sized independent of architecture. Unlike the other zones,
  3888. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3889. * in each node depending on the size of each node and how evenly kernelcore
  3890. * is distributed. This helper function adjusts the zone ranges
  3891. * provided by the architecture for a given node by using the end of the
  3892. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3893. * zones within a node are in order of monotonic increases memory addresses
  3894. */
  3895. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3896. unsigned long zone_type,
  3897. unsigned long node_start_pfn,
  3898. unsigned long node_end_pfn,
  3899. unsigned long *zone_start_pfn,
  3900. unsigned long *zone_end_pfn)
  3901. {
  3902. /* Only adjust if ZONE_MOVABLE is on this node */
  3903. if (zone_movable_pfn[nid]) {
  3904. /* Size ZONE_MOVABLE */
  3905. if (zone_type == ZONE_MOVABLE) {
  3906. *zone_start_pfn = zone_movable_pfn[nid];
  3907. *zone_end_pfn = min(node_end_pfn,
  3908. arch_zone_highest_possible_pfn[movable_zone]);
  3909. /* Adjust for ZONE_MOVABLE starting within this range */
  3910. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3911. *zone_end_pfn > zone_movable_pfn[nid]) {
  3912. *zone_end_pfn = zone_movable_pfn[nid];
  3913. /* Check if this whole range is within ZONE_MOVABLE */
  3914. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3915. *zone_start_pfn = *zone_end_pfn;
  3916. }
  3917. }
  3918. /*
  3919. * Return the number of pages a zone spans in a node, including holes
  3920. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3921. */
  3922. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3923. unsigned long zone_type,
  3924. unsigned long *ignored)
  3925. {
  3926. unsigned long node_start_pfn, node_end_pfn;
  3927. unsigned long zone_start_pfn, zone_end_pfn;
  3928. /* Get the start and end of the node and zone */
  3929. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3930. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3931. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3932. adjust_zone_range_for_zone_movable(nid, zone_type,
  3933. node_start_pfn, node_end_pfn,
  3934. &zone_start_pfn, &zone_end_pfn);
  3935. /* Check that this node has pages within the zone's required range */
  3936. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3937. return 0;
  3938. /* Move the zone boundaries inside the node if necessary */
  3939. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3940. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3941. /* Return the spanned pages */
  3942. return zone_end_pfn - zone_start_pfn;
  3943. }
  3944. /*
  3945. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3946. * then all holes in the requested range will be accounted for.
  3947. */
  3948. unsigned long __meminit __absent_pages_in_range(int nid,
  3949. unsigned long range_start_pfn,
  3950. unsigned long range_end_pfn)
  3951. {
  3952. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3953. unsigned long start_pfn, end_pfn;
  3954. int i;
  3955. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3956. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3957. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3958. nr_absent -= end_pfn - start_pfn;
  3959. }
  3960. return nr_absent;
  3961. }
  3962. /**
  3963. * absent_pages_in_range - Return number of page frames in holes within a range
  3964. * @start_pfn: The start PFN to start searching for holes
  3965. * @end_pfn: The end PFN to stop searching for holes
  3966. *
  3967. * It returns the number of pages frames in memory holes within a range.
  3968. */
  3969. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3970. unsigned long end_pfn)
  3971. {
  3972. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3973. }
  3974. /* Return the number of page frames in holes in a zone on a node */
  3975. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3976. unsigned long zone_type,
  3977. unsigned long *ignored)
  3978. {
  3979. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3980. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3981. unsigned long node_start_pfn, node_end_pfn;
  3982. unsigned long zone_start_pfn, zone_end_pfn;
  3983. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3984. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3985. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3986. adjust_zone_range_for_zone_movable(nid, zone_type,
  3987. node_start_pfn, node_end_pfn,
  3988. &zone_start_pfn, &zone_end_pfn);
  3989. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3990. }
  3991. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3992. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3993. unsigned long zone_type,
  3994. unsigned long *zones_size)
  3995. {
  3996. return zones_size[zone_type];
  3997. }
  3998. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3999. unsigned long zone_type,
  4000. unsigned long *zholes_size)
  4001. {
  4002. if (!zholes_size)
  4003. return 0;
  4004. return zholes_size[zone_type];
  4005. }
  4006. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4007. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4008. unsigned long *zones_size, unsigned long *zholes_size)
  4009. {
  4010. unsigned long realtotalpages, totalpages = 0;
  4011. enum zone_type i;
  4012. for (i = 0; i < MAX_NR_ZONES; i++)
  4013. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  4014. zones_size);
  4015. pgdat->node_spanned_pages = totalpages;
  4016. realtotalpages = totalpages;
  4017. for (i = 0; i < MAX_NR_ZONES; i++)
  4018. realtotalpages -=
  4019. zone_absent_pages_in_node(pgdat->node_id, i,
  4020. zholes_size);
  4021. pgdat->node_present_pages = realtotalpages;
  4022. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4023. realtotalpages);
  4024. }
  4025. #ifndef CONFIG_SPARSEMEM
  4026. /*
  4027. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4028. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4029. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4030. * round what is now in bits to nearest long in bits, then return it in
  4031. * bytes.
  4032. */
  4033. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4034. {
  4035. unsigned long usemapsize;
  4036. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4037. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4038. usemapsize = usemapsize >> pageblock_order;
  4039. usemapsize *= NR_PAGEBLOCK_BITS;
  4040. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4041. return usemapsize / 8;
  4042. }
  4043. static void __init setup_usemap(struct pglist_data *pgdat,
  4044. struct zone *zone,
  4045. unsigned long zone_start_pfn,
  4046. unsigned long zonesize)
  4047. {
  4048. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4049. zone->pageblock_flags = NULL;
  4050. if (usemapsize)
  4051. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  4052. usemapsize);
  4053. }
  4054. #else
  4055. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4056. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4057. #endif /* CONFIG_SPARSEMEM */
  4058. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4059. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4060. void __init set_pageblock_order(void)
  4061. {
  4062. unsigned int order;
  4063. /* Check that pageblock_nr_pages has not already been setup */
  4064. if (pageblock_order)
  4065. return;
  4066. if (HPAGE_SHIFT > PAGE_SHIFT)
  4067. order = HUGETLB_PAGE_ORDER;
  4068. else
  4069. order = MAX_ORDER - 1;
  4070. /*
  4071. * Assume the largest contiguous order of interest is a huge page.
  4072. * This value may be variable depending on boot parameters on IA64 and
  4073. * powerpc.
  4074. */
  4075. pageblock_order = order;
  4076. }
  4077. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4078. /*
  4079. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4080. * is unused as pageblock_order is set at compile-time. See
  4081. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4082. * the kernel config
  4083. */
  4084. void __init set_pageblock_order(void)
  4085. {
  4086. }
  4087. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4088. /*
  4089. * Set up the zone data structures:
  4090. * - mark all pages reserved
  4091. * - mark all memory queues empty
  4092. * - clear the memory bitmaps
  4093. */
  4094. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4095. unsigned long *zones_size, unsigned long *zholes_size)
  4096. {
  4097. enum zone_type j;
  4098. int nid = pgdat->node_id;
  4099. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4100. int ret;
  4101. pgdat_resize_init(pgdat);
  4102. pgdat->nr_zones = 0;
  4103. init_waitqueue_head(&pgdat->kswapd_wait);
  4104. pgdat->kswapd_max_order = 0;
  4105. pgdat_page_cgroup_init(pgdat);
  4106. for (j = 0; j < MAX_NR_ZONES; j++) {
  4107. struct zone *zone = pgdat->node_zones + j;
  4108. unsigned long size, realsize, memmap_pages;
  4109. enum lru_list lru;
  4110. size = zone_spanned_pages_in_node(nid, j, zones_size);
  4111. realsize = size - zone_absent_pages_in_node(nid, j,
  4112. zholes_size);
  4113. /*
  4114. * Adjust realsize so that it accounts for how much memory
  4115. * is used by this zone for memmap. This affects the watermark
  4116. * and per-cpu initialisations
  4117. */
  4118. memmap_pages =
  4119. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  4120. if (realsize >= memmap_pages) {
  4121. realsize -= memmap_pages;
  4122. if (memmap_pages)
  4123. printk(KERN_DEBUG
  4124. " %s zone: %lu pages used for memmap\n",
  4125. zone_names[j], memmap_pages);
  4126. } else
  4127. printk(KERN_WARNING
  4128. " %s zone: %lu pages exceeds realsize %lu\n",
  4129. zone_names[j], memmap_pages, realsize);
  4130. /* Account for reserved pages */
  4131. if (j == 0 && realsize > dma_reserve) {
  4132. realsize -= dma_reserve;
  4133. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4134. zone_names[0], dma_reserve);
  4135. }
  4136. if (!is_highmem_idx(j))
  4137. nr_kernel_pages += realsize;
  4138. nr_all_pages += realsize;
  4139. zone->spanned_pages = size;
  4140. zone->present_pages = realsize;
  4141. #ifdef CONFIG_NUMA
  4142. zone->node = nid;
  4143. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  4144. / 100;
  4145. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  4146. #endif
  4147. zone->name = zone_names[j];
  4148. spin_lock_init(&zone->lock);
  4149. spin_lock_init(&zone->lru_lock);
  4150. zone_seqlock_init(zone);
  4151. zone->zone_pgdat = pgdat;
  4152. zone_pcp_init(zone);
  4153. for_each_lru(lru)
  4154. INIT_LIST_HEAD(&zone->lruvec.lists[lru]);
  4155. zone->reclaim_stat.recent_rotated[0] = 0;
  4156. zone->reclaim_stat.recent_rotated[1] = 0;
  4157. zone->reclaim_stat.recent_scanned[0] = 0;
  4158. zone->reclaim_stat.recent_scanned[1] = 0;
  4159. zap_zone_vm_stats(zone);
  4160. zone->flags = 0;
  4161. if (!size)
  4162. continue;
  4163. set_pageblock_order();
  4164. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4165. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4166. size, MEMMAP_EARLY);
  4167. BUG_ON(ret);
  4168. memmap_init(size, nid, j, zone_start_pfn);
  4169. zone_start_pfn += size;
  4170. }
  4171. }
  4172. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4173. {
  4174. /* Skip empty nodes */
  4175. if (!pgdat->node_spanned_pages)
  4176. return;
  4177. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4178. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4179. if (!pgdat->node_mem_map) {
  4180. unsigned long size, start, end;
  4181. struct page *map;
  4182. /*
  4183. * The zone's endpoints aren't required to be MAX_ORDER
  4184. * aligned but the node_mem_map endpoints must be in order
  4185. * for the buddy allocator to function correctly.
  4186. */
  4187. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4188. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  4189. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4190. size = (end - start) * sizeof(struct page);
  4191. map = alloc_remap(pgdat->node_id, size);
  4192. if (!map)
  4193. map = alloc_bootmem_node_nopanic(pgdat, size);
  4194. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4195. }
  4196. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4197. /*
  4198. * With no DISCONTIG, the global mem_map is just set as node 0's
  4199. */
  4200. if (pgdat == NODE_DATA(0)) {
  4201. mem_map = NODE_DATA(0)->node_mem_map;
  4202. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4203. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4204. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4205. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4206. }
  4207. #endif
  4208. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4209. }
  4210. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4211. unsigned long node_start_pfn, unsigned long *zholes_size)
  4212. {
  4213. pg_data_t *pgdat = NODE_DATA(nid);
  4214. pgdat->node_id = nid;
  4215. pgdat->node_start_pfn = node_start_pfn;
  4216. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  4217. alloc_node_mem_map(pgdat);
  4218. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4219. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4220. nid, (unsigned long)pgdat,
  4221. (unsigned long)pgdat->node_mem_map);
  4222. #endif
  4223. free_area_init_core(pgdat, zones_size, zholes_size);
  4224. }
  4225. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4226. #if MAX_NUMNODES > 1
  4227. /*
  4228. * Figure out the number of possible node ids.
  4229. */
  4230. static void __init setup_nr_node_ids(void)
  4231. {
  4232. unsigned int node;
  4233. unsigned int highest = 0;
  4234. for_each_node_mask(node, node_possible_map)
  4235. highest = node;
  4236. nr_node_ids = highest + 1;
  4237. }
  4238. #else
  4239. static inline void setup_nr_node_ids(void)
  4240. {
  4241. }
  4242. #endif
  4243. /**
  4244. * node_map_pfn_alignment - determine the maximum internode alignment
  4245. *
  4246. * This function should be called after node map is populated and sorted.
  4247. * It calculates the maximum power of two alignment which can distinguish
  4248. * all the nodes.
  4249. *
  4250. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4251. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4252. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4253. * shifted, 1GiB is enough and this function will indicate so.
  4254. *
  4255. * This is used to test whether pfn -> nid mapping of the chosen memory
  4256. * model has fine enough granularity to avoid incorrect mapping for the
  4257. * populated node map.
  4258. *
  4259. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4260. * requirement (single node).
  4261. */
  4262. unsigned long __init node_map_pfn_alignment(void)
  4263. {
  4264. unsigned long accl_mask = 0, last_end = 0;
  4265. unsigned long start, end, mask;
  4266. int last_nid = -1;
  4267. int i, nid;
  4268. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4269. if (!start || last_nid < 0 || last_nid == nid) {
  4270. last_nid = nid;
  4271. last_end = end;
  4272. continue;
  4273. }
  4274. /*
  4275. * Start with a mask granular enough to pin-point to the
  4276. * start pfn and tick off bits one-by-one until it becomes
  4277. * too coarse to separate the current node from the last.
  4278. */
  4279. mask = ~((1 << __ffs(start)) - 1);
  4280. while (mask && last_end <= (start & (mask << 1)))
  4281. mask <<= 1;
  4282. /* accumulate all internode masks */
  4283. accl_mask |= mask;
  4284. }
  4285. /* convert mask to number of pages */
  4286. return ~accl_mask + 1;
  4287. }
  4288. /* Find the lowest pfn for a node */
  4289. static unsigned long __init find_min_pfn_for_node(int nid)
  4290. {
  4291. unsigned long min_pfn = ULONG_MAX;
  4292. unsigned long start_pfn;
  4293. int i;
  4294. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4295. min_pfn = min(min_pfn, start_pfn);
  4296. if (min_pfn == ULONG_MAX) {
  4297. printk(KERN_WARNING
  4298. "Could not find start_pfn for node %d\n", nid);
  4299. return 0;
  4300. }
  4301. return min_pfn;
  4302. }
  4303. /**
  4304. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4305. *
  4306. * It returns the minimum PFN based on information provided via
  4307. * add_active_range().
  4308. */
  4309. unsigned long __init find_min_pfn_with_active_regions(void)
  4310. {
  4311. return find_min_pfn_for_node(MAX_NUMNODES);
  4312. }
  4313. /*
  4314. * early_calculate_totalpages()
  4315. * Sum pages in active regions for movable zone.
  4316. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  4317. */
  4318. static unsigned long __init early_calculate_totalpages(void)
  4319. {
  4320. unsigned long totalpages = 0;
  4321. unsigned long start_pfn, end_pfn;
  4322. int i, nid;
  4323. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4324. unsigned long pages = end_pfn - start_pfn;
  4325. totalpages += pages;
  4326. if (pages)
  4327. node_set_state(nid, N_HIGH_MEMORY);
  4328. }
  4329. return totalpages;
  4330. }
  4331. /*
  4332. * Find the PFN the Movable zone begins in each node. Kernel memory
  4333. * is spread evenly between nodes as long as the nodes have enough
  4334. * memory. When they don't, some nodes will have more kernelcore than
  4335. * others
  4336. */
  4337. static void __init find_zone_movable_pfns_for_nodes(void)
  4338. {
  4339. int i, nid;
  4340. unsigned long usable_startpfn;
  4341. unsigned long kernelcore_node, kernelcore_remaining;
  4342. /* save the state before borrow the nodemask */
  4343. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  4344. unsigned long totalpages = early_calculate_totalpages();
  4345. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  4346. #ifdef CONFIG_FIX_MOVABLE_ZONE
  4347. required_movablecore = movable_reserved_size >> PAGE_SHIFT;
  4348. #endif
  4349. /*
  4350. * If movablecore was specified, calculate what size of
  4351. * kernelcore that corresponds so that memory usable for
  4352. * any allocation type is evenly spread. If both kernelcore
  4353. * and movablecore are specified, then the value of kernelcore
  4354. * will be used for required_kernelcore if it's greater than
  4355. * what movablecore would have allowed.
  4356. */
  4357. if (required_movablecore) {
  4358. unsigned long corepages;
  4359. /*
  4360. * Round-up so that ZONE_MOVABLE is at least as large as what
  4361. * was requested by the user
  4362. */
  4363. required_movablecore =
  4364. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4365. corepages = totalpages - required_movablecore;
  4366. required_kernelcore = max(required_kernelcore, corepages);
  4367. }
  4368. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4369. if (!required_kernelcore)
  4370. goto out;
  4371. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4372. find_usable_zone_for_movable();
  4373. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4374. restart:
  4375. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4376. kernelcore_node = required_kernelcore / usable_nodes;
  4377. for_each_node_state(nid, N_HIGH_MEMORY) {
  4378. unsigned long start_pfn, end_pfn;
  4379. /*
  4380. * Recalculate kernelcore_node if the division per node
  4381. * now exceeds what is necessary to satisfy the requested
  4382. * amount of memory for the kernel
  4383. */
  4384. if (required_kernelcore < kernelcore_node)
  4385. kernelcore_node = required_kernelcore / usable_nodes;
  4386. /*
  4387. * As the map is walked, we track how much memory is usable
  4388. * by the kernel using kernelcore_remaining. When it is
  4389. * 0, the rest of the node is usable by ZONE_MOVABLE
  4390. */
  4391. kernelcore_remaining = kernelcore_node;
  4392. /* Go through each range of PFNs within this node */
  4393. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4394. unsigned long size_pages;
  4395. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4396. if (start_pfn >= end_pfn)
  4397. continue;
  4398. /* Account for what is only usable for kernelcore */
  4399. if (start_pfn < usable_startpfn) {
  4400. unsigned long kernel_pages;
  4401. kernel_pages = min(end_pfn, usable_startpfn)
  4402. - start_pfn;
  4403. kernelcore_remaining -= min(kernel_pages,
  4404. kernelcore_remaining);
  4405. required_kernelcore -= min(kernel_pages,
  4406. required_kernelcore);
  4407. /* Continue if range is now fully accounted */
  4408. if (end_pfn <= usable_startpfn) {
  4409. /*
  4410. * Push zone_movable_pfn to the end so
  4411. * that if we have to rebalance
  4412. * kernelcore across nodes, we will
  4413. * not double account here
  4414. */
  4415. zone_movable_pfn[nid] = end_pfn;
  4416. continue;
  4417. }
  4418. start_pfn = usable_startpfn;
  4419. }
  4420. /*
  4421. * The usable PFN range for ZONE_MOVABLE is from
  4422. * start_pfn->end_pfn. Calculate size_pages as the
  4423. * number of pages used as kernelcore
  4424. */
  4425. size_pages = end_pfn - start_pfn;
  4426. if (size_pages > kernelcore_remaining)
  4427. size_pages = kernelcore_remaining;
  4428. zone_movable_pfn[nid] = start_pfn + size_pages;
  4429. /*
  4430. * Some kernelcore has been met, update counts and
  4431. * break if the kernelcore for this node has been
  4432. * satisified
  4433. */
  4434. required_kernelcore -= min(required_kernelcore,
  4435. size_pages);
  4436. kernelcore_remaining -= size_pages;
  4437. if (!kernelcore_remaining)
  4438. break;
  4439. }
  4440. }
  4441. /*
  4442. * If there is still required_kernelcore, we do another pass with one
  4443. * less node in the count. This will push zone_movable_pfn[nid] further
  4444. * along on the nodes that still have memory until kernelcore is
  4445. * satisified
  4446. */
  4447. usable_nodes--;
  4448. if (usable_nodes && required_kernelcore > usable_nodes)
  4449. goto restart;
  4450. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4451. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4452. zone_movable_pfn[nid] =
  4453. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4454. out:
  4455. /* restore the node_state */
  4456. node_states[N_HIGH_MEMORY] = saved_node_state;
  4457. }
  4458. /* Any regular memory on that node ? */
  4459. static void check_for_regular_memory(pg_data_t *pgdat)
  4460. {
  4461. #ifdef CONFIG_HIGHMEM
  4462. enum zone_type zone_type;
  4463. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4464. struct zone *zone = &pgdat->node_zones[zone_type];
  4465. if (zone->present_pages) {
  4466. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4467. break;
  4468. }
  4469. }
  4470. #endif
  4471. }
  4472. /**
  4473. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4474. * @max_zone_pfn: an array of max PFNs for each zone
  4475. *
  4476. * This will call free_area_init_node() for each active node in the system.
  4477. * Using the page ranges provided by add_active_range(), the size of each
  4478. * zone in each node and their holes is calculated. If the maximum PFN
  4479. * between two adjacent zones match, it is assumed that the zone is empty.
  4480. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4481. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4482. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4483. * at arch_max_dma_pfn.
  4484. */
  4485. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4486. {
  4487. unsigned long start_pfn, end_pfn;
  4488. int i, nid;
  4489. /* Record where the zone boundaries are */
  4490. memset(arch_zone_lowest_possible_pfn, 0,
  4491. sizeof(arch_zone_lowest_possible_pfn));
  4492. memset(arch_zone_highest_possible_pfn, 0,
  4493. sizeof(arch_zone_highest_possible_pfn));
  4494. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4495. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4496. for (i = 1; i < MAX_NR_ZONES; i++) {
  4497. if (i == ZONE_MOVABLE)
  4498. continue;
  4499. arch_zone_lowest_possible_pfn[i] =
  4500. arch_zone_highest_possible_pfn[i-1];
  4501. arch_zone_highest_possible_pfn[i] =
  4502. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4503. }
  4504. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4505. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4506. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4507. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4508. find_zone_movable_pfns_for_nodes();
  4509. /* Print out the zone ranges */
  4510. printk("Zone PFN ranges:\n");
  4511. for (i = 0; i < MAX_NR_ZONES; i++) {
  4512. if (i == ZONE_MOVABLE)
  4513. continue;
  4514. printk(" %-8s ", zone_names[i]);
  4515. if (arch_zone_lowest_possible_pfn[i] ==
  4516. arch_zone_highest_possible_pfn[i])
  4517. printk("empty\n");
  4518. else
  4519. printk("%0#10lx -> %0#10lx\n",
  4520. arch_zone_lowest_possible_pfn[i],
  4521. arch_zone_highest_possible_pfn[i]);
  4522. }
  4523. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4524. printk("Movable zone start PFN for each node\n");
  4525. for (i = 0; i < MAX_NUMNODES; i++) {
  4526. if (zone_movable_pfn[i])
  4527. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  4528. }
  4529. /* Print out the early_node_map[] */
  4530. printk("Early memory PFN ranges\n");
  4531. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4532. printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
  4533. /* Initialise every node */
  4534. mminit_verify_pageflags_layout();
  4535. setup_nr_node_ids();
  4536. for_each_online_node(nid) {
  4537. pg_data_t *pgdat = NODE_DATA(nid);
  4538. free_area_init_node(nid, NULL,
  4539. find_min_pfn_for_node(nid), NULL);
  4540. /* Any memory on that node */
  4541. if (pgdat->node_present_pages)
  4542. node_set_state(nid, N_HIGH_MEMORY);
  4543. check_for_regular_memory(pgdat);
  4544. }
  4545. }
  4546. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4547. {
  4548. unsigned long long coremem;
  4549. if (!p)
  4550. return -EINVAL;
  4551. coremem = memparse(p, &p);
  4552. *core = coremem >> PAGE_SHIFT;
  4553. /* Paranoid check that UL is enough for the coremem value */
  4554. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4555. return 0;
  4556. }
  4557. /*
  4558. * kernelcore=size sets the amount of memory for use for allocations that
  4559. * cannot be reclaimed or migrated.
  4560. */
  4561. static int __init cmdline_parse_kernelcore(char *p)
  4562. {
  4563. return cmdline_parse_core(p, &required_kernelcore);
  4564. }
  4565. /*
  4566. * movablecore=size sets the amount of memory for use for allocations that
  4567. * can be reclaimed or migrated.
  4568. */
  4569. static int __init cmdline_parse_movablecore(char *p)
  4570. {
  4571. return cmdline_parse_core(p, &required_movablecore);
  4572. }
  4573. early_param("kernelcore", cmdline_parse_kernelcore);
  4574. early_param("movablecore", cmdline_parse_movablecore);
  4575. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4576. /**
  4577. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4578. * @new_dma_reserve: The number of pages to mark reserved
  4579. *
  4580. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4581. * In the DMA zone, a significant percentage may be consumed by kernel image
  4582. * and other unfreeable allocations which can skew the watermarks badly. This
  4583. * function may optionally be used to account for unfreeable pages in the
  4584. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4585. * smaller per-cpu batchsize.
  4586. */
  4587. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4588. {
  4589. dma_reserve = new_dma_reserve;
  4590. }
  4591. void __init free_area_init(unsigned long *zones_size)
  4592. {
  4593. free_area_init_node(0, zones_size,
  4594. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4595. }
  4596. static int page_alloc_cpu_notify(struct notifier_block *self,
  4597. unsigned long action, void *hcpu)
  4598. {
  4599. int cpu = (unsigned long)hcpu;
  4600. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4601. lru_add_drain_cpu(cpu);
  4602. drain_pages(cpu);
  4603. /*
  4604. * Spill the event counters of the dead processor
  4605. * into the current processors event counters.
  4606. * This artificially elevates the count of the current
  4607. * processor.
  4608. */
  4609. vm_events_fold_cpu(cpu);
  4610. /*
  4611. * Zero the differential counters of the dead processor
  4612. * so that the vm statistics are consistent.
  4613. *
  4614. * This is only okay since the processor is dead and cannot
  4615. * race with what we are doing.
  4616. */
  4617. refresh_cpu_vm_stats(cpu);
  4618. }
  4619. return NOTIFY_OK;
  4620. }
  4621. void __init page_alloc_init(void)
  4622. {
  4623. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4624. }
  4625. /*
  4626. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4627. * or min_free_kbytes changes.
  4628. */
  4629. static void calculate_totalreserve_pages(void)
  4630. {
  4631. struct pglist_data *pgdat;
  4632. unsigned long reserve_pages = 0;
  4633. enum zone_type i, j;
  4634. for_each_online_pgdat(pgdat) {
  4635. for (i = 0; i < MAX_NR_ZONES; i++) {
  4636. struct zone *zone = pgdat->node_zones + i;
  4637. unsigned long max = 0;
  4638. /* Find valid and maximum lowmem_reserve in the zone */
  4639. for (j = i; j < MAX_NR_ZONES; j++) {
  4640. if (zone->lowmem_reserve[j] > max)
  4641. max = zone->lowmem_reserve[j];
  4642. }
  4643. /* we treat the high watermark as reserved pages. */
  4644. max += high_wmark_pages(zone);
  4645. if (max > zone->present_pages)
  4646. max = zone->present_pages;
  4647. reserve_pages += max;
  4648. /*
  4649. * Lowmem reserves are not available to
  4650. * GFP_HIGHUSER page cache allocations and
  4651. * kswapd tries to balance zones to their high
  4652. * watermark. As a result, neither should be
  4653. * regarded as dirtyable memory, to prevent a
  4654. * situation where reclaim has to clean pages
  4655. * in order to balance the zones.
  4656. */
  4657. zone->dirty_balance_reserve = max;
  4658. }
  4659. }
  4660. dirty_balance_reserve = reserve_pages;
  4661. totalreserve_pages = reserve_pages;
  4662. }
  4663. /*
  4664. * setup_per_zone_lowmem_reserve - called whenever
  4665. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4666. * has a correct pages reserved value, so an adequate number of
  4667. * pages are left in the zone after a successful __alloc_pages().
  4668. */
  4669. static void setup_per_zone_lowmem_reserve(void)
  4670. {
  4671. struct pglist_data *pgdat;
  4672. enum zone_type j, idx;
  4673. for_each_online_pgdat(pgdat) {
  4674. for (j = 0; j < MAX_NR_ZONES; j++) {
  4675. struct zone *zone = pgdat->node_zones + j;
  4676. unsigned long present_pages = zone->present_pages;
  4677. zone->lowmem_reserve[j] = 0;
  4678. idx = j;
  4679. while (idx) {
  4680. struct zone *lower_zone;
  4681. idx--;
  4682. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4683. sysctl_lowmem_reserve_ratio[idx] = 1;
  4684. lower_zone = pgdat->node_zones + idx;
  4685. lower_zone->lowmem_reserve[j] = present_pages /
  4686. sysctl_lowmem_reserve_ratio[idx];
  4687. present_pages += lower_zone->present_pages;
  4688. }
  4689. }
  4690. }
  4691. /* update totalreserve_pages */
  4692. calculate_totalreserve_pages();
  4693. }
  4694. static void __setup_per_zone_wmarks(void)
  4695. {
  4696. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4697. unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
  4698. unsigned long lowmem_pages = 0;
  4699. struct zone *zone;
  4700. unsigned long flags;
  4701. /* Calculate total number of !ZONE_HIGHMEM pages */
  4702. for_each_zone(zone) {
  4703. if (!is_highmem(zone))
  4704. lowmem_pages += zone->present_pages;
  4705. }
  4706. for_each_zone(zone) {
  4707. u64 min, low;
  4708. spin_lock_irqsave(&zone->lock, flags);
  4709. min = (u64)pages_min * zone->present_pages;
  4710. do_div(min, lowmem_pages);
  4711. low = (u64)pages_low * zone->present_pages;
  4712. do_div(low, vm_total_pages);
  4713. if (is_highmem(zone)) {
  4714. /*
  4715. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4716. * need highmem pages, so cap pages_min to a small
  4717. * value here.
  4718. *
  4719. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4720. * deltas controls asynch page reclaim, and so should
  4721. * not be capped for highmem.
  4722. */
  4723. int min_pages;
  4724. min_pages = zone->present_pages / 1024;
  4725. if (min_pages < SWAP_CLUSTER_MAX)
  4726. min_pages = SWAP_CLUSTER_MAX;
  4727. if (min_pages > 128)
  4728. min_pages = 128;
  4729. zone->watermark[WMARK_MIN] = min_pages;
  4730. } else {
  4731. /*
  4732. * If it's a lowmem zone, reserve a number of pages
  4733. * proportionate to the zone's size.
  4734. */
  4735. zone->watermark[WMARK_MIN] = min;
  4736. }
  4737. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) +
  4738. low + (min >> 2);
  4739. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
  4740. low + (min >> 1);
  4741. setup_zone_migrate_reserve(zone);
  4742. spin_unlock_irqrestore(&zone->lock, flags);
  4743. }
  4744. /* update totalreserve_pages */
  4745. calculate_totalreserve_pages();
  4746. }
  4747. /**
  4748. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4749. * or when memory is hot-{added|removed}
  4750. *
  4751. * Ensures that the watermark[min,low,high] values for each zone are set
  4752. * correctly with respect to min_free_kbytes.
  4753. */
  4754. void setup_per_zone_wmarks(void)
  4755. {
  4756. mutex_lock(&zonelists_mutex);
  4757. __setup_per_zone_wmarks();
  4758. mutex_unlock(&zonelists_mutex);
  4759. }
  4760. /*
  4761. * The inactive anon list should be small enough that the VM never has to
  4762. * do too much work, but large enough that each inactive page has a chance
  4763. * to be referenced again before it is swapped out.
  4764. *
  4765. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4766. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4767. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4768. * the anonymous pages are kept on the inactive list.
  4769. *
  4770. * total target max
  4771. * memory ratio inactive anon
  4772. * -------------------------------------
  4773. * 10MB 1 5MB
  4774. * 100MB 1 50MB
  4775. * 1GB 3 250MB
  4776. * 10GB 10 0.9GB
  4777. * 100GB 31 3GB
  4778. * 1TB 101 10GB
  4779. * 10TB 320 32GB
  4780. */
  4781. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4782. {
  4783. #ifdef CONFIG_FIX_INACTIVE_RATIO
  4784. zone->inactive_ratio = 1;
  4785. #else
  4786. unsigned int gb, ratio;
  4787. /* Zone size in gigabytes */
  4788. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4789. if (gb)
  4790. ratio = int_sqrt(10 * gb);
  4791. else
  4792. ratio = 1;
  4793. zone->inactive_ratio = ratio;
  4794. #endif
  4795. }
  4796. static void __meminit setup_per_zone_inactive_ratio(void)
  4797. {
  4798. struct zone *zone;
  4799. for_each_zone(zone)
  4800. calculate_zone_inactive_ratio(zone);
  4801. }
  4802. /*
  4803. * Initialise min_free_kbytes.
  4804. *
  4805. * For small machines we want it small (128k min). For large machines
  4806. * we want it large (64MB max). But it is not linear, because network
  4807. * bandwidth does not increase linearly with machine size. We use
  4808. *
  4809. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4810. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4811. *
  4812. * which yields
  4813. *
  4814. * 16MB: 512k
  4815. * 32MB: 724k
  4816. * 64MB: 1024k
  4817. * 128MB: 1448k
  4818. * 256MB: 2048k
  4819. * 512MB: 2896k
  4820. * 1024MB: 4096k
  4821. * 2048MB: 5792k
  4822. * 4096MB: 8192k
  4823. * 8192MB: 11584k
  4824. * 16384MB: 16384k
  4825. */
  4826. int __meminit init_per_zone_wmark_min(void)
  4827. {
  4828. unsigned long lowmem_kbytes;
  4829. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4830. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4831. if (min_free_kbytes < 128)
  4832. min_free_kbytes = 128;
  4833. if (min_free_kbytes > 65536)
  4834. min_free_kbytes = 65536;
  4835. setup_per_zone_wmarks();
  4836. refresh_zone_stat_thresholds();
  4837. setup_per_zone_lowmem_reserve();
  4838. setup_per_zone_inactive_ratio();
  4839. return 0;
  4840. }
  4841. module_init(init_per_zone_wmark_min)
  4842. /*
  4843. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4844. * that we can call two helper functions whenever min_free_kbytes
  4845. * or extra_free_kbytes changes.
  4846. */
  4847. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4848. void __user *buffer, size_t *length, loff_t *ppos)
  4849. {
  4850. proc_dointvec(table, write, buffer, length, ppos);
  4851. if (write)
  4852. setup_per_zone_wmarks();
  4853. return 0;
  4854. }
  4855. #ifdef CONFIG_NUMA
  4856. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4857. void __user *buffer, size_t *length, loff_t *ppos)
  4858. {
  4859. struct zone *zone;
  4860. int rc;
  4861. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4862. if (rc)
  4863. return rc;
  4864. for_each_zone(zone)
  4865. zone->min_unmapped_pages = (zone->present_pages *
  4866. sysctl_min_unmapped_ratio) / 100;
  4867. return 0;
  4868. }
  4869. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4870. void __user *buffer, size_t *length, loff_t *ppos)
  4871. {
  4872. struct zone *zone;
  4873. int rc;
  4874. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4875. if (rc)
  4876. return rc;
  4877. for_each_zone(zone)
  4878. zone->min_slab_pages = (zone->present_pages *
  4879. sysctl_min_slab_ratio) / 100;
  4880. return 0;
  4881. }
  4882. #endif
  4883. /*
  4884. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4885. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4886. * whenever sysctl_lowmem_reserve_ratio changes.
  4887. *
  4888. * The reserve ratio obviously has absolutely no relation with the
  4889. * minimum watermarks. The lowmem reserve ratio can only make sense
  4890. * if in function of the boot time zone sizes.
  4891. */
  4892. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4893. void __user *buffer, size_t *length, loff_t *ppos)
  4894. {
  4895. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4896. setup_per_zone_lowmem_reserve();
  4897. return 0;
  4898. }
  4899. /*
  4900. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4901. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4902. * can have before it gets flushed back to buddy allocator.
  4903. */
  4904. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4905. void __user *buffer, size_t *length, loff_t *ppos)
  4906. {
  4907. struct zone *zone;
  4908. unsigned int cpu;
  4909. int ret;
  4910. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4911. if (!write || (ret < 0))
  4912. return ret;
  4913. for_each_populated_zone(zone) {
  4914. for_each_possible_cpu(cpu) {
  4915. unsigned long high;
  4916. high = zone->present_pages / percpu_pagelist_fraction;
  4917. setup_pagelist_highmark(
  4918. per_cpu_ptr(zone->pageset, cpu), high);
  4919. }
  4920. }
  4921. return 0;
  4922. }
  4923. int hashdist = HASHDIST_DEFAULT;
  4924. #ifdef CONFIG_NUMA
  4925. static int __init set_hashdist(char *str)
  4926. {
  4927. if (!str)
  4928. return 0;
  4929. hashdist = simple_strtoul(str, &str, 0);
  4930. return 1;
  4931. }
  4932. __setup("hashdist=", set_hashdist);
  4933. #endif
  4934. /*
  4935. * allocate a large system hash table from bootmem
  4936. * - it is assumed that the hash table must contain an exact power-of-2
  4937. * quantity of entries
  4938. * - limit is the number of hash buckets, not the total allocation size
  4939. */
  4940. void *__init alloc_large_system_hash(const char *tablename,
  4941. unsigned long bucketsize,
  4942. unsigned long numentries,
  4943. int scale,
  4944. int flags,
  4945. unsigned int *_hash_shift,
  4946. unsigned int *_hash_mask,
  4947. unsigned long low_limit,
  4948. unsigned long high_limit)
  4949. {
  4950. unsigned long long max = high_limit;
  4951. unsigned long log2qty, size;
  4952. void *table = NULL;
  4953. /* allow the kernel cmdline to have a say */
  4954. if (!numentries) {
  4955. /* round applicable memory size up to nearest megabyte */
  4956. numentries = nr_kernel_pages;
  4957. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4958. numentries >>= 20 - PAGE_SHIFT;
  4959. numentries <<= 20 - PAGE_SHIFT;
  4960. /* limit to 1 bucket per 2^scale bytes of low memory */
  4961. if (scale > PAGE_SHIFT)
  4962. numentries >>= (scale - PAGE_SHIFT);
  4963. else
  4964. numentries <<= (PAGE_SHIFT - scale);
  4965. /* Make sure we've got at least a 0-order allocation.. */
  4966. if (unlikely(flags & HASH_SMALL)) {
  4967. /* Makes no sense without HASH_EARLY */
  4968. WARN_ON(!(flags & HASH_EARLY));
  4969. if (!(numentries >> *_hash_shift)) {
  4970. numentries = 1UL << *_hash_shift;
  4971. BUG_ON(!numentries);
  4972. }
  4973. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4974. numentries = PAGE_SIZE / bucketsize;
  4975. }
  4976. numentries = roundup_pow_of_two(numentries);
  4977. /* limit allocation size to 1/16 total memory by default */
  4978. if (max == 0) {
  4979. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4980. do_div(max, bucketsize);
  4981. }
  4982. max = min(max, 0x80000000ULL);
  4983. if (numentries < low_limit)
  4984. numentries = low_limit;
  4985. if (numentries > max)
  4986. numentries = max;
  4987. log2qty = ilog2(numentries);
  4988. do {
  4989. size = bucketsize << log2qty;
  4990. if (flags & HASH_EARLY)
  4991. table = alloc_bootmem_nopanic(size);
  4992. else if (hashdist)
  4993. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4994. else {
  4995. /*
  4996. * If bucketsize is not a power-of-two, we may free
  4997. * some pages at the end of hash table which
  4998. * alloc_pages_exact() automatically does
  4999. */
  5000. if (get_order(size) < MAX_ORDER) {
  5001. table = alloc_pages_exact(size, GFP_ATOMIC);
  5002. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5003. }
  5004. }
  5005. } while (!table && size > PAGE_SIZE && --log2qty);
  5006. if (!table)
  5007. panic("Failed to allocate %s hash table\n", tablename);
  5008. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5009. tablename,
  5010. (1UL << log2qty),
  5011. ilog2(size) - PAGE_SHIFT,
  5012. size);
  5013. if (_hash_shift)
  5014. *_hash_shift = log2qty;
  5015. if (_hash_mask)
  5016. *_hash_mask = (1 << log2qty) - 1;
  5017. return table;
  5018. }
  5019. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5020. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5021. unsigned long pfn)
  5022. {
  5023. #ifdef CONFIG_SPARSEMEM
  5024. return __pfn_to_section(pfn)->pageblock_flags;
  5025. #else
  5026. return zone->pageblock_flags;
  5027. #endif /* CONFIG_SPARSEMEM */
  5028. }
  5029. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5030. {
  5031. #ifdef CONFIG_SPARSEMEM
  5032. pfn &= (PAGES_PER_SECTION-1);
  5033. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5034. #else
  5035. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5036. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5037. #endif /* CONFIG_SPARSEMEM */
  5038. }
  5039. /**
  5040. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  5041. * @page: The page within the block of interest
  5042. * @start_bitidx: The first bit of interest to retrieve
  5043. * @end_bitidx: The last bit of interest
  5044. * returns pageblock_bits flags
  5045. */
  5046. unsigned long get_pageblock_flags_group(struct page *page,
  5047. int start_bitidx, int end_bitidx)
  5048. {
  5049. struct zone *zone;
  5050. unsigned long *bitmap;
  5051. unsigned long pfn, bitidx;
  5052. unsigned long flags = 0;
  5053. unsigned long value = 1;
  5054. zone = page_zone(page);
  5055. pfn = page_to_pfn(page);
  5056. bitmap = get_pageblock_bitmap(zone, pfn);
  5057. bitidx = pfn_to_bitidx(zone, pfn);
  5058. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  5059. if (test_bit(bitidx + start_bitidx, bitmap))
  5060. flags |= value;
  5061. return flags;
  5062. }
  5063. /**
  5064. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  5065. * @page: The page within the block of interest
  5066. * @start_bitidx: The first bit of interest
  5067. * @end_bitidx: The last bit of interest
  5068. * @flags: The flags to set
  5069. */
  5070. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  5071. int start_bitidx, int end_bitidx)
  5072. {
  5073. struct zone *zone;
  5074. unsigned long *bitmap;
  5075. unsigned long pfn, bitidx;
  5076. unsigned long value = 1;
  5077. zone = page_zone(page);
  5078. pfn = page_to_pfn(page);
  5079. bitmap = get_pageblock_bitmap(zone, pfn);
  5080. bitidx = pfn_to_bitidx(zone, pfn);
  5081. VM_BUG_ON(pfn < zone->zone_start_pfn);
  5082. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  5083. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  5084. if (flags & value)
  5085. __set_bit(bitidx + start_bitidx, bitmap);
  5086. else
  5087. __clear_bit(bitidx + start_bitidx, bitmap);
  5088. }
  5089. /*
  5090. * This function checks whether pageblock includes unmovable pages or not.
  5091. * If @count is not zero, it is okay to include less @count unmovable pages
  5092. *
  5093. * PageLRU check wihtout isolation or lru_lock could race so that
  5094. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5095. * expect this function should be exact.
  5096. */
  5097. static bool
  5098. __has_unmovable_pages(struct zone *zone, struct page *page, int count)
  5099. {
  5100. unsigned long pfn, iter, found;
  5101. int mt;
  5102. /*
  5103. * For avoiding noise data, lru_add_drain_all() should be called
  5104. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5105. */
  5106. if (zone_idx(zone) == ZONE_MOVABLE)
  5107. return false;
  5108. mt = get_pageblock_migratetype(page);
  5109. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5110. return false;
  5111. pfn = page_to_pfn(page);
  5112. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5113. unsigned long check = pfn + iter;
  5114. if (!pfn_valid_within(check))
  5115. continue;
  5116. page = pfn_to_page(check);
  5117. /*
  5118. * We can't use page_count without pin a page
  5119. * because another CPU can free compound page.
  5120. * This check already skips compound tails of THP
  5121. * because their page->_count is zero at all time.
  5122. */
  5123. if (!atomic_read(&page->_count)) {
  5124. if (PageBuddy(page))
  5125. iter += (1 << page_order(page)) - 1;
  5126. continue;
  5127. }
  5128. if (!PageLRU(page))
  5129. found++;
  5130. /*
  5131. * If there are RECLAIMABLE pages, we need to check it.
  5132. * But now, memory offline itself doesn't call shrink_slab()
  5133. * and it still to be fixed.
  5134. */
  5135. /*
  5136. * If the page is not RAM, page_count()should be 0.
  5137. * we don't need more check. This is an _used_ not-movable page.
  5138. *
  5139. * The problematic thing here is PG_reserved pages. PG_reserved
  5140. * is set to both of a memory hole page and a _used_ kernel
  5141. * page at boot.
  5142. */
  5143. if (found > count)
  5144. return true;
  5145. }
  5146. return false;
  5147. }
  5148. bool is_pageblock_removable_nolock(struct page *page)
  5149. {
  5150. struct zone *zone;
  5151. unsigned long pfn;
  5152. /*
  5153. * We have to be careful here because we are iterating over memory
  5154. * sections which are not zone aware so we might end up outside of
  5155. * the zone but still within the section.
  5156. * We have to take care about the node as well. If the node is offline
  5157. * its NODE_DATA will be NULL - see page_zone.
  5158. */
  5159. if (!node_online(page_to_nid(page)))
  5160. return false;
  5161. zone = page_zone(page);
  5162. pfn = page_to_pfn(page);
  5163. if (zone->zone_start_pfn > pfn ||
  5164. zone->zone_start_pfn + zone->spanned_pages <= pfn)
  5165. return false;
  5166. return !__has_unmovable_pages(zone, page, 0);
  5167. }
  5168. int set_migratetype_isolate(struct page *page)
  5169. {
  5170. struct zone *zone;
  5171. unsigned long flags, pfn;
  5172. struct memory_isolate_notify arg;
  5173. int notifier_ret;
  5174. int ret = -EBUSY;
  5175. zone = page_zone(page);
  5176. spin_lock_irqsave(&zone->lock, flags);
  5177. pfn = page_to_pfn(page);
  5178. arg.start_pfn = pfn;
  5179. arg.nr_pages = pageblock_nr_pages;
  5180. arg.pages_found = 0;
  5181. /*
  5182. * It may be possible to isolate a pageblock even if the
  5183. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  5184. * notifier chain is used by balloon drivers to return the
  5185. * number of pages in a range that are held by the balloon
  5186. * driver to shrink memory. If all the pages are accounted for
  5187. * by balloons, are free, or on the LRU, isolation can continue.
  5188. * Later, for example, when memory hotplug notifier runs, these
  5189. * pages reported as "can be isolated" should be isolated(freed)
  5190. * by the balloon driver through the memory notifier chain.
  5191. */
  5192. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  5193. notifier_ret = notifier_to_errno(notifier_ret);
  5194. if (notifier_ret)
  5195. goto out;
  5196. /*
  5197. * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
  5198. * We just check MOVABLE pages.
  5199. */
  5200. if (!__has_unmovable_pages(zone, page, arg.pages_found))
  5201. ret = 0;
  5202. /*
  5203. * Unmovable means "not-on-lru" pages. If Unmovable pages are
  5204. * larger than removable-by-driver pages reported by notifier,
  5205. * we'll fail.
  5206. */
  5207. out:
  5208. if (!ret) {
  5209. unsigned long nr_pages;
  5210. int migratetype = get_pageblock_migratetype(page);
  5211. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  5212. nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE);
  5213. __mod_zone_freepage_state(zone, -nr_pages, migratetype);
  5214. }
  5215. spin_unlock_irqrestore(&zone->lock, flags);
  5216. if (!ret)
  5217. drain_all_pages();
  5218. return ret;
  5219. }
  5220. void unset_migratetype_isolate(struct page *page, unsigned migratetype)
  5221. {
  5222. struct zone *zone;
  5223. unsigned long flags, nr_pages;
  5224. zone = page_zone(page);
  5225. spin_lock_irqsave(&zone->lock, flags);
  5226. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  5227. goto out;
  5228. nr_pages = move_freepages_block(zone, page, migratetype);
  5229. __mod_zone_freepage_state(zone, nr_pages, migratetype);
  5230. set_pageblock_migratetype(page, migratetype);
  5231. out:
  5232. spin_unlock_irqrestore(&zone->lock, flags);
  5233. }
  5234. #ifdef CONFIG_CMA
  5235. static unsigned long pfn_max_align_down(unsigned long pfn)
  5236. {
  5237. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5238. pageblock_nr_pages) - 1);
  5239. }
  5240. static unsigned long pfn_max_align_up(unsigned long pfn)
  5241. {
  5242. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5243. pageblock_nr_pages));
  5244. }
  5245. static struct page *
  5246. __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
  5247. int **resultp)
  5248. {
  5249. gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
  5250. if (PageHighMem(page))
  5251. gfp_mask |= __GFP_HIGHMEM;
  5252. return alloc_page(gfp_mask);
  5253. }
  5254. /* [start, end) must belong to a single zone. */
  5255. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5256. unsigned long start, unsigned long end)
  5257. {
  5258. /* This function is based on compact_zone() from compaction.c. */
  5259. unsigned long nr_reclaimed;
  5260. unsigned long pfn = start;
  5261. unsigned int tries = 0;
  5262. int ret = 0;
  5263. migrate_prep();
  5264. while (pfn < end || !list_empty(&cc->migratepages)) {
  5265. if (fatal_signal_pending(current)) {
  5266. ret = -EINTR;
  5267. break;
  5268. }
  5269. if (list_empty(&cc->migratepages)) {
  5270. cc->nr_migratepages = 0;
  5271. pfn = isolate_migratepages_range(cc->zone, cc,
  5272. pfn, end, true);
  5273. if (!pfn) {
  5274. ret = -EINTR;
  5275. break;
  5276. }
  5277. tries = 0;
  5278. } else if (++tries == 5) {
  5279. ret = ret < 0 ? ret : -EBUSY;
  5280. break;
  5281. }
  5282. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, &cc->migratepages);
  5283. cc->nr_migratepages -= nr_reclaimed;
  5284. ret = migrate_pages(&cc->migratepages,
  5285. __alloc_contig_migrate_alloc,
  5286. 0, false, MIGRATE_SYNC);
  5287. }
  5288. putback_lru_pages(&cc->migratepages);
  5289. return ret > 0 ? 0 : ret;
  5290. }
  5291. /**
  5292. * alloc_contig_range() -- tries to allocate given range of pages
  5293. * @start: start PFN to allocate
  5294. * @end: one-past-the-last PFN to allocate
  5295. * @migratetype: migratetype of the underlaying pageblocks (either
  5296. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5297. * in range must have the same migratetype and it must
  5298. * be either of the two.
  5299. *
  5300. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5301. * aligned, however it's the caller's responsibility to guarantee that
  5302. * we are the only thread that changes migrate type of pageblocks the
  5303. * pages fall in.
  5304. *
  5305. * The PFN range must belong to a single zone.
  5306. *
  5307. * Returns zero on success or negative error code. On success all
  5308. * pages which PFN is in [start, end) are allocated for the caller and
  5309. * need to be freed with free_contig_range().
  5310. */
  5311. int alloc_contig_range(unsigned long start, unsigned long end,
  5312. unsigned migratetype)
  5313. {
  5314. struct zone *zone = page_zone(pfn_to_page(start));
  5315. unsigned long outer_start, outer_end;
  5316. int ret = 0, order;
  5317. struct compact_control cc = {
  5318. .nr_migratepages = 0,
  5319. .order = -1,
  5320. .zone = page_zone(pfn_to_page(start)),
  5321. .sync = true,
  5322. .ignore_skip_hint = true,
  5323. };
  5324. INIT_LIST_HEAD(&cc.migratepages);
  5325. /*
  5326. * What we do here is we mark all pageblocks in range as
  5327. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5328. * have different sizes, and due to the way page allocator
  5329. * work, we align the range to biggest of the two pages so
  5330. * that page allocator won't try to merge buddies from
  5331. * different pageblocks and change MIGRATE_ISOLATE to some
  5332. * other migration type.
  5333. *
  5334. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5335. * migrate the pages from an unaligned range (ie. pages that
  5336. * we are interested in). This will put all the pages in
  5337. * range back to page allocator as MIGRATE_ISOLATE.
  5338. *
  5339. * When this is done, we take the pages in range from page
  5340. * allocator removing them from the buddy system. This way
  5341. * page allocator will never consider using them.
  5342. *
  5343. * This lets us mark the pageblocks back as
  5344. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5345. * aligned range but not in the unaligned, original range are
  5346. * put back to page allocator so that buddy can use them.
  5347. */
  5348. ret = start_isolate_page_range(pfn_max_align_down(start),
  5349. pfn_max_align_up(end), migratetype);
  5350. if (ret)
  5351. goto done;
  5352. zone->cma_alloc = 1;
  5353. ret = __alloc_contig_migrate_range(&cc, start, end);
  5354. if (ret)
  5355. goto done;
  5356. /*
  5357. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5358. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5359. * more, all pages in [start, end) are free in page allocator.
  5360. * What we are going to do is to allocate all pages from
  5361. * [start, end) (that is remove them from page allocator).
  5362. *
  5363. * The only problem is that pages at the beginning and at the
  5364. * end of interesting range may be not aligned with pages that
  5365. * page allocator holds, ie. they can be part of higher order
  5366. * pages. Because of this, we reserve the bigger range and
  5367. * once this is done free the pages we are not interested in.
  5368. *
  5369. * We don't have to hold zone->lock here because the pages are
  5370. * isolated thus they won't get removed from buddy.
  5371. */
  5372. lru_add_drain_all();
  5373. drain_all_pages();
  5374. order = 0;
  5375. outer_start = start;
  5376. while (!PageBuddy(pfn_to_page(outer_start))) {
  5377. if (++order >= MAX_ORDER) {
  5378. ret = -EBUSY;
  5379. goto done;
  5380. }
  5381. outer_start &= ~0UL << order;
  5382. }
  5383. /* Make sure the range is really isolated. */
  5384. if (test_pages_isolated(outer_start, end)) {
  5385. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5386. outer_start, end);
  5387. ret = -EBUSY;
  5388. goto done;
  5389. }
  5390. /* Grab isolated pages from freelists. */
  5391. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5392. if (!outer_end) {
  5393. ret = -EBUSY;
  5394. goto done;
  5395. }
  5396. /* Free head and tail (if any) */
  5397. if (start != outer_start)
  5398. free_contig_range(outer_start, start - outer_start);
  5399. if (end != outer_end)
  5400. free_contig_range(end, outer_end - end);
  5401. done:
  5402. undo_isolate_page_range(pfn_max_align_down(start),
  5403. pfn_max_align_up(end), migratetype);
  5404. zone->cma_alloc = 0;
  5405. return ret;
  5406. }
  5407. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5408. {
  5409. unsigned int count = 0;
  5410. for (; nr_pages--; pfn++) {
  5411. struct page *page = pfn_to_page(pfn);
  5412. count += page_count(page) != 1;
  5413. __free_page(page);
  5414. }
  5415. WARN(count != 0, "%d pages are still in use!\n", count);
  5416. }
  5417. #endif
  5418. #ifdef CONFIG_MEMORY_HOTREMOVE
  5419. /*
  5420. * All pages in the range must be isolated before calling this.
  5421. */
  5422. void
  5423. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5424. {
  5425. struct page *page;
  5426. struct zone *zone;
  5427. int order, i;
  5428. unsigned long pfn;
  5429. unsigned long flags;
  5430. /* find the first valid pfn */
  5431. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5432. if (pfn_valid(pfn))
  5433. break;
  5434. if (pfn == end_pfn)
  5435. return;
  5436. zone = page_zone(pfn_to_page(pfn));
  5437. spin_lock_irqsave(&zone->lock, flags);
  5438. pfn = start_pfn;
  5439. while (pfn < end_pfn) {
  5440. if (!pfn_valid(pfn)) {
  5441. pfn++;
  5442. continue;
  5443. }
  5444. page = pfn_to_page(pfn);
  5445. BUG_ON(page_count(page));
  5446. BUG_ON(!PageBuddy(page));
  5447. order = page_order(page);
  5448. #ifdef CONFIG_DEBUG_VM
  5449. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5450. pfn, 1 << order, end_pfn);
  5451. #endif
  5452. list_del(&page->lru);
  5453. rmv_page_order(page);
  5454. zone->free_area[order].nr_free--;
  5455. #ifdef CONFIG_HIGHMEM
  5456. if (PageHighMem(page))
  5457. totalhigh_pages -= 1 << order;
  5458. #endif
  5459. for (i = 0; i < (1 << order); i++)
  5460. SetPageReserved((page+i));
  5461. pfn += (1 << order);
  5462. }
  5463. spin_unlock_irqrestore(&zone->lock, flags);
  5464. }
  5465. #endif
  5466. #ifdef CONFIG_MEMORY_FAILURE
  5467. bool is_free_buddy_page(struct page *page)
  5468. {
  5469. struct zone *zone = page_zone(page);
  5470. unsigned long pfn = page_to_pfn(page);
  5471. unsigned long flags;
  5472. int order;
  5473. spin_lock_irqsave(&zone->lock, flags);
  5474. for (order = 0; order < MAX_ORDER; order++) {
  5475. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5476. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5477. break;
  5478. }
  5479. spin_unlock_irqrestore(&zone->lock, flags);
  5480. return order < MAX_ORDER;
  5481. }
  5482. #endif
  5483. static struct trace_print_flags pageflag_names[] = {
  5484. {1UL << PG_locked, "locked" },
  5485. {1UL << PG_error, "error" },
  5486. {1UL << PG_referenced, "referenced" },
  5487. {1UL << PG_uptodate, "uptodate" },
  5488. {1UL << PG_dirty, "dirty" },
  5489. {1UL << PG_lru, "lru" },
  5490. {1UL << PG_active, "active" },
  5491. {1UL << PG_slab, "slab" },
  5492. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5493. {1UL << PG_arch_1, "arch_1" },
  5494. {1UL << PG_reserved, "reserved" },
  5495. {1UL << PG_private, "private" },
  5496. {1UL << PG_private_2, "private_2" },
  5497. {1UL << PG_writeback, "writeback" },
  5498. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5499. {1UL << PG_head, "head" },
  5500. {1UL << PG_tail, "tail" },
  5501. #else
  5502. {1UL << PG_compound, "compound" },
  5503. #endif
  5504. {1UL << PG_swapcache, "swapcache" },
  5505. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5506. {1UL << PG_reclaim, "reclaim" },
  5507. {1UL << PG_swapbacked, "swapbacked" },
  5508. {1UL << PG_unevictable, "unevictable" },
  5509. #ifdef CONFIG_MMU
  5510. {1UL << PG_mlocked, "mlocked" },
  5511. #endif
  5512. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5513. {1UL << PG_uncached, "uncached" },
  5514. #endif
  5515. #ifdef CONFIG_MEMORY_FAILURE
  5516. {1UL << PG_hwpoison, "hwpoison" },
  5517. #endif
  5518. {1UL << PG_readahead, "PG_readahead" },
  5519. #ifdef CONFIG_SCFS_LOWER_PAGECACHE_INVALIDATION
  5520. {1UL << PG_scfslower, "scfslower"},
  5521. {1UL << PG_nocache,"nocache"},
  5522. #endif
  5523. };
  5524. static void dump_page_flags(unsigned long flags)
  5525. {
  5526. const char *delim = "";
  5527. unsigned long mask;
  5528. int i;
  5529. printk(KERN_ALERT "page flags: %#lx(", flags);
  5530. /* remove zone id */
  5531. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5532. for (i = 0; pageflag_names[i].name && flags; i++) {
  5533. mask = pageflag_names[i].mask;
  5534. if ((flags & mask) != mask)
  5535. continue;
  5536. flags &= ~mask;
  5537. printk("%s%s", delim, pageflag_names[i].name);
  5538. delim = "|";
  5539. }
  5540. /* check for left over flags */
  5541. if (flags)
  5542. printk("%s%#lx", delim, flags);
  5543. printk(")\n");
  5544. }
  5545. void dump_page(struct page *page)
  5546. {
  5547. printk(KERN_ALERT
  5548. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5549. page, atomic_read(&page->_count), page_mapcount(page),
  5550. page->mapping, page->index);
  5551. dump_page_flags(page->flags);
  5552. mem_cgroup_print_bad_page(page);
  5553. }