futex.c 78 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/hugetlb.h>
  64. #include <linux/freezer.h>
  65. #include <linux/bootmem.h>
  66. #include <asm/futex.h>
  67. #include "rtmutex_common.h"
  68. int __read_mostly futex_cmpxchg_enabled;
  69. /*
  70. * Futex flags used to encode options to functions and preserve them across
  71. * restarts.
  72. */
  73. #define FLAGS_SHARED 0x01
  74. #define FLAGS_CLOCKRT 0x02
  75. #define FLAGS_HAS_TIMEOUT 0x04
  76. /*
  77. * Priority Inheritance state:
  78. */
  79. struct futex_pi_state {
  80. /*
  81. * list of 'owned' pi_state instances - these have to be
  82. * cleaned up in do_exit() if the task exits prematurely:
  83. */
  84. struct list_head list;
  85. /*
  86. * The PI object:
  87. */
  88. struct rt_mutex pi_mutex;
  89. struct task_struct *owner;
  90. atomic_t refcount;
  91. union futex_key key;
  92. };
  93. /**
  94. * struct futex_q - The hashed futex queue entry, one per waiting task
  95. * @list: priority-sorted list of tasks waiting on this futex
  96. * @task: the task waiting on the futex
  97. * @lock_ptr: the hash bucket lock
  98. * @key: the key the futex is hashed on
  99. * @pi_state: optional priority inheritance state
  100. * @rt_waiter: rt_waiter storage for use with requeue_pi
  101. * @requeue_pi_key: the requeue_pi target futex key
  102. * @bitset: bitset for the optional bitmasked wakeup
  103. *
  104. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  105. * we can wake only the relevant ones (hashed queues may be shared).
  106. *
  107. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  108. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  109. * The order of wakeup is always to make the first condition true, then
  110. * the second.
  111. *
  112. * PI futexes are typically woken before they are removed from the hash list via
  113. * the rt_mutex code. See unqueue_me_pi().
  114. */
  115. struct futex_q {
  116. struct plist_node list;
  117. struct task_struct *task;
  118. spinlock_t *lock_ptr;
  119. union futex_key key;
  120. struct futex_pi_state *pi_state;
  121. struct rt_mutex_waiter *rt_waiter;
  122. union futex_key *requeue_pi_key;
  123. u32 bitset;
  124. };
  125. static const struct futex_q futex_q_init = {
  126. /* list gets initialized in queue_me()*/
  127. .key = FUTEX_KEY_INIT,
  128. .bitset = FUTEX_BITSET_MATCH_ANY
  129. };
  130. /*
  131. * Hash buckets are shared by all the futex_keys that hash to the same
  132. * location. Each key may have multiple futex_q structures, one for each task
  133. * waiting on a futex.
  134. */
  135. struct futex_hash_bucket {
  136. spinlock_t lock;
  137. struct plist_head chain;
  138. } ____cacheline_aligned_in_smp;
  139. static unsigned long __read_mostly futex_hashsize;
  140. static struct futex_hash_bucket *futex_queues;
  141. /*
  142. * We hash on the keys returned from get_futex_key (see below).
  143. */
  144. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  145. {
  146. u32 hash = jhash2((u32*)&key->both.word,
  147. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  148. key->both.offset);
  149. return &futex_queues[hash & (futex_hashsize - 1)];
  150. }
  151. /*
  152. * Return 1 if two futex_keys are equal, 0 otherwise.
  153. */
  154. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  155. {
  156. return (key1 && key2
  157. && key1->both.word == key2->both.word
  158. && key1->both.ptr == key2->both.ptr
  159. && key1->both.offset == key2->both.offset);
  160. }
  161. /*
  162. * Take a reference to the resource addressed by a key.
  163. * Can be called while holding spinlocks.
  164. *
  165. */
  166. static void get_futex_key_refs(union futex_key *key)
  167. {
  168. if (!key->both.ptr)
  169. return;
  170. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  171. case FUT_OFF_INODE:
  172. ihold(key->shared.inode);
  173. break;
  174. case FUT_OFF_MMSHARED:
  175. atomic_inc(&key->private.mm->mm_count);
  176. break;
  177. }
  178. }
  179. /*
  180. * Drop a reference to the resource addressed by a key.
  181. * The hash bucket spinlock must not be held.
  182. */
  183. static void drop_futex_key_refs(union futex_key *key)
  184. {
  185. if (!key->both.ptr) {
  186. /* If we're here then we tried to put a key we failed to get */
  187. WARN_ON_ONCE(1);
  188. return;
  189. }
  190. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  191. case FUT_OFF_INODE:
  192. iput(key->shared.inode);
  193. break;
  194. case FUT_OFF_MMSHARED:
  195. mmdrop(key->private.mm);
  196. break;
  197. default:
  198. smp_mb(); /* explicit MB (B) */
  199. }
  200. }
  201. /**
  202. * get_futex_key() - Get parameters which are the keys for a futex
  203. * @uaddr: virtual address of the futex
  204. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  205. * @key: address where result is stored.
  206. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  207. * VERIFY_WRITE)
  208. *
  209. * Returns a negative error code or 0
  210. * The key words are stored in *key on success.
  211. *
  212. * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
  213. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  214. * We can usually work out the index without swapping in the page.
  215. *
  216. * lock_page() might sleep, the caller should not hold a spinlock.
  217. */
  218. static int
  219. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  220. {
  221. unsigned long address = (unsigned long)uaddr;
  222. struct mm_struct *mm = current->mm;
  223. struct page *page, *page_head;
  224. struct address_space *mapping;
  225. int err, ro = 0;
  226. /*
  227. * The futex address must be "naturally" aligned.
  228. */
  229. key->both.offset = address % PAGE_SIZE;
  230. if (unlikely((address % sizeof(u32)) != 0))
  231. return -EINVAL;
  232. address -= key->both.offset;
  233. /*
  234. * PROCESS_PRIVATE futexes are fast.
  235. * As the mm cannot disappear under us and the 'key' only needs
  236. * virtual address, we dont even have to find the underlying vma.
  237. * Note : We do have to check 'uaddr' is a valid user address,
  238. * but access_ok() should be faster than find_vma()
  239. */
  240. if (!fshared) {
  241. if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
  242. return -EFAULT;
  243. key->private.mm = mm;
  244. key->private.address = address;
  245. get_futex_key_refs(key);
  246. return 0;
  247. }
  248. again:
  249. err = get_user_pages_fast(address, 1, 1, &page);
  250. /*
  251. * If write access is not required (eg. FUTEX_WAIT), try
  252. * and get read-only access.
  253. */
  254. if (err == -EFAULT && rw == VERIFY_READ) {
  255. err = get_user_pages_fast(address, 1, 0, &page);
  256. ro = 1;
  257. }
  258. if (err < 0)
  259. return err;
  260. else
  261. err = 0;
  262. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  263. page_head = page;
  264. if (unlikely(PageTail(page))) {
  265. put_page(page);
  266. /* serialize against __split_huge_page_splitting() */
  267. local_irq_disable();
  268. if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
  269. page_head = compound_head(page);
  270. /*
  271. * page_head is valid pointer but we must pin
  272. * it before taking the PG_lock and/or
  273. * PG_compound_lock. The moment we re-enable
  274. * irqs __split_huge_page_splitting() can
  275. * return and the head page can be freed from
  276. * under us. We can't take the PG_lock and/or
  277. * PG_compound_lock on a page that could be
  278. * freed from under us.
  279. */
  280. if (page != page_head) {
  281. get_page(page_head);
  282. put_page(page);
  283. }
  284. local_irq_enable();
  285. } else {
  286. local_irq_enable();
  287. goto again;
  288. }
  289. }
  290. #else
  291. page_head = compound_head(page);
  292. if (page != page_head) {
  293. get_page(page_head);
  294. put_page(page);
  295. }
  296. #endif
  297. /*
  298. * The treatment of mapping from this point on is critical. The page
  299. * lock protects many things but in this context the page lock
  300. * stabilizes mapping, prevents inode freeing in the shared
  301. * file-backed region case and guards against movement to swap cache.
  302. *
  303. * Strictly speaking the page lock is not needed in all cases being
  304. * considered here and page lock forces unnecessarily serialization
  305. * From this point on, mapping will be re-verified if necessary and
  306. * page lock will be acquired only if it is unavoidable
  307. */
  308. mapping = ACCESS_ONCE(page_head->mapping);
  309. /*
  310. * If page_head->mapping is NULL, then it cannot be a PageAnon
  311. * page; but it might be the ZERO_PAGE or in the gate area or
  312. * in a special mapping (all cases which we are happy to fail);
  313. * or it may have been a good file page when get_user_pages_fast
  314. * found it, but truncated or holepunched or subjected to
  315. * invalidate_complete_page2 before we got the page lock (also
  316. * cases which we are happy to fail). And we hold a reference,
  317. * so refcount care in invalidate_complete_page's remove_mapping
  318. * prevents drop_caches from setting mapping to NULL beneath us.
  319. *
  320. * The case we do have to guard against is when memory pressure made
  321. * shmem_writepage move it from filecache to swapcache beneath us:
  322. * an unlikely race, but we do need to retry for page_head->mapping.
  323. */
  324. if (unlikely(!mapping)) {
  325. int shmem_swizzled;
  326. /*
  327. * Page lock is required to identify which special case above
  328. * applies. If this is really a shmem page then the page lock
  329. * will prevent unexpected transitions.
  330. */
  331. lock_page(page);
  332. shmem_swizzled = PageSwapCache(page) || page->mapping;
  333. unlock_page(page_head);
  334. put_page(page_head);
  335. if (shmem_swizzled)
  336. goto again;
  337. return -EFAULT;
  338. }
  339. /*
  340. * Private mappings are handled in a simple way.
  341. *
  342. * If the futex key is stored on an anonymous page, then the associated
  343. * object is the mm which is implicitly pinned by the calling process.
  344. *
  345. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  346. * it's a read-only handle, it's expected that futexes attach to
  347. * the object not the particular process.
  348. */
  349. if (PageAnon(page_head)) {
  350. /*
  351. * A RO anonymous page will never change and thus doesn't make
  352. * sense for futex operations.
  353. */
  354. if (ro) {
  355. err = -EFAULT;
  356. goto out;
  357. }
  358. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  359. key->private.mm = mm;
  360. key->private.address = address;
  361. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  362. } else {
  363. struct inode *inode;
  364. /*
  365. * The associated futex object in this case is the inode and
  366. * the page->mapping must be traversed. Ordinarily this should
  367. * be stabilised under page lock but it's not strictly
  368. * necessary in this case as we just want to pin the inode, not
  369. * update the radix tree or anything like that.
  370. *
  371. * The RCU read lock is taken as the inode is finally freed
  372. * under RCU. If the mapping still matches expectations then the
  373. * mapping->host can be safely accessed as being a valid inode.
  374. */
  375. rcu_read_lock();
  376. if (ACCESS_ONCE(page_head->mapping) != mapping) {
  377. rcu_read_unlock();
  378. put_page(page_head);
  379. goto again;
  380. }
  381. inode = ACCESS_ONCE(mapping->host);
  382. if (!inode) {
  383. rcu_read_unlock();
  384. put_page(page_head);
  385. goto again;
  386. }
  387. /*
  388. * Take a reference unless it is about to be freed. Previously
  389. * this reference was taken by ihold under the page lock
  390. * pinning the inode in place so i_lock was unnecessary. The
  391. * only way for this check to fail is if the inode was
  392. * truncated in parallel which is almost certainly an
  393. * application bug. In such a case, just retry.
  394. *
  395. * We are not calling into get_futex_key_refs() in file-backed
  396. * cases, therefore a successful atomic_inc return below will
  397. * guarantee that get_futex_key() will still imply smp_mb(); (B).
  398. */
  399. if (!atomic_inc_not_zero(&inode->i_count)) {
  400. rcu_read_unlock();
  401. put_page(page_head);
  402. goto again;
  403. }
  404. /* Should be impossible but lets be paranoid for now */
  405. if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
  406. err = -EFAULT;
  407. rcu_read_unlock();
  408. iput(inode);
  409. goto out;
  410. }
  411. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  412. key->shared.inode = inode;
  413. key->shared.pgoff = page_head->index;
  414. rcu_read_unlock();
  415. }
  416. out:
  417. put_page(page_head);
  418. return err;
  419. }
  420. static inline void put_futex_key(union futex_key *key)
  421. {
  422. drop_futex_key_refs(key);
  423. }
  424. /**
  425. * fault_in_user_writeable() - Fault in user address and verify RW access
  426. * @uaddr: pointer to faulting user space address
  427. *
  428. * Slow path to fixup the fault we just took in the atomic write
  429. * access to @uaddr.
  430. *
  431. * We have no generic implementation of a non-destructive write to the
  432. * user address. We know that we faulted in the atomic pagefault
  433. * disabled section so we can as well avoid the #PF overhead by
  434. * calling get_user_pages() right away.
  435. */
  436. static int fault_in_user_writeable(u32 __user *uaddr)
  437. {
  438. struct mm_struct *mm = current->mm;
  439. int ret;
  440. down_read(&mm->mmap_sem);
  441. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  442. FAULT_FLAG_WRITE);
  443. up_read(&mm->mmap_sem);
  444. return ret < 0 ? ret : 0;
  445. }
  446. /**
  447. * futex_top_waiter() - Return the highest priority waiter on a futex
  448. * @hb: the hash bucket the futex_q's reside in
  449. * @key: the futex key (to distinguish it from other futex futex_q's)
  450. *
  451. * Must be called with the hb lock held.
  452. */
  453. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  454. union futex_key *key)
  455. {
  456. struct futex_q *this;
  457. plist_for_each_entry(this, &hb->chain, list) {
  458. if (match_futex(&this->key, key))
  459. return this;
  460. }
  461. return NULL;
  462. }
  463. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  464. u32 uval, u32 newval)
  465. {
  466. int ret;
  467. pagefault_disable();
  468. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  469. pagefault_enable();
  470. return ret;
  471. }
  472. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  473. {
  474. int ret;
  475. pagefault_disable();
  476. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  477. pagefault_enable();
  478. return ret ? -EFAULT : 0;
  479. }
  480. /*
  481. * PI code:
  482. */
  483. static int refill_pi_state_cache(void)
  484. {
  485. struct futex_pi_state *pi_state;
  486. if (likely(current->pi_state_cache))
  487. return 0;
  488. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  489. if (!pi_state)
  490. return -ENOMEM;
  491. INIT_LIST_HEAD(&pi_state->list);
  492. /* pi_mutex gets initialized later */
  493. pi_state->owner = NULL;
  494. atomic_set(&pi_state->refcount, 1);
  495. pi_state->key = FUTEX_KEY_INIT;
  496. current->pi_state_cache = pi_state;
  497. return 0;
  498. }
  499. static struct futex_pi_state * alloc_pi_state(void)
  500. {
  501. struct futex_pi_state *pi_state = current->pi_state_cache;
  502. WARN_ON(!pi_state);
  503. current->pi_state_cache = NULL;
  504. return pi_state;
  505. }
  506. /*
  507. * Must be called with the hb lock held.
  508. */
  509. static void free_pi_state(struct futex_pi_state *pi_state)
  510. {
  511. if (!pi_state)
  512. return;
  513. if (!atomic_dec_and_test(&pi_state->refcount))
  514. return;
  515. /*
  516. * If pi_state->owner is NULL, the owner is most probably dying
  517. * and has cleaned up the pi_state already
  518. */
  519. if (pi_state->owner) {
  520. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  521. list_del_init(&pi_state->list);
  522. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  523. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  524. }
  525. if (current->pi_state_cache)
  526. kfree(pi_state);
  527. else {
  528. /*
  529. * pi_state->list is already empty.
  530. * clear pi_state->owner.
  531. * refcount is at 0 - put it back to 1.
  532. */
  533. pi_state->owner = NULL;
  534. atomic_set(&pi_state->refcount, 1);
  535. current->pi_state_cache = pi_state;
  536. }
  537. }
  538. /*
  539. * Look up the task based on what TID userspace gave us.
  540. * We dont trust it.
  541. */
  542. static struct task_struct * futex_find_get_task(pid_t pid)
  543. {
  544. struct task_struct *p;
  545. rcu_read_lock();
  546. p = find_task_by_vpid(pid);
  547. if (p)
  548. get_task_struct(p);
  549. rcu_read_unlock();
  550. return p;
  551. }
  552. /*
  553. * This task is holding PI mutexes at exit time => bad.
  554. * Kernel cleans up PI-state, but userspace is likely hosed.
  555. * (Robust-futex cleanup is separate and might save the day for userspace.)
  556. */
  557. void exit_pi_state_list(struct task_struct *curr)
  558. {
  559. struct list_head *next, *head = &curr->pi_state_list;
  560. struct futex_pi_state *pi_state;
  561. struct futex_hash_bucket *hb;
  562. union futex_key key = FUTEX_KEY_INIT;
  563. if (!futex_cmpxchg_enabled)
  564. return;
  565. /*
  566. * We are a ZOMBIE and nobody can enqueue itself on
  567. * pi_state_list anymore, but we have to be careful
  568. * versus waiters unqueueing themselves:
  569. */
  570. raw_spin_lock_irq(&curr->pi_lock);
  571. while (!list_empty(head)) {
  572. next = head->next;
  573. pi_state = list_entry(next, struct futex_pi_state, list);
  574. key = pi_state->key;
  575. hb = hash_futex(&key);
  576. raw_spin_unlock_irq(&curr->pi_lock);
  577. spin_lock(&hb->lock);
  578. raw_spin_lock_irq(&curr->pi_lock);
  579. /*
  580. * We dropped the pi-lock, so re-check whether this
  581. * task still owns the PI-state:
  582. */
  583. if (head->next != next) {
  584. spin_unlock(&hb->lock);
  585. continue;
  586. }
  587. WARN_ON(pi_state->owner != curr);
  588. WARN_ON(list_empty(&pi_state->list));
  589. list_del_init(&pi_state->list);
  590. pi_state->owner = NULL;
  591. raw_spin_unlock_irq(&curr->pi_lock);
  592. rt_mutex_unlock(&pi_state->pi_mutex);
  593. spin_unlock(&hb->lock);
  594. raw_spin_lock_irq(&curr->pi_lock);
  595. }
  596. raw_spin_unlock_irq(&curr->pi_lock);
  597. }
  598. /*
  599. * We need to check the following states:
  600. *
  601. * Waiter | pi_state | pi->owner | uTID | uODIED | ?
  602. *
  603. * [1] NULL | --- | --- | 0 | 0/1 | Valid
  604. * [2] NULL | --- | --- | >0 | 0/1 | Valid
  605. *
  606. * [3] Found | NULL | -- | Any | 0/1 | Invalid
  607. *
  608. * [4] Found | Found | NULL | 0 | 1 | Valid
  609. * [5] Found | Found | NULL | >0 | 1 | Invalid
  610. *
  611. * [6] Found | Found | task | 0 | 1 | Valid
  612. *
  613. * [7] Found | Found | NULL | Any | 0 | Invalid
  614. *
  615. * [8] Found | Found | task | ==taskTID | 0/1 | Valid
  616. * [9] Found | Found | task | 0 | 0 | Invalid
  617. * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
  618. *
  619. * [1] Indicates that the kernel can acquire the futex atomically. We
  620. * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
  621. *
  622. * [2] Valid, if TID does not belong to a kernel thread. If no matching
  623. * thread is found then it indicates that the owner TID has died.
  624. *
  625. * [3] Invalid. The waiter is queued on a non PI futex
  626. *
  627. * [4] Valid state after exit_robust_list(), which sets the user space
  628. * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
  629. *
  630. * [5] The user space value got manipulated between exit_robust_list()
  631. * and exit_pi_state_list()
  632. *
  633. * [6] Valid state after exit_pi_state_list() which sets the new owner in
  634. * the pi_state but cannot access the user space value.
  635. *
  636. * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
  637. *
  638. * [8] Owner and user space value match
  639. *
  640. * [9] There is no transient state which sets the user space TID to 0
  641. * except exit_robust_list(), but this is indicated by the
  642. * FUTEX_OWNER_DIED bit. See [4]
  643. *
  644. * [10] There is no transient state which leaves owner and user space
  645. * TID out of sync.
  646. */
  647. static int
  648. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  649. union futex_key *key, struct futex_pi_state **ps)
  650. {
  651. struct futex_pi_state *pi_state = NULL;
  652. struct futex_q *this, *next;
  653. struct plist_head *head;
  654. struct task_struct *p;
  655. pid_t pid = uval & FUTEX_TID_MASK;
  656. head = &hb->chain;
  657. plist_for_each_entry_safe(this, next, head, list) {
  658. if (match_futex(&this->key, key)) {
  659. /*
  660. * Sanity check the waiter before increasing
  661. * the refcount and attaching to it.
  662. */
  663. pi_state = this->pi_state;
  664. /*
  665. * Userspace might have messed up non-PI and
  666. * PI futexes [3]
  667. */
  668. if (unlikely(!pi_state))
  669. return -EINVAL;
  670. WARN_ON(!atomic_read(&pi_state->refcount));
  671. /*
  672. * Handle the owner died case:
  673. */
  674. if (uval & FUTEX_OWNER_DIED) {
  675. /*
  676. * exit_pi_state_list sets owner to NULL and
  677. * wakes the topmost waiter. The task which
  678. * acquires the pi_state->rt_mutex will fixup
  679. * owner.
  680. */
  681. if (!pi_state->owner) {
  682. /*
  683. * No pi state owner, but the user
  684. * space TID is not 0. Inconsistent
  685. * state. [5]
  686. */
  687. if (pid)
  688. return -EINVAL;
  689. /*
  690. * Take a ref on the state and
  691. * return. [4]
  692. */
  693. goto out_state;
  694. }
  695. /*
  696. * If TID is 0, then either the dying owner
  697. * has not yet executed exit_pi_state_list()
  698. * or some waiter acquired the rtmutex in the
  699. * pi state, but did not yet fixup the TID in
  700. * user space.
  701. *
  702. * Take a ref on the state and return. [6]
  703. */
  704. if (!pid)
  705. goto out_state;
  706. } else {
  707. /*
  708. * If the owner died bit is not set,
  709. * then the pi_state must have an
  710. * owner. [7]
  711. */
  712. if (!pi_state->owner)
  713. return -EINVAL;
  714. }
  715. /*
  716. * Bail out if user space manipulated the
  717. * futex value. If pi state exists then the
  718. * owner TID must be the same as the user
  719. * space TID. [9/10]
  720. */
  721. if (pid != task_pid_vnr(pi_state->owner))
  722. return -EINVAL;
  723. out_state:
  724. atomic_inc(&pi_state->refcount);
  725. *ps = pi_state;
  726. return 0;
  727. }
  728. }
  729. /*
  730. * We are the first waiter - try to look up the real owner and attach
  731. * the new pi_state to it, but bail out when TID = 0 [1]
  732. */
  733. if (!pid)
  734. return -ESRCH;
  735. p = futex_find_get_task(pid);
  736. if (!p)
  737. return -ESRCH;
  738. if (!p->mm) {
  739. put_task_struct(p);
  740. return -EPERM;
  741. }
  742. /*
  743. * We need to look at the task state flags to figure out,
  744. * whether the task is exiting. To protect against the do_exit
  745. * change of the task flags, we do this protected by
  746. * p->pi_lock:
  747. */
  748. raw_spin_lock_irq(&p->pi_lock);
  749. if (unlikely(p->flags & PF_EXITING)) {
  750. /*
  751. * The task is on the way out. When PF_EXITPIDONE is
  752. * set, we know that the task has finished the
  753. * cleanup:
  754. */
  755. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  756. raw_spin_unlock_irq(&p->pi_lock);
  757. put_task_struct(p);
  758. return ret;
  759. }
  760. /*
  761. * No existing pi state. First waiter. [2]
  762. */
  763. pi_state = alloc_pi_state();
  764. /*
  765. * Initialize the pi_mutex in locked state and make 'p'
  766. * the owner of it:
  767. */
  768. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  769. /* Store the key for possible exit cleanups: */
  770. pi_state->key = *key;
  771. WARN_ON(!list_empty(&pi_state->list));
  772. list_add(&pi_state->list, &p->pi_state_list);
  773. pi_state->owner = p;
  774. raw_spin_unlock_irq(&p->pi_lock);
  775. put_task_struct(p);
  776. *ps = pi_state;
  777. return 0;
  778. }
  779. /**
  780. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  781. * @uaddr: the pi futex user address
  782. * @hb: the pi futex hash bucket
  783. * @key: the futex key associated with uaddr and hb
  784. * @ps: the pi_state pointer where we store the result of the
  785. * lookup
  786. * @task: the task to perform the atomic lock work for. This will
  787. * be "current" except in the case of requeue pi.
  788. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  789. *
  790. * Returns:
  791. * 0 - ready to wait
  792. * 1 - acquired the lock
  793. * <0 - error
  794. *
  795. * The hb->lock and futex_key refs shall be held by the caller.
  796. */
  797. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  798. union futex_key *key,
  799. struct futex_pi_state **ps,
  800. struct task_struct *task, int set_waiters)
  801. {
  802. int lock_taken, ret, force_take = 0;
  803. u32 uval, newval, curval, vpid = task_pid_vnr(task);
  804. retry:
  805. ret = lock_taken = 0;
  806. /*
  807. * To avoid races, we attempt to take the lock here again
  808. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  809. * the locks. It will most likely not succeed.
  810. */
  811. newval = vpid;
  812. if (set_waiters)
  813. newval |= FUTEX_WAITERS;
  814. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
  815. return -EFAULT;
  816. /*
  817. * Detect deadlocks.
  818. */
  819. if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
  820. return -EDEADLK;
  821. /*
  822. * Surprise - we got the lock, but we do not trust user space at all.
  823. */
  824. if (unlikely(!curval)) {
  825. /*
  826. * We verify whether there is kernel state for this
  827. * futex. If not, we can safely assume, that the 0 ->
  828. * TID transition is correct. If state exists, we do
  829. * not bother to fixup the user space state as it was
  830. * corrupted already.
  831. */
  832. return futex_top_waiter(hb, key) ? -EINVAL : 1;
  833. }
  834. uval = curval;
  835. /*
  836. * Set the FUTEX_WAITERS flag, so the owner will know it has someone
  837. * to wake at the next unlock.
  838. */
  839. newval = curval | FUTEX_WAITERS;
  840. /*
  841. * Should we force take the futex? See below.
  842. */
  843. if (unlikely(force_take)) {
  844. /*
  845. * Keep the OWNER_DIED and the WAITERS bit and set the
  846. * new TID value.
  847. */
  848. newval = (curval & ~FUTEX_TID_MASK) | vpid;
  849. force_take = 0;
  850. lock_taken = 1;
  851. }
  852. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  853. return -EFAULT;
  854. if (unlikely(curval != uval))
  855. goto retry;
  856. /*
  857. * We took the lock due to forced take over.
  858. */
  859. if (unlikely(lock_taken))
  860. return 1;
  861. /*
  862. * We dont have the lock. Look up the PI state (or create it if
  863. * we are the first waiter):
  864. */
  865. ret = lookup_pi_state(uval, hb, key, ps);
  866. if (unlikely(ret)) {
  867. switch (ret) {
  868. case -ESRCH:
  869. /*
  870. * We failed to find an owner for this
  871. * futex. So we have no pi_state to block
  872. * on. This can happen in two cases:
  873. *
  874. * 1) The owner died
  875. * 2) A stale FUTEX_WAITERS bit
  876. *
  877. * Re-read the futex value.
  878. */
  879. if (get_futex_value_locked(&curval, uaddr))
  880. return -EFAULT;
  881. /*
  882. * If the owner died or we have a stale
  883. * WAITERS bit the owner TID in the user space
  884. * futex is 0.
  885. */
  886. if (!(curval & FUTEX_TID_MASK)) {
  887. force_take = 1;
  888. goto retry;
  889. }
  890. default:
  891. break;
  892. }
  893. }
  894. return ret;
  895. }
  896. /**
  897. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  898. * @q: The futex_q to unqueue
  899. *
  900. * The q->lock_ptr must not be NULL and must be held by the caller.
  901. */
  902. static void __unqueue_futex(struct futex_q *q)
  903. {
  904. struct futex_hash_bucket *hb;
  905. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  906. || WARN_ON(plist_node_empty(&q->list)))
  907. return;
  908. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  909. plist_del(&q->list, &hb->chain);
  910. }
  911. /*
  912. * The hash bucket lock must be held when this is called.
  913. * Afterwards, the futex_q must not be accessed.
  914. */
  915. static void wake_futex(struct futex_q *q)
  916. {
  917. struct task_struct *p = q->task;
  918. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  919. return;
  920. /*
  921. * We set q->lock_ptr = NULL _before_ we wake up the task. If
  922. * a non-futex wake up happens on another CPU then the task
  923. * might exit and p would dereference a non-existing task
  924. * struct. Prevent this by holding a reference on p across the
  925. * wake up.
  926. */
  927. get_task_struct(p);
  928. __unqueue_futex(q);
  929. /*
  930. * The waiting task can free the futex_q as soon as
  931. * q->lock_ptr = NULL is written, without taking any locks. A
  932. * memory barrier is required here to prevent the following
  933. * store to lock_ptr from getting ahead of the plist_del.
  934. */
  935. smp_wmb();
  936. q->lock_ptr = NULL;
  937. wake_up_state(p, TASK_NORMAL);
  938. put_task_struct(p);
  939. }
  940. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  941. {
  942. struct task_struct *new_owner;
  943. struct futex_pi_state *pi_state = this->pi_state;
  944. u32 uninitialized_var(curval), newval;
  945. int ret = 0;
  946. if (!pi_state)
  947. return -EINVAL;
  948. /*
  949. * If current does not own the pi_state then the futex is
  950. * inconsistent and user space fiddled with the futex value.
  951. */
  952. if (pi_state->owner != current)
  953. return -EINVAL;
  954. raw_spin_lock(&pi_state->pi_mutex.wait_lock);
  955. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  956. /*
  957. * It is possible that the next waiter (the one that brought
  958. * this owner to the kernel) timed out and is no longer
  959. * waiting on the lock.
  960. */
  961. if (!new_owner)
  962. new_owner = this->task;
  963. /*
  964. * We pass it to the next owner. The WAITERS bit is always
  965. * kept enabled while there is PI state around. We cleanup the
  966. * owner died bit, because we are the owner.
  967. */
  968. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  969. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  970. ret = -EFAULT;
  971. else if (curval != uval)
  972. ret = -EINVAL;
  973. if (ret) {
  974. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  975. return ret;
  976. }
  977. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  978. WARN_ON(list_empty(&pi_state->list));
  979. list_del_init(&pi_state->list);
  980. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  981. raw_spin_lock_irq(&new_owner->pi_lock);
  982. WARN_ON(!list_empty(&pi_state->list));
  983. list_add(&pi_state->list, &new_owner->pi_state_list);
  984. pi_state->owner = new_owner;
  985. raw_spin_unlock_irq(&new_owner->pi_lock);
  986. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  987. rt_mutex_unlock(&pi_state->pi_mutex);
  988. return 0;
  989. }
  990. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  991. {
  992. u32 uninitialized_var(oldval);
  993. /*
  994. * There is no waiter, so we unlock the futex. The owner died
  995. * bit has not to be preserved here. We are the owner:
  996. */
  997. if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
  998. return -EFAULT;
  999. if (oldval != uval)
  1000. return -EAGAIN;
  1001. return 0;
  1002. }
  1003. /*
  1004. * Express the locking dependencies for lockdep:
  1005. */
  1006. static inline void
  1007. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1008. {
  1009. if (hb1 <= hb2) {
  1010. spin_lock(&hb1->lock);
  1011. if (hb1 < hb2)
  1012. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  1013. } else { /* hb1 > hb2 */
  1014. spin_lock(&hb2->lock);
  1015. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  1016. }
  1017. }
  1018. static inline void
  1019. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1020. {
  1021. spin_unlock(&hb1->lock);
  1022. if (hb1 != hb2)
  1023. spin_unlock(&hb2->lock);
  1024. }
  1025. /*
  1026. * Wake up waiters matching bitset queued on this futex (uaddr).
  1027. */
  1028. static int
  1029. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  1030. {
  1031. struct futex_hash_bucket *hb;
  1032. struct futex_q *this, *next;
  1033. struct plist_head *head;
  1034. union futex_key key = FUTEX_KEY_INIT;
  1035. int ret;
  1036. if (!bitset)
  1037. return -EINVAL;
  1038. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  1039. if (unlikely(ret != 0))
  1040. goto out;
  1041. hb = hash_futex(&key);
  1042. spin_lock(&hb->lock);
  1043. head = &hb->chain;
  1044. plist_for_each_entry_safe(this, next, head, list) {
  1045. if (match_futex (&this->key, &key)) {
  1046. if (this->pi_state || this->rt_waiter) {
  1047. ret = -EINVAL;
  1048. break;
  1049. }
  1050. /* Check if one of the bits is set in both bitsets */
  1051. if (!(this->bitset & bitset))
  1052. continue;
  1053. wake_futex(this);
  1054. if (++ret >= nr_wake)
  1055. break;
  1056. }
  1057. }
  1058. spin_unlock(&hb->lock);
  1059. put_futex_key(&key);
  1060. out:
  1061. return ret;
  1062. }
  1063. /*
  1064. * Wake up all waiters hashed on the physical page that is mapped
  1065. * to this virtual address:
  1066. */
  1067. static int
  1068. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  1069. int nr_wake, int nr_wake2, int op)
  1070. {
  1071. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1072. struct futex_hash_bucket *hb1, *hb2;
  1073. struct plist_head *head;
  1074. struct futex_q *this, *next;
  1075. int ret, op_ret;
  1076. retry:
  1077. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1078. if (unlikely(ret != 0))
  1079. goto out;
  1080. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  1081. if (unlikely(ret != 0))
  1082. goto out_put_key1;
  1083. hb1 = hash_futex(&key1);
  1084. hb2 = hash_futex(&key2);
  1085. retry_private:
  1086. double_lock_hb(hb1, hb2);
  1087. op_ret = futex_atomic_op_inuser(op, uaddr2);
  1088. if (unlikely(op_ret < 0)) {
  1089. double_unlock_hb(hb1, hb2);
  1090. #ifndef CONFIG_MMU
  1091. /*
  1092. * we don't get EFAULT from MMU faults if we don't have an MMU,
  1093. * but we might get them from range checking
  1094. */
  1095. ret = op_ret;
  1096. goto out_put_keys;
  1097. #endif
  1098. if (unlikely(op_ret != -EFAULT)) {
  1099. ret = op_ret;
  1100. goto out_put_keys;
  1101. }
  1102. ret = fault_in_user_writeable(uaddr2);
  1103. if (ret)
  1104. goto out_put_keys;
  1105. if (!(flags & FLAGS_SHARED))
  1106. goto retry_private;
  1107. put_futex_key(&key2);
  1108. put_futex_key(&key1);
  1109. goto retry;
  1110. }
  1111. head = &hb1->chain;
  1112. plist_for_each_entry_safe(this, next, head, list) {
  1113. if (match_futex (&this->key, &key1)) {
  1114. if (this->pi_state || this->rt_waiter) {
  1115. ret = -EINVAL;
  1116. goto out_unlock;
  1117. }
  1118. wake_futex(this);
  1119. if (++ret >= nr_wake)
  1120. break;
  1121. }
  1122. }
  1123. if (op_ret > 0) {
  1124. head = &hb2->chain;
  1125. op_ret = 0;
  1126. plist_for_each_entry_safe(this, next, head, list) {
  1127. if (match_futex (&this->key, &key2)) {
  1128. if (this->pi_state || this->rt_waiter) {
  1129. ret = -EINVAL;
  1130. goto out_unlock;
  1131. }
  1132. wake_futex(this);
  1133. if (++op_ret >= nr_wake2)
  1134. break;
  1135. }
  1136. }
  1137. ret += op_ret;
  1138. }
  1139. out_unlock:
  1140. double_unlock_hb(hb1, hb2);
  1141. out_put_keys:
  1142. put_futex_key(&key2);
  1143. out_put_key1:
  1144. put_futex_key(&key1);
  1145. out:
  1146. return ret;
  1147. }
  1148. /**
  1149. * requeue_futex() - Requeue a futex_q from one hb to another
  1150. * @q: the futex_q to requeue
  1151. * @hb1: the source hash_bucket
  1152. * @hb2: the target hash_bucket
  1153. * @key2: the new key for the requeued futex_q
  1154. */
  1155. static inline
  1156. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  1157. struct futex_hash_bucket *hb2, union futex_key *key2)
  1158. {
  1159. /*
  1160. * If key1 and key2 hash to the same bucket, no need to
  1161. * requeue.
  1162. */
  1163. if (likely(&hb1->chain != &hb2->chain)) {
  1164. plist_del(&q->list, &hb1->chain);
  1165. plist_add(&q->list, &hb2->chain);
  1166. q->lock_ptr = &hb2->lock;
  1167. }
  1168. get_futex_key_refs(key2);
  1169. q->key = *key2;
  1170. }
  1171. /**
  1172. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  1173. * @q: the futex_q
  1174. * @key: the key of the requeue target futex
  1175. * @hb: the hash_bucket of the requeue target futex
  1176. *
  1177. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1178. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1179. * to the requeue target futex so the waiter can detect the wakeup on the right
  1180. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1181. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1182. * to protect access to the pi_state to fixup the owner later. Must be called
  1183. * with both q->lock_ptr and hb->lock held.
  1184. */
  1185. static inline
  1186. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1187. struct futex_hash_bucket *hb)
  1188. {
  1189. get_futex_key_refs(key);
  1190. q->key = *key;
  1191. __unqueue_futex(q);
  1192. WARN_ON(!q->rt_waiter);
  1193. q->rt_waiter = NULL;
  1194. q->lock_ptr = &hb->lock;
  1195. wake_up_state(q->task, TASK_NORMAL);
  1196. }
  1197. /**
  1198. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1199. * @pifutex: the user address of the to futex
  1200. * @hb1: the from futex hash bucket, must be locked by the caller
  1201. * @hb2: the to futex hash bucket, must be locked by the caller
  1202. * @key1: the from futex key
  1203. * @key2: the to futex key
  1204. * @ps: address to store the pi_state pointer
  1205. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1206. *
  1207. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1208. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1209. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1210. * hb1 and hb2 must be held by the caller.
  1211. *
  1212. * Returns:
  1213. * 0 - failed to acquire the lock atomicly
  1214. * >0 - acquired the lock, return value is vpid of the top_waiter
  1215. * <0 - error
  1216. */
  1217. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1218. struct futex_hash_bucket *hb1,
  1219. struct futex_hash_bucket *hb2,
  1220. union futex_key *key1, union futex_key *key2,
  1221. struct futex_pi_state **ps, int set_waiters)
  1222. {
  1223. struct futex_q *top_waiter = NULL;
  1224. u32 curval;
  1225. int ret, vpid;
  1226. if (get_futex_value_locked(&curval, pifutex))
  1227. return -EFAULT;
  1228. /*
  1229. * Find the top_waiter and determine if there are additional waiters.
  1230. * If the caller intends to requeue more than 1 waiter to pifutex,
  1231. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1232. * as we have means to handle the possible fault. If not, don't set
  1233. * the bit unecessarily as it will force the subsequent unlock to enter
  1234. * the kernel.
  1235. */
  1236. top_waiter = futex_top_waiter(hb1, key1);
  1237. /* There are no waiters, nothing for us to do. */
  1238. if (!top_waiter)
  1239. return 0;
  1240. /* Ensure we requeue to the expected futex. */
  1241. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1242. return -EINVAL;
  1243. /*
  1244. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1245. * the contended case or if set_waiters is 1. The pi_state is returned
  1246. * in ps in contended cases.
  1247. */
  1248. vpid = task_pid_vnr(top_waiter->task);
  1249. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1250. set_waiters);
  1251. if (ret == 1) {
  1252. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1253. return vpid;
  1254. }
  1255. return ret;
  1256. }
  1257. /**
  1258. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1259. * @uaddr1: source futex user address
  1260. * @flags: futex flags (FLAGS_SHARED, etc.)
  1261. * @uaddr2: target futex user address
  1262. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1263. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1264. * @cmpval: @uaddr1 expected value (or %NULL)
  1265. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1266. * pi futex (pi to pi requeue is not supported)
  1267. *
  1268. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1269. * uaddr2 atomically on behalf of the top waiter.
  1270. *
  1271. * Returns:
  1272. * >=0 - on success, the number of tasks requeued or woken
  1273. * <0 - on error
  1274. */
  1275. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1276. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1277. u32 *cmpval, int requeue_pi)
  1278. {
  1279. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1280. int drop_count = 0, task_count = 0, ret;
  1281. struct futex_pi_state *pi_state = NULL;
  1282. struct futex_hash_bucket *hb1, *hb2;
  1283. struct plist_head *head1;
  1284. struct futex_q *this, *next;
  1285. if (nr_wake < 0 || nr_requeue < 0)
  1286. return -EINVAL;
  1287. if (requeue_pi) {
  1288. /*
  1289. * Requeue PI only works on two distinct uaddrs. This
  1290. * check is only valid for private futexes. See below.
  1291. */
  1292. if (uaddr1 == uaddr2)
  1293. return -EINVAL;
  1294. /*
  1295. * requeue_pi requires a pi_state, try to allocate it now
  1296. * without any locks in case it fails.
  1297. */
  1298. if (refill_pi_state_cache())
  1299. return -ENOMEM;
  1300. /*
  1301. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1302. * + nr_requeue, since it acquires the rt_mutex prior to
  1303. * returning to userspace, so as to not leave the rt_mutex with
  1304. * waiters and no owner. However, second and third wake-ups
  1305. * cannot be predicted as they involve race conditions with the
  1306. * first wake and a fault while looking up the pi_state. Both
  1307. * pthread_cond_signal() and pthread_cond_broadcast() should
  1308. * use nr_wake=1.
  1309. */
  1310. if (nr_wake != 1)
  1311. return -EINVAL;
  1312. }
  1313. retry:
  1314. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1315. if (unlikely(ret != 0))
  1316. goto out;
  1317. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1318. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1319. if (unlikely(ret != 0))
  1320. goto out_put_key1;
  1321. /*
  1322. * The check above which compares uaddrs is not sufficient for
  1323. * shared futexes. We need to compare the keys:
  1324. */
  1325. if (requeue_pi && match_futex(&key1, &key2)) {
  1326. ret = -EINVAL;
  1327. goto out_put_keys;
  1328. }
  1329. hb1 = hash_futex(&key1);
  1330. hb2 = hash_futex(&key2);
  1331. retry_private:
  1332. double_lock_hb(hb1, hb2);
  1333. if (likely(cmpval != NULL)) {
  1334. u32 curval;
  1335. ret = get_futex_value_locked(&curval, uaddr1);
  1336. if (unlikely(ret)) {
  1337. double_unlock_hb(hb1, hb2);
  1338. ret = get_user(curval, uaddr1);
  1339. if (ret)
  1340. goto out_put_keys;
  1341. if (!(flags & FLAGS_SHARED))
  1342. goto retry_private;
  1343. put_futex_key(&key2);
  1344. put_futex_key(&key1);
  1345. goto retry;
  1346. }
  1347. if (curval != *cmpval) {
  1348. ret = -EAGAIN;
  1349. goto out_unlock;
  1350. }
  1351. }
  1352. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1353. /*
  1354. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1355. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1356. * bit. We force this here where we are able to easily handle
  1357. * faults rather in the requeue loop below.
  1358. */
  1359. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1360. &key2, &pi_state, nr_requeue);
  1361. /*
  1362. * At this point the top_waiter has either taken uaddr2 or is
  1363. * waiting on it. If the former, then the pi_state will not
  1364. * exist yet, look it up one more time to ensure we have a
  1365. * reference to it. If the lock was taken, ret contains the
  1366. * vpid of the top waiter task.
  1367. */
  1368. if (ret > 0) {
  1369. WARN_ON(pi_state);
  1370. drop_count++;
  1371. task_count++;
  1372. /*
  1373. * If we acquired the lock, then the user
  1374. * space value of uaddr2 should be vpid. It
  1375. * cannot be changed by the top waiter as it
  1376. * is blocked on hb2 lock if it tries to do
  1377. * so. If something fiddled with it behind our
  1378. * back the pi state lookup might unearth
  1379. * it. So we rather use the known value than
  1380. * rereading and handing potential crap to
  1381. * lookup_pi_state.
  1382. */
  1383. ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
  1384. }
  1385. switch (ret) {
  1386. case 0:
  1387. break;
  1388. case -EFAULT:
  1389. free_pi_state(pi_state);
  1390. pi_state = NULL;
  1391. double_unlock_hb(hb1, hb2);
  1392. put_futex_key(&key2);
  1393. put_futex_key(&key1);
  1394. ret = fault_in_user_writeable(uaddr2);
  1395. if (!ret)
  1396. goto retry;
  1397. goto out;
  1398. case -EAGAIN:
  1399. /* The owner was exiting, try again. */
  1400. free_pi_state(pi_state);
  1401. pi_state = NULL;
  1402. double_unlock_hb(hb1, hb2);
  1403. put_futex_key(&key2);
  1404. put_futex_key(&key1);
  1405. cond_resched();
  1406. goto retry;
  1407. default:
  1408. goto out_unlock;
  1409. }
  1410. }
  1411. head1 = &hb1->chain;
  1412. plist_for_each_entry_safe(this, next, head1, list) {
  1413. if (task_count - nr_wake >= nr_requeue)
  1414. break;
  1415. if (!match_futex(&this->key, &key1))
  1416. continue;
  1417. /*
  1418. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1419. * be paired with each other and no other futex ops.
  1420. *
  1421. * We should never be requeueing a futex_q with a pi_state,
  1422. * which is awaiting a futex_unlock_pi().
  1423. */
  1424. if ((requeue_pi && !this->rt_waiter) ||
  1425. (!requeue_pi && this->rt_waiter) ||
  1426. this->pi_state) {
  1427. ret = -EINVAL;
  1428. break;
  1429. }
  1430. /*
  1431. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1432. * lock, we already woke the top_waiter. If not, it will be
  1433. * woken by futex_unlock_pi().
  1434. */
  1435. if (++task_count <= nr_wake && !requeue_pi) {
  1436. wake_futex(this);
  1437. continue;
  1438. }
  1439. /* Ensure we requeue to the expected futex for requeue_pi. */
  1440. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1441. ret = -EINVAL;
  1442. break;
  1443. }
  1444. /*
  1445. * Requeue nr_requeue waiters and possibly one more in the case
  1446. * of requeue_pi if we couldn't acquire the lock atomically.
  1447. */
  1448. if (requeue_pi) {
  1449. /* Prepare the waiter to take the rt_mutex. */
  1450. atomic_inc(&pi_state->refcount);
  1451. this->pi_state = pi_state;
  1452. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1453. this->rt_waiter,
  1454. this->task, 1);
  1455. if (ret == 1) {
  1456. /* We got the lock. */
  1457. requeue_pi_wake_futex(this, &key2, hb2);
  1458. drop_count++;
  1459. continue;
  1460. } else if (ret) {
  1461. /* -EDEADLK */
  1462. this->pi_state = NULL;
  1463. free_pi_state(pi_state);
  1464. goto out_unlock;
  1465. }
  1466. }
  1467. requeue_futex(this, hb1, hb2, &key2);
  1468. drop_count++;
  1469. }
  1470. out_unlock:
  1471. free_pi_state(pi_state);
  1472. double_unlock_hb(hb1, hb2);
  1473. /*
  1474. * drop_futex_key_refs() must be called outside the spinlocks. During
  1475. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1476. * one at key2 and updated their key pointer. We no longer need to
  1477. * hold the references to key1.
  1478. */
  1479. while (--drop_count >= 0)
  1480. drop_futex_key_refs(&key1);
  1481. out_put_keys:
  1482. put_futex_key(&key2);
  1483. out_put_key1:
  1484. put_futex_key(&key1);
  1485. out:
  1486. return ret ? ret : task_count;
  1487. }
  1488. /* The key must be already stored in q->key. */
  1489. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1490. __acquires(&hb->lock)
  1491. {
  1492. struct futex_hash_bucket *hb;
  1493. hb = hash_futex(&q->key);
  1494. q->lock_ptr = &hb->lock;
  1495. spin_lock(&hb->lock);
  1496. return hb;
  1497. }
  1498. static inline void
  1499. queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
  1500. __releases(&hb->lock)
  1501. {
  1502. spin_unlock(&hb->lock);
  1503. }
  1504. /**
  1505. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1506. * @q: The futex_q to enqueue
  1507. * @hb: The destination hash bucket
  1508. *
  1509. * The hb->lock must be held by the caller, and is released here. A call to
  1510. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1511. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1512. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1513. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1514. * an example).
  1515. */
  1516. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1517. __releases(&hb->lock)
  1518. {
  1519. int prio;
  1520. /*
  1521. * The priority used to register this element is
  1522. * - either the real thread-priority for the real-time threads
  1523. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1524. * - or MAX_RT_PRIO for non-RT threads.
  1525. * Thus, all RT-threads are woken first in priority order, and
  1526. * the others are woken last, in FIFO order.
  1527. */
  1528. prio = min(current->normal_prio, MAX_RT_PRIO);
  1529. plist_node_init(&q->list, prio);
  1530. plist_add(&q->list, &hb->chain);
  1531. q->task = current;
  1532. spin_unlock(&hb->lock);
  1533. }
  1534. /**
  1535. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1536. * @q: The futex_q to unqueue
  1537. *
  1538. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1539. * be paired with exactly one earlier call to queue_me().
  1540. *
  1541. * Returns:
  1542. * 1 - if the futex_q was still queued (and we removed unqueued it)
  1543. * 0 - if the futex_q was already removed by the waking thread
  1544. */
  1545. static int unqueue_me(struct futex_q *q)
  1546. {
  1547. spinlock_t *lock_ptr;
  1548. int ret = 0;
  1549. /* In the common case we don't take the spinlock, which is nice. */
  1550. retry:
  1551. lock_ptr = q->lock_ptr;
  1552. barrier();
  1553. if (lock_ptr != NULL) {
  1554. spin_lock(lock_ptr);
  1555. /*
  1556. * q->lock_ptr can change between reading it and
  1557. * spin_lock(), causing us to take the wrong lock. This
  1558. * corrects the race condition.
  1559. *
  1560. * Reasoning goes like this: if we have the wrong lock,
  1561. * q->lock_ptr must have changed (maybe several times)
  1562. * between reading it and the spin_lock(). It can
  1563. * change again after the spin_lock() but only if it was
  1564. * already changed before the spin_lock(). It cannot,
  1565. * however, change back to the original value. Therefore
  1566. * we can detect whether we acquired the correct lock.
  1567. */
  1568. if (unlikely(lock_ptr != q->lock_ptr)) {
  1569. spin_unlock(lock_ptr);
  1570. goto retry;
  1571. }
  1572. __unqueue_futex(q);
  1573. BUG_ON(q->pi_state);
  1574. spin_unlock(lock_ptr);
  1575. ret = 1;
  1576. }
  1577. drop_futex_key_refs(&q->key);
  1578. return ret;
  1579. }
  1580. /*
  1581. * PI futexes can not be requeued and must remove themself from the
  1582. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1583. * and dropped here.
  1584. */
  1585. static void unqueue_me_pi(struct futex_q *q)
  1586. __releases(q->lock_ptr)
  1587. {
  1588. __unqueue_futex(q);
  1589. BUG_ON(!q->pi_state);
  1590. free_pi_state(q->pi_state);
  1591. q->pi_state = NULL;
  1592. spin_unlock(q->lock_ptr);
  1593. }
  1594. /*
  1595. * Fixup the pi_state owner with the new owner.
  1596. *
  1597. * Must be called with hash bucket lock held and mm->sem held for non
  1598. * private futexes.
  1599. */
  1600. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1601. struct task_struct *newowner)
  1602. {
  1603. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1604. struct futex_pi_state *pi_state = q->pi_state;
  1605. struct task_struct *oldowner = pi_state->owner;
  1606. u32 uval, uninitialized_var(curval), newval;
  1607. int ret;
  1608. /* Owner died? */
  1609. if (!pi_state->owner)
  1610. newtid |= FUTEX_OWNER_DIED;
  1611. /*
  1612. * We are here either because we stole the rtmutex from the
  1613. * previous highest priority waiter or we are the highest priority
  1614. * waiter but failed to get the rtmutex the first time.
  1615. * We have to replace the newowner TID in the user space variable.
  1616. * This must be atomic as we have to preserve the owner died bit here.
  1617. *
  1618. * Note: We write the user space value _before_ changing the pi_state
  1619. * because we can fault here. Imagine swapped out pages or a fork
  1620. * that marked all the anonymous memory readonly for cow.
  1621. *
  1622. * Modifying pi_state _before_ the user space value would
  1623. * leave the pi_state in an inconsistent state when we fault
  1624. * here, because we need to drop the hash bucket lock to
  1625. * handle the fault. This might be observed in the PID check
  1626. * in lookup_pi_state.
  1627. */
  1628. retry:
  1629. if (get_futex_value_locked(&uval, uaddr))
  1630. goto handle_fault;
  1631. while (1) {
  1632. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1633. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1634. goto handle_fault;
  1635. if (curval == uval)
  1636. break;
  1637. uval = curval;
  1638. }
  1639. /*
  1640. * We fixed up user space. Now we need to fix the pi_state
  1641. * itself.
  1642. */
  1643. if (pi_state->owner != NULL) {
  1644. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1645. WARN_ON(list_empty(&pi_state->list));
  1646. list_del_init(&pi_state->list);
  1647. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1648. }
  1649. pi_state->owner = newowner;
  1650. raw_spin_lock_irq(&newowner->pi_lock);
  1651. WARN_ON(!list_empty(&pi_state->list));
  1652. list_add(&pi_state->list, &newowner->pi_state_list);
  1653. raw_spin_unlock_irq(&newowner->pi_lock);
  1654. return 0;
  1655. /*
  1656. * To handle the page fault we need to drop the hash bucket
  1657. * lock here. That gives the other task (either the highest priority
  1658. * waiter itself or the task which stole the rtmutex) the
  1659. * chance to try the fixup of the pi_state. So once we are
  1660. * back from handling the fault we need to check the pi_state
  1661. * after reacquiring the hash bucket lock and before trying to
  1662. * do another fixup. When the fixup has been done already we
  1663. * simply return.
  1664. */
  1665. handle_fault:
  1666. spin_unlock(q->lock_ptr);
  1667. ret = fault_in_user_writeable(uaddr);
  1668. spin_lock(q->lock_ptr);
  1669. /*
  1670. * Check if someone else fixed it for us:
  1671. */
  1672. if (pi_state->owner != oldowner)
  1673. return 0;
  1674. if (ret)
  1675. return ret;
  1676. goto retry;
  1677. }
  1678. static long futex_wait_restart(struct restart_block *restart);
  1679. /**
  1680. * fixup_owner() - Post lock pi_state and corner case management
  1681. * @uaddr: user address of the futex
  1682. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1683. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1684. *
  1685. * After attempting to lock an rt_mutex, this function is called to cleanup
  1686. * the pi_state owner as well as handle race conditions that may allow us to
  1687. * acquire the lock. Must be called with the hb lock held.
  1688. *
  1689. * Returns:
  1690. * 1 - success, lock taken
  1691. * 0 - success, lock not taken
  1692. * <0 - on error (-EFAULT)
  1693. */
  1694. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  1695. {
  1696. struct task_struct *owner;
  1697. int ret = 0;
  1698. if (locked) {
  1699. /*
  1700. * Got the lock. We might not be the anticipated owner if we
  1701. * did a lock-steal - fix up the PI-state in that case:
  1702. */
  1703. if (q->pi_state->owner != current)
  1704. ret = fixup_pi_state_owner(uaddr, q, current);
  1705. goto out;
  1706. }
  1707. /*
  1708. * Catch the rare case, where the lock was released when we were on the
  1709. * way back before we locked the hash bucket.
  1710. */
  1711. if (q->pi_state->owner == current) {
  1712. /*
  1713. * Try to get the rt_mutex now. This might fail as some other
  1714. * task acquired the rt_mutex after we removed ourself from the
  1715. * rt_mutex waiters list.
  1716. */
  1717. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1718. locked = 1;
  1719. goto out;
  1720. }
  1721. /*
  1722. * pi_state is incorrect, some other task did a lock steal and
  1723. * we returned due to timeout or signal without taking the
  1724. * rt_mutex. Too late.
  1725. */
  1726. raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
  1727. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1728. if (!owner)
  1729. owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
  1730. raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
  1731. ret = fixup_pi_state_owner(uaddr, q, owner);
  1732. goto out;
  1733. }
  1734. /*
  1735. * Paranoia check. If we did not take the lock, then we should not be
  1736. * the owner of the rt_mutex.
  1737. */
  1738. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  1739. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  1740. "pi-state %p\n", ret,
  1741. q->pi_state->pi_mutex.owner,
  1742. q->pi_state->owner);
  1743. out:
  1744. return ret ? ret : locked;
  1745. }
  1746. /**
  1747. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  1748. * @hb: the futex hash bucket, must be locked by the caller
  1749. * @q: the futex_q to queue up on
  1750. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  1751. */
  1752. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  1753. struct hrtimer_sleeper *timeout)
  1754. {
  1755. /*
  1756. * The task state is guaranteed to be set before another task can
  1757. * wake it. set_current_state() is implemented using set_mb() and
  1758. * queue_me() calls spin_unlock() upon completion, both serializing
  1759. * access to the hash list and forcing another memory barrier.
  1760. */
  1761. set_current_state(TASK_INTERRUPTIBLE);
  1762. queue_me(q, hb);
  1763. /* Arm the timer */
  1764. if (timeout) {
  1765. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  1766. if (!hrtimer_active(&timeout->timer))
  1767. timeout->task = NULL;
  1768. }
  1769. /*
  1770. * If we have been removed from the hash list, then another task
  1771. * has tried to wake us, and we can skip the call to schedule().
  1772. */
  1773. if (likely(!plist_node_empty(&q->list))) {
  1774. /*
  1775. * If the timer has already expired, current will already be
  1776. * flagged for rescheduling. Only call schedule if there
  1777. * is no timeout, or if it has yet to expire.
  1778. */
  1779. if (!timeout || timeout->task)
  1780. freezable_schedule();
  1781. }
  1782. __set_current_state(TASK_RUNNING);
  1783. }
  1784. /**
  1785. * futex_wait_setup() - Prepare to wait on a futex
  1786. * @uaddr: the futex userspace address
  1787. * @val: the expected value
  1788. * @flags: futex flags (FLAGS_SHARED, etc.)
  1789. * @q: the associated futex_q
  1790. * @hb: storage for hash_bucket pointer to be returned to caller
  1791. *
  1792. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  1793. * compare it with the expected value. Handle atomic faults internally.
  1794. * Return with the hb lock held and a q.key reference on success, and unlocked
  1795. * with no q.key reference on failure.
  1796. *
  1797. * Returns:
  1798. * 0 - uaddr contains val and hb has been locked
  1799. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  1800. */
  1801. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  1802. struct futex_q *q, struct futex_hash_bucket **hb)
  1803. {
  1804. u32 uval;
  1805. int ret;
  1806. /*
  1807. * Access the page AFTER the hash-bucket is locked.
  1808. * Order is important:
  1809. *
  1810. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  1811. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  1812. *
  1813. * The basic logical guarantee of a futex is that it blocks ONLY
  1814. * if cond(var) is known to be true at the time of blocking, for
  1815. * any cond. If we locked the hash-bucket after testing *uaddr, that
  1816. * would open a race condition where we could block indefinitely with
  1817. * cond(var) false, which would violate the guarantee.
  1818. *
  1819. * On the other hand, we insert q and release the hash-bucket only
  1820. * after testing *uaddr. This guarantees that futex_wait() will NOT
  1821. * absorb a wakeup if *uaddr does not match the desired values
  1822. * while the syscall executes.
  1823. */
  1824. retry:
  1825. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  1826. if (unlikely(ret != 0))
  1827. return ret;
  1828. retry_private:
  1829. *hb = queue_lock(q);
  1830. ret = get_futex_value_locked(&uval, uaddr);
  1831. if (ret) {
  1832. queue_unlock(q, *hb);
  1833. ret = get_user(uval, uaddr);
  1834. if (ret)
  1835. goto out;
  1836. if (!(flags & FLAGS_SHARED))
  1837. goto retry_private;
  1838. put_futex_key(&q->key);
  1839. goto retry;
  1840. }
  1841. if (uval != val) {
  1842. queue_unlock(q, *hb);
  1843. ret = -EWOULDBLOCK;
  1844. }
  1845. out:
  1846. if (ret)
  1847. put_futex_key(&q->key);
  1848. return ret;
  1849. }
  1850. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  1851. ktime_t *abs_time, u32 bitset)
  1852. {
  1853. struct hrtimer_sleeper timeout, *to = NULL;
  1854. struct restart_block *restart;
  1855. struct futex_hash_bucket *hb;
  1856. struct futex_q q = futex_q_init;
  1857. int ret;
  1858. if (!bitset)
  1859. return -EINVAL;
  1860. q.bitset = bitset;
  1861. if (abs_time) {
  1862. to = &timeout;
  1863. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  1864. CLOCK_REALTIME : CLOCK_MONOTONIC,
  1865. HRTIMER_MODE_ABS);
  1866. hrtimer_init_sleeper(to, current);
  1867. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1868. current->timer_slack_ns);
  1869. }
  1870. retry:
  1871. /*
  1872. * Prepare to wait on uaddr. On success, holds hb lock and increments
  1873. * q.key refs.
  1874. */
  1875. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  1876. if (ret)
  1877. goto out;
  1878. /* queue_me and wait for wakeup, timeout, or a signal. */
  1879. futex_wait_queue_me(hb, &q, to);
  1880. /* If we were woken (and unqueued), we succeeded, whatever. */
  1881. ret = 0;
  1882. /* unqueue_me() drops q.key ref */
  1883. if (!unqueue_me(&q))
  1884. goto out;
  1885. ret = -ETIMEDOUT;
  1886. if (to && !to->task)
  1887. goto out;
  1888. /*
  1889. * We expect signal_pending(current), but we might be the
  1890. * victim of a spurious wakeup as well.
  1891. */
  1892. if (!signal_pending(current))
  1893. goto retry;
  1894. ret = -ERESTARTSYS;
  1895. if (!abs_time)
  1896. goto out;
  1897. restart = &current_thread_info()->restart_block;
  1898. restart->fn = futex_wait_restart;
  1899. restart->futex.uaddr = uaddr;
  1900. restart->futex.val = val;
  1901. restart->futex.time = abs_time->tv64;
  1902. restart->futex.bitset = bitset;
  1903. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  1904. ret = -ERESTART_RESTARTBLOCK;
  1905. out:
  1906. if (to) {
  1907. hrtimer_cancel(&to->timer);
  1908. destroy_hrtimer_on_stack(&to->timer);
  1909. }
  1910. return ret;
  1911. }
  1912. static long futex_wait_restart(struct restart_block *restart)
  1913. {
  1914. u32 __user *uaddr = restart->futex.uaddr;
  1915. ktime_t t, *tp = NULL;
  1916. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  1917. t.tv64 = restart->futex.time;
  1918. tp = &t;
  1919. }
  1920. restart->fn = do_no_restart_syscall;
  1921. return (long)futex_wait(uaddr, restart->futex.flags,
  1922. restart->futex.val, tp, restart->futex.bitset);
  1923. }
  1924. /*
  1925. * Userspace tried a 0 -> TID atomic transition of the futex value
  1926. * and failed. The kernel side here does the whole locking operation:
  1927. * if there are waiters then it will block, it does PI, etc. (Due to
  1928. * races the kernel might see a 0 value of the futex too.)
  1929. */
  1930. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
  1931. ktime_t *time, int trylock)
  1932. {
  1933. struct hrtimer_sleeper timeout, *to = NULL;
  1934. struct futex_hash_bucket *hb;
  1935. struct futex_q q = futex_q_init;
  1936. int res, ret;
  1937. if (refill_pi_state_cache())
  1938. return -ENOMEM;
  1939. if (time) {
  1940. to = &timeout;
  1941. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  1942. HRTIMER_MODE_ABS);
  1943. hrtimer_init_sleeper(to, current);
  1944. hrtimer_set_expires(&to->timer, *time);
  1945. }
  1946. retry:
  1947. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  1948. if (unlikely(ret != 0))
  1949. goto out;
  1950. retry_private:
  1951. hb = queue_lock(&q);
  1952. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  1953. if (unlikely(ret)) {
  1954. switch (ret) {
  1955. case 1:
  1956. /* We got the lock. */
  1957. ret = 0;
  1958. goto out_unlock_put_key;
  1959. case -EFAULT:
  1960. goto uaddr_faulted;
  1961. case -EAGAIN:
  1962. /*
  1963. * Task is exiting and we just wait for the
  1964. * exit to complete.
  1965. */
  1966. queue_unlock(&q, hb);
  1967. put_futex_key(&q.key);
  1968. cond_resched();
  1969. goto retry;
  1970. default:
  1971. goto out_unlock_put_key;
  1972. }
  1973. }
  1974. /*
  1975. * Only actually queue now that the atomic ops are done:
  1976. */
  1977. queue_me(&q, hb);
  1978. WARN_ON(!q.pi_state);
  1979. /*
  1980. * Block on the PI mutex:
  1981. */
  1982. if (!trylock)
  1983. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  1984. else {
  1985. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  1986. /* Fixup the trylock return value: */
  1987. ret = ret ? 0 : -EWOULDBLOCK;
  1988. }
  1989. spin_lock(q.lock_ptr);
  1990. /*
  1991. * Fixup the pi_state owner and possibly acquire the lock if we
  1992. * haven't already.
  1993. */
  1994. res = fixup_owner(uaddr, &q, !ret);
  1995. /*
  1996. * If fixup_owner() returned an error, proprogate that. If it acquired
  1997. * the lock, clear our -ETIMEDOUT or -EINTR.
  1998. */
  1999. if (res)
  2000. ret = (res < 0) ? res : 0;
  2001. /*
  2002. * If fixup_owner() faulted and was unable to handle the fault, unlock
  2003. * it and return the fault to userspace.
  2004. */
  2005. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  2006. rt_mutex_unlock(&q.pi_state->pi_mutex);
  2007. /* Unqueue and drop the lock */
  2008. unqueue_me_pi(&q);
  2009. goto out_put_key;
  2010. out_unlock_put_key:
  2011. queue_unlock(&q, hb);
  2012. out_put_key:
  2013. put_futex_key(&q.key);
  2014. out:
  2015. if (to)
  2016. destroy_hrtimer_on_stack(&to->timer);
  2017. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  2018. uaddr_faulted:
  2019. queue_unlock(&q, hb);
  2020. ret = fault_in_user_writeable(uaddr);
  2021. if (ret)
  2022. goto out_put_key;
  2023. if (!(flags & FLAGS_SHARED))
  2024. goto retry_private;
  2025. put_futex_key(&q.key);
  2026. goto retry;
  2027. }
  2028. /*
  2029. * Userspace attempted a TID -> 0 atomic transition, and failed.
  2030. * This is the in-kernel slowpath: we look up the PI state (if any),
  2031. * and do the rt-mutex unlock.
  2032. */
  2033. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  2034. {
  2035. struct futex_hash_bucket *hb;
  2036. struct futex_q *this, *next;
  2037. struct plist_head *head;
  2038. union futex_key key = FUTEX_KEY_INIT;
  2039. u32 uval, vpid = task_pid_vnr(current);
  2040. int ret;
  2041. retry:
  2042. if (get_user(uval, uaddr))
  2043. return -EFAULT;
  2044. /*
  2045. * We release only a lock we actually own:
  2046. */
  2047. if ((uval & FUTEX_TID_MASK) != vpid)
  2048. return -EPERM;
  2049. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  2050. if (unlikely(ret != 0))
  2051. goto out;
  2052. hb = hash_futex(&key);
  2053. spin_lock(&hb->lock);
  2054. /*
  2055. * To avoid races, try to do the TID -> 0 atomic transition
  2056. * again. If it succeeds then we can return without waking
  2057. * anyone else up. We only try this if neither the waiters nor
  2058. * the owner died bit are set.
  2059. */
  2060. if (!(uval & ~FUTEX_TID_MASK) &&
  2061. cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
  2062. goto pi_faulted;
  2063. /*
  2064. * Rare case: we managed to release the lock atomically,
  2065. * no need to wake anyone else up:
  2066. */
  2067. if (unlikely(uval == vpid))
  2068. goto out_unlock;
  2069. /*
  2070. * Ok, other tasks may need to be woken up - check waiters
  2071. * and do the wakeup if necessary:
  2072. */
  2073. head = &hb->chain;
  2074. plist_for_each_entry_safe(this, next, head, list) {
  2075. if (!match_futex (&this->key, &key))
  2076. continue;
  2077. ret = wake_futex_pi(uaddr, uval, this);
  2078. /*
  2079. * The atomic access to the futex value
  2080. * generated a pagefault, so retry the
  2081. * user-access and the wakeup:
  2082. */
  2083. if (ret == -EFAULT)
  2084. goto pi_faulted;
  2085. goto out_unlock;
  2086. }
  2087. /*
  2088. * No waiters - kernel unlocks the futex:
  2089. */
  2090. ret = unlock_futex_pi(uaddr, uval);
  2091. if (ret == -EFAULT)
  2092. goto pi_faulted;
  2093. out_unlock:
  2094. spin_unlock(&hb->lock);
  2095. put_futex_key(&key);
  2096. out:
  2097. return ret;
  2098. pi_faulted:
  2099. spin_unlock(&hb->lock);
  2100. put_futex_key(&key);
  2101. ret = fault_in_user_writeable(uaddr);
  2102. if (!ret)
  2103. goto retry;
  2104. return ret;
  2105. }
  2106. /**
  2107. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  2108. * @hb: the hash_bucket futex_q was original enqueued on
  2109. * @q: the futex_q woken while waiting to be requeued
  2110. * @key2: the futex_key of the requeue target futex
  2111. * @timeout: the timeout associated with the wait (NULL if none)
  2112. *
  2113. * Detect if the task was woken on the initial futex as opposed to the requeue
  2114. * target futex. If so, determine if it was a timeout or a signal that caused
  2115. * the wakeup and return the appropriate error code to the caller. Must be
  2116. * called with the hb lock held.
  2117. *
  2118. * Returns
  2119. * 0 - no early wakeup detected
  2120. * <0 - -ETIMEDOUT or -ERESTARTNOINTR
  2121. */
  2122. static inline
  2123. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  2124. struct futex_q *q, union futex_key *key2,
  2125. struct hrtimer_sleeper *timeout)
  2126. {
  2127. int ret = 0;
  2128. /*
  2129. * With the hb lock held, we avoid races while we process the wakeup.
  2130. * We only need to hold hb (and not hb2) to ensure atomicity as the
  2131. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  2132. * It can't be requeued from uaddr2 to something else since we don't
  2133. * support a PI aware source futex for requeue.
  2134. */
  2135. if (!match_futex(&q->key, key2)) {
  2136. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  2137. /*
  2138. * We were woken prior to requeue by a timeout or a signal.
  2139. * Unqueue the futex_q and determine which it was.
  2140. */
  2141. plist_del(&q->list, &hb->chain);
  2142. /* Handle spurious wakeups gracefully */
  2143. ret = -EWOULDBLOCK;
  2144. if (timeout && !timeout->task)
  2145. ret = -ETIMEDOUT;
  2146. else if (signal_pending(current))
  2147. ret = -ERESTARTNOINTR;
  2148. }
  2149. return ret;
  2150. }
  2151. /**
  2152. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  2153. * @uaddr: the futex we initially wait on (non-pi)
  2154. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  2155. * the same type, no requeueing from private to shared, etc.
  2156. * @val: the expected value of uaddr
  2157. * @abs_time: absolute timeout
  2158. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  2159. * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
  2160. * @uaddr2: the pi futex we will take prior to returning to user-space
  2161. *
  2162. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  2163. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  2164. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  2165. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  2166. * without one, the pi logic would not know which task to boost/deboost, if
  2167. * there was a need to.
  2168. *
  2169. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  2170. * via the following:
  2171. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  2172. * 2) wakeup on uaddr2 after a requeue
  2173. * 3) signal
  2174. * 4) timeout
  2175. *
  2176. * If 3, cleanup and return -ERESTARTNOINTR.
  2177. *
  2178. * If 2, we may then block on trying to take the rt_mutex and return via:
  2179. * 5) successful lock
  2180. * 6) signal
  2181. * 7) timeout
  2182. * 8) other lock acquisition failure
  2183. *
  2184. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  2185. *
  2186. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  2187. *
  2188. * Returns:
  2189. * 0 - On success
  2190. * <0 - On error
  2191. */
  2192. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  2193. u32 val, ktime_t *abs_time, u32 bitset,
  2194. u32 __user *uaddr2)
  2195. {
  2196. struct hrtimer_sleeper timeout, *to = NULL;
  2197. struct rt_mutex_waiter rt_waiter;
  2198. struct rt_mutex *pi_mutex = NULL;
  2199. struct futex_hash_bucket *hb;
  2200. union futex_key key2 = FUTEX_KEY_INIT;
  2201. struct futex_q q = futex_q_init;
  2202. int res, ret;
  2203. if (uaddr == uaddr2)
  2204. return -EINVAL;
  2205. if (!bitset)
  2206. return -EINVAL;
  2207. if (abs_time) {
  2208. to = &timeout;
  2209. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2210. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2211. HRTIMER_MODE_ABS);
  2212. hrtimer_init_sleeper(to, current);
  2213. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2214. current->timer_slack_ns);
  2215. }
  2216. /*
  2217. * The waiter is allocated on our stack, manipulated by the requeue
  2218. * code while we sleep on uaddr.
  2219. */
  2220. debug_rt_mutex_init_waiter(&rt_waiter);
  2221. rt_waiter.task = NULL;
  2222. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2223. if (unlikely(ret != 0))
  2224. goto out;
  2225. q.bitset = bitset;
  2226. q.rt_waiter = &rt_waiter;
  2227. q.requeue_pi_key = &key2;
  2228. /*
  2229. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2230. * count.
  2231. */
  2232. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2233. if (ret)
  2234. goto out_key2;
  2235. /*
  2236. * The check above which compares uaddrs is not sufficient for
  2237. * shared futexes. We need to compare the keys:
  2238. */
  2239. if (match_futex(&q.key, &key2)) {
  2240. queue_unlock(&q, hb);
  2241. ret = -EINVAL;
  2242. goto out_put_keys;
  2243. }
  2244. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2245. futex_wait_queue_me(hb, &q, to);
  2246. spin_lock(&hb->lock);
  2247. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2248. spin_unlock(&hb->lock);
  2249. if (ret)
  2250. goto out_put_keys;
  2251. /*
  2252. * In order for us to be here, we know our q.key == key2, and since
  2253. * we took the hb->lock above, we also know that futex_requeue() has
  2254. * completed and we no longer have to concern ourselves with a wakeup
  2255. * race with the atomic proxy lock acquisition by the requeue code. The
  2256. * futex_requeue dropped our key1 reference and incremented our key2
  2257. * reference count.
  2258. */
  2259. /* Check if the requeue code acquired the second futex for us. */
  2260. if (!q.rt_waiter) {
  2261. /*
  2262. * Got the lock. We might not be the anticipated owner if we
  2263. * did a lock-steal - fix up the PI-state in that case.
  2264. */
  2265. if (q.pi_state && (q.pi_state->owner != current)) {
  2266. spin_lock(q.lock_ptr);
  2267. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2268. spin_unlock(q.lock_ptr);
  2269. }
  2270. } else {
  2271. /*
  2272. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2273. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2274. * the pi_state.
  2275. */
  2276. WARN_ON(!q.pi_state);
  2277. pi_mutex = &q.pi_state->pi_mutex;
  2278. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
  2279. debug_rt_mutex_free_waiter(&rt_waiter);
  2280. spin_lock(q.lock_ptr);
  2281. /*
  2282. * Fixup the pi_state owner and possibly acquire the lock if we
  2283. * haven't already.
  2284. */
  2285. res = fixup_owner(uaddr2, &q, !ret);
  2286. /*
  2287. * If fixup_owner() returned an error, proprogate that. If it
  2288. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2289. */
  2290. if (res)
  2291. ret = (res < 0) ? res : 0;
  2292. /* Unqueue and drop the lock. */
  2293. unqueue_me_pi(&q);
  2294. }
  2295. /*
  2296. * If fixup_pi_state_owner() faulted and was unable to handle the
  2297. * fault, unlock the rt_mutex and return the fault to userspace.
  2298. */
  2299. if (ret == -EFAULT) {
  2300. if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
  2301. rt_mutex_unlock(pi_mutex);
  2302. } else if (ret == -EINTR) {
  2303. /*
  2304. * We've already been requeued, but cannot restart by calling
  2305. * futex_lock_pi() directly. We could restart this syscall, but
  2306. * it would detect that the user space "val" changed and return
  2307. * -EWOULDBLOCK. Save the overhead of the restart and return
  2308. * -EWOULDBLOCK directly.
  2309. */
  2310. ret = -EWOULDBLOCK;
  2311. }
  2312. out_put_keys:
  2313. put_futex_key(&q.key);
  2314. out_key2:
  2315. put_futex_key(&key2);
  2316. out:
  2317. if (to) {
  2318. hrtimer_cancel(&to->timer);
  2319. destroy_hrtimer_on_stack(&to->timer);
  2320. }
  2321. return ret;
  2322. }
  2323. /*
  2324. * Support for robust futexes: the kernel cleans up held futexes at
  2325. * thread exit time.
  2326. *
  2327. * Implementation: user-space maintains a per-thread list of locks it
  2328. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2329. * and marks all locks that are owned by this thread with the
  2330. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2331. * always manipulated with the lock held, so the list is private and
  2332. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2333. * field, to allow the kernel to clean up if the thread dies after
  2334. * acquiring the lock, but just before it could have added itself to
  2335. * the list. There can only be one such pending lock.
  2336. */
  2337. /**
  2338. * sys_set_robust_list() - Set the robust-futex list head of a task
  2339. * @head: pointer to the list-head
  2340. * @len: length of the list-head, as userspace expects
  2341. */
  2342. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2343. size_t, len)
  2344. {
  2345. if (!futex_cmpxchg_enabled)
  2346. return -ENOSYS;
  2347. /*
  2348. * The kernel knows only one size for now:
  2349. */
  2350. if (unlikely(len != sizeof(*head)))
  2351. return -EINVAL;
  2352. current->robust_list = head;
  2353. return 0;
  2354. }
  2355. /**
  2356. * sys_get_robust_list() - Get the robust-futex list head of a task
  2357. * @pid: pid of the process [zero for current task]
  2358. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2359. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2360. */
  2361. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2362. struct robust_list_head __user * __user *, head_ptr,
  2363. size_t __user *, len_ptr)
  2364. {
  2365. struct robust_list_head __user *head;
  2366. unsigned long ret;
  2367. struct task_struct *p;
  2368. if (!futex_cmpxchg_enabled)
  2369. return -ENOSYS;
  2370. rcu_read_lock();
  2371. ret = -ESRCH;
  2372. if (!pid)
  2373. p = current;
  2374. else {
  2375. p = find_task_by_vpid(pid);
  2376. if (!p)
  2377. goto err_unlock;
  2378. }
  2379. ret = -EPERM;
  2380. if (!ptrace_may_access(p, PTRACE_MODE_READ))
  2381. goto err_unlock;
  2382. head = p->robust_list;
  2383. rcu_read_unlock();
  2384. if (put_user(sizeof(*head), len_ptr))
  2385. return -EFAULT;
  2386. return put_user(head, head_ptr);
  2387. err_unlock:
  2388. rcu_read_unlock();
  2389. return ret;
  2390. }
  2391. /*
  2392. * Process a futex-list entry, check whether it's owned by the
  2393. * dying task, and do notification if so:
  2394. */
  2395. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2396. {
  2397. u32 uval, uninitialized_var(nval), mval;
  2398. /* Futex address must be 32bit aligned */
  2399. if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
  2400. return -1;
  2401. retry:
  2402. if (get_user(uval, uaddr))
  2403. return -1;
  2404. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2405. /*
  2406. * Ok, this dying thread is truly holding a futex
  2407. * of interest. Set the OWNER_DIED bit atomically
  2408. * via cmpxchg, and if the value had FUTEX_WAITERS
  2409. * set, wake up a waiter (if any). (We have to do a
  2410. * futex_wake() even if OWNER_DIED is already set -
  2411. * to handle the rare but possible case of recursive
  2412. * thread-death.) The rest of the cleanup is done in
  2413. * userspace.
  2414. */
  2415. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2416. /*
  2417. * We are not holding a lock here, but we want to have
  2418. * the pagefault_disable/enable() protection because
  2419. * we want to handle the fault gracefully. If the
  2420. * access fails we try to fault in the futex with R/W
  2421. * verification via get_user_pages. get_user() above
  2422. * does not guarantee R/W access. If that fails we
  2423. * give up and leave the futex locked.
  2424. */
  2425. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2426. if (fault_in_user_writeable(uaddr))
  2427. return -1;
  2428. goto retry;
  2429. }
  2430. if (nval != uval)
  2431. goto retry;
  2432. /*
  2433. * Wake robust non-PI futexes here. The wakeup of
  2434. * PI futexes happens in exit_pi_state():
  2435. */
  2436. if (!pi && (uval & FUTEX_WAITERS))
  2437. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2438. }
  2439. return 0;
  2440. }
  2441. /*
  2442. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2443. */
  2444. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2445. struct robust_list __user * __user *head,
  2446. unsigned int *pi)
  2447. {
  2448. unsigned long uentry;
  2449. if (get_user(uentry, (unsigned long __user *)head))
  2450. return -EFAULT;
  2451. *entry = (void __user *)(uentry & ~1UL);
  2452. *pi = uentry & 1;
  2453. return 0;
  2454. }
  2455. /*
  2456. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2457. * and mark any locks found there dead, and notify any waiters.
  2458. *
  2459. * We silently return on any sign of list-walking problem.
  2460. */
  2461. void exit_robust_list(struct task_struct *curr)
  2462. {
  2463. struct robust_list_head __user *head = curr->robust_list;
  2464. struct robust_list __user *entry, *next_entry, *pending;
  2465. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2466. unsigned int uninitialized_var(next_pi);
  2467. unsigned long futex_offset;
  2468. int rc;
  2469. if (!futex_cmpxchg_enabled)
  2470. return;
  2471. /*
  2472. * Fetch the list head (which was registered earlier, via
  2473. * sys_set_robust_list()):
  2474. */
  2475. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2476. return;
  2477. /*
  2478. * Fetch the relative futex offset:
  2479. */
  2480. if (get_user(futex_offset, &head->futex_offset))
  2481. return;
  2482. /*
  2483. * Fetch any possibly pending lock-add first, and handle it
  2484. * if it exists:
  2485. */
  2486. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2487. return;
  2488. next_entry = NULL; /* avoid warning with gcc */
  2489. while (entry != &head->list) {
  2490. /*
  2491. * Fetch the next entry in the list before calling
  2492. * handle_futex_death:
  2493. */
  2494. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2495. /*
  2496. * A pending lock might already be on the list, so
  2497. * don't process it twice:
  2498. */
  2499. if (entry != pending)
  2500. if (handle_futex_death((void __user *)entry + futex_offset,
  2501. curr, pi))
  2502. return;
  2503. if (rc)
  2504. return;
  2505. entry = next_entry;
  2506. pi = next_pi;
  2507. /*
  2508. * Avoid excessively long or circular lists:
  2509. */
  2510. if (!--limit)
  2511. break;
  2512. cond_resched();
  2513. }
  2514. if (pending)
  2515. handle_futex_death((void __user *)pending + futex_offset,
  2516. curr, pip);
  2517. }
  2518. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2519. u32 __user *uaddr2, u32 val2, u32 val3)
  2520. {
  2521. int cmd = op & FUTEX_CMD_MASK;
  2522. unsigned int flags = 0;
  2523. if (!(op & FUTEX_PRIVATE_FLAG))
  2524. flags |= FLAGS_SHARED;
  2525. if (op & FUTEX_CLOCK_REALTIME) {
  2526. flags |= FLAGS_CLOCKRT;
  2527. if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
  2528. return -ENOSYS;
  2529. }
  2530. switch (cmd) {
  2531. case FUTEX_LOCK_PI:
  2532. case FUTEX_UNLOCK_PI:
  2533. case FUTEX_TRYLOCK_PI:
  2534. case FUTEX_WAIT_REQUEUE_PI:
  2535. case FUTEX_CMP_REQUEUE_PI:
  2536. if (!futex_cmpxchg_enabled)
  2537. return -ENOSYS;
  2538. }
  2539. switch (cmd) {
  2540. case FUTEX_WAIT:
  2541. val3 = FUTEX_BITSET_MATCH_ANY;
  2542. case FUTEX_WAIT_BITSET:
  2543. return futex_wait(uaddr, flags, val, timeout, val3);
  2544. case FUTEX_WAKE:
  2545. val3 = FUTEX_BITSET_MATCH_ANY;
  2546. case FUTEX_WAKE_BITSET:
  2547. return futex_wake(uaddr, flags, val, val3);
  2548. case FUTEX_REQUEUE:
  2549. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2550. case FUTEX_CMP_REQUEUE:
  2551. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2552. case FUTEX_WAKE_OP:
  2553. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2554. case FUTEX_LOCK_PI:
  2555. return futex_lock_pi(uaddr, flags, val, timeout, 0);
  2556. case FUTEX_UNLOCK_PI:
  2557. return futex_unlock_pi(uaddr, flags);
  2558. case FUTEX_TRYLOCK_PI:
  2559. return futex_lock_pi(uaddr, flags, 0, timeout, 1);
  2560. case FUTEX_WAIT_REQUEUE_PI:
  2561. val3 = FUTEX_BITSET_MATCH_ANY;
  2562. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  2563. uaddr2);
  2564. case FUTEX_CMP_REQUEUE_PI:
  2565. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  2566. }
  2567. return -ENOSYS;
  2568. }
  2569. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2570. struct timespec __user *, utime, u32 __user *, uaddr2,
  2571. u32, val3)
  2572. {
  2573. struct timespec ts;
  2574. ktime_t t, *tp = NULL;
  2575. u32 val2 = 0;
  2576. int cmd = op & FUTEX_CMD_MASK;
  2577. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2578. cmd == FUTEX_WAIT_BITSET ||
  2579. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2580. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2581. return -EFAULT;
  2582. if (!timespec_valid(&ts))
  2583. return -EINVAL;
  2584. t = timespec_to_ktime(ts);
  2585. if (cmd == FUTEX_WAIT)
  2586. t = ktime_add_safe(ktime_get(), t);
  2587. tp = &t;
  2588. }
  2589. /*
  2590. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2591. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2592. */
  2593. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2594. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2595. val2 = (u32) (unsigned long) utime;
  2596. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2597. }
  2598. static int __init futex_init(void)
  2599. {
  2600. u32 curval;
  2601. unsigned int futex_shift;
  2602. unsigned long i;
  2603. #if CONFIG_BASE_SMALL
  2604. futex_hashsize = 16;
  2605. #else
  2606. futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
  2607. #endif
  2608. futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
  2609. futex_hashsize, 0,
  2610. futex_hashsize < 256 ? HASH_SMALL : 0,
  2611. &futex_shift, NULL,
  2612. futex_hashsize, futex_hashsize);
  2613. futex_hashsize = 1UL << futex_shift;
  2614. /*
  2615. * This will fail and we want it. Some arch implementations do
  2616. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2617. * functionality. We want to know that before we call in any
  2618. * of the complex code paths. Also we want to prevent
  2619. * registration of robust lists in that case. NULL is
  2620. * guaranteed to fault and we get -EFAULT on functional
  2621. * implementation, the non-functional ones will return
  2622. * -ENOSYS.
  2623. */
  2624. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  2625. futex_cmpxchg_enabled = 1;
  2626. for (i = 0; i < futex_hashsize; i++) {
  2627. plist_head_init(&futex_queues[i].chain);
  2628. spin_lock_init(&futex_queues[i].lock);
  2629. }
  2630. return 0;
  2631. }
  2632. __initcall(futex_init);