namespace.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/acct.h> /* acct_auto_close_mnt */
  19. #include <linux/ramfs.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_fs.h>
  24. #include "pnode.h"
  25. #include "internal.h"
  26. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  27. #define HASH_SIZE (1UL << HASH_SHIFT)
  28. static u64 event;
  29. static DEFINE_IDA(mnt_id_ida);
  30. static DEFINE_IDA(mnt_group_ida);
  31. static DEFINE_SPINLOCK(mnt_id_lock);
  32. static int mnt_id_start = 0;
  33. static int mnt_group_start = 1;
  34. static struct list_head *mount_hashtable __read_mostly;
  35. static struct kmem_cache *mnt_cache __read_mostly;
  36. static struct rw_semaphore namespace_sem;
  37. /* /sys/fs */
  38. struct kobject *fs_kobj;
  39. EXPORT_SYMBOL_GPL(fs_kobj);
  40. /*
  41. * vfsmount lock may be taken for read to prevent changes to the
  42. * vfsmount hash, ie. during mountpoint lookups or walking back
  43. * up the tree.
  44. *
  45. * It should be taken for write in all cases where the vfsmount
  46. * tree or hash is modified or when a vfsmount structure is modified.
  47. */
  48. DEFINE_BRLOCK(vfsmount_lock);
  49. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  50. {
  51. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  52. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  53. tmp = tmp + (tmp >> HASH_SHIFT);
  54. return tmp & (HASH_SIZE - 1);
  55. }
  56. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  57. /*
  58. * allocation is serialized by namespace_sem, but we need the spinlock to
  59. * serialize with freeing.
  60. */
  61. static int mnt_alloc_id(struct mount *mnt)
  62. {
  63. int res;
  64. retry:
  65. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  66. spin_lock(&mnt_id_lock);
  67. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  68. if (!res)
  69. mnt_id_start = mnt->mnt_id + 1;
  70. spin_unlock(&mnt_id_lock);
  71. if (res == -EAGAIN)
  72. goto retry;
  73. return res;
  74. }
  75. static void mnt_free_id(struct mount *mnt)
  76. {
  77. int id = mnt->mnt_id;
  78. spin_lock(&mnt_id_lock);
  79. ida_remove(&mnt_id_ida, id);
  80. if (mnt_id_start > id)
  81. mnt_id_start = id;
  82. spin_unlock(&mnt_id_lock);
  83. }
  84. /*
  85. * Allocate a new peer group ID
  86. *
  87. * mnt_group_ida is protected by namespace_sem
  88. */
  89. static int mnt_alloc_group_id(struct mount *mnt)
  90. {
  91. int res;
  92. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  93. return -ENOMEM;
  94. res = ida_get_new_above(&mnt_group_ida,
  95. mnt_group_start,
  96. &mnt->mnt_group_id);
  97. if (!res)
  98. mnt_group_start = mnt->mnt_group_id + 1;
  99. return res;
  100. }
  101. /*
  102. * Release a peer group ID
  103. */
  104. void mnt_release_group_id(struct mount *mnt)
  105. {
  106. int id = mnt->mnt_group_id;
  107. ida_remove(&mnt_group_ida, id);
  108. if (mnt_group_start > id)
  109. mnt_group_start = id;
  110. mnt->mnt_group_id = 0;
  111. }
  112. /*
  113. * vfsmount lock must be held for read
  114. */
  115. static inline void mnt_add_count(struct mount *mnt, int n)
  116. {
  117. #ifdef CONFIG_SMP
  118. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  119. #else
  120. preempt_disable();
  121. mnt->mnt_count += n;
  122. preempt_enable();
  123. #endif
  124. }
  125. /*
  126. * vfsmount lock must be held for write
  127. */
  128. unsigned int mnt_get_count(struct mount *mnt)
  129. {
  130. #ifdef CONFIG_SMP
  131. unsigned int count = 0;
  132. int cpu;
  133. for_each_possible_cpu(cpu) {
  134. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  135. }
  136. return count;
  137. #else
  138. return mnt->mnt_count;
  139. #endif
  140. }
  141. static struct mount *alloc_vfsmnt(const char *name)
  142. {
  143. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  144. if (mnt) {
  145. int err;
  146. err = mnt_alloc_id(mnt);
  147. if (err)
  148. goto out_free_cache;
  149. if (name) {
  150. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  151. if (!mnt->mnt_devname)
  152. goto out_free_id;
  153. }
  154. #ifdef CONFIG_SMP
  155. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  156. if (!mnt->mnt_pcp)
  157. goto out_free_devname;
  158. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  159. #else
  160. mnt->mnt_count = 1;
  161. mnt->mnt_writers = 0;
  162. #endif
  163. mnt->mnt.data = NULL;
  164. INIT_LIST_HEAD(&mnt->mnt_hash);
  165. INIT_LIST_HEAD(&mnt->mnt_child);
  166. INIT_LIST_HEAD(&mnt->mnt_mounts);
  167. INIT_LIST_HEAD(&mnt->mnt_list);
  168. INIT_LIST_HEAD(&mnt->mnt_expire);
  169. INIT_LIST_HEAD(&mnt->mnt_share);
  170. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  171. INIT_LIST_HEAD(&mnt->mnt_slave);
  172. #ifdef CONFIG_FSNOTIFY
  173. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  174. #endif
  175. }
  176. return mnt;
  177. #ifdef CONFIG_SMP
  178. out_free_devname:
  179. kfree(mnt->mnt_devname);
  180. #endif
  181. out_free_id:
  182. mnt_free_id(mnt);
  183. out_free_cache:
  184. kmem_cache_free(mnt_cache, mnt);
  185. return NULL;
  186. }
  187. /*
  188. * Most r/o checks on a fs are for operations that take
  189. * discrete amounts of time, like a write() or unlink().
  190. * We must keep track of when those operations start
  191. * (for permission checks) and when they end, so that
  192. * we can determine when writes are able to occur to
  193. * a filesystem.
  194. */
  195. /*
  196. * __mnt_is_readonly: check whether a mount is read-only
  197. * @mnt: the mount to check for its write status
  198. *
  199. * This shouldn't be used directly ouside of the VFS.
  200. * It does not guarantee that the filesystem will stay
  201. * r/w, just that it is right *now*. This can not and
  202. * should not be used in place of IS_RDONLY(inode).
  203. * mnt_want/drop_write() will _keep_ the filesystem
  204. * r/w.
  205. */
  206. int __mnt_is_readonly(struct vfsmount *mnt)
  207. {
  208. if (mnt->mnt_flags & MNT_READONLY)
  209. return 1;
  210. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  211. return 1;
  212. return 0;
  213. }
  214. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  215. static inline void mnt_inc_writers(struct mount *mnt)
  216. {
  217. #ifdef CONFIG_SMP
  218. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  219. #else
  220. mnt->mnt_writers++;
  221. #endif
  222. }
  223. static inline void mnt_dec_writers(struct mount *mnt)
  224. {
  225. #ifdef CONFIG_SMP
  226. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  227. #else
  228. mnt->mnt_writers--;
  229. #endif
  230. }
  231. static unsigned int mnt_get_writers(struct mount *mnt)
  232. {
  233. #ifdef CONFIG_SMP
  234. unsigned int count = 0;
  235. int cpu;
  236. for_each_possible_cpu(cpu) {
  237. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  238. }
  239. return count;
  240. #else
  241. return mnt->mnt_writers;
  242. #endif
  243. }
  244. static int mnt_is_readonly(struct vfsmount *mnt)
  245. {
  246. if (mnt->mnt_sb->s_readonly_remount)
  247. return 1;
  248. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  249. smp_rmb();
  250. return __mnt_is_readonly(mnt);
  251. }
  252. /*
  253. * Most r/o checks on a fs are for operations that take
  254. * discrete amounts of time, like a write() or unlink().
  255. * We must keep track of when those operations start
  256. * (for permission checks) and when they end, so that
  257. * we can determine when writes are able to occur to
  258. * a filesystem.
  259. */
  260. /**
  261. * mnt_want_write - get write access to a mount
  262. * @m: the mount on which to take a write
  263. *
  264. * This tells the low-level filesystem that a write is
  265. * about to be performed to it, and makes sure that
  266. * writes are allowed before returning success. When
  267. * the write operation is finished, mnt_drop_write()
  268. * must be called. This is effectively a refcount.
  269. */
  270. int mnt_want_write(struct vfsmount *m)
  271. {
  272. struct mount *mnt = real_mount(m);
  273. int ret = 0;
  274. preempt_disable();
  275. mnt_inc_writers(mnt);
  276. /*
  277. * The store to mnt_inc_writers must be visible before we pass
  278. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  279. * incremented count after it has set MNT_WRITE_HOLD.
  280. */
  281. smp_mb();
  282. while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  283. cpu_relax();
  284. /*
  285. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  286. * be set to match its requirements. So we must not load that until
  287. * MNT_WRITE_HOLD is cleared.
  288. */
  289. smp_rmb();
  290. if (mnt_is_readonly(m)) {
  291. mnt_dec_writers(mnt);
  292. ret = -EROFS;
  293. }
  294. preempt_enable();
  295. return ret;
  296. }
  297. EXPORT_SYMBOL_GPL(mnt_want_write);
  298. /**
  299. * mnt_clone_write - get write access to a mount
  300. * @mnt: the mount on which to take a write
  301. *
  302. * This is effectively like mnt_want_write, except
  303. * it must only be used to take an extra write reference
  304. * on a mountpoint that we already know has a write reference
  305. * on it. This allows some optimisation.
  306. *
  307. * After finished, mnt_drop_write must be called as usual to
  308. * drop the reference.
  309. */
  310. int mnt_clone_write(struct vfsmount *mnt)
  311. {
  312. /* superblock may be r/o */
  313. if (__mnt_is_readonly(mnt))
  314. return -EROFS;
  315. preempt_disable();
  316. mnt_inc_writers(real_mount(mnt));
  317. preempt_enable();
  318. return 0;
  319. }
  320. EXPORT_SYMBOL_GPL(mnt_clone_write);
  321. /**
  322. * mnt_want_write_file - get write access to a file's mount
  323. * @file: the file who's mount on which to take a write
  324. *
  325. * This is like mnt_want_write, but it takes a file and can
  326. * do some optimisations if the file is open for write already
  327. */
  328. int mnt_want_write_file(struct file *file)
  329. {
  330. struct inode *inode = file->f_dentry->d_inode;
  331. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  332. return mnt_want_write(file->f_path.mnt);
  333. else
  334. return mnt_clone_write(file->f_path.mnt);
  335. }
  336. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  337. /**
  338. * mnt_drop_write - give up write access to a mount
  339. * @mnt: the mount on which to give up write access
  340. *
  341. * Tells the low-level filesystem that we are done
  342. * performing writes to it. Must be matched with
  343. * mnt_want_write() call above.
  344. */
  345. void mnt_drop_write(struct vfsmount *mnt)
  346. {
  347. preempt_disable();
  348. mnt_dec_writers(real_mount(mnt));
  349. preempt_enable();
  350. }
  351. EXPORT_SYMBOL_GPL(mnt_drop_write);
  352. void mnt_drop_write_file(struct file *file)
  353. {
  354. mnt_drop_write(file->f_path.mnt);
  355. }
  356. EXPORT_SYMBOL(mnt_drop_write_file);
  357. static int mnt_make_readonly(struct mount *mnt)
  358. {
  359. int ret = 0;
  360. br_write_lock(&vfsmount_lock);
  361. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  362. /*
  363. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  364. * should be visible before we do.
  365. */
  366. smp_mb();
  367. /*
  368. * With writers on hold, if this value is zero, then there are
  369. * definitely no active writers (although held writers may subsequently
  370. * increment the count, they'll have to wait, and decrement it after
  371. * seeing MNT_READONLY).
  372. *
  373. * It is OK to have counter incremented on one CPU and decremented on
  374. * another: the sum will add up correctly. The danger would be when we
  375. * sum up each counter, if we read a counter before it is incremented,
  376. * but then read another CPU's count which it has been subsequently
  377. * decremented from -- we would see more decrements than we should.
  378. * MNT_WRITE_HOLD protects against this scenario, because
  379. * mnt_want_write first increments count, then smp_mb, then spins on
  380. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  381. * we're counting up here.
  382. */
  383. if (mnt_get_writers(mnt) > 0)
  384. ret = -EBUSY;
  385. else
  386. mnt->mnt.mnt_flags |= MNT_READONLY;
  387. /*
  388. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  389. * that become unheld will see MNT_READONLY.
  390. */
  391. smp_wmb();
  392. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  393. br_write_unlock(&vfsmount_lock);
  394. return ret;
  395. }
  396. static void __mnt_unmake_readonly(struct mount *mnt)
  397. {
  398. br_write_lock(&vfsmount_lock);
  399. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  400. br_write_unlock(&vfsmount_lock);
  401. }
  402. int sb_prepare_remount_readonly(struct super_block *sb)
  403. {
  404. struct mount *mnt;
  405. int err = 0;
  406. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  407. if (atomic_long_read(&sb->s_remove_count))
  408. return -EBUSY;
  409. br_write_lock(&vfsmount_lock);
  410. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  411. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  412. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  413. smp_mb();
  414. if (mnt_get_writers(mnt) > 0) {
  415. err = -EBUSY;
  416. break;
  417. }
  418. }
  419. }
  420. if (!err && atomic_long_read(&sb->s_remove_count))
  421. err = -EBUSY;
  422. if (!err) {
  423. sb->s_readonly_remount = 1;
  424. smp_wmb();
  425. }
  426. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  427. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  428. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  429. }
  430. br_write_unlock(&vfsmount_lock);
  431. return err;
  432. }
  433. static void free_vfsmnt(struct mount *mnt)
  434. {
  435. kfree(mnt->mnt.data);
  436. kfree(mnt->mnt_devname);
  437. mnt_free_id(mnt);
  438. #ifdef CONFIG_SMP
  439. free_percpu(mnt->mnt_pcp);
  440. #endif
  441. kmem_cache_free(mnt_cache, mnt);
  442. }
  443. /*
  444. * find the first or last mount at @dentry on vfsmount @mnt depending on
  445. * @dir. If @dir is set return the first mount else return the last mount.
  446. * vfsmount_lock must be held for read or write.
  447. */
  448. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  449. int dir)
  450. {
  451. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  452. struct list_head *tmp = head;
  453. struct mount *p, *found = NULL;
  454. for (;;) {
  455. tmp = dir ? tmp->next : tmp->prev;
  456. p = NULL;
  457. if (tmp == head)
  458. break;
  459. p = list_entry(tmp, struct mount, mnt_hash);
  460. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  461. found = p;
  462. break;
  463. }
  464. }
  465. return found;
  466. }
  467. /*
  468. * lookup_mnt - Return the first child mount mounted at path
  469. *
  470. * "First" means first mounted chronologically. If you create the
  471. * following mounts:
  472. *
  473. * mount /dev/sda1 /mnt
  474. * mount /dev/sda2 /mnt
  475. * mount /dev/sda3 /mnt
  476. *
  477. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  478. * return successively the root dentry and vfsmount of /dev/sda1, then
  479. * /dev/sda2, then /dev/sda3, then NULL.
  480. *
  481. * lookup_mnt takes a reference to the found vfsmount.
  482. */
  483. struct vfsmount *lookup_mnt(struct path *path)
  484. {
  485. struct mount *child_mnt;
  486. br_read_lock(&vfsmount_lock);
  487. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  488. if (child_mnt) {
  489. mnt_add_count(child_mnt, 1);
  490. br_read_unlock(&vfsmount_lock);
  491. return &child_mnt->mnt;
  492. } else {
  493. br_read_unlock(&vfsmount_lock);
  494. return NULL;
  495. }
  496. }
  497. static inline int check_mnt(struct mount *mnt)
  498. {
  499. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  500. }
  501. /*
  502. * vfsmount lock must be held for write
  503. */
  504. static void touch_mnt_namespace(struct mnt_namespace *ns)
  505. {
  506. if (ns) {
  507. ns->event = ++event;
  508. wake_up_interruptible(&ns->poll);
  509. }
  510. }
  511. /*
  512. * vfsmount lock must be held for write
  513. */
  514. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  515. {
  516. if (ns && ns->event != event) {
  517. ns->event = event;
  518. wake_up_interruptible(&ns->poll);
  519. }
  520. }
  521. /*
  522. * Clear dentry's mounted state if it has no remaining mounts.
  523. * vfsmount_lock must be held for write.
  524. */
  525. static void dentry_reset_mounted(struct dentry *dentry)
  526. {
  527. unsigned u;
  528. for (u = 0; u < HASH_SIZE; u++) {
  529. struct mount *p;
  530. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  531. if (p->mnt_mountpoint == dentry)
  532. return;
  533. }
  534. }
  535. spin_lock(&dentry->d_lock);
  536. dentry->d_flags &= ~DCACHE_MOUNTED;
  537. spin_unlock(&dentry->d_lock);
  538. }
  539. /*
  540. * vfsmount lock must be held for write
  541. */
  542. static void detach_mnt(struct mount *mnt, struct path *old_path)
  543. {
  544. old_path->dentry = mnt->mnt_mountpoint;
  545. old_path->mnt = &mnt->mnt_parent->mnt;
  546. mnt->mnt_parent = mnt;
  547. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  548. list_del_init(&mnt->mnt_child);
  549. list_del_init(&mnt->mnt_hash);
  550. dentry_reset_mounted(old_path->dentry);
  551. }
  552. /*
  553. * vfsmount lock must be held for write
  554. */
  555. void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
  556. struct mount *child_mnt)
  557. {
  558. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  559. child_mnt->mnt_mountpoint = dget(dentry);
  560. child_mnt->mnt_parent = mnt;
  561. spin_lock(&dentry->d_lock);
  562. dentry->d_flags |= DCACHE_MOUNTED;
  563. spin_unlock(&dentry->d_lock);
  564. }
  565. /*
  566. * vfsmount lock must be held for write
  567. */
  568. static void attach_mnt(struct mount *mnt, struct path *path)
  569. {
  570. mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
  571. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  572. hash(path->mnt, path->dentry));
  573. list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
  574. }
  575. /*
  576. * vfsmount lock must be held for write
  577. */
  578. static void commit_tree(struct mount *mnt)
  579. {
  580. struct mount *parent = mnt->mnt_parent;
  581. struct mount *m;
  582. LIST_HEAD(head);
  583. struct mnt_namespace *n = parent->mnt_ns;
  584. BUG_ON(parent == mnt);
  585. list_add_tail(&head, &mnt->mnt_list);
  586. list_for_each_entry(m, &head, mnt_list)
  587. m->mnt_ns = n;
  588. list_splice(&head, n->list.prev);
  589. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  590. hash(&parent->mnt, mnt->mnt_mountpoint));
  591. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  592. touch_mnt_namespace(n);
  593. }
  594. static struct mount *next_mnt(struct mount *p, struct mount *root)
  595. {
  596. struct list_head *next = p->mnt_mounts.next;
  597. if (next == &p->mnt_mounts) {
  598. while (1) {
  599. if (p == root)
  600. return NULL;
  601. next = p->mnt_child.next;
  602. if (next != &p->mnt_parent->mnt_mounts)
  603. break;
  604. p = p->mnt_parent;
  605. }
  606. }
  607. return list_entry(next, struct mount, mnt_child);
  608. }
  609. static struct mount *skip_mnt_tree(struct mount *p)
  610. {
  611. struct list_head *prev = p->mnt_mounts.prev;
  612. while (prev != &p->mnt_mounts) {
  613. p = list_entry(prev, struct mount, mnt_child);
  614. prev = p->mnt_mounts.prev;
  615. }
  616. return p;
  617. }
  618. struct vfsmount *
  619. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  620. {
  621. struct mount *mnt;
  622. struct dentry *root;
  623. if (!type)
  624. return ERR_PTR(-ENODEV);
  625. mnt = alloc_vfsmnt(name);
  626. if (!mnt)
  627. return ERR_PTR(-ENOMEM);
  628. if (type->alloc_mnt_data) {
  629. mnt->mnt.data = type->alloc_mnt_data();
  630. if (!mnt->mnt.data) {
  631. mnt_free_id(mnt);
  632. free_vfsmnt(mnt);
  633. return ERR_PTR(-ENOMEM);
  634. }
  635. }
  636. if (flags & MS_KERNMOUNT)
  637. mnt->mnt.mnt_flags = MNT_INTERNAL;
  638. root = mount_fs(type, flags, name, &mnt->mnt, data);
  639. if (IS_ERR(root)) {
  640. free_vfsmnt(mnt);
  641. return ERR_CAST(root);
  642. }
  643. mnt->mnt.mnt_root = root;
  644. mnt->mnt.mnt_sb = root->d_sb;
  645. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  646. mnt->mnt_parent = mnt;
  647. br_write_lock(&vfsmount_lock);
  648. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  649. br_write_unlock(&vfsmount_lock);
  650. return &mnt->mnt;
  651. }
  652. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  653. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  654. int flag)
  655. {
  656. struct super_block *sb = old->mnt.mnt_sb;
  657. struct mount *mnt;
  658. int err;
  659. mnt = alloc_vfsmnt(old->mnt_devname);
  660. if (!mnt)
  661. return ERR_PTR(-ENOMEM);
  662. if (sb->s_op->clone_mnt_data) {
  663. mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
  664. if (!mnt->mnt.data) {
  665. goto out_free;
  666. }
  667. }
  668. if (flag & (CL_SLAVE | CL_PRIVATE))
  669. mnt->mnt_group_id = 0; /* not a peer of original */
  670. else
  671. mnt->mnt_group_id = old->mnt_group_id;
  672. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  673. err = mnt_alloc_group_id(mnt);
  674. if (err)
  675. goto out_free;
  676. }
  677. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  678. atomic_inc(&sb->s_active);
  679. mnt->mnt.mnt_sb = sb;
  680. mnt->mnt.mnt_root = dget(root);
  681. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  682. mnt->mnt_parent = mnt;
  683. br_write_lock(&vfsmount_lock);
  684. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  685. br_write_unlock(&vfsmount_lock);
  686. if (flag & CL_SLAVE) {
  687. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  688. mnt->mnt_master = old;
  689. CLEAR_MNT_SHARED(mnt);
  690. } else if (!(flag & CL_PRIVATE)) {
  691. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  692. list_add(&mnt->mnt_share, &old->mnt_share);
  693. if (IS_MNT_SLAVE(old))
  694. list_add(&mnt->mnt_slave, &old->mnt_slave);
  695. mnt->mnt_master = old->mnt_master;
  696. }
  697. if (flag & CL_MAKE_SHARED)
  698. set_mnt_shared(mnt);
  699. /* stick the duplicate mount on the same expiry list
  700. * as the original if that was on one */
  701. if (flag & CL_EXPIRE) {
  702. if (!list_empty(&old->mnt_expire))
  703. list_add(&mnt->mnt_expire, &old->mnt_expire);
  704. }
  705. return mnt;
  706. out_free:
  707. free_vfsmnt(mnt);
  708. return ERR_PTR(err);
  709. }
  710. static inline void mntfree(struct mount *mnt)
  711. {
  712. struct vfsmount *m = &mnt->mnt;
  713. struct super_block *sb = m->mnt_sb;
  714. /*
  715. * This probably indicates that somebody messed
  716. * up a mnt_want/drop_write() pair. If this
  717. * happens, the filesystem was probably unable
  718. * to make r/w->r/o transitions.
  719. */
  720. /*
  721. * The locking used to deal with mnt_count decrement provides barriers,
  722. * so mnt_get_writers() below is safe.
  723. */
  724. WARN_ON(mnt_get_writers(mnt));
  725. fsnotify_vfsmount_delete(m);
  726. dput(m->mnt_root);
  727. free_vfsmnt(mnt);
  728. deactivate_super(sb);
  729. }
  730. static void mntput_no_expire(struct mount *mnt)
  731. {
  732. put_again:
  733. #ifdef CONFIG_SMP
  734. br_read_lock(&vfsmount_lock);
  735. if (likely(mnt->mnt_ns)) {
  736. /* shouldn't be the last one */
  737. mnt_add_count(mnt, -1);
  738. br_read_unlock(&vfsmount_lock);
  739. return;
  740. }
  741. br_read_unlock(&vfsmount_lock);
  742. br_write_lock(&vfsmount_lock);
  743. mnt_add_count(mnt, -1);
  744. if (mnt_get_count(mnt)) {
  745. br_write_unlock(&vfsmount_lock);
  746. return;
  747. }
  748. #else
  749. mnt_add_count(mnt, -1);
  750. if (likely(mnt_get_count(mnt)))
  751. return;
  752. br_write_lock(&vfsmount_lock);
  753. #endif
  754. if (unlikely(mnt->mnt_pinned)) {
  755. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  756. mnt->mnt_pinned = 0;
  757. br_write_unlock(&vfsmount_lock);
  758. acct_auto_close_mnt(&mnt->mnt);
  759. goto put_again;
  760. }
  761. list_del(&mnt->mnt_instance);
  762. br_write_unlock(&vfsmount_lock);
  763. mntfree(mnt);
  764. }
  765. void mntput(struct vfsmount *mnt)
  766. {
  767. if (mnt) {
  768. struct mount *m = real_mount(mnt);
  769. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  770. if (unlikely(m->mnt_expiry_mark))
  771. m->mnt_expiry_mark = 0;
  772. mntput_no_expire(m);
  773. }
  774. }
  775. EXPORT_SYMBOL(mntput);
  776. struct vfsmount *mntget(struct vfsmount *mnt)
  777. {
  778. if (mnt)
  779. mnt_add_count(real_mount(mnt), 1);
  780. return mnt;
  781. }
  782. EXPORT_SYMBOL(mntget);
  783. void mnt_pin(struct vfsmount *mnt)
  784. {
  785. br_write_lock(&vfsmount_lock);
  786. real_mount(mnt)->mnt_pinned++;
  787. br_write_unlock(&vfsmount_lock);
  788. }
  789. EXPORT_SYMBOL(mnt_pin);
  790. void mnt_unpin(struct vfsmount *m)
  791. {
  792. struct mount *mnt = real_mount(m);
  793. br_write_lock(&vfsmount_lock);
  794. if (mnt->mnt_pinned) {
  795. mnt_add_count(mnt, 1);
  796. mnt->mnt_pinned--;
  797. }
  798. br_write_unlock(&vfsmount_lock);
  799. }
  800. EXPORT_SYMBOL(mnt_unpin);
  801. static inline void mangle(struct seq_file *m, const char *s)
  802. {
  803. seq_escape(m, s, " \t\n\\");
  804. }
  805. /*
  806. * Simple .show_options callback for filesystems which don't want to
  807. * implement more complex mount option showing.
  808. *
  809. * See also save_mount_options().
  810. */
  811. int generic_show_options(struct seq_file *m, struct dentry *root)
  812. {
  813. const char *options;
  814. rcu_read_lock();
  815. options = rcu_dereference(root->d_sb->s_options);
  816. if (options != NULL && options[0]) {
  817. seq_putc(m, ',');
  818. mangle(m, options);
  819. }
  820. rcu_read_unlock();
  821. return 0;
  822. }
  823. EXPORT_SYMBOL(generic_show_options);
  824. /*
  825. * If filesystem uses generic_show_options(), this function should be
  826. * called from the fill_super() callback.
  827. *
  828. * The .remount_fs callback usually needs to be handled in a special
  829. * way, to make sure, that previous options are not overwritten if the
  830. * remount fails.
  831. *
  832. * Also note, that if the filesystem's .remount_fs function doesn't
  833. * reset all options to their default value, but changes only newly
  834. * given options, then the displayed options will not reflect reality
  835. * any more.
  836. */
  837. void save_mount_options(struct super_block *sb, char *options)
  838. {
  839. BUG_ON(sb->s_options);
  840. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  841. }
  842. EXPORT_SYMBOL(save_mount_options);
  843. void replace_mount_options(struct super_block *sb, char *options)
  844. {
  845. char *old = sb->s_options;
  846. rcu_assign_pointer(sb->s_options, options);
  847. if (old) {
  848. synchronize_rcu();
  849. kfree(old);
  850. }
  851. }
  852. EXPORT_SYMBOL(replace_mount_options);
  853. #ifdef CONFIG_PROC_FS
  854. /* iterator; we want it to have access to namespace_sem, thus here... */
  855. static void *m_start(struct seq_file *m, loff_t *pos)
  856. {
  857. struct proc_mounts *p = m->private;
  858. down_read(&namespace_sem);
  859. if (p->cached_event == p->ns->event) {
  860. void *v = p->cached_mount;
  861. if (*pos == p->cached_index)
  862. return v;
  863. if (*pos == p->cached_index + 1) {
  864. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  865. return p->cached_mount = v;
  866. }
  867. }
  868. p->cached_event = p->ns->event;
  869. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  870. p->cached_index = *pos;
  871. return p->cached_mount;
  872. }
  873. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  874. {
  875. struct proc_mounts *p = m->private;
  876. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  877. p->cached_index = *pos;
  878. return p->cached_mount;
  879. }
  880. static void m_stop(struct seq_file *m, void *v)
  881. {
  882. up_read(&namespace_sem);
  883. }
  884. static int m_show(struct seq_file *m, void *v)
  885. {
  886. struct proc_mounts *p = m->private;
  887. struct mount *r = list_entry(v, struct mount, mnt_list);
  888. return p->show(m, &r->mnt);
  889. }
  890. const struct seq_operations mounts_op = {
  891. .start = m_start,
  892. .next = m_next,
  893. .stop = m_stop,
  894. .show = m_show,
  895. };
  896. #endif /* CONFIG_PROC_FS */
  897. /**
  898. * may_umount_tree - check if a mount tree is busy
  899. * @mnt: root of mount tree
  900. *
  901. * This is called to check if a tree of mounts has any
  902. * open files, pwds, chroots or sub mounts that are
  903. * busy.
  904. */
  905. int may_umount_tree(struct vfsmount *m)
  906. {
  907. struct mount *mnt = real_mount(m);
  908. int actual_refs = 0;
  909. int minimum_refs = 0;
  910. struct mount *p;
  911. BUG_ON(!m);
  912. /* write lock needed for mnt_get_count */
  913. br_write_lock(&vfsmount_lock);
  914. for (p = mnt; p; p = next_mnt(p, mnt)) {
  915. actual_refs += mnt_get_count(p);
  916. minimum_refs += 2;
  917. }
  918. br_write_unlock(&vfsmount_lock);
  919. if (actual_refs > minimum_refs)
  920. return 0;
  921. return 1;
  922. }
  923. EXPORT_SYMBOL(may_umount_tree);
  924. /**
  925. * may_umount - check if a mount point is busy
  926. * @mnt: root of mount
  927. *
  928. * This is called to check if a mount point has any
  929. * open files, pwds, chroots or sub mounts. If the
  930. * mount has sub mounts this will return busy
  931. * regardless of whether the sub mounts are busy.
  932. *
  933. * Doesn't take quota and stuff into account. IOW, in some cases it will
  934. * give false negatives. The main reason why it's here is that we need
  935. * a non-destructive way to look for easily umountable filesystems.
  936. */
  937. int may_umount(struct vfsmount *mnt)
  938. {
  939. int ret = 1;
  940. down_read(&namespace_sem);
  941. br_write_lock(&vfsmount_lock);
  942. if (propagate_mount_busy(real_mount(mnt), 2))
  943. ret = 0;
  944. br_write_unlock(&vfsmount_lock);
  945. up_read(&namespace_sem);
  946. return ret;
  947. }
  948. EXPORT_SYMBOL(may_umount);
  949. void release_mounts(struct list_head *head)
  950. {
  951. struct mount *mnt;
  952. while (!list_empty(head)) {
  953. mnt = list_first_entry(head, struct mount, mnt_hash);
  954. list_del_init(&mnt->mnt_hash);
  955. if (mnt_has_parent(mnt)) {
  956. struct dentry *dentry;
  957. struct mount *m;
  958. br_write_lock(&vfsmount_lock);
  959. dentry = mnt->mnt_mountpoint;
  960. m = mnt->mnt_parent;
  961. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  962. mnt->mnt_parent = mnt;
  963. m->mnt_ghosts--;
  964. br_write_unlock(&vfsmount_lock);
  965. dput(dentry);
  966. mntput(&m->mnt);
  967. }
  968. mntput(&mnt->mnt);
  969. }
  970. }
  971. /*
  972. * vfsmount lock must be held for write
  973. * namespace_sem must be held for write
  974. */
  975. void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
  976. {
  977. LIST_HEAD(tmp_list);
  978. struct mount *p;
  979. for (p = mnt; p; p = next_mnt(p, mnt))
  980. list_move(&p->mnt_hash, &tmp_list);
  981. list_for_each_entry(p, &tmp_list, mnt_hash)
  982. list_del_init(&p->mnt_child);
  983. if (propagate)
  984. propagate_umount(&tmp_list);
  985. list_for_each_entry(p, &tmp_list, mnt_hash) {
  986. list_del_init(&p->mnt_expire);
  987. list_del_init(&p->mnt_list);
  988. __touch_mnt_namespace(p->mnt_ns);
  989. p->mnt_ns = NULL;
  990. if (mnt_has_parent(p)) {
  991. p->mnt_parent->mnt_ghosts++;
  992. dentry_reset_mounted(p->mnt_mountpoint);
  993. }
  994. change_mnt_propagation(p, MS_PRIVATE);
  995. }
  996. list_splice(&tmp_list, kill);
  997. }
  998. static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
  999. static int do_umount(struct mount *mnt, int flags)
  1000. {
  1001. struct super_block *sb = mnt->mnt.mnt_sb;
  1002. int retval;
  1003. LIST_HEAD(umount_list);
  1004. retval = security_sb_umount(&mnt->mnt, flags);
  1005. if (retval)
  1006. return retval;
  1007. /*
  1008. * Allow userspace to request a mountpoint be expired rather than
  1009. * unmounting unconditionally. Unmount only happens if:
  1010. * (1) the mark is already set (the mark is cleared by mntput())
  1011. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1012. */
  1013. if (flags & MNT_EXPIRE) {
  1014. if (&mnt->mnt == current->fs->root.mnt ||
  1015. flags & (MNT_FORCE | MNT_DETACH))
  1016. return -EINVAL;
  1017. /*
  1018. * probably don't strictly need the lock here if we examined
  1019. * all race cases, but it's a slowpath.
  1020. */
  1021. br_write_lock(&vfsmount_lock);
  1022. if (mnt_get_count(mnt) != 2) {
  1023. br_write_unlock(&vfsmount_lock);
  1024. return -EBUSY;
  1025. }
  1026. br_write_unlock(&vfsmount_lock);
  1027. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1028. return -EAGAIN;
  1029. }
  1030. /*
  1031. * If we may have to abort operations to get out of this
  1032. * mount, and they will themselves hold resources we must
  1033. * allow the fs to do things. In the Unix tradition of
  1034. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1035. * might fail to complete on the first run through as other tasks
  1036. * must return, and the like. Thats for the mount program to worry
  1037. * about for the moment.
  1038. */
  1039. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1040. sb->s_op->umount_begin(sb);
  1041. }
  1042. /*
  1043. * No sense to grab the lock for this test, but test itself looks
  1044. * somewhat bogus. Suggestions for better replacement?
  1045. * Ho-hum... In principle, we might treat that as umount + switch
  1046. * to rootfs. GC would eventually take care of the old vfsmount.
  1047. * Actually it makes sense, especially if rootfs would contain a
  1048. * /reboot - static binary that would close all descriptors and
  1049. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1050. */
  1051. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1052. /*
  1053. * Special case for "unmounting" root ...
  1054. * we just try to remount it readonly.
  1055. */
  1056. down_write(&sb->s_umount);
  1057. if (!(sb->s_flags & MS_RDONLY))
  1058. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1059. up_write(&sb->s_umount);
  1060. return retval;
  1061. }
  1062. down_write(&namespace_sem);
  1063. br_write_lock(&vfsmount_lock);
  1064. event++;
  1065. if (!(flags & MNT_DETACH))
  1066. shrink_submounts(mnt, &umount_list);
  1067. retval = -EBUSY;
  1068. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1069. if (!list_empty(&mnt->mnt_list))
  1070. umount_tree(mnt, 1, &umount_list);
  1071. retval = 0;
  1072. }
  1073. br_write_unlock(&vfsmount_lock);
  1074. up_write(&namespace_sem);
  1075. release_mounts(&umount_list);
  1076. return retval;
  1077. }
  1078. /*
  1079. * Now umount can handle mount points as well as block devices.
  1080. * This is important for filesystems which use unnamed block devices.
  1081. *
  1082. * We now support a flag for forced unmount like the other 'big iron'
  1083. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1084. */
  1085. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1086. {
  1087. struct path path;
  1088. struct mount *mnt;
  1089. int retval;
  1090. int lookup_flags = 0;
  1091. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1092. return -EINVAL;
  1093. if (!(flags & UMOUNT_NOFOLLOW))
  1094. lookup_flags |= LOOKUP_FOLLOW;
  1095. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1096. if (retval)
  1097. goto out;
  1098. mnt = real_mount(path.mnt);
  1099. retval = -EINVAL;
  1100. if (path.dentry != path.mnt->mnt_root)
  1101. goto dput_and_out;
  1102. if (!check_mnt(mnt))
  1103. goto dput_and_out;
  1104. retval = -EPERM;
  1105. if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
  1106. goto dput_and_out;
  1107. retval = do_umount(mnt, flags);
  1108. dput_and_out:
  1109. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1110. dput(path.dentry);
  1111. mntput_no_expire(mnt);
  1112. out:
  1113. return retval;
  1114. }
  1115. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1116. /*
  1117. * The 2.0 compatible umount. No flags.
  1118. */
  1119. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1120. {
  1121. return sys_umount(name, 0);
  1122. }
  1123. #endif
  1124. static int mount_is_safe(struct path *path)
  1125. {
  1126. if (ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
  1127. return 0;
  1128. return -EPERM;
  1129. #ifdef notyet
  1130. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1131. return -EPERM;
  1132. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1133. if (current_uid() != path->dentry->d_inode->i_uid)
  1134. return -EPERM;
  1135. }
  1136. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1137. return -EPERM;
  1138. return 0;
  1139. #endif
  1140. }
  1141. static bool mnt_ns_loop(struct path *path)
  1142. {
  1143. /* Could bind mounting the mount namespace inode cause a
  1144. * mount namespace loop?
  1145. */
  1146. struct inode *inode = path->dentry->d_inode;
  1147. struct proc_inode *ei;
  1148. struct mnt_namespace *mnt_ns;
  1149. if (!proc_ns_inode(inode))
  1150. return false;
  1151. ei = PROC_I(inode);
  1152. if (ei->ns_ops != &mntns_operations)
  1153. return false;
  1154. mnt_ns = ei->ns;
  1155. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1156. }
  1157. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1158. int flag)
  1159. {
  1160. struct mount *res, *p, *q, *r;
  1161. struct path path;
  1162. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1163. return ERR_PTR(-EINVAL);
  1164. res = q = clone_mnt(mnt, dentry, flag);
  1165. if (IS_ERR(q))
  1166. return q;
  1167. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1168. p = mnt;
  1169. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1170. struct mount *s;
  1171. if (!is_subdir(r->mnt_mountpoint, dentry))
  1172. continue;
  1173. for (s = r; s; s = next_mnt(s, r)) {
  1174. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1175. s = skip_mnt_tree(s);
  1176. continue;
  1177. }
  1178. while (p != s->mnt_parent) {
  1179. p = p->mnt_parent;
  1180. q = q->mnt_parent;
  1181. }
  1182. p = s;
  1183. path.mnt = &q->mnt;
  1184. path.dentry = p->mnt_mountpoint;
  1185. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1186. if (IS_ERR(q))
  1187. goto out;
  1188. br_write_lock(&vfsmount_lock);
  1189. list_add_tail(&q->mnt_list, &res->mnt_list);
  1190. attach_mnt(q, &path);
  1191. br_write_unlock(&vfsmount_lock);
  1192. }
  1193. }
  1194. return res;
  1195. out:
  1196. if (res) {
  1197. LIST_HEAD(umount_list);
  1198. br_write_lock(&vfsmount_lock);
  1199. umount_tree(res, 0, &umount_list);
  1200. br_write_unlock(&vfsmount_lock);
  1201. release_mounts(&umount_list);
  1202. }
  1203. return q;
  1204. }
  1205. /* Caller should check returned pointer for errors */
  1206. struct vfsmount *collect_mounts(struct path *path)
  1207. {
  1208. struct mount *tree;
  1209. down_write(&namespace_sem);
  1210. if (!check_mnt(real_mount(path->mnt)))
  1211. tree = ERR_PTR(-EINVAL);
  1212. else
  1213. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1214. CL_COPY_ALL | CL_PRIVATE);
  1215. up_write(&namespace_sem);
  1216. if (IS_ERR(tree))
  1217. return NULL;
  1218. return &tree->mnt;
  1219. }
  1220. void drop_collected_mounts(struct vfsmount *mnt)
  1221. {
  1222. LIST_HEAD(umount_list);
  1223. down_write(&namespace_sem);
  1224. br_write_lock(&vfsmount_lock);
  1225. umount_tree(real_mount(mnt), 0, &umount_list);
  1226. br_write_unlock(&vfsmount_lock);
  1227. up_write(&namespace_sem);
  1228. release_mounts(&umount_list);
  1229. }
  1230. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1231. struct vfsmount *root)
  1232. {
  1233. struct mount *mnt;
  1234. int res = f(root, arg);
  1235. if (res)
  1236. return res;
  1237. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1238. res = f(&mnt->mnt, arg);
  1239. if (res)
  1240. return res;
  1241. }
  1242. return 0;
  1243. }
  1244. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1245. {
  1246. struct mount *p;
  1247. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1248. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1249. mnt_release_group_id(p);
  1250. }
  1251. }
  1252. static int invent_group_ids(struct mount *mnt, bool recurse)
  1253. {
  1254. struct mount *p;
  1255. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1256. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1257. int err = mnt_alloc_group_id(p);
  1258. if (err) {
  1259. cleanup_group_ids(mnt, p);
  1260. return err;
  1261. }
  1262. }
  1263. }
  1264. return 0;
  1265. }
  1266. /*
  1267. * @source_mnt : mount tree to be attached
  1268. * @nd : place the mount tree @source_mnt is attached
  1269. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1270. * store the parent mount and mountpoint dentry.
  1271. * (done when source_mnt is moved)
  1272. *
  1273. * NOTE: in the table below explains the semantics when a source mount
  1274. * of a given type is attached to a destination mount of a given type.
  1275. * ---------------------------------------------------------------------------
  1276. * | BIND MOUNT OPERATION |
  1277. * |**************************************************************************
  1278. * | source-->| shared | private | slave | unbindable |
  1279. * | dest | | | | |
  1280. * | | | | | | |
  1281. * | v | | | | |
  1282. * |**************************************************************************
  1283. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1284. * | | | | | |
  1285. * |non-shared| shared (+) | private | slave (*) | invalid |
  1286. * ***************************************************************************
  1287. * A bind operation clones the source mount and mounts the clone on the
  1288. * destination mount.
  1289. *
  1290. * (++) the cloned mount is propagated to all the mounts in the propagation
  1291. * tree of the destination mount and the cloned mount is added to
  1292. * the peer group of the source mount.
  1293. * (+) the cloned mount is created under the destination mount and is marked
  1294. * as shared. The cloned mount is added to the peer group of the source
  1295. * mount.
  1296. * (+++) the mount is propagated to all the mounts in the propagation tree
  1297. * of the destination mount and the cloned mount is made slave
  1298. * of the same master as that of the source mount. The cloned mount
  1299. * is marked as 'shared and slave'.
  1300. * (*) the cloned mount is made a slave of the same master as that of the
  1301. * source mount.
  1302. *
  1303. * ---------------------------------------------------------------------------
  1304. * | MOVE MOUNT OPERATION |
  1305. * |**************************************************************************
  1306. * | source-->| shared | private | slave | unbindable |
  1307. * | dest | | | | |
  1308. * | | | | | | |
  1309. * | v | | | | |
  1310. * |**************************************************************************
  1311. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1312. * | | | | | |
  1313. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1314. * ***************************************************************************
  1315. *
  1316. * (+) the mount is moved to the destination. And is then propagated to
  1317. * all the mounts in the propagation tree of the destination mount.
  1318. * (+*) the mount is moved to the destination.
  1319. * (+++) the mount is moved to the destination and is then propagated to
  1320. * all the mounts belonging to the destination mount's propagation tree.
  1321. * the mount is marked as 'shared and slave'.
  1322. * (*) the mount continues to be a slave at the new location.
  1323. *
  1324. * if the source mount is a tree, the operations explained above is
  1325. * applied to each mount in the tree.
  1326. * Must be called without spinlocks held, since this function can sleep
  1327. * in allocations.
  1328. */
  1329. static int attach_recursive_mnt(struct mount *source_mnt,
  1330. struct path *path, struct path *parent_path)
  1331. {
  1332. LIST_HEAD(tree_list);
  1333. struct mount *dest_mnt = real_mount(path->mnt);
  1334. struct dentry *dest_dentry = path->dentry;
  1335. struct mount *child, *p;
  1336. int err;
  1337. if (IS_MNT_SHARED(dest_mnt)) {
  1338. err = invent_group_ids(source_mnt, true);
  1339. if (err)
  1340. goto out;
  1341. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1342. br_write_lock(&vfsmount_lock);
  1343. if (err)
  1344. goto out_cleanup_ids;
  1345. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1346. set_mnt_shared(p);
  1347. } else {
  1348. br_write_lock(&vfsmount_lock);
  1349. }
  1350. if (parent_path) {
  1351. detach_mnt(source_mnt, parent_path);
  1352. attach_mnt(source_mnt, path);
  1353. touch_mnt_namespace(source_mnt->mnt_ns);
  1354. } else {
  1355. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1356. commit_tree(source_mnt);
  1357. }
  1358. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1359. list_del_init(&child->mnt_hash);
  1360. commit_tree(child);
  1361. }
  1362. br_write_unlock(&vfsmount_lock);
  1363. return 0;
  1364. out_cleanup_ids:
  1365. while (!list_empty(&tree_list)) {
  1366. child = list_first_entry(&tree_list, struct mount, mnt_hash);
  1367. umount_tree(child, 0, &tree_list);
  1368. }
  1369. br_write_unlock(&vfsmount_lock);
  1370. cleanup_group_ids(source_mnt, NULL);
  1371. out:
  1372. return err;
  1373. }
  1374. static int lock_mount(struct path *path)
  1375. {
  1376. struct vfsmount *mnt;
  1377. retry:
  1378. mutex_lock(&path->dentry->d_inode->i_mutex);
  1379. if (unlikely(cant_mount(path->dentry))) {
  1380. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1381. return -ENOENT;
  1382. }
  1383. down_write(&namespace_sem);
  1384. mnt = lookup_mnt(path);
  1385. if (likely(!mnt))
  1386. return 0;
  1387. up_write(&namespace_sem);
  1388. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1389. path_put(path);
  1390. path->mnt = mnt;
  1391. path->dentry = dget(mnt->mnt_root);
  1392. goto retry;
  1393. }
  1394. static void unlock_mount(struct path *path)
  1395. {
  1396. up_write(&namespace_sem);
  1397. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1398. }
  1399. static int graft_tree(struct mount *mnt, struct path *path)
  1400. {
  1401. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1402. return -EINVAL;
  1403. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1404. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1405. return -ENOTDIR;
  1406. if (d_unlinked(path->dentry))
  1407. return -ENOENT;
  1408. return attach_recursive_mnt(mnt, path, NULL);
  1409. }
  1410. /*
  1411. * Sanity check the flags to change_mnt_propagation.
  1412. */
  1413. static int flags_to_propagation_type(int flags)
  1414. {
  1415. int type = flags & ~(MS_REC | MS_SILENT);
  1416. /* Fail if any non-propagation flags are set */
  1417. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1418. return 0;
  1419. /* Only one propagation flag should be set */
  1420. if (!is_power_of_2(type))
  1421. return 0;
  1422. return type;
  1423. }
  1424. /*
  1425. * recursively change the type of the mountpoint.
  1426. */
  1427. static int do_change_type(struct path *path, int flag)
  1428. {
  1429. struct mount *m;
  1430. struct mount *mnt = real_mount(path->mnt);
  1431. int recurse = flag & MS_REC;
  1432. int type;
  1433. int err = 0;
  1434. if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
  1435. return -EPERM;
  1436. if (path->dentry != path->mnt->mnt_root)
  1437. return -EINVAL;
  1438. type = flags_to_propagation_type(flag);
  1439. if (!type)
  1440. return -EINVAL;
  1441. down_write(&namespace_sem);
  1442. if (type == MS_SHARED) {
  1443. err = invent_group_ids(mnt, recurse);
  1444. if (err)
  1445. goto out_unlock;
  1446. }
  1447. br_write_lock(&vfsmount_lock);
  1448. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1449. change_mnt_propagation(m, type);
  1450. br_write_unlock(&vfsmount_lock);
  1451. out_unlock:
  1452. up_write(&namespace_sem);
  1453. return err;
  1454. }
  1455. /*
  1456. * do loopback mount.
  1457. */
  1458. static int do_loopback(struct path *path, const char *old_name,
  1459. int recurse)
  1460. {
  1461. LIST_HEAD(umount_list);
  1462. struct path old_path;
  1463. struct mount *mnt = NULL, *old;
  1464. int err = mount_is_safe(path);
  1465. if (err)
  1466. return err;
  1467. if (!old_name || !*old_name)
  1468. return -EINVAL;
  1469. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1470. if (err)
  1471. return err;
  1472. err = -EINVAL;
  1473. if (mnt_ns_loop(&old_path))
  1474. goto out;
  1475. err = lock_mount(path);
  1476. if (err)
  1477. goto out;
  1478. old = real_mount(old_path.mnt);
  1479. err = -EINVAL;
  1480. if (IS_MNT_UNBINDABLE(old))
  1481. goto out2;
  1482. if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
  1483. goto out2;
  1484. if (recurse)
  1485. mnt = copy_tree(old, old_path.dentry, 0);
  1486. else
  1487. mnt = clone_mnt(old, old_path.dentry, 0);
  1488. if (IS_ERR(mnt)) {
  1489. err = PTR_ERR(mnt);
  1490. goto out;
  1491. }
  1492. err = graft_tree(mnt, path);
  1493. if (err) {
  1494. br_write_lock(&vfsmount_lock);
  1495. umount_tree(mnt, 0, &umount_list);
  1496. br_write_unlock(&vfsmount_lock);
  1497. }
  1498. out2:
  1499. unlock_mount(path);
  1500. release_mounts(&umount_list);
  1501. out:
  1502. path_put(&old_path);
  1503. return err;
  1504. }
  1505. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1506. {
  1507. int error = 0;
  1508. int readonly_request = 0;
  1509. if (ms_flags & MS_RDONLY)
  1510. readonly_request = 1;
  1511. if (readonly_request == __mnt_is_readonly(mnt))
  1512. return 0;
  1513. if (readonly_request)
  1514. error = mnt_make_readonly(real_mount(mnt));
  1515. else
  1516. __mnt_unmake_readonly(real_mount(mnt));
  1517. return error;
  1518. }
  1519. /*
  1520. * change filesystem flags. dir should be a physical root of filesystem.
  1521. * If you've mounted a non-root directory somewhere and want to do remount
  1522. * on it - tough luck.
  1523. */
  1524. static int do_remount(struct path *path, int flags, int mnt_flags,
  1525. void *data)
  1526. {
  1527. int err;
  1528. struct super_block *sb = path->mnt->mnt_sb;
  1529. struct mount *mnt = real_mount(path->mnt);
  1530. if (!capable(CAP_SYS_ADMIN))
  1531. return -EPERM;
  1532. if (!check_mnt(mnt))
  1533. return -EINVAL;
  1534. if (path->dentry != path->mnt->mnt_root)
  1535. return -EINVAL;
  1536. err = security_sb_remount(sb, data);
  1537. if (err)
  1538. return err;
  1539. down_write(&sb->s_umount);
  1540. if (flags & MS_BIND)
  1541. err = change_mount_flags(path->mnt, flags);
  1542. else {
  1543. err = do_remount_sb2(path->mnt, sb, flags, data, 0);
  1544. br_write_lock(&vfsmount_lock);
  1545. propagate_remount(mnt);
  1546. br_write_unlock(&vfsmount_lock);
  1547. }
  1548. if (!err) {
  1549. br_write_lock(&vfsmount_lock);
  1550. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  1551. mnt->mnt.mnt_flags = mnt_flags;
  1552. br_write_unlock(&vfsmount_lock);
  1553. }
  1554. up_write(&sb->s_umount);
  1555. if (!err) {
  1556. br_write_lock(&vfsmount_lock);
  1557. touch_mnt_namespace(mnt->mnt_ns);
  1558. br_write_unlock(&vfsmount_lock);
  1559. }
  1560. return err;
  1561. }
  1562. static inline int tree_contains_unbindable(struct mount *mnt)
  1563. {
  1564. struct mount *p;
  1565. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1566. if (IS_MNT_UNBINDABLE(p))
  1567. return 1;
  1568. }
  1569. return 0;
  1570. }
  1571. static int do_move_mount(struct path *path, const char *old_name)
  1572. {
  1573. struct path old_path, parent_path;
  1574. struct mount *p;
  1575. struct mount *old;
  1576. int err = 0;
  1577. if (!ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
  1578. return -EPERM;
  1579. if (!old_name || !*old_name)
  1580. return -EINVAL;
  1581. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1582. if (err)
  1583. return err;
  1584. err = lock_mount(path);
  1585. if (err < 0)
  1586. goto out;
  1587. old = real_mount(old_path.mnt);
  1588. p = real_mount(path->mnt);
  1589. err = -EINVAL;
  1590. if (!check_mnt(p) || !check_mnt(old))
  1591. goto out1;
  1592. if (d_unlinked(path->dentry))
  1593. goto out1;
  1594. err = -EINVAL;
  1595. if (old_path.dentry != old_path.mnt->mnt_root)
  1596. goto out1;
  1597. if (!mnt_has_parent(old))
  1598. goto out1;
  1599. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1600. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1601. goto out1;
  1602. /*
  1603. * Don't move a mount residing in a shared parent.
  1604. */
  1605. if (IS_MNT_SHARED(old->mnt_parent))
  1606. goto out1;
  1607. /*
  1608. * Don't move a mount tree containing unbindable mounts to a destination
  1609. * mount which is shared.
  1610. */
  1611. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1612. goto out1;
  1613. err = -ELOOP;
  1614. for (; mnt_has_parent(p); p = p->mnt_parent)
  1615. if (p == old)
  1616. goto out1;
  1617. err = attach_recursive_mnt(old, path, &parent_path);
  1618. if (err)
  1619. goto out1;
  1620. /* if the mount is moved, it should no longer be expire
  1621. * automatically */
  1622. list_del_init(&old->mnt_expire);
  1623. out1:
  1624. unlock_mount(path);
  1625. out:
  1626. if (!err)
  1627. path_put(&parent_path);
  1628. path_put(&old_path);
  1629. return err;
  1630. }
  1631. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1632. {
  1633. int err;
  1634. const char *subtype = strchr(fstype, '.');
  1635. if (subtype) {
  1636. subtype++;
  1637. err = -EINVAL;
  1638. if (!subtype[0])
  1639. goto err;
  1640. } else
  1641. subtype = "";
  1642. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1643. err = -ENOMEM;
  1644. if (!mnt->mnt_sb->s_subtype)
  1645. goto err;
  1646. return mnt;
  1647. err:
  1648. mntput(mnt);
  1649. return ERR_PTR(err);
  1650. }
  1651. /*
  1652. * add a mount into a namespace's mount tree
  1653. */
  1654. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1655. {
  1656. int err;
  1657. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  1658. err = lock_mount(path);
  1659. if (err)
  1660. return err;
  1661. err = -EINVAL;
  1662. if (unlikely(!check_mnt(real_mount(path->mnt)))) {
  1663. /* that's acceptable only for automounts done in private ns */
  1664. if (!(mnt_flags & MNT_SHRINKABLE))
  1665. goto unlock;
  1666. /* ... and for those we'd better have mountpoint still alive */
  1667. if (!real_mount(path->mnt)->mnt_ns)
  1668. goto unlock;
  1669. }
  1670. /* Refuse the same filesystem on the same mount point */
  1671. err = -EBUSY;
  1672. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1673. path->mnt->mnt_root == path->dentry)
  1674. goto unlock;
  1675. err = -EINVAL;
  1676. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1677. goto unlock;
  1678. newmnt->mnt.mnt_flags = mnt_flags;
  1679. err = graft_tree(newmnt, path);
  1680. unlock:
  1681. unlock_mount(path);
  1682. return err;
  1683. }
  1684. /*
  1685. * create a new mount for userspace and request it to be added into the
  1686. * namespace's tree
  1687. */
  1688. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1689. int mnt_flags, const char *name, void *data)
  1690. {
  1691. struct file_system_type *type;
  1692. struct user_namespace *user_ns;
  1693. struct vfsmount *mnt;
  1694. int err;
  1695. if (!fstype)
  1696. return -EINVAL;
  1697. /* we need capabilities... */
  1698. user_ns = real_mount(path->mnt)->mnt_ns->user_ns;
  1699. if (!ns_capable(user_ns, CAP_SYS_ADMIN))
  1700. return -EPERM;
  1701. type = get_fs_type(fstype);
  1702. if (!type)
  1703. return -ENODEV;
  1704. if (user_ns != &init_user_ns) {
  1705. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1706. put_filesystem(type);
  1707. return -EPERM;
  1708. }
  1709. /* Only in special cases allow devices from mounts
  1710. * created outside the initial user namespace.
  1711. */
  1712. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1713. flags |= MS_NODEV;
  1714. mnt_flags |= MNT_NODEV;
  1715. }
  1716. }
  1717. mnt = vfs_kern_mount(type, flags, name, data);
  1718. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1719. !mnt->mnt_sb->s_subtype)
  1720. mnt = fs_set_subtype(mnt, fstype);
  1721. put_filesystem(type);
  1722. if (IS_ERR(mnt))
  1723. return PTR_ERR(mnt);
  1724. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1725. if (err)
  1726. mntput(mnt);
  1727. return err;
  1728. }
  1729. int finish_automount(struct vfsmount *m, struct path *path)
  1730. {
  1731. struct mount *mnt = real_mount(m);
  1732. int err;
  1733. /* The new mount record should have at least 2 refs to prevent it being
  1734. * expired before we get a chance to add it
  1735. */
  1736. BUG_ON(mnt_get_count(mnt) < 2);
  1737. if (m->mnt_sb == path->mnt->mnt_sb &&
  1738. m->mnt_root == path->dentry) {
  1739. err = -ELOOP;
  1740. goto fail;
  1741. }
  1742. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1743. if (!err)
  1744. return 0;
  1745. fail:
  1746. /* remove m from any expiration list it may be on */
  1747. if (!list_empty(&mnt->mnt_expire)) {
  1748. down_write(&namespace_sem);
  1749. br_write_lock(&vfsmount_lock);
  1750. list_del_init(&mnt->mnt_expire);
  1751. br_write_unlock(&vfsmount_lock);
  1752. up_write(&namespace_sem);
  1753. }
  1754. mntput(m);
  1755. mntput(m);
  1756. return err;
  1757. }
  1758. /**
  1759. * mnt_set_expiry - Put a mount on an expiration list
  1760. * @mnt: The mount to list.
  1761. * @expiry_list: The list to add the mount to.
  1762. */
  1763. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1764. {
  1765. down_write(&namespace_sem);
  1766. br_write_lock(&vfsmount_lock);
  1767. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1768. br_write_unlock(&vfsmount_lock);
  1769. up_write(&namespace_sem);
  1770. }
  1771. EXPORT_SYMBOL(mnt_set_expiry);
  1772. /*
  1773. * process a list of expirable mountpoints with the intent of discarding any
  1774. * mountpoints that aren't in use and haven't been touched since last we came
  1775. * here
  1776. */
  1777. void mark_mounts_for_expiry(struct list_head *mounts)
  1778. {
  1779. struct mount *mnt, *next;
  1780. LIST_HEAD(graveyard);
  1781. LIST_HEAD(umounts);
  1782. if (list_empty(mounts))
  1783. return;
  1784. down_write(&namespace_sem);
  1785. br_write_lock(&vfsmount_lock);
  1786. /* extract from the expiration list every vfsmount that matches the
  1787. * following criteria:
  1788. * - only referenced by its parent vfsmount
  1789. * - still marked for expiry (marked on the last call here; marks are
  1790. * cleared by mntput())
  1791. */
  1792. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1793. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1794. propagate_mount_busy(mnt, 1))
  1795. continue;
  1796. list_move(&mnt->mnt_expire, &graveyard);
  1797. }
  1798. while (!list_empty(&graveyard)) {
  1799. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1800. touch_mnt_namespace(mnt->mnt_ns);
  1801. umount_tree(mnt, 1, &umounts);
  1802. }
  1803. br_write_unlock(&vfsmount_lock);
  1804. up_write(&namespace_sem);
  1805. release_mounts(&umounts);
  1806. }
  1807. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1808. /*
  1809. * Ripoff of 'select_parent()'
  1810. *
  1811. * search the list of submounts for a given mountpoint, and move any
  1812. * shrinkable submounts to the 'graveyard' list.
  1813. */
  1814. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1815. {
  1816. struct mount *this_parent = parent;
  1817. struct list_head *next;
  1818. int found = 0;
  1819. repeat:
  1820. next = this_parent->mnt_mounts.next;
  1821. resume:
  1822. while (next != &this_parent->mnt_mounts) {
  1823. struct list_head *tmp = next;
  1824. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1825. next = tmp->next;
  1826. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1827. continue;
  1828. /*
  1829. * Descend a level if the d_mounts list is non-empty.
  1830. */
  1831. if (!list_empty(&mnt->mnt_mounts)) {
  1832. this_parent = mnt;
  1833. goto repeat;
  1834. }
  1835. if (!propagate_mount_busy(mnt, 1)) {
  1836. list_move_tail(&mnt->mnt_expire, graveyard);
  1837. found++;
  1838. }
  1839. }
  1840. /*
  1841. * All done at this level ... ascend and resume the search
  1842. */
  1843. if (this_parent != parent) {
  1844. next = this_parent->mnt_child.next;
  1845. this_parent = this_parent->mnt_parent;
  1846. goto resume;
  1847. }
  1848. return found;
  1849. }
  1850. /*
  1851. * process a list of expirable mountpoints with the intent of discarding any
  1852. * submounts of a specific parent mountpoint
  1853. *
  1854. * vfsmount_lock must be held for write
  1855. */
  1856. static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
  1857. {
  1858. LIST_HEAD(graveyard);
  1859. struct mount *m;
  1860. /* extract submounts of 'mountpoint' from the expiration list */
  1861. while (select_submounts(mnt, &graveyard)) {
  1862. while (!list_empty(&graveyard)) {
  1863. m = list_first_entry(&graveyard, struct mount,
  1864. mnt_expire);
  1865. touch_mnt_namespace(m->mnt_ns);
  1866. umount_tree(m, 1, umounts);
  1867. }
  1868. }
  1869. }
  1870. /*
  1871. * Some copy_from_user() implementations do not return the exact number of
  1872. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1873. * Note that this function differs from copy_from_user() in that it will oops
  1874. * on bad values of `to', rather than returning a short copy.
  1875. */
  1876. static long exact_copy_from_user(void *to, const void __user * from,
  1877. unsigned long n)
  1878. {
  1879. char *t = to;
  1880. const char __user *f = from;
  1881. char c;
  1882. if (!access_ok(VERIFY_READ, from, n))
  1883. return n;
  1884. while (n) {
  1885. if (__get_user(c, f)) {
  1886. memset(t, 0, n);
  1887. break;
  1888. }
  1889. *t++ = c;
  1890. f++;
  1891. n--;
  1892. }
  1893. return n;
  1894. }
  1895. int copy_mount_options(const void __user * data, unsigned long *where)
  1896. {
  1897. int i;
  1898. unsigned long page;
  1899. unsigned long size;
  1900. *where = 0;
  1901. if (!data)
  1902. return 0;
  1903. if (!(page = __get_free_page(GFP_KERNEL)))
  1904. return -ENOMEM;
  1905. /* We only care that *some* data at the address the user
  1906. * gave us is valid. Just in case, we'll zero
  1907. * the remainder of the page.
  1908. */
  1909. /* copy_from_user cannot cross TASK_SIZE ! */
  1910. size = TASK_SIZE - (unsigned long)data;
  1911. if (size > PAGE_SIZE)
  1912. size = PAGE_SIZE;
  1913. i = size - exact_copy_from_user((void *)page, data, size);
  1914. if (!i) {
  1915. free_page(page);
  1916. return -EFAULT;
  1917. }
  1918. if (i != PAGE_SIZE)
  1919. memset((char *)page + i, 0, PAGE_SIZE - i);
  1920. *where = page;
  1921. return 0;
  1922. }
  1923. char *copy_mount_string(const void __user *data)
  1924. {
  1925. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  1926. }
  1927. /*
  1928. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1929. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1930. *
  1931. * data is a (void *) that can point to any structure up to
  1932. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1933. * information (or be NULL).
  1934. *
  1935. * Pre-0.97 versions of mount() didn't have a flags word.
  1936. * When the flags word was introduced its top half was required
  1937. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1938. * Therefore, if this magic number is present, it carries no information
  1939. * and must be discarded.
  1940. */
  1941. long do_mount(const char *dev_name, const char *dir_name,
  1942. const char *type_page, unsigned long flags, void *data_page)
  1943. {
  1944. struct path path;
  1945. int retval = 0;
  1946. int mnt_flags = 0;
  1947. /* Discard magic */
  1948. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1949. flags &= ~MS_MGC_MSK;
  1950. /* Basic sanity checks */
  1951. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1952. return -EINVAL;
  1953. if (data_page)
  1954. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1955. /* ... and get the mountpoint */
  1956. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1957. if (retval)
  1958. return retval;
  1959. retval = security_sb_mount(dev_name, &path,
  1960. type_page, flags, data_page);
  1961. if (retval)
  1962. goto dput_out;
  1963. /* Default to relatime unless overriden */
  1964. if (!(flags & MS_NOATIME))
  1965. mnt_flags |= MNT_RELATIME;
  1966. /* Separate the per-mountpoint flags */
  1967. if (flags & MS_NOSUID)
  1968. mnt_flags |= MNT_NOSUID;
  1969. if (flags & MS_NODEV)
  1970. mnt_flags |= MNT_NODEV;
  1971. if (flags & MS_NOEXEC)
  1972. mnt_flags |= MNT_NOEXEC;
  1973. if (flags & MS_NOATIME)
  1974. mnt_flags |= MNT_NOATIME;
  1975. if (flags & MS_NODIRATIME)
  1976. mnt_flags |= MNT_NODIRATIME;
  1977. if (flags & MS_STRICTATIME)
  1978. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1979. if (flags & MS_RDONLY)
  1980. mnt_flags |= MNT_READONLY;
  1981. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  1982. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  1983. MS_STRICTATIME);
  1984. if (flags & MS_REMOUNT)
  1985. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  1986. data_page);
  1987. else if (flags & MS_BIND)
  1988. retval = do_loopback(&path, dev_name, flags & MS_REC);
  1989. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1990. retval = do_change_type(&path, flags);
  1991. else if (flags & MS_MOVE)
  1992. retval = do_move_mount(&path, dev_name);
  1993. else
  1994. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  1995. dev_name, data_page);
  1996. dput_out:
  1997. path_put(&path);
  1998. return retval;
  1999. }
  2000. static void free_mnt_ns(struct mnt_namespace *ns)
  2001. {
  2002. proc_free_inum(ns->proc_inum);
  2003. put_user_ns(ns->user_ns);
  2004. kfree(ns);
  2005. }
  2006. /*
  2007. * Assign a sequence number so we can detect when we attempt to bind
  2008. * mount a reference to an older mount namespace into the current
  2009. * mount namespace, preventing reference counting loops. A 64bit
  2010. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2011. * is effectively never, so we can ignore the possibility.
  2012. */
  2013. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2014. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2015. {
  2016. struct mnt_namespace *new_ns;
  2017. int ret;
  2018. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2019. if (!new_ns)
  2020. return ERR_PTR(-ENOMEM);
  2021. ret = proc_alloc_inum(&new_ns->proc_inum);
  2022. if (ret) {
  2023. kfree(new_ns);
  2024. return ERR_PTR(ret);
  2025. }
  2026. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2027. atomic_set(&new_ns->count, 1);
  2028. new_ns->root = NULL;
  2029. INIT_LIST_HEAD(&new_ns->list);
  2030. init_waitqueue_head(&new_ns->poll);
  2031. new_ns->event = 0;
  2032. new_ns->user_ns = get_user_ns(user_ns);
  2033. return new_ns;
  2034. }
  2035. /*
  2036. * Allocate a new namespace structure and populate it with contents
  2037. * copied from the namespace of the passed in task structure.
  2038. */
  2039. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2040. struct user_namespace *user_ns, struct fs_struct *fs)
  2041. {
  2042. struct mnt_namespace *new_ns;
  2043. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2044. struct mount *p, *q;
  2045. struct mount *old = mnt_ns->root;
  2046. struct mount *new;
  2047. int copy_flags;
  2048. new_ns = alloc_mnt_ns(user_ns);
  2049. if (IS_ERR(new_ns))
  2050. return new_ns;
  2051. down_write(&namespace_sem);
  2052. /* First pass: copy the tree topology */
  2053. copy_flags = CL_COPY_ALL | CL_EXPIRE;
  2054. if (user_ns != mnt_ns->user_ns)
  2055. copy_flags |= CL_SHARED_TO_SLAVE;
  2056. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2057. if (IS_ERR(new)) {
  2058. up_write(&namespace_sem);
  2059. free_mnt_ns(new_ns);
  2060. return ERR_CAST(new);
  2061. }
  2062. new_ns->root = new;
  2063. br_write_lock(&vfsmount_lock);
  2064. list_add_tail(&new_ns->list, &new->mnt_list);
  2065. br_write_unlock(&vfsmount_lock);
  2066. /*
  2067. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2068. * as belonging to new namespace. We have already acquired a private
  2069. * fs_struct, so tsk->fs->lock is not needed.
  2070. */
  2071. p = old;
  2072. q = new;
  2073. while (p) {
  2074. q->mnt_ns = new_ns;
  2075. if (fs) {
  2076. if (&p->mnt == fs->root.mnt) {
  2077. fs->root.mnt = mntget(&q->mnt);
  2078. rootmnt = &p->mnt;
  2079. }
  2080. if (&p->mnt == fs->pwd.mnt) {
  2081. fs->pwd.mnt = mntget(&q->mnt);
  2082. pwdmnt = &p->mnt;
  2083. }
  2084. }
  2085. p = next_mnt(p, old);
  2086. q = next_mnt(q, new);
  2087. }
  2088. up_write(&namespace_sem);
  2089. if (rootmnt)
  2090. mntput(rootmnt);
  2091. if (pwdmnt)
  2092. mntput(pwdmnt);
  2093. return new_ns;
  2094. }
  2095. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2096. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2097. {
  2098. struct mnt_namespace *new_ns;
  2099. BUG_ON(!ns);
  2100. get_mnt_ns(ns);
  2101. if (!(flags & CLONE_NEWNS))
  2102. return ns;
  2103. new_ns = dup_mnt_ns(ns, user_ns, new_fs);
  2104. put_mnt_ns(ns);
  2105. return new_ns;
  2106. }
  2107. /**
  2108. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2109. * @mnt: pointer to the new root filesystem mountpoint
  2110. */
  2111. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2112. {
  2113. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2114. if (!IS_ERR(new_ns)) {
  2115. struct mount *mnt = real_mount(m);
  2116. mnt->mnt_ns = new_ns;
  2117. new_ns->root = mnt;
  2118. list_add(&new_ns->list, &mnt->mnt_list);
  2119. } else {
  2120. mntput(m);
  2121. }
  2122. return new_ns;
  2123. }
  2124. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2125. {
  2126. struct mnt_namespace *ns;
  2127. struct super_block *s;
  2128. struct path path;
  2129. int err;
  2130. ns = create_mnt_ns(mnt);
  2131. if (IS_ERR(ns))
  2132. return ERR_CAST(ns);
  2133. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2134. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2135. put_mnt_ns(ns);
  2136. if (err)
  2137. return ERR_PTR(err);
  2138. /* trade a vfsmount reference for active sb one */
  2139. s = path.mnt->mnt_sb;
  2140. atomic_inc(&s->s_active);
  2141. mntput(path.mnt);
  2142. /* lock the sucker */
  2143. down_write(&s->s_umount);
  2144. /* ... and return the root of (sub)tree on it */
  2145. return path.dentry;
  2146. }
  2147. EXPORT_SYMBOL(mount_subtree);
  2148. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2149. char __user *, type, unsigned long, flags, void __user *, data)
  2150. {
  2151. int ret;
  2152. char *kernel_type;
  2153. char *kernel_dir;
  2154. char *kernel_dev;
  2155. unsigned long data_page;
  2156. kernel_type = copy_mount_string(type);
  2157. ret = PTR_ERR(kernel_type);
  2158. if (IS_ERR(kernel_type))
  2159. goto out_type;
  2160. kernel_dir = getname(dir_name);
  2161. if (IS_ERR(kernel_dir)) {
  2162. ret = PTR_ERR(kernel_dir);
  2163. goto out_dir;
  2164. }
  2165. kernel_dev = copy_mount_string(dev_name);
  2166. ret = PTR_ERR(kernel_dev);
  2167. if (IS_ERR(kernel_dev))
  2168. goto out_dev;
  2169. ret = copy_mount_options(data, &data_page);
  2170. if (ret < 0)
  2171. goto out_data;
  2172. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2173. (void *) data_page);
  2174. free_page(data_page);
  2175. out_data:
  2176. kfree(kernel_dev);
  2177. out_dev:
  2178. putname(kernel_dir);
  2179. out_dir:
  2180. kfree(kernel_type);
  2181. out_type:
  2182. return ret;
  2183. }
  2184. /*
  2185. * Return true if path is reachable from root
  2186. *
  2187. * namespace_sem or vfsmount_lock is held
  2188. */
  2189. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2190. const struct path *root)
  2191. {
  2192. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2193. dentry = mnt->mnt_mountpoint;
  2194. mnt = mnt->mnt_parent;
  2195. }
  2196. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2197. }
  2198. int path_is_under(struct path *path1, struct path *path2)
  2199. {
  2200. int res;
  2201. br_read_lock(&vfsmount_lock);
  2202. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2203. br_read_unlock(&vfsmount_lock);
  2204. return res;
  2205. }
  2206. EXPORT_SYMBOL(path_is_under);
  2207. /*
  2208. * pivot_root Semantics:
  2209. * Moves the root file system of the current process to the directory put_old,
  2210. * makes new_root as the new root file system of the current process, and sets
  2211. * root/cwd of all processes which had them on the current root to new_root.
  2212. *
  2213. * Restrictions:
  2214. * The new_root and put_old must be directories, and must not be on the
  2215. * same file system as the current process root. The put_old must be
  2216. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2217. * pointed to by put_old must yield the same directory as new_root. No other
  2218. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2219. *
  2220. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2221. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2222. * in this situation.
  2223. *
  2224. * Notes:
  2225. * - we don't move root/cwd if they are not at the root (reason: if something
  2226. * cared enough to change them, it's probably wrong to force them elsewhere)
  2227. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2228. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2229. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2230. * first.
  2231. */
  2232. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2233. const char __user *, put_old)
  2234. {
  2235. struct path new, old, parent_path, root_parent, root;
  2236. struct mount *new_mnt, *root_mnt;
  2237. int error;
  2238. if (!ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN))
  2239. return -EPERM;
  2240. error = user_path_dir(new_root, &new);
  2241. if (error)
  2242. goto out0;
  2243. error = user_path_dir(put_old, &old);
  2244. if (error)
  2245. goto out1;
  2246. error = security_sb_pivotroot(&old, &new);
  2247. if (error)
  2248. goto out2;
  2249. get_fs_root(current->fs, &root);
  2250. error = lock_mount(&old);
  2251. if (error)
  2252. goto out3;
  2253. error = -EINVAL;
  2254. new_mnt = real_mount(new.mnt);
  2255. root_mnt = real_mount(root.mnt);
  2256. if (IS_MNT_SHARED(real_mount(old.mnt)) ||
  2257. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2258. IS_MNT_SHARED(root_mnt->mnt_parent))
  2259. goto out4;
  2260. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2261. goto out4;
  2262. error = -ENOENT;
  2263. if (d_unlinked(new.dentry))
  2264. goto out4;
  2265. if (d_unlinked(old.dentry))
  2266. goto out4;
  2267. error = -EBUSY;
  2268. if (new.mnt == root.mnt ||
  2269. old.mnt == root.mnt)
  2270. goto out4; /* loop, on the same file system */
  2271. error = -EINVAL;
  2272. if (root.mnt->mnt_root != root.dentry)
  2273. goto out4; /* not a mountpoint */
  2274. if (!mnt_has_parent(root_mnt))
  2275. goto out4; /* not attached */
  2276. if (new.mnt->mnt_root != new.dentry)
  2277. goto out4; /* not a mountpoint */
  2278. if (!mnt_has_parent(new_mnt))
  2279. goto out4; /* not attached */
  2280. /* make sure we can reach put_old from new_root */
  2281. if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
  2282. goto out4;
  2283. /* make certain new is below the root */
  2284. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2285. goto out4;
  2286. br_write_lock(&vfsmount_lock);
  2287. detach_mnt(new_mnt, &parent_path);
  2288. detach_mnt(root_mnt, &root_parent);
  2289. /* mount old root on put_old */
  2290. attach_mnt(root_mnt, &old);
  2291. /* mount new_root on / */
  2292. attach_mnt(new_mnt, &root_parent);
  2293. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2294. br_write_unlock(&vfsmount_lock);
  2295. chroot_fs_refs(&root, &new);
  2296. error = 0;
  2297. out4:
  2298. unlock_mount(&old);
  2299. if (!error) {
  2300. path_put(&root_parent);
  2301. path_put(&parent_path);
  2302. }
  2303. out3:
  2304. path_put(&root);
  2305. out2:
  2306. path_put(&old);
  2307. out1:
  2308. path_put(&new);
  2309. out0:
  2310. return error;
  2311. }
  2312. static void __init init_mount_tree(void)
  2313. {
  2314. struct vfsmount *mnt;
  2315. struct mnt_namespace *ns;
  2316. struct path root;
  2317. struct file_system_type *type;
  2318. type = get_fs_type("rootfs");
  2319. if (!type)
  2320. panic("Can't find rootfs type");
  2321. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2322. put_filesystem(type);
  2323. if (IS_ERR(mnt))
  2324. panic("Can't create rootfs");
  2325. ns = create_mnt_ns(mnt);
  2326. if (IS_ERR(ns))
  2327. panic("Can't allocate initial namespace");
  2328. init_task.nsproxy->mnt_ns = ns;
  2329. get_mnt_ns(ns);
  2330. root.mnt = mnt;
  2331. root.dentry = mnt->mnt_root;
  2332. set_fs_pwd(current->fs, &root);
  2333. set_fs_root(current->fs, &root);
  2334. }
  2335. void __init mnt_init(void)
  2336. {
  2337. unsigned u;
  2338. int err;
  2339. init_rwsem(&namespace_sem);
  2340. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2341. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2342. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2343. if (!mount_hashtable)
  2344. panic("Failed to allocate mount hash table\n");
  2345. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2346. for (u = 0; u < HASH_SIZE; u++)
  2347. INIT_LIST_HEAD(&mount_hashtable[u]);
  2348. br_lock_init(&vfsmount_lock);
  2349. err = sysfs_init();
  2350. if (err)
  2351. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2352. __func__, err);
  2353. fs_kobj = kobject_create_and_add("fs", NULL);
  2354. if (!fs_kobj)
  2355. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2356. init_rootfs();
  2357. init_mount_tree();
  2358. }
  2359. void put_mnt_ns(struct mnt_namespace *ns)
  2360. {
  2361. LIST_HEAD(umount_list);
  2362. if (!atomic_dec_and_test(&ns->count))
  2363. return;
  2364. down_write(&namespace_sem);
  2365. br_write_lock(&vfsmount_lock);
  2366. umount_tree(ns->root, 0, &umount_list);
  2367. br_write_unlock(&vfsmount_lock);
  2368. up_write(&namespace_sem);
  2369. release_mounts(&umount_list);
  2370. free_mnt_ns(ns);
  2371. }
  2372. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2373. {
  2374. struct vfsmount *mnt;
  2375. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2376. if (!IS_ERR(mnt)) {
  2377. /*
  2378. * it is a longterm mount, don't release mnt until
  2379. * we unmount before file sys is unregistered
  2380. */
  2381. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2382. }
  2383. return mnt;
  2384. }
  2385. EXPORT_SYMBOL_GPL(kern_mount_data);
  2386. void kern_unmount(struct vfsmount *mnt)
  2387. {
  2388. /* release long term mount so mount point can be released */
  2389. if (!IS_ERR_OR_NULL(mnt)) {
  2390. br_write_lock(&vfsmount_lock);
  2391. real_mount(mnt)->mnt_ns = NULL;
  2392. br_write_unlock(&vfsmount_lock);
  2393. mntput(mnt);
  2394. }
  2395. }
  2396. EXPORT_SYMBOL(kern_unmount);
  2397. bool our_mnt(struct vfsmount *mnt)
  2398. {
  2399. return check_mnt(real_mount(mnt));
  2400. }
  2401. static void *mntns_get(struct task_struct *task)
  2402. {
  2403. struct mnt_namespace *ns = NULL;
  2404. struct nsproxy *nsproxy;
  2405. task_lock(task);
  2406. nsproxy = task->nsproxy;
  2407. if (nsproxy) {
  2408. ns = nsproxy->mnt_ns;
  2409. get_mnt_ns(ns);
  2410. }
  2411. task_unlock(task);
  2412. return ns;
  2413. }
  2414. static void mntns_put(void *ns)
  2415. {
  2416. put_mnt_ns(ns);
  2417. }
  2418. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2419. {
  2420. struct fs_struct *fs = current->fs;
  2421. struct mnt_namespace *mnt_ns = ns;
  2422. struct path root;
  2423. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2424. !nsown_capable(CAP_SYS_CHROOT))
  2425. return -EINVAL;
  2426. if (fs->users != 1)
  2427. return -EINVAL;
  2428. get_mnt_ns(mnt_ns);
  2429. put_mnt_ns(nsproxy->mnt_ns);
  2430. nsproxy->mnt_ns = mnt_ns;
  2431. /* Find the root */
  2432. root.mnt = &mnt_ns->root->mnt;
  2433. root.dentry = mnt_ns->root->mnt.mnt_root;
  2434. path_get(&root);
  2435. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2436. ;
  2437. /* Update the pwd and root */
  2438. set_fs_pwd(fs, &root);
  2439. set_fs_root(fs, &root);
  2440. path_put(&root);
  2441. return 0;
  2442. }
  2443. static unsigned int mntns_inum(void *ns)
  2444. {
  2445. struct mnt_namespace *mnt_ns = ns;
  2446. return mnt_ns->proc_inum;
  2447. }
  2448. const struct proc_ns_operations mntns_operations = {
  2449. .name = "mnt",
  2450. .type = CLONE_NEWNS,
  2451. .get = mntns_get,
  2452. .put = mntns_put,
  2453. .install = mntns_install,
  2454. .inum = mntns_inum,
  2455. };