swiotlb-xen.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
  1. /*
  2. * Copyright 2010
  3. * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4. *
  5. * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License v2.0 as published by
  9. * the Free Software Foundation
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * PV guests under Xen are running in an non-contiguous memory architecture.
  17. *
  18. * When PCI pass-through is utilized, this necessitates an IOMMU for
  19. * translating bus (DMA) to virtual and vice-versa and also providing a
  20. * mechanism to have contiguous pages for device drivers operations (say DMA
  21. * operations).
  22. *
  23. * Specifically, under Xen the Linux idea of pages is an illusion. It
  24. * assumes that pages start at zero and go up to the available memory. To
  25. * help with that, the Linux Xen MMU provides a lookup mechanism to
  26. * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  27. * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  28. * memory is not contiguous. Xen hypervisor stitches memory for guests
  29. * from different pools, which means there is no guarantee that PFN==MFN
  30. * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  31. * allocated in descending order (high to low), meaning the guest might
  32. * never get any MFN's under the 4GB mark.
  33. *
  34. */
  35. #include <linux/bootmem.h>
  36. #include <linux/dma-mapping.h>
  37. #include <linux/export.h>
  38. #include <xen/swiotlb-xen.h>
  39. #include <xen/page.h>
  40. #include <xen/xen-ops.h>
  41. #include <xen/hvc-console.h>
  42. /*
  43. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  44. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  45. * API.
  46. */
  47. static char *xen_io_tlb_start, *xen_io_tlb_end;
  48. static unsigned long xen_io_tlb_nslabs;
  49. /*
  50. * Quick lookup value of the bus address of the IOTLB.
  51. */
  52. u64 start_dma_addr;
  53. static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  54. {
  55. return phys_to_machine(XPADDR(paddr)).maddr;
  56. }
  57. static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  58. {
  59. return machine_to_phys(XMADDR(baddr)).paddr;
  60. }
  61. static dma_addr_t xen_virt_to_bus(void *address)
  62. {
  63. return xen_phys_to_bus(virt_to_phys(address));
  64. }
  65. static int check_pages_physically_contiguous(unsigned long pfn,
  66. unsigned int offset,
  67. size_t length)
  68. {
  69. unsigned long next_mfn;
  70. int i;
  71. int nr_pages;
  72. next_mfn = pfn_to_mfn(pfn);
  73. nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
  74. for (i = 1; i < nr_pages; i++) {
  75. if (pfn_to_mfn(++pfn) != ++next_mfn)
  76. return 0;
  77. }
  78. return 1;
  79. }
  80. static int range_straddles_page_boundary(phys_addr_t p, size_t size)
  81. {
  82. unsigned long pfn = PFN_DOWN(p);
  83. unsigned int offset = p & ~PAGE_MASK;
  84. if (offset + size <= PAGE_SIZE)
  85. return 0;
  86. if (check_pages_physically_contiguous(pfn, offset, size))
  87. return 0;
  88. return 1;
  89. }
  90. static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
  91. {
  92. unsigned long mfn = PFN_DOWN(dma_addr);
  93. unsigned long pfn = mfn_to_local_pfn(mfn);
  94. phys_addr_t paddr;
  95. /* If the address is outside our domain, it CAN
  96. * have the same virtual address as another address
  97. * in our domain. Therefore _only_ check address within our domain.
  98. */
  99. if (pfn_valid(pfn)) {
  100. paddr = PFN_PHYS(pfn);
  101. return paddr >= virt_to_phys(xen_io_tlb_start) &&
  102. paddr < virt_to_phys(xen_io_tlb_end);
  103. }
  104. return 0;
  105. }
  106. static int max_dma_bits = 32;
  107. static int
  108. xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
  109. {
  110. int i, rc;
  111. int dma_bits;
  112. dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
  113. i = 0;
  114. do {
  115. int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
  116. do {
  117. rc = xen_create_contiguous_region(
  118. (unsigned long)buf + (i << IO_TLB_SHIFT),
  119. get_order(slabs << IO_TLB_SHIFT),
  120. dma_bits);
  121. } while (rc && dma_bits++ < max_dma_bits);
  122. if (rc)
  123. return rc;
  124. i += slabs;
  125. } while (i < nslabs);
  126. return 0;
  127. }
  128. void __init xen_swiotlb_init(int verbose)
  129. {
  130. unsigned long bytes;
  131. int rc = -ENOMEM;
  132. unsigned long nr_tbl;
  133. char *m = NULL;
  134. unsigned int repeat = 3;
  135. nr_tbl = swiotlb_nr_tbl();
  136. if (nr_tbl)
  137. xen_io_tlb_nslabs = nr_tbl;
  138. else {
  139. xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
  140. xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
  141. }
  142. retry:
  143. bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
  144. /*
  145. * Get IO TLB memory from any location.
  146. */
  147. xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
  148. if (!xen_io_tlb_start) {
  149. m = "Cannot allocate Xen-SWIOTLB buffer!\n";
  150. goto error;
  151. }
  152. xen_io_tlb_end = xen_io_tlb_start + bytes;
  153. /*
  154. * And replace that memory with pages under 4GB.
  155. */
  156. rc = xen_swiotlb_fixup(xen_io_tlb_start,
  157. bytes,
  158. xen_io_tlb_nslabs);
  159. if (rc) {
  160. free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
  161. m = "Failed to get contiguous memory for DMA from Xen!\n"\
  162. "You either: don't have the permissions, do not have"\
  163. " enough free memory under 4GB, or the hypervisor memory"\
  164. "is too fragmented!";
  165. goto error;
  166. }
  167. start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
  168. swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
  169. return;
  170. error:
  171. if (repeat--) {
  172. xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
  173. (xen_io_tlb_nslabs >> 1));
  174. printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n",
  175. (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
  176. goto retry;
  177. }
  178. xen_raw_printk("%s (rc:%d)", m, rc);
  179. panic("%s (rc:%d)", m, rc);
  180. }
  181. void *
  182. xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  183. dma_addr_t *dma_handle, gfp_t flags,
  184. struct dma_attrs *attrs)
  185. {
  186. void *ret;
  187. int order = get_order(size);
  188. u64 dma_mask = DMA_BIT_MASK(32);
  189. unsigned long vstart;
  190. phys_addr_t phys;
  191. dma_addr_t dev_addr;
  192. /*
  193. * Ignore region specifiers - the kernel's ideas of
  194. * pseudo-phys memory layout has nothing to do with the
  195. * machine physical layout. We can't allocate highmem
  196. * because we can't return a pointer to it.
  197. */
  198. flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
  199. if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
  200. return ret;
  201. vstart = __get_free_pages(flags, order);
  202. ret = (void *)vstart;
  203. if (!ret)
  204. return ret;
  205. if (hwdev && hwdev->coherent_dma_mask)
  206. dma_mask = dma_alloc_coherent_mask(hwdev, flags);
  207. phys = virt_to_phys(ret);
  208. dev_addr = xen_phys_to_bus(phys);
  209. if (((dev_addr + size - 1 <= dma_mask)) &&
  210. !range_straddles_page_boundary(phys, size))
  211. *dma_handle = dev_addr;
  212. else {
  213. if (xen_create_contiguous_region(vstart, order,
  214. fls64(dma_mask)) != 0) {
  215. free_pages(vstart, order);
  216. return NULL;
  217. }
  218. *dma_handle = virt_to_machine(ret).maddr;
  219. }
  220. memset(ret, 0, size);
  221. return ret;
  222. }
  223. EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
  224. void
  225. xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  226. dma_addr_t dev_addr, struct dma_attrs *attrs)
  227. {
  228. int order = get_order(size);
  229. phys_addr_t phys;
  230. u64 dma_mask = DMA_BIT_MASK(32);
  231. if (dma_release_from_coherent(hwdev, order, vaddr))
  232. return;
  233. if (hwdev && hwdev->coherent_dma_mask)
  234. dma_mask = hwdev->coherent_dma_mask;
  235. phys = virt_to_phys(vaddr);
  236. if (((dev_addr + size - 1 > dma_mask)) ||
  237. range_straddles_page_boundary(phys, size))
  238. xen_destroy_contiguous_region((unsigned long)vaddr, order);
  239. free_pages((unsigned long)vaddr, order);
  240. }
  241. EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
  242. /*
  243. * Map a single buffer of the indicated size for DMA in streaming mode. The
  244. * physical address to use is returned.
  245. *
  246. * Once the device is given the dma address, the device owns this memory until
  247. * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
  248. */
  249. dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
  250. unsigned long offset, size_t size,
  251. enum dma_data_direction dir,
  252. struct dma_attrs *attrs)
  253. {
  254. phys_addr_t phys = page_to_phys(page) + offset;
  255. dma_addr_t dev_addr = xen_phys_to_bus(phys);
  256. void *map;
  257. BUG_ON(dir == DMA_NONE);
  258. /*
  259. * If the address happens to be in the device's DMA window,
  260. * we can safely return the device addr and not worry about bounce
  261. * buffering it.
  262. */
  263. if (dma_capable(dev, dev_addr, size) &&
  264. !range_straddles_page_boundary(phys, size) && !swiotlb_force)
  265. return dev_addr;
  266. /*
  267. * Oh well, have to allocate and map a bounce buffer.
  268. */
  269. map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
  270. if (!map)
  271. return DMA_ERROR_CODE;
  272. dev_addr = xen_virt_to_bus(map);
  273. /*
  274. * Ensure that the address returned is DMA'ble
  275. */
  276. if (!dma_capable(dev, dev_addr, size)) {
  277. swiotlb_tbl_unmap_single(dev, map, size, dir);
  278. dev_addr = 0;
  279. }
  280. return dev_addr;
  281. }
  282. EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
  283. /*
  284. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  285. * match what was provided for in a previous xen_swiotlb_map_page call. All
  286. * other usages are undefined.
  287. *
  288. * After this call, reads by the cpu to the buffer are guaranteed to see
  289. * whatever the device wrote there.
  290. */
  291. static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  292. size_t size, enum dma_data_direction dir)
  293. {
  294. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  295. BUG_ON(dir == DMA_NONE);
  296. /* NOTE: We use dev_addr here, not paddr! */
  297. if (is_xen_swiotlb_buffer(dev_addr)) {
  298. swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
  299. return;
  300. }
  301. if (dir != DMA_FROM_DEVICE)
  302. return;
  303. /*
  304. * phys_to_virt doesn't work with hihgmem page but we could
  305. * call dma_mark_clean() with hihgmem page here. However, we
  306. * are fine since dma_mark_clean() is null on POWERPC. We can
  307. * make dma_mark_clean() take a physical address if necessary.
  308. */
  309. dma_mark_clean(phys_to_virt(paddr), size);
  310. }
  311. void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  312. size_t size, enum dma_data_direction dir,
  313. struct dma_attrs *attrs)
  314. {
  315. xen_unmap_single(hwdev, dev_addr, size, dir);
  316. }
  317. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
  318. /*
  319. * Make physical memory consistent for a single streaming mode DMA translation
  320. * after a transfer.
  321. *
  322. * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
  323. * using the cpu, yet do not wish to teardown the dma mapping, you must
  324. * call this function before doing so. At the next point you give the dma
  325. * address back to the card, you must first perform a
  326. * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
  327. */
  328. static void
  329. xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  330. size_t size, enum dma_data_direction dir,
  331. enum dma_sync_target target)
  332. {
  333. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  334. BUG_ON(dir == DMA_NONE);
  335. /* NOTE: We use dev_addr here, not paddr! */
  336. if (is_xen_swiotlb_buffer(dev_addr)) {
  337. swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
  338. target);
  339. return;
  340. }
  341. if (dir != DMA_FROM_DEVICE)
  342. return;
  343. dma_mark_clean(phys_to_virt(paddr), size);
  344. }
  345. void
  346. xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  347. size_t size, enum dma_data_direction dir)
  348. {
  349. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  350. }
  351. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
  352. void
  353. xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  354. size_t size, enum dma_data_direction dir)
  355. {
  356. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  357. }
  358. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
  359. /*
  360. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  361. * This is the scatter-gather version of the above xen_swiotlb_map_page
  362. * interface. Here the scatter gather list elements are each tagged with the
  363. * appropriate dma address and length. They are obtained via
  364. * sg_dma_{address,length}(SG).
  365. *
  366. * NOTE: An implementation may be able to use a smaller number of
  367. * DMA address/length pairs than there are SG table elements.
  368. * (for example via virtual mapping capabilities)
  369. * The routine returns the number of addr/length pairs actually
  370. * used, at most nents.
  371. *
  372. * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
  373. * same here.
  374. */
  375. int
  376. xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  377. int nelems, enum dma_data_direction dir,
  378. struct dma_attrs *attrs)
  379. {
  380. struct scatterlist *sg;
  381. int i;
  382. BUG_ON(dir == DMA_NONE);
  383. for_each_sg(sgl, sg, nelems, i) {
  384. phys_addr_t paddr = sg_phys(sg);
  385. dma_addr_t dev_addr = xen_phys_to_bus(paddr);
  386. if (swiotlb_force ||
  387. !dma_capable(hwdev, dev_addr, sg->length) ||
  388. range_straddles_page_boundary(paddr, sg->length)) {
  389. void *map = swiotlb_tbl_map_single(hwdev,
  390. start_dma_addr,
  391. sg_phys(sg),
  392. sg->length, dir);
  393. if (!map) {
  394. /* Don't panic here, we expect map_sg users
  395. to do proper error handling. */
  396. xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  397. attrs);
  398. sgl[0].dma_length = 0;
  399. return DMA_ERROR_CODE;
  400. }
  401. sg->dma_address = xen_virt_to_bus(map);
  402. } else
  403. sg->dma_address = dev_addr;
  404. sg->dma_length = sg->length;
  405. }
  406. return nelems;
  407. }
  408. EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
  409. int
  410. xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  411. enum dma_data_direction dir)
  412. {
  413. return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  414. }
  415. EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
  416. /*
  417. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  418. * concerning calls here are the same as for swiotlb_unmap_page() above.
  419. */
  420. void
  421. xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  422. int nelems, enum dma_data_direction dir,
  423. struct dma_attrs *attrs)
  424. {
  425. struct scatterlist *sg;
  426. int i;
  427. BUG_ON(dir == DMA_NONE);
  428. for_each_sg(sgl, sg, nelems, i)
  429. xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  430. }
  431. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
  432. void
  433. xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  434. enum dma_data_direction dir)
  435. {
  436. return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  437. }
  438. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
  439. /*
  440. * Make physical memory consistent for a set of streaming mode DMA translations
  441. * after a transfer.
  442. *
  443. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  444. * and usage.
  445. */
  446. static void
  447. xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  448. int nelems, enum dma_data_direction dir,
  449. enum dma_sync_target target)
  450. {
  451. struct scatterlist *sg;
  452. int i;
  453. for_each_sg(sgl, sg, nelems, i)
  454. xen_swiotlb_sync_single(hwdev, sg->dma_address,
  455. sg->dma_length, dir, target);
  456. }
  457. void
  458. xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  459. int nelems, enum dma_data_direction dir)
  460. {
  461. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  462. }
  463. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
  464. void
  465. xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  466. int nelems, enum dma_data_direction dir)
  467. {
  468. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  469. }
  470. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
  471. int
  472. xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  473. {
  474. return !dma_addr;
  475. }
  476. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
  477. /*
  478. * Return whether the given device DMA address mask can be supported
  479. * properly. For example, if your device can only drive the low 24-bits
  480. * during bus mastering, then you would pass 0x00ffffff as the mask to
  481. * this function.
  482. */
  483. int
  484. xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
  485. {
  486. return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
  487. }
  488. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);