sata_mv.c 120 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418
  1. /*
  2. * sata_mv.c - Marvell SATA support
  3. *
  4. * Copyright 2008-2009: Marvell Corporation, all rights reserved.
  5. * Copyright 2005: EMC Corporation, all rights reserved.
  6. * Copyright 2005 Red Hat, Inc. All rights reserved.
  7. *
  8. * Originally written by Brett Russ.
  9. * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
  10. *
  11. * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; version 2 of the License.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  25. *
  26. */
  27. /*
  28. * sata_mv TODO list:
  29. *
  30. * --> Develop a low-power-consumption strategy, and implement it.
  31. *
  32. * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
  33. *
  34. * --> [Experiment, Marvell value added] Is it possible to use target
  35. * mode to cross-connect two Linux boxes with Marvell cards? If so,
  36. * creating LibATA target mode support would be very interesting.
  37. *
  38. * Target mode, for those without docs, is the ability to directly
  39. * connect two SATA ports.
  40. */
  41. /*
  42. * 80x1-B2 errata PCI#11:
  43. *
  44. * Users of the 6041/6081 Rev.B2 chips (current is C0)
  45. * should be careful to insert those cards only onto PCI-X bus #0,
  46. * and only in device slots 0..7, not higher. The chips may not
  47. * work correctly otherwise (note: this is a pretty rare condition).
  48. */
  49. #include <linux/kernel.h>
  50. #include <linux/module.h>
  51. #include <linux/pci.h>
  52. #include <linux/init.h>
  53. #include <linux/blkdev.h>
  54. #include <linux/delay.h>
  55. #include <linux/interrupt.h>
  56. #include <linux/dmapool.h>
  57. #include <linux/dma-mapping.h>
  58. #include <linux/device.h>
  59. #include <linux/clk.h>
  60. #include <linux/platform_device.h>
  61. #include <linux/ata_platform.h>
  62. #include <linux/mbus.h>
  63. #include <linux/bitops.h>
  64. #include <linux/gfp.h>
  65. #include <scsi/scsi_host.h>
  66. #include <scsi/scsi_cmnd.h>
  67. #include <scsi/scsi_device.h>
  68. #include <linux/libata.h>
  69. #define DRV_NAME "sata_mv"
  70. #define DRV_VERSION "1.28"
  71. /*
  72. * module options
  73. */
  74. static int msi;
  75. #ifdef CONFIG_PCI
  76. module_param(msi, int, S_IRUGO);
  77. MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  78. #endif
  79. static int irq_coalescing_io_count;
  80. module_param(irq_coalescing_io_count, int, S_IRUGO);
  81. MODULE_PARM_DESC(irq_coalescing_io_count,
  82. "IRQ coalescing I/O count threshold (0..255)");
  83. static int irq_coalescing_usecs;
  84. module_param(irq_coalescing_usecs, int, S_IRUGO);
  85. MODULE_PARM_DESC(irq_coalescing_usecs,
  86. "IRQ coalescing time threshold in usecs");
  87. enum {
  88. /* BAR's are enumerated in terms of pci_resource_start() terms */
  89. MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
  90. MV_IO_BAR = 2, /* offset 0x18: IO space */
  91. MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
  92. MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
  93. MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
  94. /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
  95. COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
  96. MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
  97. MAX_COAL_IO_COUNT = 255, /* completed I/O count */
  98. MV_PCI_REG_BASE = 0,
  99. /*
  100. * Per-chip ("all ports") interrupt coalescing feature.
  101. * This is only for GEN_II / GEN_IIE hardware.
  102. *
  103. * Coalescing defers the interrupt until either the IO_THRESHOLD
  104. * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
  105. */
  106. COAL_REG_BASE = 0x18000,
  107. IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
  108. ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
  109. IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
  110. IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
  111. /*
  112. * Registers for the (unused here) transaction coalescing feature:
  113. */
  114. TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
  115. TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
  116. SATAHC0_REG_BASE = 0x20000,
  117. FLASH_CTL = 0x1046c,
  118. GPIO_PORT_CTL = 0x104f0,
  119. RESET_CFG = 0x180d8,
  120. MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  121. MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  122. MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
  123. MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
  124. MV_MAX_Q_DEPTH = 32,
  125. MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
  126. /* CRQB needs alignment on a 1KB boundary. Size == 1KB
  127. * CRPB needs alignment on a 256B boundary. Size == 256B
  128. * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
  129. */
  130. MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
  131. MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
  132. MV_MAX_SG_CT = 256,
  133. MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
  134. /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
  135. MV_PORT_HC_SHIFT = 2,
  136. MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
  137. /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
  138. MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
  139. /* Host Flags */
  140. MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
  141. MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
  142. MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
  143. MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
  144. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
  145. MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
  146. CRQB_FLAG_READ = (1 << 0),
  147. CRQB_TAG_SHIFT = 1,
  148. CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
  149. CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
  150. CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
  151. CRQB_CMD_ADDR_SHIFT = 8,
  152. CRQB_CMD_CS = (0x2 << 11),
  153. CRQB_CMD_LAST = (1 << 15),
  154. CRPB_FLAG_STATUS_SHIFT = 8,
  155. CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
  156. CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
  157. EPRD_FLAG_END_OF_TBL = (1 << 31),
  158. /* PCI interface registers */
  159. MV_PCI_COMMAND = 0xc00,
  160. MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
  161. MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
  162. PCI_MAIN_CMD_STS = 0xd30,
  163. STOP_PCI_MASTER = (1 << 2),
  164. PCI_MASTER_EMPTY = (1 << 3),
  165. GLOB_SFT_RST = (1 << 4),
  166. MV_PCI_MODE = 0xd00,
  167. MV_PCI_MODE_MASK = 0x30,
  168. MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
  169. MV_PCI_DISC_TIMER = 0xd04,
  170. MV_PCI_MSI_TRIGGER = 0xc38,
  171. MV_PCI_SERR_MASK = 0xc28,
  172. MV_PCI_XBAR_TMOUT = 0x1d04,
  173. MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
  174. MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
  175. MV_PCI_ERR_ATTRIBUTE = 0x1d48,
  176. MV_PCI_ERR_COMMAND = 0x1d50,
  177. PCI_IRQ_CAUSE = 0x1d58,
  178. PCI_IRQ_MASK = 0x1d5c,
  179. PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
  180. PCIE_IRQ_CAUSE = 0x1900,
  181. PCIE_IRQ_MASK = 0x1910,
  182. PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
  183. /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
  184. PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
  185. PCI_HC_MAIN_IRQ_MASK = 0x1d64,
  186. SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
  187. SOC_HC_MAIN_IRQ_MASK = 0x20024,
  188. ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
  189. DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
  190. HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
  191. HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
  192. DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
  193. DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
  194. PCI_ERR = (1 << 18),
  195. TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
  196. TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
  197. PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
  198. PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
  199. ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
  200. GPIO_INT = (1 << 22),
  201. SELF_INT = (1 << 23),
  202. TWSI_INT = (1 << 24),
  203. HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
  204. HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
  205. HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
  206. /* SATAHC registers */
  207. HC_CFG = 0x00,
  208. HC_IRQ_CAUSE = 0x14,
  209. DMA_IRQ = (1 << 0), /* shift by port # */
  210. HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
  211. DEV_IRQ = (1 << 8), /* shift by port # */
  212. /*
  213. * Per-HC (Host-Controller) interrupt coalescing feature.
  214. * This is present on all chip generations.
  215. *
  216. * Coalescing defers the interrupt until either the IO_THRESHOLD
  217. * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
  218. */
  219. HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
  220. HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
  221. SOC_LED_CTRL = 0x2c,
  222. SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
  223. SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
  224. /* with dev activity LED */
  225. /* Shadow block registers */
  226. SHD_BLK = 0x100,
  227. SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
  228. /* SATA registers */
  229. SATA_STATUS = 0x300, /* ctrl, err regs follow status */
  230. SATA_ACTIVE = 0x350,
  231. FIS_IRQ_CAUSE = 0x364,
  232. FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
  233. LTMODE = 0x30c, /* requires read-after-write */
  234. LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
  235. PHY_MODE2 = 0x330,
  236. PHY_MODE3 = 0x310,
  237. PHY_MODE4 = 0x314, /* requires read-after-write */
  238. PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
  239. PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
  240. PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
  241. PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
  242. SATA_IFCTL = 0x344,
  243. SATA_TESTCTL = 0x348,
  244. SATA_IFSTAT = 0x34c,
  245. VENDOR_UNIQUE_FIS = 0x35c,
  246. FISCFG = 0x360,
  247. FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
  248. FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
  249. PHY_MODE9_GEN2 = 0x398,
  250. PHY_MODE9_GEN1 = 0x39c,
  251. PHYCFG_OFS = 0x3a0, /* only in 65n devices */
  252. MV5_PHY_MODE = 0x74,
  253. MV5_LTMODE = 0x30,
  254. MV5_PHY_CTL = 0x0C,
  255. SATA_IFCFG = 0x050,
  256. MV_M2_PREAMP_MASK = 0x7e0,
  257. /* Port registers */
  258. EDMA_CFG = 0,
  259. EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
  260. EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
  261. EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
  262. EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
  263. EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
  264. EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
  265. EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
  266. EDMA_ERR_IRQ_CAUSE = 0x8,
  267. EDMA_ERR_IRQ_MASK = 0xc,
  268. EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
  269. EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
  270. EDMA_ERR_DEV = (1 << 2), /* device error */
  271. EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
  272. EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
  273. EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
  274. EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
  275. EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
  276. EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
  277. EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
  278. EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
  279. EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
  280. EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
  281. EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
  282. EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
  283. EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
  284. EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
  285. EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
  286. EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
  287. EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
  288. EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
  289. EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
  290. EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
  291. EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
  292. EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
  293. EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
  294. EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
  295. EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
  296. EDMA_ERR_OVERRUN_5 = (1 << 5),
  297. EDMA_ERR_UNDERRUN_5 = (1 << 6),
  298. EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
  299. EDMA_ERR_LNK_CTRL_RX_1 |
  300. EDMA_ERR_LNK_CTRL_RX_3 |
  301. EDMA_ERR_LNK_CTRL_TX,
  302. EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
  303. EDMA_ERR_PRD_PAR |
  304. EDMA_ERR_DEV_DCON |
  305. EDMA_ERR_DEV_CON |
  306. EDMA_ERR_SERR |
  307. EDMA_ERR_SELF_DIS |
  308. EDMA_ERR_CRQB_PAR |
  309. EDMA_ERR_CRPB_PAR |
  310. EDMA_ERR_INTRL_PAR |
  311. EDMA_ERR_IORDY |
  312. EDMA_ERR_LNK_CTRL_RX_2 |
  313. EDMA_ERR_LNK_DATA_RX |
  314. EDMA_ERR_LNK_DATA_TX |
  315. EDMA_ERR_TRANS_PROTO,
  316. EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
  317. EDMA_ERR_PRD_PAR |
  318. EDMA_ERR_DEV_DCON |
  319. EDMA_ERR_DEV_CON |
  320. EDMA_ERR_OVERRUN_5 |
  321. EDMA_ERR_UNDERRUN_5 |
  322. EDMA_ERR_SELF_DIS_5 |
  323. EDMA_ERR_CRQB_PAR |
  324. EDMA_ERR_CRPB_PAR |
  325. EDMA_ERR_INTRL_PAR |
  326. EDMA_ERR_IORDY,
  327. EDMA_REQ_Q_BASE_HI = 0x10,
  328. EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
  329. EDMA_REQ_Q_OUT_PTR = 0x18,
  330. EDMA_REQ_Q_PTR_SHIFT = 5,
  331. EDMA_RSP_Q_BASE_HI = 0x1c,
  332. EDMA_RSP_Q_IN_PTR = 0x20,
  333. EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
  334. EDMA_RSP_Q_PTR_SHIFT = 3,
  335. EDMA_CMD = 0x28, /* EDMA command register */
  336. EDMA_EN = (1 << 0), /* enable EDMA */
  337. EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
  338. EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
  339. EDMA_STATUS = 0x30, /* EDMA engine status */
  340. EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
  341. EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
  342. EDMA_IORDY_TMOUT = 0x34,
  343. EDMA_ARB_CFG = 0x38,
  344. EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
  345. EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
  346. BMDMA_CMD = 0x224, /* bmdma command register */
  347. BMDMA_STATUS = 0x228, /* bmdma status register */
  348. BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
  349. BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
  350. /* Host private flags (hp_flags) */
  351. MV_HP_FLAG_MSI = (1 << 0),
  352. MV_HP_ERRATA_50XXB0 = (1 << 1),
  353. MV_HP_ERRATA_50XXB2 = (1 << 2),
  354. MV_HP_ERRATA_60X1B2 = (1 << 3),
  355. MV_HP_ERRATA_60X1C0 = (1 << 4),
  356. MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
  357. MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
  358. MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
  359. MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
  360. MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
  361. MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
  362. MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
  363. /* Port private flags (pp_flags) */
  364. MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
  365. MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
  366. MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
  367. MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
  368. MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
  369. };
  370. #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
  371. #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
  372. #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
  373. #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
  374. #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
  375. #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
  376. #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
  377. enum {
  378. /* DMA boundary 0xffff is required by the s/g splitting
  379. * we need on /length/ in mv_fill-sg().
  380. */
  381. MV_DMA_BOUNDARY = 0xffffU,
  382. /* mask of register bits containing lower 32 bits
  383. * of EDMA request queue DMA address
  384. */
  385. EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
  386. /* ditto, for response queue */
  387. EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
  388. };
  389. enum chip_type {
  390. chip_504x,
  391. chip_508x,
  392. chip_5080,
  393. chip_604x,
  394. chip_608x,
  395. chip_6042,
  396. chip_7042,
  397. chip_soc,
  398. };
  399. /* Command ReQuest Block: 32B */
  400. struct mv_crqb {
  401. __le32 sg_addr;
  402. __le32 sg_addr_hi;
  403. __le16 ctrl_flags;
  404. __le16 ata_cmd[11];
  405. };
  406. struct mv_crqb_iie {
  407. __le32 addr;
  408. __le32 addr_hi;
  409. __le32 flags;
  410. __le32 len;
  411. __le32 ata_cmd[4];
  412. };
  413. /* Command ResPonse Block: 8B */
  414. struct mv_crpb {
  415. __le16 id;
  416. __le16 flags;
  417. __le32 tmstmp;
  418. };
  419. /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
  420. struct mv_sg {
  421. __le32 addr;
  422. __le32 flags_size;
  423. __le32 addr_hi;
  424. __le32 reserved;
  425. };
  426. /*
  427. * We keep a local cache of a few frequently accessed port
  428. * registers here, to avoid having to read them (very slow)
  429. * when switching between EDMA and non-EDMA modes.
  430. */
  431. struct mv_cached_regs {
  432. u32 fiscfg;
  433. u32 ltmode;
  434. u32 haltcond;
  435. u32 unknown_rsvd;
  436. };
  437. struct mv_port_priv {
  438. struct mv_crqb *crqb;
  439. dma_addr_t crqb_dma;
  440. struct mv_crpb *crpb;
  441. dma_addr_t crpb_dma;
  442. struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
  443. dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
  444. unsigned int req_idx;
  445. unsigned int resp_idx;
  446. u32 pp_flags;
  447. struct mv_cached_regs cached;
  448. unsigned int delayed_eh_pmp_map;
  449. };
  450. struct mv_port_signal {
  451. u32 amps;
  452. u32 pre;
  453. };
  454. struct mv_host_priv {
  455. u32 hp_flags;
  456. unsigned int board_idx;
  457. u32 main_irq_mask;
  458. struct mv_port_signal signal[8];
  459. const struct mv_hw_ops *ops;
  460. int n_ports;
  461. void __iomem *base;
  462. void __iomem *main_irq_cause_addr;
  463. void __iomem *main_irq_mask_addr;
  464. u32 irq_cause_offset;
  465. u32 irq_mask_offset;
  466. u32 unmask_all_irqs;
  467. #if defined(CONFIG_HAVE_CLK)
  468. struct clk *clk;
  469. #endif
  470. /*
  471. * These consistent DMA memory pools give us guaranteed
  472. * alignment for hardware-accessed data structures,
  473. * and less memory waste in accomplishing the alignment.
  474. */
  475. struct dma_pool *crqb_pool;
  476. struct dma_pool *crpb_pool;
  477. struct dma_pool *sg_tbl_pool;
  478. };
  479. struct mv_hw_ops {
  480. void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
  481. unsigned int port);
  482. void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
  483. void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
  484. void __iomem *mmio);
  485. int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
  486. unsigned int n_hc);
  487. void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
  488. void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
  489. };
  490. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  491. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  492. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  493. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  494. static int mv_port_start(struct ata_port *ap);
  495. static void mv_port_stop(struct ata_port *ap);
  496. static int mv_qc_defer(struct ata_queued_cmd *qc);
  497. static void mv_qc_prep(struct ata_queued_cmd *qc);
  498. static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
  499. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
  500. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  501. unsigned long deadline);
  502. static void mv_eh_freeze(struct ata_port *ap);
  503. static void mv_eh_thaw(struct ata_port *ap);
  504. static void mv6_dev_config(struct ata_device *dev);
  505. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  506. unsigned int port);
  507. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  508. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  509. void __iomem *mmio);
  510. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  511. unsigned int n_hc);
  512. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  513. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
  514. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  515. unsigned int port);
  516. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  517. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  518. void __iomem *mmio);
  519. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  520. unsigned int n_hc);
  521. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  522. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  523. void __iomem *mmio);
  524. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  525. void __iomem *mmio);
  526. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  527. void __iomem *mmio, unsigned int n_hc);
  528. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  529. void __iomem *mmio);
  530. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
  531. static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
  532. void __iomem *mmio, unsigned int port);
  533. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
  534. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  535. unsigned int port_no);
  536. static int mv_stop_edma(struct ata_port *ap);
  537. static int mv_stop_edma_engine(void __iomem *port_mmio);
  538. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
  539. static void mv_pmp_select(struct ata_port *ap, int pmp);
  540. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  541. unsigned long deadline);
  542. static int mv_softreset(struct ata_link *link, unsigned int *class,
  543. unsigned long deadline);
  544. static void mv_pmp_error_handler(struct ata_port *ap);
  545. static void mv_process_crpb_entries(struct ata_port *ap,
  546. struct mv_port_priv *pp);
  547. static void mv_sff_irq_clear(struct ata_port *ap);
  548. static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
  549. static void mv_bmdma_setup(struct ata_queued_cmd *qc);
  550. static void mv_bmdma_start(struct ata_queued_cmd *qc);
  551. static void mv_bmdma_stop(struct ata_queued_cmd *qc);
  552. static u8 mv_bmdma_status(struct ata_port *ap);
  553. static u8 mv_sff_check_status(struct ata_port *ap);
  554. /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
  555. * because we have to allow room for worst case splitting of
  556. * PRDs for 64K boundaries in mv_fill_sg().
  557. */
  558. static struct scsi_host_template mv5_sht = {
  559. ATA_BASE_SHT(DRV_NAME),
  560. .sg_tablesize = MV_MAX_SG_CT / 2,
  561. .dma_boundary = MV_DMA_BOUNDARY,
  562. };
  563. static struct scsi_host_template mv6_sht = {
  564. ATA_NCQ_SHT(DRV_NAME),
  565. .can_queue = MV_MAX_Q_DEPTH - 1,
  566. .sg_tablesize = MV_MAX_SG_CT / 2,
  567. .dma_boundary = MV_DMA_BOUNDARY,
  568. };
  569. static struct ata_port_operations mv5_ops = {
  570. .inherits = &ata_sff_port_ops,
  571. .lost_interrupt = ATA_OP_NULL,
  572. .qc_defer = mv_qc_defer,
  573. .qc_prep = mv_qc_prep,
  574. .qc_issue = mv_qc_issue,
  575. .freeze = mv_eh_freeze,
  576. .thaw = mv_eh_thaw,
  577. .hardreset = mv_hardreset,
  578. .scr_read = mv5_scr_read,
  579. .scr_write = mv5_scr_write,
  580. .port_start = mv_port_start,
  581. .port_stop = mv_port_stop,
  582. };
  583. static struct ata_port_operations mv6_ops = {
  584. .inherits = &ata_bmdma_port_ops,
  585. .lost_interrupt = ATA_OP_NULL,
  586. .qc_defer = mv_qc_defer,
  587. .qc_prep = mv_qc_prep,
  588. .qc_issue = mv_qc_issue,
  589. .dev_config = mv6_dev_config,
  590. .freeze = mv_eh_freeze,
  591. .thaw = mv_eh_thaw,
  592. .hardreset = mv_hardreset,
  593. .softreset = mv_softreset,
  594. .pmp_hardreset = mv_pmp_hardreset,
  595. .pmp_softreset = mv_softreset,
  596. .error_handler = mv_pmp_error_handler,
  597. .scr_read = mv_scr_read,
  598. .scr_write = mv_scr_write,
  599. .sff_check_status = mv_sff_check_status,
  600. .sff_irq_clear = mv_sff_irq_clear,
  601. .check_atapi_dma = mv_check_atapi_dma,
  602. .bmdma_setup = mv_bmdma_setup,
  603. .bmdma_start = mv_bmdma_start,
  604. .bmdma_stop = mv_bmdma_stop,
  605. .bmdma_status = mv_bmdma_status,
  606. .port_start = mv_port_start,
  607. .port_stop = mv_port_stop,
  608. };
  609. static struct ata_port_operations mv_iie_ops = {
  610. .inherits = &mv6_ops,
  611. .dev_config = ATA_OP_NULL,
  612. .qc_prep = mv_qc_prep_iie,
  613. };
  614. static const struct ata_port_info mv_port_info[] = {
  615. { /* chip_504x */
  616. .flags = MV_GEN_I_FLAGS,
  617. .pio_mask = ATA_PIO4,
  618. .udma_mask = ATA_UDMA6,
  619. .port_ops = &mv5_ops,
  620. },
  621. { /* chip_508x */
  622. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  623. .pio_mask = ATA_PIO4,
  624. .udma_mask = ATA_UDMA6,
  625. .port_ops = &mv5_ops,
  626. },
  627. { /* chip_5080 */
  628. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  629. .pio_mask = ATA_PIO4,
  630. .udma_mask = ATA_UDMA6,
  631. .port_ops = &mv5_ops,
  632. },
  633. { /* chip_604x */
  634. .flags = MV_GEN_II_FLAGS,
  635. .pio_mask = ATA_PIO4,
  636. .udma_mask = ATA_UDMA6,
  637. .port_ops = &mv6_ops,
  638. },
  639. { /* chip_608x */
  640. .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
  641. .pio_mask = ATA_PIO4,
  642. .udma_mask = ATA_UDMA6,
  643. .port_ops = &mv6_ops,
  644. },
  645. { /* chip_6042 */
  646. .flags = MV_GEN_IIE_FLAGS,
  647. .pio_mask = ATA_PIO4,
  648. .udma_mask = ATA_UDMA6,
  649. .port_ops = &mv_iie_ops,
  650. },
  651. { /* chip_7042 */
  652. .flags = MV_GEN_IIE_FLAGS,
  653. .pio_mask = ATA_PIO4,
  654. .udma_mask = ATA_UDMA6,
  655. .port_ops = &mv_iie_ops,
  656. },
  657. { /* chip_soc */
  658. .flags = MV_GEN_IIE_FLAGS,
  659. .pio_mask = ATA_PIO4,
  660. .udma_mask = ATA_UDMA6,
  661. .port_ops = &mv_iie_ops,
  662. },
  663. };
  664. static const struct pci_device_id mv_pci_tbl[] = {
  665. { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
  666. { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
  667. { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
  668. { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
  669. /* RocketRAID 1720/174x have different identifiers */
  670. { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
  671. { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
  672. { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
  673. { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
  674. { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
  675. { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
  676. { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
  677. { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
  678. { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
  679. /* Adaptec 1430SA */
  680. { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
  681. /* Marvell 7042 support */
  682. { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
  683. /* Highpoint RocketRAID PCIe series */
  684. { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
  685. { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
  686. { } /* terminate list */
  687. };
  688. static const struct mv_hw_ops mv5xxx_ops = {
  689. .phy_errata = mv5_phy_errata,
  690. .enable_leds = mv5_enable_leds,
  691. .read_preamp = mv5_read_preamp,
  692. .reset_hc = mv5_reset_hc,
  693. .reset_flash = mv5_reset_flash,
  694. .reset_bus = mv5_reset_bus,
  695. };
  696. static const struct mv_hw_ops mv6xxx_ops = {
  697. .phy_errata = mv6_phy_errata,
  698. .enable_leds = mv6_enable_leds,
  699. .read_preamp = mv6_read_preamp,
  700. .reset_hc = mv6_reset_hc,
  701. .reset_flash = mv6_reset_flash,
  702. .reset_bus = mv_reset_pci_bus,
  703. };
  704. static const struct mv_hw_ops mv_soc_ops = {
  705. .phy_errata = mv6_phy_errata,
  706. .enable_leds = mv_soc_enable_leds,
  707. .read_preamp = mv_soc_read_preamp,
  708. .reset_hc = mv_soc_reset_hc,
  709. .reset_flash = mv_soc_reset_flash,
  710. .reset_bus = mv_soc_reset_bus,
  711. };
  712. static const struct mv_hw_ops mv_soc_65n_ops = {
  713. .phy_errata = mv_soc_65n_phy_errata,
  714. .enable_leds = mv_soc_enable_leds,
  715. .reset_hc = mv_soc_reset_hc,
  716. .reset_flash = mv_soc_reset_flash,
  717. .reset_bus = mv_soc_reset_bus,
  718. };
  719. /*
  720. * Functions
  721. */
  722. static inline void writelfl(unsigned long data, void __iomem *addr)
  723. {
  724. writel(data, addr);
  725. (void) readl(addr); /* flush to avoid PCI posted write */
  726. }
  727. static inline unsigned int mv_hc_from_port(unsigned int port)
  728. {
  729. return port >> MV_PORT_HC_SHIFT;
  730. }
  731. static inline unsigned int mv_hardport_from_port(unsigned int port)
  732. {
  733. return port & MV_PORT_MASK;
  734. }
  735. /*
  736. * Consolidate some rather tricky bit shift calculations.
  737. * This is hot-path stuff, so not a function.
  738. * Simple code, with two return values, so macro rather than inline.
  739. *
  740. * port is the sole input, in range 0..7.
  741. * shift is one output, for use with main_irq_cause / main_irq_mask registers.
  742. * hardport is the other output, in range 0..3.
  743. *
  744. * Note that port and hardport may be the same variable in some cases.
  745. */
  746. #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
  747. { \
  748. shift = mv_hc_from_port(port) * HC_SHIFT; \
  749. hardport = mv_hardport_from_port(port); \
  750. shift += hardport * 2; \
  751. }
  752. static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
  753. {
  754. return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
  755. }
  756. static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
  757. unsigned int port)
  758. {
  759. return mv_hc_base(base, mv_hc_from_port(port));
  760. }
  761. static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
  762. {
  763. return mv_hc_base_from_port(base, port) +
  764. MV_SATAHC_ARBTR_REG_SZ +
  765. (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
  766. }
  767. static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
  768. {
  769. void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
  770. unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
  771. return hc_mmio + ofs;
  772. }
  773. static inline void __iomem *mv_host_base(struct ata_host *host)
  774. {
  775. struct mv_host_priv *hpriv = host->private_data;
  776. return hpriv->base;
  777. }
  778. static inline void __iomem *mv_ap_base(struct ata_port *ap)
  779. {
  780. return mv_port_base(mv_host_base(ap->host), ap->port_no);
  781. }
  782. static inline int mv_get_hc_count(unsigned long port_flags)
  783. {
  784. return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
  785. }
  786. /**
  787. * mv_save_cached_regs - (re-)initialize cached port registers
  788. * @ap: the port whose registers we are caching
  789. *
  790. * Initialize the local cache of port registers,
  791. * so that reading them over and over again can
  792. * be avoided on the hotter paths of this driver.
  793. * This saves a few microseconds each time we switch
  794. * to/from EDMA mode to perform (eg.) a drive cache flush.
  795. */
  796. static void mv_save_cached_regs(struct ata_port *ap)
  797. {
  798. void __iomem *port_mmio = mv_ap_base(ap);
  799. struct mv_port_priv *pp = ap->private_data;
  800. pp->cached.fiscfg = readl(port_mmio + FISCFG);
  801. pp->cached.ltmode = readl(port_mmio + LTMODE);
  802. pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
  803. pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
  804. }
  805. /**
  806. * mv_write_cached_reg - write to a cached port register
  807. * @addr: hardware address of the register
  808. * @old: pointer to cached value of the register
  809. * @new: new value for the register
  810. *
  811. * Write a new value to a cached register,
  812. * but only if the value is different from before.
  813. */
  814. static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
  815. {
  816. if (new != *old) {
  817. unsigned long laddr;
  818. *old = new;
  819. /*
  820. * Workaround for 88SX60x1-B2 FEr SATA#13:
  821. * Read-after-write is needed to prevent generating 64-bit
  822. * write cycles on the PCI bus for SATA interface registers
  823. * at offsets ending in 0x4 or 0xc.
  824. *
  825. * Looks like a lot of fuss, but it avoids an unnecessary
  826. * +1 usec read-after-write delay for unaffected registers.
  827. */
  828. laddr = (long)addr & 0xffff;
  829. if (laddr >= 0x300 && laddr <= 0x33c) {
  830. laddr &= 0x000f;
  831. if (laddr == 0x4 || laddr == 0xc) {
  832. writelfl(new, addr); /* read after write */
  833. return;
  834. }
  835. }
  836. writel(new, addr); /* unaffected by the errata */
  837. }
  838. }
  839. static void mv_set_edma_ptrs(void __iomem *port_mmio,
  840. struct mv_host_priv *hpriv,
  841. struct mv_port_priv *pp)
  842. {
  843. u32 index;
  844. /*
  845. * initialize request queue
  846. */
  847. pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  848. index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  849. WARN_ON(pp->crqb_dma & 0x3ff);
  850. writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
  851. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
  852. port_mmio + EDMA_REQ_Q_IN_PTR);
  853. writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
  854. /*
  855. * initialize response queue
  856. */
  857. pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  858. index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
  859. WARN_ON(pp->crpb_dma & 0xff);
  860. writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
  861. writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
  862. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
  863. port_mmio + EDMA_RSP_Q_OUT_PTR);
  864. }
  865. static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
  866. {
  867. /*
  868. * When writing to the main_irq_mask in hardware,
  869. * we must ensure exclusivity between the interrupt coalescing bits
  870. * and the corresponding individual port DONE_IRQ bits.
  871. *
  872. * Note that this register is really an "IRQ enable" register,
  873. * not an "IRQ mask" register as Marvell's naming might suggest.
  874. */
  875. if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
  876. mask &= ~DONE_IRQ_0_3;
  877. if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
  878. mask &= ~DONE_IRQ_4_7;
  879. writelfl(mask, hpriv->main_irq_mask_addr);
  880. }
  881. static void mv_set_main_irq_mask(struct ata_host *host,
  882. u32 disable_bits, u32 enable_bits)
  883. {
  884. struct mv_host_priv *hpriv = host->private_data;
  885. u32 old_mask, new_mask;
  886. old_mask = hpriv->main_irq_mask;
  887. new_mask = (old_mask & ~disable_bits) | enable_bits;
  888. if (new_mask != old_mask) {
  889. hpriv->main_irq_mask = new_mask;
  890. mv_write_main_irq_mask(new_mask, hpriv);
  891. }
  892. }
  893. static void mv_enable_port_irqs(struct ata_port *ap,
  894. unsigned int port_bits)
  895. {
  896. unsigned int shift, hardport, port = ap->port_no;
  897. u32 disable_bits, enable_bits;
  898. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  899. disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
  900. enable_bits = port_bits << shift;
  901. mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
  902. }
  903. static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
  904. void __iomem *port_mmio,
  905. unsigned int port_irqs)
  906. {
  907. struct mv_host_priv *hpriv = ap->host->private_data;
  908. int hardport = mv_hardport_from_port(ap->port_no);
  909. void __iomem *hc_mmio = mv_hc_base_from_port(
  910. mv_host_base(ap->host), ap->port_no);
  911. u32 hc_irq_cause;
  912. /* clear EDMA event indicators, if any */
  913. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
  914. /* clear pending irq events */
  915. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  916. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
  917. /* clear FIS IRQ Cause */
  918. if (IS_GEN_IIE(hpriv))
  919. writelfl(0, port_mmio + FIS_IRQ_CAUSE);
  920. mv_enable_port_irqs(ap, port_irqs);
  921. }
  922. static void mv_set_irq_coalescing(struct ata_host *host,
  923. unsigned int count, unsigned int usecs)
  924. {
  925. struct mv_host_priv *hpriv = host->private_data;
  926. void __iomem *mmio = hpriv->base, *hc_mmio;
  927. u32 coal_enable = 0;
  928. unsigned long flags;
  929. unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
  930. const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
  931. ALL_PORTS_COAL_DONE;
  932. /* Disable IRQ coalescing if either threshold is zero */
  933. if (!usecs || !count) {
  934. clks = count = 0;
  935. } else {
  936. /* Respect maximum limits of the hardware */
  937. clks = usecs * COAL_CLOCKS_PER_USEC;
  938. if (clks > MAX_COAL_TIME_THRESHOLD)
  939. clks = MAX_COAL_TIME_THRESHOLD;
  940. if (count > MAX_COAL_IO_COUNT)
  941. count = MAX_COAL_IO_COUNT;
  942. }
  943. spin_lock_irqsave(&host->lock, flags);
  944. mv_set_main_irq_mask(host, coal_disable, 0);
  945. if (is_dual_hc && !IS_GEN_I(hpriv)) {
  946. /*
  947. * GEN_II/GEN_IIE with dual host controllers:
  948. * one set of global thresholds for the entire chip.
  949. */
  950. writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
  951. writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
  952. /* clear leftover coal IRQ bit */
  953. writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
  954. if (count)
  955. coal_enable = ALL_PORTS_COAL_DONE;
  956. clks = count = 0; /* force clearing of regular regs below */
  957. }
  958. /*
  959. * All chips: independent thresholds for each HC on the chip.
  960. */
  961. hc_mmio = mv_hc_base_from_port(mmio, 0);
  962. writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
  963. writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
  964. writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
  965. if (count)
  966. coal_enable |= PORTS_0_3_COAL_DONE;
  967. if (is_dual_hc) {
  968. hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
  969. writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
  970. writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
  971. writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
  972. if (count)
  973. coal_enable |= PORTS_4_7_COAL_DONE;
  974. }
  975. mv_set_main_irq_mask(host, 0, coal_enable);
  976. spin_unlock_irqrestore(&host->lock, flags);
  977. }
  978. /**
  979. * mv_start_edma - Enable eDMA engine
  980. * @base: port base address
  981. * @pp: port private data
  982. *
  983. * Verify the local cache of the eDMA state is accurate with a
  984. * WARN_ON.
  985. *
  986. * LOCKING:
  987. * Inherited from caller.
  988. */
  989. static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
  990. struct mv_port_priv *pp, u8 protocol)
  991. {
  992. int want_ncq = (protocol == ATA_PROT_NCQ);
  993. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
  994. int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
  995. if (want_ncq != using_ncq)
  996. mv_stop_edma(ap);
  997. }
  998. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
  999. struct mv_host_priv *hpriv = ap->host->private_data;
  1000. mv_edma_cfg(ap, want_ncq, 1);
  1001. mv_set_edma_ptrs(port_mmio, hpriv, pp);
  1002. mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
  1003. writelfl(EDMA_EN, port_mmio + EDMA_CMD);
  1004. pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
  1005. }
  1006. }
  1007. static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
  1008. {
  1009. void __iomem *port_mmio = mv_ap_base(ap);
  1010. const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
  1011. const int per_loop = 5, timeout = (15 * 1000 / per_loop);
  1012. int i;
  1013. /*
  1014. * Wait for the EDMA engine to finish transactions in progress.
  1015. * No idea what a good "timeout" value might be, but measurements
  1016. * indicate that it often requires hundreds of microseconds
  1017. * with two drives in-use. So we use the 15msec value above
  1018. * as a rough guess at what even more drives might require.
  1019. */
  1020. for (i = 0; i < timeout; ++i) {
  1021. u32 edma_stat = readl(port_mmio + EDMA_STATUS);
  1022. if ((edma_stat & empty_idle) == empty_idle)
  1023. break;
  1024. udelay(per_loop);
  1025. }
  1026. /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
  1027. }
  1028. /**
  1029. * mv_stop_edma_engine - Disable eDMA engine
  1030. * @port_mmio: io base address
  1031. *
  1032. * LOCKING:
  1033. * Inherited from caller.
  1034. */
  1035. static int mv_stop_edma_engine(void __iomem *port_mmio)
  1036. {
  1037. int i;
  1038. /* Disable eDMA. The disable bit auto clears. */
  1039. writelfl(EDMA_DS, port_mmio + EDMA_CMD);
  1040. /* Wait for the chip to confirm eDMA is off. */
  1041. for (i = 10000; i > 0; i--) {
  1042. u32 reg = readl(port_mmio + EDMA_CMD);
  1043. if (!(reg & EDMA_EN))
  1044. return 0;
  1045. udelay(10);
  1046. }
  1047. return -EIO;
  1048. }
  1049. static int mv_stop_edma(struct ata_port *ap)
  1050. {
  1051. void __iomem *port_mmio = mv_ap_base(ap);
  1052. struct mv_port_priv *pp = ap->private_data;
  1053. int err = 0;
  1054. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  1055. return 0;
  1056. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1057. mv_wait_for_edma_empty_idle(ap);
  1058. if (mv_stop_edma_engine(port_mmio)) {
  1059. ata_port_err(ap, "Unable to stop eDMA\n");
  1060. err = -EIO;
  1061. }
  1062. mv_edma_cfg(ap, 0, 0);
  1063. return err;
  1064. }
  1065. #ifdef ATA_DEBUG
  1066. static void mv_dump_mem(void __iomem *start, unsigned bytes)
  1067. {
  1068. int b, w;
  1069. for (b = 0; b < bytes; ) {
  1070. DPRINTK("%p: ", start + b);
  1071. for (w = 0; b < bytes && w < 4; w++) {
  1072. printk("%08x ", readl(start + b));
  1073. b += sizeof(u32);
  1074. }
  1075. printk("\n");
  1076. }
  1077. }
  1078. #endif
  1079. static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
  1080. {
  1081. #ifdef ATA_DEBUG
  1082. int b, w;
  1083. u32 dw;
  1084. for (b = 0; b < bytes; ) {
  1085. DPRINTK("%02x: ", b);
  1086. for (w = 0; b < bytes && w < 4; w++) {
  1087. (void) pci_read_config_dword(pdev, b, &dw);
  1088. printk("%08x ", dw);
  1089. b += sizeof(u32);
  1090. }
  1091. printk("\n");
  1092. }
  1093. #endif
  1094. }
  1095. static void mv_dump_all_regs(void __iomem *mmio_base, int port,
  1096. struct pci_dev *pdev)
  1097. {
  1098. #ifdef ATA_DEBUG
  1099. void __iomem *hc_base = mv_hc_base(mmio_base,
  1100. port >> MV_PORT_HC_SHIFT);
  1101. void __iomem *port_base;
  1102. int start_port, num_ports, p, start_hc, num_hcs, hc;
  1103. if (0 > port) {
  1104. start_hc = start_port = 0;
  1105. num_ports = 8; /* shld be benign for 4 port devs */
  1106. num_hcs = 2;
  1107. } else {
  1108. start_hc = port >> MV_PORT_HC_SHIFT;
  1109. start_port = port;
  1110. num_ports = num_hcs = 1;
  1111. }
  1112. DPRINTK("All registers for port(s) %u-%u:\n", start_port,
  1113. num_ports > 1 ? num_ports - 1 : start_port);
  1114. if (NULL != pdev) {
  1115. DPRINTK("PCI config space regs:\n");
  1116. mv_dump_pci_cfg(pdev, 0x68);
  1117. }
  1118. DPRINTK("PCI regs:\n");
  1119. mv_dump_mem(mmio_base+0xc00, 0x3c);
  1120. mv_dump_mem(mmio_base+0xd00, 0x34);
  1121. mv_dump_mem(mmio_base+0xf00, 0x4);
  1122. mv_dump_mem(mmio_base+0x1d00, 0x6c);
  1123. for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
  1124. hc_base = mv_hc_base(mmio_base, hc);
  1125. DPRINTK("HC regs (HC %i):\n", hc);
  1126. mv_dump_mem(hc_base, 0x1c);
  1127. }
  1128. for (p = start_port; p < start_port + num_ports; p++) {
  1129. port_base = mv_port_base(mmio_base, p);
  1130. DPRINTK("EDMA regs (port %i):\n", p);
  1131. mv_dump_mem(port_base, 0x54);
  1132. DPRINTK("SATA regs (port %i):\n", p);
  1133. mv_dump_mem(port_base+0x300, 0x60);
  1134. }
  1135. #endif
  1136. }
  1137. static unsigned int mv_scr_offset(unsigned int sc_reg_in)
  1138. {
  1139. unsigned int ofs;
  1140. switch (sc_reg_in) {
  1141. case SCR_STATUS:
  1142. case SCR_CONTROL:
  1143. case SCR_ERROR:
  1144. ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
  1145. break;
  1146. case SCR_ACTIVE:
  1147. ofs = SATA_ACTIVE; /* active is not with the others */
  1148. break;
  1149. default:
  1150. ofs = 0xffffffffU;
  1151. break;
  1152. }
  1153. return ofs;
  1154. }
  1155. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  1156. {
  1157. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1158. if (ofs != 0xffffffffU) {
  1159. *val = readl(mv_ap_base(link->ap) + ofs);
  1160. return 0;
  1161. } else
  1162. return -EINVAL;
  1163. }
  1164. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  1165. {
  1166. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1167. if (ofs != 0xffffffffU) {
  1168. void __iomem *addr = mv_ap_base(link->ap) + ofs;
  1169. if (sc_reg_in == SCR_CONTROL) {
  1170. /*
  1171. * Workaround for 88SX60x1 FEr SATA#26:
  1172. *
  1173. * COMRESETs have to take care not to accidentally
  1174. * put the drive to sleep when writing SCR_CONTROL.
  1175. * Setting bits 12..15 prevents this problem.
  1176. *
  1177. * So if we see an outbound COMMRESET, set those bits.
  1178. * Ditto for the followup write that clears the reset.
  1179. *
  1180. * The proprietary driver does this for
  1181. * all chip versions, and so do we.
  1182. */
  1183. if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
  1184. val |= 0xf000;
  1185. }
  1186. writelfl(val, addr);
  1187. return 0;
  1188. } else
  1189. return -EINVAL;
  1190. }
  1191. static void mv6_dev_config(struct ata_device *adev)
  1192. {
  1193. /*
  1194. * Deal with Gen-II ("mv6") hardware quirks/restrictions:
  1195. *
  1196. * Gen-II does not support NCQ over a port multiplier
  1197. * (no FIS-based switching).
  1198. */
  1199. if (adev->flags & ATA_DFLAG_NCQ) {
  1200. if (sata_pmp_attached(adev->link->ap)) {
  1201. adev->flags &= ~ATA_DFLAG_NCQ;
  1202. ata_dev_info(adev,
  1203. "NCQ disabled for command-based switching\n");
  1204. }
  1205. }
  1206. }
  1207. static int mv_qc_defer(struct ata_queued_cmd *qc)
  1208. {
  1209. struct ata_link *link = qc->dev->link;
  1210. struct ata_port *ap = link->ap;
  1211. struct mv_port_priv *pp = ap->private_data;
  1212. /*
  1213. * Don't allow new commands if we're in a delayed EH state
  1214. * for NCQ and/or FIS-based switching.
  1215. */
  1216. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  1217. return ATA_DEFER_PORT;
  1218. /* PIO commands need exclusive link: no other commands [DMA or PIO]
  1219. * can run concurrently.
  1220. * set excl_link when we want to send a PIO command in DMA mode
  1221. * or a non-NCQ command in NCQ mode.
  1222. * When we receive a command from that link, and there are no
  1223. * outstanding commands, mark a flag to clear excl_link and let
  1224. * the command go through.
  1225. */
  1226. if (unlikely(ap->excl_link)) {
  1227. if (link == ap->excl_link) {
  1228. if (ap->nr_active_links)
  1229. return ATA_DEFER_PORT;
  1230. qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
  1231. return 0;
  1232. } else
  1233. return ATA_DEFER_PORT;
  1234. }
  1235. /*
  1236. * If the port is completely idle, then allow the new qc.
  1237. */
  1238. if (ap->nr_active_links == 0)
  1239. return 0;
  1240. /*
  1241. * The port is operating in host queuing mode (EDMA) with NCQ
  1242. * enabled, allow multiple NCQ commands. EDMA also allows
  1243. * queueing multiple DMA commands but libata core currently
  1244. * doesn't allow it.
  1245. */
  1246. if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
  1247. (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
  1248. if (ata_is_ncq(qc->tf.protocol))
  1249. return 0;
  1250. else {
  1251. ap->excl_link = link;
  1252. return ATA_DEFER_PORT;
  1253. }
  1254. }
  1255. return ATA_DEFER_PORT;
  1256. }
  1257. static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
  1258. {
  1259. struct mv_port_priv *pp = ap->private_data;
  1260. void __iomem *port_mmio;
  1261. u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
  1262. u32 ltmode, *old_ltmode = &pp->cached.ltmode;
  1263. u32 haltcond, *old_haltcond = &pp->cached.haltcond;
  1264. ltmode = *old_ltmode & ~LTMODE_BIT8;
  1265. haltcond = *old_haltcond | EDMA_ERR_DEV;
  1266. if (want_fbs) {
  1267. fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
  1268. ltmode = *old_ltmode | LTMODE_BIT8;
  1269. if (want_ncq)
  1270. haltcond &= ~EDMA_ERR_DEV;
  1271. else
  1272. fiscfg |= FISCFG_WAIT_DEV_ERR;
  1273. } else {
  1274. fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
  1275. }
  1276. port_mmio = mv_ap_base(ap);
  1277. mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
  1278. mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
  1279. mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
  1280. }
  1281. static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
  1282. {
  1283. struct mv_host_priv *hpriv = ap->host->private_data;
  1284. u32 old, new;
  1285. /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
  1286. old = readl(hpriv->base + GPIO_PORT_CTL);
  1287. if (want_ncq)
  1288. new = old | (1 << 22);
  1289. else
  1290. new = old & ~(1 << 22);
  1291. if (new != old)
  1292. writel(new, hpriv->base + GPIO_PORT_CTL);
  1293. }
  1294. /**
  1295. * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
  1296. * @ap: Port being initialized
  1297. *
  1298. * There are two DMA modes on these chips: basic DMA, and EDMA.
  1299. *
  1300. * Bit-0 of the "EDMA RESERVED" register enables/disables use
  1301. * of basic DMA on the GEN_IIE versions of the chips.
  1302. *
  1303. * This bit survives EDMA resets, and must be set for basic DMA
  1304. * to function, and should be cleared when EDMA is active.
  1305. */
  1306. static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
  1307. {
  1308. struct mv_port_priv *pp = ap->private_data;
  1309. u32 new, *old = &pp->cached.unknown_rsvd;
  1310. if (enable_bmdma)
  1311. new = *old | 1;
  1312. else
  1313. new = *old & ~1;
  1314. mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
  1315. }
  1316. /*
  1317. * SOC chips have an issue whereby the HDD LEDs don't always blink
  1318. * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
  1319. * of the SOC takes care of it, generating a steady blink rate when
  1320. * any drive on the chip is active.
  1321. *
  1322. * Unfortunately, the blink mode is a global hardware setting for the SOC,
  1323. * so we must use it whenever at least one port on the SOC has NCQ enabled.
  1324. *
  1325. * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
  1326. * LED operation works then, and provides better (more accurate) feedback.
  1327. *
  1328. * Note that this code assumes that an SOC never has more than one HC onboard.
  1329. */
  1330. static void mv_soc_led_blink_enable(struct ata_port *ap)
  1331. {
  1332. struct ata_host *host = ap->host;
  1333. struct mv_host_priv *hpriv = host->private_data;
  1334. void __iomem *hc_mmio;
  1335. u32 led_ctrl;
  1336. if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
  1337. return;
  1338. hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
  1339. hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
  1340. led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
  1341. writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
  1342. }
  1343. static void mv_soc_led_blink_disable(struct ata_port *ap)
  1344. {
  1345. struct ata_host *host = ap->host;
  1346. struct mv_host_priv *hpriv = host->private_data;
  1347. void __iomem *hc_mmio;
  1348. u32 led_ctrl;
  1349. unsigned int port;
  1350. if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
  1351. return;
  1352. /* disable led-blink only if no ports are using NCQ */
  1353. for (port = 0; port < hpriv->n_ports; port++) {
  1354. struct ata_port *this_ap = host->ports[port];
  1355. struct mv_port_priv *pp = this_ap->private_data;
  1356. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  1357. return;
  1358. }
  1359. hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
  1360. hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
  1361. led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
  1362. writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
  1363. }
  1364. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
  1365. {
  1366. u32 cfg;
  1367. struct mv_port_priv *pp = ap->private_data;
  1368. struct mv_host_priv *hpriv = ap->host->private_data;
  1369. void __iomem *port_mmio = mv_ap_base(ap);
  1370. /* set up non-NCQ EDMA configuration */
  1371. cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
  1372. pp->pp_flags &=
  1373. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  1374. if (IS_GEN_I(hpriv))
  1375. cfg |= (1 << 8); /* enab config burst size mask */
  1376. else if (IS_GEN_II(hpriv)) {
  1377. cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
  1378. mv_60x1_errata_sata25(ap, want_ncq);
  1379. } else if (IS_GEN_IIE(hpriv)) {
  1380. int want_fbs = sata_pmp_attached(ap);
  1381. /*
  1382. * Possible future enhancement:
  1383. *
  1384. * The chip can use FBS with non-NCQ, if we allow it,
  1385. * But first we need to have the error handling in place
  1386. * for this mode (datasheet section 7.3.15.4.2.3).
  1387. * So disallow non-NCQ FBS for now.
  1388. */
  1389. want_fbs &= want_ncq;
  1390. mv_config_fbs(ap, want_ncq, want_fbs);
  1391. if (want_fbs) {
  1392. pp->pp_flags |= MV_PP_FLAG_FBS_EN;
  1393. cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
  1394. }
  1395. cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
  1396. if (want_edma) {
  1397. cfg |= (1 << 22); /* enab 4-entry host queue cache */
  1398. if (!IS_SOC(hpriv))
  1399. cfg |= (1 << 18); /* enab early completion */
  1400. }
  1401. if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
  1402. cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
  1403. mv_bmdma_enable_iie(ap, !want_edma);
  1404. if (IS_SOC(hpriv)) {
  1405. if (want_ncq)
  1406. mv_soc_led_blink_enable(ap);
  1407. else
  1408. mv_soc_led_blink_disable(ap);
  1409. }
  1410. }
  1411. if (want_ncq) {
  1412. cfg |= EDMA_CFG_NCQ;
  1413. pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
  1414. }
  1415. writelfl(cfg, port_mmio + EDMA_CFG);
  1416. }
  1417. static void mv_port_free_dma_mem(struct ata_port *ap)
  1418. {
  1419. struct mv_host_priv *hpriv = ap->host->private_data;
  1420. struct mv_port_priv *pp = ap->private_data;
  1421. int tag;
  1422. if (pp->crqb) {
  1423. dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
  1424. pp->crqb = NULL;
  1425. }
  1426. if (pp->crpb) {
  1427. dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
  1428. pp->crpb = NULL;
  1429. }
  1430. /*
  1431. * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
  1432. * For later hardware, we have one unique sg_tbl per NCQ tag.
  1433. */
  1434. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1435. if (pp->sg_tbl[tag]) {
  1436. if (tag == 0 || !IS_GEN_I(hpriv))
  1437. dma_pool_free(hpriv->sg_tbl_pool,
  1438. pp->sg_tbl[tag],
  1439. pp->sg_tbl_dma[tag]);
  1440. pp->sg_tbl[tag] = NULL;
  1441. }
  1442. }
  1443. }
  1444. /**
  1445. * mv_port_start - Port specific init/start routine.
  1446. * @ap: ATA channel to manipulate
  1447. *
  1448. * Allocate and point to DMA memory, init port private memory,
  1449. * zero indices.
  1450. *
  1451. * LOCKING:
  1452. * Inherited from caller.
  1453. */
  1454. static int mv_port_start(struct ata_port *ap)
  1455. {
  1456. struct device *dev = ap->host->dev;
  1457. struct mv_host_priv *hpriv = ap->host->private_data;
  1458. struct mv_port_priv *pp;
  1459. unsigned long flags;
  1460. int tag;
  1461. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  1462. if (!pp)
  1463. return -ENOMEM;
  1464. ap->private_data = pp;
  1465. pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
  1466. if (!pp->crqb)
  1467. return -ENOMEM;
  1468. memset(pp->crqb, 0, MV_CRQB_Q_SZ);
  1469. pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
  1470. if (!pp->crpb)
  1471. goto out_port_free_dma_mem;
  1472. memset(pp->crpb, 0, MV_CRPB_Q_SZ);
  1473. /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
  1474. if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
  1475. ap->flags |= ATA_FLAG_AN;
  1476. /*
  1477. * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
  1478. * For later hardware, we need one unique sg_tbl per NCQ tag.
  1479. */
  1480. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1481. if (tag == 0 || !IS_GEN_I(hpriv)) {
  1482. pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
  1483. GFP_KERNEL, &pp->sg_tbl_dma[tag]);
  1484. if (!pp->sg_tbl[tag])
  1485. goto out_port_free_dma_mem;
  1486. } else {
  1487. pp->sg_tbl[tag] = pp->sg_tbl[0];
  1488. pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
  1489. }
  1490. }
  1491. spin_lock_irqsave(ap->lock, flags);
  1492. mv_save_cached_regs(ap);
  1493. mv_edma_cfg(ap, 0, 0);
  1494. spin_unlock_irqrestore(ap->lock, flags);
  1495. return 0;
  1496. out_port_free_dma_mem:
  1497. mv_port_free_dma_mem(ap);
  1498. return -ENOMEM;
  1499. }
  1500. /**
  1501. * mv_port_stop - Port specific cleanup/stop routine.
  1502. * @ap: ATA channel to manipulate
  1503. *
  1504. * Stop DMA, cleanup port memory.
  1505. *
  1506. * LOCKING:
  1507. * This routine uses the host lock to protect the DMA stop.
  1508. */
  1509. static void mv_port_stop(struct ata_port *ap)
  1510. {
  1511. unsigned long flags;
  1512. spin_lock_irqsave(ap->lock, flags);
  1513. mv_stop_edma(ap);
  1514. mv_enable_port_irqs(ap, 0);
  1515. spin_unlock_irqrestore(ap->lock, flags);
  1516. mv_port_free_dma_mem(ap);
  1517. }
  1518. /**
  1519. * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
  1520. * @qc: queued command whose SG list to source from
  1521. *
  1522. * Populate the SG list and mark the last entry.
  1523. *
  1524. * LOCKING:
  1525. * Inherited from caller.
  1526. */
  1527. static void mv_fill_sg(struct ata_queued_cmd *qc)
  1528. {
  1529. struct mv_port_priv *pp = qc->ap->private_data;
  1530. struct scatterlist *sg;
  1531. struct mv_sg *mv_sg, *last_sg = NULL;
  1532. unsigned int si;
  1533. mv_sg = pp->sg_tbl[qc->tag];
  1534. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  1535. dma_addr_t addr = sg_dma_address(sg);
  1536. u32 sg_len = sg_dma_len(sg);
  1537. while (sg_len) {
  1538. u32 offset = addr & 0xffff;
  1539. u32 len = sg_len;
  1540. if (offset + len > 0x10000)
  1541. len = 0x10000 - offset;
  1542. mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
  1543. mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
  1544. mv_sg->flags_size = cpu_to_le32(len & 0xffff);
  1545. mv_sg->reserved = 0;
  1546. sg_len -= len;
  1547. addr += len;
  1548. last_sg = mv_sg;
  1549. mv_sg++;
  1550. }
  1551. }
  1552. if (likely(last_sg))
  1553. last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
  1554. mb(); /* ensure data structure is visible to the chipset */
  1555. }
  1556. static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
  1557. {
  1558. u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
  1559. (last ? CRQB_CMD_LAST : 0);
  1560. *cmdw = cpu_to_le16(tmp);
  1561. }
  1562. /**
  1563. * mv_sff_irq_clear - Clear hardware interrupt after DMA.
  1564. * @ap: Port associated with this ATA transaction.
  1565. *
  1566. * We need this only for ATAPI bmdma transactions,
  1567. * as otherwise we experience spurious interrupts
  1568. * after libata-sff handles the bmdma interrupts.
  1569. */
  1570. static void mv_sff_irq_clear(struct ata_port *ap)
  1571. {
  1572. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
  1573. }
  1574. /**
  1575. * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
  1576. * @qc: queued command to check for chipset/DMA compatibility.
  1577. *
  1578. * The bmdma engines cannot handle speculative data sizes
  1579. * (bytecount under/over flow). So only allow DMA for
  1580. * data transfer commands with known data sizes.
  1581. *
  1582. * LOCKING:
  1583. * Inherited from caller.
  1584. */
  1585. static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
  1586. {
  1587. struct scsi_cmnd *scmd = qc->scsicmd;
  1588. if (scmd) {
  1589. switch (scmd->cmnd[0]) {
  1590. case READ_6:
  1591. case READ_10:
  1592. case READ_12:
  1593. case WRITE_6:
  1594. case WRITE_10:
  1595. case WRITE_12:
  1596. case GPCMD_READ_CD:
  1597. case GPCMD_SEND_DVD_STRUCTURE:
  1598. case GPCMD_SEND_CUE_SHEET:
  1599. return 0; /* DMA is safe */
  1600. }
  1601. }
  1602. return -EOPNOTSUPP; /* use PIO instead */
  1603. }
  1604. /**
  1605. * mv_bmdma_setup - Set up BMDMA transaction
  1606. * @qc: queued command to prepare DMA for.
  1607. *
  1608. * LOCKING:
  1609. * Inherited from caller.
  1610. */
  1611. static void mv_bmdma_setup(struct ata_queued_cmd *qc)
  1612. {
  1613. struct ata_port *ap = qc->ap;
  1614. void __iomem *port_mmio = mv_ap_base(ap);
  1615. struct mv_port_priv *pp = ap->private_data;
  1616. mv_fill_sg(qc);
  1617. /* clear all DMA cmd bits */
  1618. writel(0, port_mmio + BMDMA_CMD);
  1619. /* load PRD table addr. */
  1620. writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
  1621. port_mmio + BMDMA_PRD_HIGH);
  1622. writelfl(pp->sg_tbl_dma[qc->tag],
  1623. port_mmio + BMDMA_PRD_LOW);
  1624. /* issue r/w command */
  1625. ap->ops->sff_exec_command(ap, &qc->tf);
  1626. }
  1627. /**
  1628. * mv_bmdma_start - Start a BMDMA transaction
  1629. * @qc: queued command to start DMA on.
  1630. *
  1631. * LOCKING:
  1632. * Inherited from caller.
  1633. */
  1634. static void mv_bmdma_start(struct ata_queued_cmd *qc)
  1635. {
  1636. struct ata_port *ap = qc->ap;
  1637. void __iomem *port_mmio = mv_ap_base(ap);
  1638. unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
  1639. u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
  1640. /* start host DMA transaction */
  1641. writelfl(cmd, port_mmio + BMDMA_CMD);
  1642. }
  1643. /**
  1644. * mv_bmdma_stop - Stop BMDMA transfer
  1645. * @qc: queued command to stop DMA on.
  1646. *
  1647. * Clears the ATA_DMA_START flag in the bmdma control register
  1648. *
  1649. * LOCKING:
  1650. * Inherited from caller.
  1651. */
  1652. static void mv_bmdma_stop_ap(struct ata_port *ap)
  1653. {
  1654. void __iomem *port_mmio = mv_ap_base(ap);
  1655. u32 cmd;
  1656. /* clear start/stop bit */
  1657. cmd = readl(port_mmio + BMDMA_CMD);
  1658. if (cmd & ATA_DMA_START) {
  1659. cmd &= ~ATA_DMA_START;
  1660. writelfl(cmd, port_mmio + BMDMA_CMD);
  1661. /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
  1662. ata_sff_dma_pause(ap);
  1663. }
  1664. }
  1665. static void mv_bmdma_stop(struct ata_queued_cmd *qc)
  1666. {
  1667. mv_bmdma_stop_ap(qc->ap);
  1668. }
  1669. /**
  1670. * mv_bmdma_status - Read BMDMA status
  1671. * @ap: port for which to retrieve DMA status.
  1672. *
  1673. * Read and return equivalent of the sff BMDMA status register.
  1674. *
  1675. * LOCKING:
  1676. * Inherited from caller.
  1677. */
  1678. static u8 mv_bmdma_status(struct ata_port *ap)
  1679. {
  1680. void __iomem *port_mmio = mv_ap_base(ap);
  1681. u32 reg, status;
  1682. /*
  1683. * Other bits are valid only if ATA_DMA_ACTIVE==0,
  1684. * and the ATA_DMA_INTR bit doesn't exist.
  1685. */
  1686. reg = readl(port_mmio + BMDMA_STATUS);
  1687. if (reg & ATA_DMA_ACTIVE)
  1688. status = ATA_DMA_ACTIVE;
  1689. else if (reg & ATA_DMA_ERR)
  1690. status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
  1691. else {
  1692. /*
  1693. * Just because DMA_ACTIVE is 0 (DMA completed),
  1694. * this does _not_ mean the device is "done".
  1695. * So we should not yet be signalling ATA_DMA_INTR
  1696. * in some cases. Eg. DSM/TRIM, and perhaps others.
  1697. */
  1698. mv_bmdma_stop_ap(ap);
  1699. if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
  1700. status = 0;
  1701. else
  1702. status = ATA_DMA_INTR;
  1703. }
  1704. return status;
  1705. }
  1706. static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
  1707. {
  1708. struct ata_taskfile *tf = &qc->tf;
  1709. /*
  1710. * Workaround for 88SX60x1 FEr SATA#24.
  1711. *
  1712. * Chip may corrupt WRITEs if multi_count >= 4kB.
  1713. * Note that READs are unaffected.
  1714. *
  1715. * It's not clear if this errata really means "4K bytes",
  1716. * or if it always happens for multi_count > 7
  1717. * regardless of device sector_size.
  1718. *
  1719. * So, for safety, any write with multi_count > 7
  1720. * gets converted here into a regular PIO write instead:
  1721. */
  1722. if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
  1723. if (qc->dev->multi_count > 7) {
  1724. switch (tf->command) {
  1725. case ATA_CMD_WRITE_MULTI:
  1726. tf->command = ATA_CMD_PIO_WRITE;
  1727. break;
  1728. case ATA_CMD_WRITE_MULTI_FUA_EXT:
  1729. tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
  1730. /* fall through */
  1731. case ATA_CMD_WRITE_MULTI_EXT:
  1732. tf->command = ATA_CMD_PIO_WRITE_EXT;
  1733. break;
  1734. }
  1735. }
  1736. }
  1737. }
  1738. /**
  1739. * mv_qc_prep - Host specific command preparation.
  1740. * @qc: queued command to prepare
  1741. *
  1742. * This routine simply redirects to the general purpose routine
  1743. * if command is not DMA. Else, it handles prep of the CRQB
  1744. * (command request block), does some sanity checking, and calls
  1745. * the SG load routine.
  1746. *
  1747. * LOCKING:
  1748. * Inherited from caller.
  1749. */
  1750. static void mv_qc_prep(struct ata_queued_cmd *qc)
  1751. {
  1752. struct ata_port *ap = qc->ap;
  1753. struct mv_port_priv *pp = ap->private_data;
  1754. __le16 *cw;
  1755. struct ata_taskfile *tf = &qc->tf;
  1756. u16 flags = 0;
  1757. unsigned in_index;
  1758. switch (tf->protocol) {
  1759. case ATA_PROT_DMA:
  1760. if (tf->command == ATA_CMD_DSM)
  1761. return;
  1762. /* fall-thru */
  1763. case ATA_PROT_NCQ:
  1764. break; /* continue below */
  1765. case ATA_PROT_PIO:
  1766. mv_rw_multi_errata_sata24(qc);
  1767. return;
  1768. default:
  1769. return;
  1770. }
  1771. /* Fill in command request block
  1772. */
  1773. if (!(tf->flags & ATA_TFLAG_WRITE))
  1774. flags |= CRQB_FLAG_READ;
  1775. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1776. flags |= qc->tag << CRQB_TAG_SHIFT;
  1777. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1778. /* get current queue index from software */
  1779. in_index = pp->req_idx;
  1780. pp->crqb[in_index].sg_addr =
  1781. cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1782. pp->crqb[in_index].sg_addr_hi =
  1783. cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1784. pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
  1785. cw = &pp->crqb[in_index].ata_cmd[0];
  1786. /* Sadly, the CRQB cannot accommodate all registers--there are
  1787. * only 11 bytes...so we must pick and choose required
  1788. * registers based on the command. So, we drop feature and
  1789. * hob_feature for [RW] DMA commands, but they are needed for
  1790. * NCQ. NCQ will drop hob_nsect, which is not needed there
  1791. * (nsect is used only for the tag; feat/hob_feat hold true nsect).
  1792. */
  1793. switch (tf->command) {
  1794. case ATA_CMD_READ:
  1795. case ATA_CMD_READ_EXT:
  1796. case ATA_CMD_WRITE:
  1797. case ATA_CMD_WRITE_EXT:
  1798. case ATA_CMD_WRITE_FUA_EXT:
  1799. mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
  1800. break;
  1801. case ATA_CMD_FPDMA_READ:
  1802. case ATA_CMD_FPDMA_WRITE:
  1803. mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
  1804. mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
  1805. break;
  1806. default:
  1807. /* The only other commands EDMA supports in non-queued and
  1808. * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
  1809. * of which are defined/used by Linux. If we get here, this
  1810. * driver needs work.
  1811. *
  1812. * FIXME: modify libata to give qc_prep a return value and
  1813. * return error here.
  1814. */
  1815. BUG_ON(tf->command);
  1816. break;
  1817. }
  1818. mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
  1819. mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
  1820. mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
  1821. mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
  1822. mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
  1823. mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
  1824. mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
  1825. mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
  1826. mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
  1827. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1828. return;
  1829. mv_fill_sg(qc);
  1830. }
  1831. /**
  1832. * mv_qc_prep_iie - Host specific command preparation.
  1833. * @qc: queued command to prepare
  1834. *
  1835. * This routine simply redirects to the general purpose routine
  1836. * if command is not DMA. Else, it handles prep of the CRQB
  1837. * (command request block), does some sanity checking, and calls
  1838. * the SG load routine.
  1839. *
  1840. * LOCKING:
  1841. * Inherited from caller.
  1842. */
  1843. static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
  1844. {
  1845. struct ata_port *ap = qc->ap;
  1846. struct mv_port_priv *pp = ap->private_data;
  1847. struct mv_crqb_iie *crqb;
  1848. struct ata_taskfile *tf = &qc->tf;
  1849. unsigned in_index;
  1850. u32 flags = 0;
  1851. if ((tf->protocol != ATA_PROT_DMA) &&
  1852. (tf->protocol != ATA_PROT_NCQ))
  1853. return;
  1854. if (tf->command == ATA_CMD_DSM)
  1855. return; /* use bmdma for this */
  1856. /* Fill in Gen IIE command request block */
  1857. if (!(tf->flags & ATA_TFLAG_WRITE))
  1858. flags |= CRQB_FLAG_READ;
  1859. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1860. flags |= qc->tag << CRQB_TAG_SHIFT;
  1861. flags |= qc->tag << CRQB_HOSTQ_SHIFT;
  1862. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1863. /* get current queue index from software */
  1864. in_index = pp->req_idx;
  1865. crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
  1866. crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1867. crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1868. crqb->flags = cpu_to_le32(flags);
  1869. crqb->ata_cmd[0] = cpu_to_le32(
  1870. (tf->command << 16) |
  1871. (tf->feature << 24)
  1872. );
  1873. crqb->ata_cmd[1] = cpu_to_le32(
  1874. (tf->lbal << 0) |
  1875. (tf->lbam << 8) |
  1876. (tf->lbah << 16) |
  1877. (tf->device << 24)
  1878. );
  1879. crqb->ata_cmd[2] = cpu_to_le32(
  1880. (tf->hob_lbal << 0) |
  1881. (tf->hob_lbam << 8) |
  1882. (tf->hob_lbah << 16) |
  1883. (tf->hob_feature << 24)
  1884. );
  1885. crqb->ata_cmd[3] = cpu_to_le32(
  1886. (tf->nsect << 0) |
  1887. (tf->hob_nsect << 8)
  1888. );
  1889. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1890. return;
  1891. mv_fill_sg(qc);
  1892. }
  1893. /**
  1894. * mv_sff_check_status - fetch device status, if valid
  1895. * @ap: ATA port to fetch status from
  1896. *
  1897. * When using command issue via mv_qc_issue_fis(),
  1898. * the initial ATA_BUSY state does not show up in the
  1899. * ATA status (shadow) register. This can confuse libata!
  1900. *
  1901. * So we have a hook here to fake ATA_BUSY for that situation,
  1902. * until the first time a BUSY, DRQ, or ERR bit is seen.
  1903. *
  1904. * The rest of the time, it simply returns the ATA status register.
  1905. */
  1906. static u8 mv_sff_check_status(struct ata_port *ap)
  1907. {
  1908. u8 stat = ioread8(ap->ioaddr.status_addr);
  1909. struct mv_port_priv *pp = ap->private_data;
  1910. if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
  1911. if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
  1912. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
  1913. else
  1914. stat = ATA_BUSY;
  1915. }
  1916. return stat;
  1917. }
  1918. /**
  1919. * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
  1920. * @fis: fis to be sent
  1921. * @nwords: number of 32-bit words in the fis
  1922. */
  1923. static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
  1924. {
  1925. void __iomem *port_mmio = mv_ap_base(ap);
  1926. u32 ifctl, old_ifctl, ifstat;
  1927. int i, timeout = 200, final_word = nwords - 1;
  1928. /* Initiate FIS transmission mode */
  1929. old_ifctl = readl(port_mmio + SATA_IFCTL);
  1930. ifctl = 0x100 | (old_ifctl & 0xf);
  1931. writelfl(ifctl, port_mmio + SATA_IFCTL);
  1932. /* Send all words of the FIS except for the final word */
  1933. for (i = 0; i < final_word; ++i)
  1934. writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
  1935. /* Flag end-of-transmission, and then send the final word */
  1936. writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
  1937. writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
  1938. /*
  1939. * Wait for FIS transmission to complete.
  1940. * This typically takes just a single iteration.
  1941. */
  1942. do {
  1943. ifstat = readl(port_mmio + SATA_IFSTAT);
  1944. } while (!(ifstat & 0x1000) && --timeout);
  1945. /* Restore original port configuration */
  1946. writelfl(old_ifctl, port_mmio + SATA_IFCTL);
  1947. /* See if it worked */
  1948. if ((ifstat & 0x3000) != 0x1000) {
  1949. ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
  1950. __func__, ifstat);
  1951. return AC_ERR_OTHER;
  1952. }
  1953. return 0;
  1954. }
  1955. /**
  1956. * mv_qc_issue_fis - Issue a command directly as a FIS
  1957. * @qc: queued command to start
  1958. *
  1959. * Note that the ATA shadow registers are not updated
  1960. * after command issue, so the device will appear "READY"
  1961. * if polled, even while it is BUSY processing the command.
  1962. *
  1963. * So we use a status hook to fake ATA_BUSY until the drive changes state.
  1964. *
  1965. * Note: we don't get updated shadow regs on *completion*
  1966. * of non-data commands. So avoid sending them via this function,
  1967. * as they will appear to have completed immediately.
  1968. *
  1969. * GEN_IIE has special registers that we could get the result tf from,
  1970. * but earlier chipsets do not. For now, we ignore those registers.
  1971. */
  1972. static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
  1973. {
  1974. struct ata_port *ap = qc->ap;
  1975. struct mv_port_priv *pp = ap->private_data;
  1976. struct ata_link *link = qc->dev->link;
  1977. u32 fis[5];
  1978. int err = 0;
  1979. ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
  1980. err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
  1981. if (err)
  1982. return err;
  1983. switch (qc->tf.protocol) {
  1984. case ATAPI_PROT_PIO:
  1985. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  1986. /* fall through */
  1987. case ATAPI_PROT_NODATA:
  1988. ap->hsm_task_state = HSM_ST_FIRST;
  1989. break;
  1990. case ATA_PROT_PIO:
  1991. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  1992. if (qc->tf.flags & ATA_TFLAG_WRITE)
  1993. ap->hsm_task_state = HSM_ST_FIRST;
  1994. else
  1995. ap->hsm_task_state = HSM_ST;
  1996. break;
  1997. default:
  1998. ap->hsm_task_state = HSM_ST_LAST;
  1999. break;
  2000. }
  2001. if (qc->tf.flags & ATA_TFLAG_POLLING)
  2002. ata_sff_queue_pio_task(link, 0);
  2003. return 0;
  2004. }
  2005. /**
  2006. * mv_qc_issue - Initiate a command to the host
  2007. * @qc: queued command to start
  2008. *
  2009. * This routine simply redirects to the general purpose routine
  2010. * if command is not DMA. Else, it sanity checks our local
  2011. * caches of the request producer/consumer indices then enables
  2012. * DMA and bumps the request producer index.
  2013. *
  2014. * LOCKING:
  2015. * Inherited from caller.
  2016. */
  2017. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
  2018. {
  2019. static int limit_warnings = 10;
  2020. struct ata_port *ap = qc->ap;
  2021. void __iomem *port_mmio = mv_ap_base(ap);
  2022. struct mv_port_priv *pp = ap->private_data;
  2023. u32 in_index;
  2024. unsigned int port_irqs;
  2025. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
  2026. switch (qc->tf.protocol) {
  2027. case ATA_PROT_DMA:
  2028. if (qc->tf.command == ATA_CMD_DSM) {
  2029. if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
  2030. return AC_ERR_OTHER;
  2031. break; /* use bmdma for this */
  2032. }
  2033. /* fall thru */
  2034. case ATA_PROT_NCQ:
  2035. mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
  2036. pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  2037. in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  2038. /* Write the request in pointer to kick the EDMA to life */
  2039. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
  2040. port_mmio + EDMA_REQ_Q_IN_PTR);
  2041. return 0;
  2042. case ATA_PROT_PIO:
  2043. /*
  2044. * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
  2045. *
  2046. * Someday, we might implement special polling workarounds
  2047. * for these, but it all seems rather unnecessary since we
  2048. * normally use only DMA for commands which transfer more
  2049. * than a single block of data.
  2050. *
  2051. * Much of the time, this could just work regardless.
  2052. * So for now, just log the incident, and allow the attempt.
  2053. */
  2054. if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
  2055. --limit_warnings;
  2056. ata_link_warn(qc->dev->link, DRV_NAME
  2057. ": attempting PIO w/multiple DRQ: "
  2058. "this may fail due to h/w errata\n");
  2059. }
  2060. /* drop through */
  2061. case ATA_PROT_NODATA:
  2062. case ATAPI_PROT_PIO:
  2063. case ATAPI_PROT_NODATA:
  2064. if (ap->flags & ATA_FLAG_PIO_POLLING)
  2065. qc->tf.flags |= ATA_TFLAG_POLLING;
  2066. break;
  2067. }
  2068. if (qc->tf.flags & ATA_TFLAG_POLLING)
  2069. port_irqs = ERR_IRQ; /* mask device interrupt when polling */
  2070. else
  2071. port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
  2072. /*
  2073. * We're about to send a non-EDMA capable command to the
  2074. * port. Turn off EDMA so there won't be problems accessing
  2075. * shadow block, etc registers.
  2076. */
  2077. mv_stop_edma(ap);
  2078. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
  2079. mv_pmp_select(ap, qc->dev->link->pmp);
  2080. if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
  2081. struct mv_host_priv *hpriv = ap->host->private_data;
  2082. /*
  2083. * Workaround for 88SX60x1 FEr SATA#25 (part 2).
  2084. *
  2085. * After any NCQ error, the READ_LOG_EXT command
  2086. * from libata-eh *must* use mv_qc_issue_fis().
  2087. * Otherwise it might fail, due to chip errata.
  2088. *
  2089. * Rather than special-case it, we'll just *always*
  2090. * use this method here for READ_LOG_EXT, making for
  2091. * easier testing.
  2092. */
  2093. if (IS_GEN_II(hpriv))
  2094. return mv_qc_issue_fis(qc);
  2095. }
  2096. return ata_bmdma_qc_issue(qc);
  2097. }
  2098. static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
  2099. {
  2100. struct mv_port_priv *pp = ap->private_data;
  2101. struct ata_queued_cmd *qc;
  2102. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  2103. return NULL;
  2104. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2105. if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
  2106. return qc;
  2107. return NULL;
  2108. }
  2109. static void mv_pmp_error_handler(struct ata_port *ap)
  2110. {
  2111. unsigned int pmp, pmp_map;
  2112. struct mv_port_priv *pp = ap->private_data;
  2113. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
  2114. /*
  2115. * Perform NCQ error analysis on failed PMPs
  2116. * before we freeze the port entirely.
  2117. *
  2118. * The failed PMPs are marked earlier by mv_pmp_eh_prep().
  2119. */
  2120. pmp_map = pp->delayed_eh_pmp_map;
  2121. pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
  2122. for (pmp = 0; pmp_map != 0; pmp++) {
  2123. unsigned int this_pmp = (1 << pmp);
  2124. if (pmp_map & this_pmp) {
  2125. struct ata_link *link = &ap->pmp_link[pmp];
  2126. pmp_map &= ~this_pmp;
  2127. ata_eh_analyze_ncq_error(link);
  2128. }
  2129. }
  2130. ata_port_freeze(ap);
  2131. }
  2132. sata_pmp_error_handler(ap);
  2133. }
  2134. static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
  2135. {
  2136. void __iomem *port_mmio = mv_ap_base(ap);
  2137. return readl(port_mmio + SATA_TESTCTL) >> 16;
  2138. }
  2139. static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
  2140. {
  2141. struct ata_eh_info *ehi;
  2142. unsigned int pmp;
  2143. /*
  2144. * Initialize EH info for PMPs which saw device errors
  2145. */
  2146. ehi = &ap->link.eh_info;
  2147. for (pmp = 0; pmp_map != 0; pmp++) {
  2148. unsigned int this_pmp = (1 << pmp);
  2149. if (pmp_map & this_pmp) {
  2150. struct ata_link *link = &ap->pmp_link[pmp];
  2151. pmp_map &= ~this_pmp;
  2152. ehi = &link->eh_info;
  2153. ata_ehi_clear_desc(ehi);
  2154. ata_ehi_push_desc(ehi, "dev err");
  2155. ehi->err_mask |= AC_ERR_DEV;
  2156. ehi->action |= ATA_EH_RESET;
  2157. ata_link_abort(link);
  2158. }
  2159. }
  2160. }
  2161. static int mv_req_q_empty(struct ata_port *ap)
  2162. {
  2163. void __iomem *port_mmio = mv_ap_base(ap);
  2164. u32 in_ptr, out_ptr;
  2165. in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
  2166. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2167. out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
  2168. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2169. return (in_ptr == out_ptr); /* 1 == queue_is_empty */
  2170. }
  2171. static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
  2172. {
  2173. struct mv_port_priv *pp = ap->private_data;
  2174. int failed_links;
  2175. unsigned int old_map, new_map;
  2176. /*
  2177. * Device error during FBS+NCQ operation:
  2178. *
  2179. * Set a port flag to prevent further I/O being enqueued.
  2180. * Leave the EDMA running to drain outstanding commands from this port.
  2181. * Perform the post-mortem/EH only when all responses are complete.
  2182. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
  2183. */
  2184. if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
  2185. pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
  2186. pp->delayed_eh_pmp_map = 0;
  2187. }
  2188. old_map = pp->delayed_eh_pmp_map;
  2189. new_map = old_map | mv_get_err_pmp_map(ap);
  2190. if (old_map != new_map) {
  2191. pp->delayed_eh_pmp_map = new_map;
  2192. mv_pmp_eh_prep(ap, new_map & ~old_map);
  2193. }
  2194. failed_links = hweight16(new_map);
  2195. ata_port_info(ap,
  2196. "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
  2197. __func__, pp->delayed_eh_pmp_map,
  2198. ap->qc_active, failed_links,
  2199. ap->nr_active_links);
  2200. if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
  2201. mv_process_crpb_entries(ap, pp);
  2202. mv_stop_edma(ap);
  2203. mv_eh_freeze(ap);
  2204. ata_port_info(ap, "%s: done\n", __func__);
  2205. return 1; /* handled */
  2206. }
  2207. ata_port_info(ap, "%s: waiting\n", __func__);
  2208. return 1; /* handled */
  2209. }
  2210. static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
  2211. {
  2212. /*
  2213. * Possible future enhancement:
  2214. *
  2215. * FBS+non-NCQ operation is not yet implemented.
  2216. * See related notes in mv_edma_cfg().
  2217. *
  2218. * Device error during FBS+non-NCQ operation:
  2219. *
  2220. * We need to snapshot the shadow registers for each failed command.
  2221. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
  2222. */
  2223. return 0; /* not handled */
  2224. }
  2225. static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
  2226. {
  2227. struct mv_port_priv *pp = ap->private_data;
  2228. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  2229. return 0; /* EDMA was not active: not handled */
  2230. if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
  2231. return 0; /* FBS was not active: not handled */
  2232. if (!(edma_err_cause & EDMA_ERR_DEV))
  2233. return 0; /* non DEV error: not handled */
  2234. edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
  2235. if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
  2236. return 0; /* other problems: not handled */
  2237. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
  2238. /*
  2239. * EDMA should NOT have self-disabled for this case.
  2240. * If it did, then something is wrong elsewhere,
  2241. * and we cannot handle it here.
  2242. */
  2243. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2244. ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
  2245. __func__, edma_err_cause, pp->pp_flags);
  2246. return 0; /* not handled */
  2247. }
  2248. return mv_handle_fbs_ncq_dev_err(ap);
  2249. } else {
  2250. /*
  2251. * EDMA should have self-disabled for this case.
  2252. * If it did not, then something is wrong elsewhere,
  2253. * and we cannot handle it here.
  2254. */
  2255. if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
  2256. ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
  2257. __func__, edma_err_cause, pp->pp_flags);
  2258. return 0; /* not handled */
  2259. }
  2260. return mv_handle_fbs_non_ncq_dev_err(ap);
  2261. }
  2262. return 0; /* not handled */
  2263. }
  2264. static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
  2265. {
  2266. struct ata_eh_info *ehi = &ap->link.eh_info;
  2267. char *when = "idle";
  2268. ata_ehi_clear_desc(ehi);
  2269. if (edma_was_enabled) {
  2270. when = "EDMA enabled";
  2271. } else {
  2272. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2273. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  2274. when = "polling";
  2275. }
  2276. ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
  2277. ehi->err_mask |= AC_ERR_OTHER;
  2278. ehi->action |= ATA_EH_RESET;
  2279. ata_port_freeze(ap);
  2280. }
  2281. /**
  2282. * mv_err_intr - Handle error interrupts on the port
  2283. * @ap: ATA channel to manipulate
  2284. *
  2285. * Most cases require a full reset of the chip's state machine,
  2286. * which also performs a COMRESET.
  2287. * Also, if the port disabled DMA, update our cached copy to match.
  2288. *
  2289. * LOCKING:
  2290. * Inherited from caller.
  2291. */
  2292. static void mv_err_intr(struct ata_port *ap)
  2293. {
  2294. void __iomem *port_mmio = mv_ap_base(ap);
  2295. u32 edma_err_cause, eh_freeze_mask, serr = 0;
  2296. u32 fis_cause = 0;
  2297. struct mv_port_priv *pp = ap->private_data;
  2298. struct mv_host_priv *hpriv = ap->host->private_data;
  2299. unsigned int action = 0, err_mask = 0;
  2300. struct ata_eh_info *ehi = &ap->link.eh_info;
  2301. struct ata_queued_cmd *qc;
  2302. int abort = 0;
  2303. /*
  2304. * Read and clear the SError and err_cause bits.
  2305. * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
  2306. * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
  2307. */
  2308. sata_scr_read(&ap->link, SCR_ERROR, &serr);
  2309. sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
  2310. edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
  2311. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2312. fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
  2313. writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
  2314. }
  2315. writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
  2316. if (edma_err_cause & EDMA_ERR_DEV) {
  2317. /*
  2318. * Device errors during FIS-based switching operation
  2319. * require special handling.
  2320. */
  2321. if (mv_handle_dev_err(ap, edma_err_cause))
  2322. return;
  2323. }
  2324. qc = mv_get_active_qc(ap);
  2325. ata_ehi_clear_desc(ehi);
  2326. ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
  2327. edma_err_cause, pp->pp_flags);
  2328. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2329. ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
  2330. if (fis_cause & FIS_IRQ_CAUSE_AN) {
  2331. u32 ec = edma_err_cause &
  2332. ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
  2333. sata_async_notification(ap);
  2334. if (!ec)
  2335. return; /* Just an AN; no need for the nukes */
  2336. ata_ehi_push_desc(ehi, "SDB notify");
  2337. }
  2338. }
  2339. /*
  2340. * All generations share these EDMA error cause bits:
  2341. */
  2342. if (edma_err_cause & EDMA_ERR_DEV) {
  2343. err_mask |= AC_ERR_DEV;
  2344. action |= ATA_EH_RESET;
  2345. ata_ehi_push_desc(ehi, "dev error");
  2346. }
  2347. if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
  2348. EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
  2349. EDMA_ERR_INTRL_PAR)) {
  2350. err_mask |= AC_ERR_ATA_BUS;
  2351. action |= ATA_EH_RESET;
  2352. ata_ehi_push_desc(ehi, "parity error");
  2353. }
  2354. if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
  2355. ata_ehi_hotplugged(ehi);
  2356. ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
  2357. "dev disconnect" : "dev connect");
  2358. action |= ATA_EH_RESET;
  2359. }
  2360. /*
  2361. * Gen-I has a different SELF_DIS bit,
  2362. * different FREEZE bits, and no SERR bit:
  2363. */
  2364. if (IS_GEN_I(hpriv)) {
  2365. eh_freeze_mask = EDMA_EH_FREEZE_5;
  2366. if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
  2367. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2368. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2369. }
  2370. } else {
  2371. eh_freeze_mask = EDMA_EH_FREEZE;
  2372. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2373. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2374. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2375. }
  2376. if (edma_err_cause & EDMA_ERR_SERR) {
  2377. ata_ehi_push_desc(ehi, "SError=%08x", serr);
  2378. err_mask |= AC_ERR_ATA_BUS;
  2379. action |= ATA_EH_RESET;
  2380. }
  2381. }
  2382. if (!err_mask) {
  2383. err_mask = AC_ERR_OTHER;
  2384. action |= ATA_EH_RESET;
  2385. }
  2386. ehi->serror |= serr;
  2387. ehi->action |= action;
  2388. if (qc)
  2389. qc->err_mask |= err_mask;
  2390. else
  2391. ehi->err_mask |= err_mask;
  2392. if (err_mask == AC_ERR_DEV) {
  2393. /*
  2394. * Cannot do ata_port_freeze() here,
  2395. * because it would kill PIO access,
  2396. * which is needed for further diagnosis.
  2397. */
  2398. mv_eh_freeze(ap);
  2399. abort = 1;
  2400. } else if (edma_err_cause & eh_freeze_mask) {
  2401. /*
  2402. * Note to self: ata_port_freeze() calls ata_port_abort()
  2403. */
  2404. ata_port_freeze(ap);
  2405. } else {
  2406. abort = 1;
  2407. }
  2408. if (abort) {
  2409. if (qc)
  2410. ata_link_abort(qc->dev->link);
  2411. else
  2412. ata_port_abort(ap);
  2413. }
  2414. }
  2415. static bool mv_process_crpb_response(struct ata_port *ap,
  2416. struct mv_crpb *response, unsigned int tag, int ncq_enabled)
  2417. {
  2418. u8 ata_status;
  2419. u16 edma_status = le16_to_cpu(response->flags);
  2420. /*
  2421. * edma_status from a response queue entry:
  2422. * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
  2423. * MSB is saved ATA status from command completion.
  2424. */
  2425. if (!ncq_enabled) {
  2426. u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
  2427. if (err_cause) {
  2428. /*
  2429. * Error will be seen/handled by
  2430. * mv_err_intr(). So do nothing at all here.
  2431. */
  2432. return false;
  2433. }
  2434. }
  2435. ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
  2436. if (!ac_err_mask(ata_status))
  2437. return true;
  2438. /* else: leave it for mv_err_intr() */
  2439. return false;
  2440. }
  2441. static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
  2442. {
  2443. void __iomem *port_mmio = mv_ap_base(ap);
  2444. struct mv_host_priv *hpriv = ap->host->private_data;
  2445. u32 in_index;
  2446. bool work_done = false;
  2447. u32 done_mask = 0;
  2448. int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
  2449. /* Get the hardware queue position index */
  2450. in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
  2451. >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2452. /* Process new responses from since the last time we looked */
  2453. while (in_index != pp->resp_idx) {
  2454. unsigned int tag;
  2455. struct mv_crpb *response = &pp->crpb[pp->resp_idx];
  2456. pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  2457. if (IS_GEN_I(hpriv)) {
  2458. /* 50xx: no NCQ, only one command active at a time */
  2459. tag = ap->link.active_tag;
  2460. } else {
  2461. /* Gen II/IIE: get command tag from CRPB entry */
  2462. tag = le16_to_cpu(response->id) & 0x1f;
  2463. }
  2464. if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
  2465. done_mask |= 1 << tag;
  2466. work_done = true;
  2467. }
  2468. if (work_done) {
  2469. ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
  2470. /* Update the software queue position index in hardware */
  2471. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
  2472. (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
  2473. port_mmio + EDMA_RSP_Q_OUT_PTR);
  2474. }
  2475. }
  2476. static void mv_port_intr(struct ata_port *ap, u32 port_cause)
  2477. {
  2478. struct mv_port_priv *pp;
  2479. int edma_was_enabled;
  2480. /*
  2481. * Grab a snapshot of the EDMA_EN flag setting,
  2482. * so that we have a consistent view for this port,
  2483. * even if something we call of our routines changes it.
  2484. */
  2485. pp = ap->private_data;
  2486. edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
  2487. /*
  2488. * Process completed CRPB response(s) before other events.
  2489. */
  2490. if (edma_was_enabled && (port_cause & DONE_IRQ)) {
  2491. mv_process_crpb_entries(ap, pp);
  2492. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  2493. mv_handle_fbs_ncq_dev_err(ap);
  2494. }
  2495. /*
  2496. * Handle chip-reported errors, or continue on to handle PIO.
  2497. */
  2498. if (unlikely(port_cause & ERR_IRQ)) {
  2499. mv_err_intr(ap);
  2500. } else if (!edma_was_enabled) {
  2501. struct ata_queued_cmd *qc = mv_get_active_qc(ap);
  2502. if (qc)
  2503. ata_bmdma_port_intr(ap, qc);
  2504. else
  2505. mv_unexpected_intr(ap, edma_was_enabled);
  2506. }
  2507. }
  2508. /**
  2509. * mv_host_intr - Handle all interrupts on the given host controller
  2510. * @host: host specific structure
  2511. * @main_irq_cause: Main interrupt cause register for the chip.
  2512. *
  2513. * LOCKING:
  2514. * Inherited from caller.
  2515. */
  2516. static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
  2517. {
  2518. struct mv_host_priv *hpriv = host->private_data;
  2519. void __iomem *mmio = hpriv->base, *hc_mmio;
  2520. unsigned int handled = 0, port;
  2521. /* If asserted, clear the "all ports" IRQ coalescing bit */
  2522. if (main_irq_cause & ALL_PORTS_COAL_DONE)
  2523. writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
  2524. for (port = 0; port < hpriv->n_ports; port++) {
  2525. struct ata_port *ap = host->ports[port];
  2526. unsigned int p, shift, hardport, port_cause;
  2527. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  2528. /*
  2529. * Each hc within the host has its own hc_irq_cause register,
  2530. * where the interrupting ports bits get ack'd.
  2531. */
  2532. if (hardport == 0) { /* first port on this hc ? */
  2533. u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
  2534. u32 port_mask, ack_irqs;
  2535. /*
  2536. * Skip this entire hc if nothing pending for any ports
  2537. */
  2538. if (!hc_cause) {
  2539. port += MV_PORTS_PER_HC - 1;
  2540. continue;
  2541. }
  2542. /*
  2543. * We don't need/want to read the hc_irq_cause register,
  2544. * because doing so hurts performance, and
  2545. * main_irq_cause already gives us everything we need.
  2546. *
  2547. * But we do have to *write* to the hc_irq_cause to ack
  2548. * the ports that we are handling this time through.
  2549. *
  2550. * This requires that we create a bitmap for those
  2551. * ports which interrupted us, and use that bitmap
  2552. * to ack (only) those ports via hc_irq_cause.
  2553. */
  2554. ack_irqs = 0;
  2555. if (hc_cause & PORTS_0_3_COAL_DONE)
  2556. ack_irqs = HC_COAL_IRQ;
  2557. for (p = 0; p < MV_PORTS_PER_HC; ++p) {
  2558. if ((port + p) >= hpriv->n_ports)
  2559. break;
  2560. port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
  2561. if (hc_cause & port_mask)
  2562. ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
  2563. }
  2564. hc_mmio = mv_hc_base_from_port(mmio, port);
  2565. writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
  2566. handled = 1;
  2567. }
  2568. /*
  2569. * Handle interrupts signalled for this port:
  2570. */
  2571. port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
  2572. if (port_cause)
  2573. mv_port_intr(ap, port_cause);
  2574. }
  2575. return handled;
  2576. }
  2577. static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
  2578. {
  2579. struct mv_host_priv *hpriv = host->private_data;
  2580. struct ata_port *ap;
  2581. struct ata_queued_cmd *qc;
  2582. struct ata_eh_info *ehi;
  2583. unsigned int i, err_mask, printed = 0;
  2584. u32 err_cause;
  2585. err_cause = readl(mmio + hpriv->irq_cause_offset);
  2586. dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
  2587. DPRINTK("All regs @ PCI error\n");
  2588. mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
  2589. writelfl(0, mmio + hpriv->irq_cause_offset);
  2590. for (i = 0; i < host->n_ports; i++) {
  2591. ap = host->ports[i];
  2592. if (!ata_link_offline(&ap->link)) {
  2593. ehi = &ap->link.eh_info;
  2594. ata_ehi_clear_desc(ehi);
  2595. if (!printed++)
  2596. ata_ehi_push_desc(ehi,
  2597. "PCI err cause 0x%08x", err_cause);
  2598. err_mask = AC_ERR_HOST_BUS;
  2599. ehi->action = ATA_EH_RESET;
  2600. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2601. if (qc)
  2602. qc->err_mask |= err_mask;
  2603. else
  2604. ehi->err_mask |= err_mask;
  2605. ata_port_freeze(ap);
  2606. }
  2607. }
  2608. return 1; /* handled */
  2609. }
  2610. /**
  2611. * mv_interrupt - Main interrupt event handler
  2612. * @irq: unused
  2613. * @dev_instance: private data; in this case the host structure
  2614. *
  2615. * Read the read only register to determine if any host
  2616. * controllers have pending interrupts. If so, call lower level
  2617. * routine to handle. Also check for PCI errors which are only
  2618. * reported here.
  2619. *
  2620. * LOCKING:
  2621. * This routine holds the host lock while processing pending
  2622. * interrupts.
  2623. */
  2624. static irqreturn_t mv_interrupt(int irq, void *dev_instance)
  2625. {
  2626. struct ata_host *host = dev_instance;
  2627. struct mv_host_priv *hpriv = host->private_data;
  2628. unsigned int handled = 0;
  2629. int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
  2630. u32 main_irq_cause, pending_irqs;
  2631. spin_lock(&host->lock);
  2632. /* for MSI: block new interrupts while in here */
  2633. if (using_msi)
  2634. mv_write_main_irq_mask(0, hpriv);
  2635. main_irq_cause = readl(hpriv->main_irq_cause_addr);
  2636. pending_irqs = main_irq_cause & hpriv->main_irq_mask;
  2637. /*
  2638. * Deal with cases where we either have nothing pending, or have read
  2639. * a bogus register value which can indicate HW removal or PCI fault.
  2640. */
  2641. if (pending_irqs && main_irq_cause != 0xffffffffU) {
  2642. if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
  2643. handled = mv_pci_error(host, hpriv->base);
  2644. else
  2645. handled = mv_host_intr(host, pending_irqs);
  2646. }
  2647. /* for MSI: unmask; interrupt cause bits will retrigger now */
  2648. if (using_msi)
  2649. mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
  2650. spin_unlock(&host->lock);
  2651. return IRQ_RETVAL(handled);
  2652. }
  2653. static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
  2654. {
  2655. unsigned int ofs;
  2656. switch (sc_reg_in) {
  2657. case SCR_STATUS:
  2658. case SCR_ERROR:
  2659. case SCR_CONTROL:
  2660. ofs = sc_reg_in * sizeof(u32);
  2661. break;
  2662. default:
  2663. ofs = 0xffffffffU;
  2664. break;
  2665. }
  2666. return ofs;
  2667. }
  2668. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  2669. {
  2670. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2671. void __iomem *mmio = hpriv->base;
  2672. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2673. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2674. if (ofs != 0xffffffffU) {
  2675. *val = readl(addr + ofs);
  2676. return 0;
  2677. } else
  2678. return -EINVAL;
  2679. }
  2680. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  2681. {
  2682. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2683. void __iomem *mmio = hpriv->base;
  2684. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2685. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2686. if (ofs != 0xffffffffU) {
  2687. writelfl(val, addr + ofs);
  2688. return 0;
  2689. } else
  2690. return -EINVAL;
  2691. }
  2692. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
  2693. {
  2694. struct pci_dev *pdev = to_pci_dev(host->dev);
  2695. int early_5080;
  2696. early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
  2697. if (!early_5080) {
  2698. u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2699. tmp |= (1 << 0);
  2700. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2701. }
  2702. mv_reset_pci_bus(host, mmio);
  2703. }
  2704. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2705. {
  2706. writel(0x0fcfffff, mmio + FLASH_CTL);
  2707. }
  2708. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  2709. void __iomem *mmio)
  2710. {
  2711. void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
  2712. u32 tmp;
  2713. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2714. hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
  2715. hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
  2716. }
  2717. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2718. {
  2719. u32 tmp;
  2720. writel(0, mmio + GPIO_PORT_CTL);
  2721. /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
  2722. tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2723. tmp |= ~(1 << 0);
  2724. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2725. }
  2726. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2727. unsigned int port)
  2728. {
  2729. void __iomem *phy_mmio = mv5_phy_base(mmio, port);
  2730. const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
  2731. u32 tmp;
  2732. int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
  2733. if (fix_apm_sq) {
  2734. tmp = readl(phy_mmio + MV5_LTMODE);
  2735. tmp |= (1 << 19);
  2736. writel(tmp, phy_mmio + MV5_LTMODE);
  2737. tmp = readl(phy_mmio + MV5_PHY_CTL);
  2738. tmp &= ~0x3;
  2739. tmp |= 0x1;
  2740. writel(tmp, phy_mmio + MV5_PHY_CTL);
  2741. }
  2742. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2743. tmp &= ~mask;
  2744. tmp |= hpriv->signal[port].pre;
  2745. tmp |= hpriv->signal[port].amps;
  2746. writel(tmp, phy_mmio + MV5_PHY_MODE);
  2747. }
  2748. #undef ZERO
  2749. #define ZERO(reg) writel(0, port_mmio + (reg))
  2750. static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
  2751. unsigned int port)
  2752. {
  2753. void __iomem *port_mmio = mv_port_base(mmio, port);
  2754. mv_reset_channel(hpriv, mmio, port);
  2755. ZERO(0x028); /* command */
  2756. writel(0x11f, port_mmio + EDMA_CFG);
  2757. ZERO(0x004); /* timer */
  2758. ZERO(0x008); /* irq err cause */
  2759. ZERO(0x00c); /* irq err mask */
  2760. ZERO(0x010); /* rq bah */
  2761. ZERO(0x014); /* rq inp */
  2762. ZERO(0x018); /* rq outp */
  2763. ZERO(0x01c); /* respq bah */
  2764. ZERO(0x024); /* respq outp */
  2765. ZERO(0x020); /* respq inp */
  2766. ZERO(0x02c); /* test control */
  2767. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
  2768. }
  2769. #undef ZERO
  2770. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2771. static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2772. unsigned int hc)
  2773. {
  2774. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  2775. u32 tmp;
  2776. ZERO(0x00c);
  2777. ZERO(0x010);
  2778. ZERO(0x014);
  2779. ZERO(0x018);
  2780. tmp = readl(hc_mmio + 0x20);
  2781. tmp &= 0x1c1c1c1c;
  2782. tmp |= 0x03030303;
  2783. writel(tmp, hc_mmio + 0x20);
  2784. }
  2785. #undef ZERO
  2786. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2787. unsigned int n_hc)
  2788. {
  2789. unsigned int hc, port;
  2790. for (hc = 0; hc < n_hc; hc++) {
  2791. for (port = 0; port < MV_PORTS_PER_HC; port++)
  2792. mv5_reset_hc_port(hpriv, mmio,
  2793. (hc * MV_PORTS_PER_HC) + port);
  2794. mv5_reset_one_hc(hpriv, mmio, hc);
  2795. }
  2796. return 0;
  2797. }
  2798. #undef ZERO
  2799. #define ZERO(reg) writel(0, mmio + (reg))
  2800. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
  2801. {
  2802. struct mv_host_priv *hpriv = host->private_data;
  2803. u32 tmp;
  2804. tmp = readl(mmio + MV_PCI_MODE);
  2805. tmp &= 0xff00ffff;
  2806. writel(tmp, mmio + MV_PCI_MODE);
  2807. ZERO(MV_PCI_DISC_TIMER);
  2808. ZERO(MV_PCI_MSI_TRIGGER);
  2809. writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
  2810. ZERO(MV_PCI_SERR_MASK);
  2811. ZERO(hpriv->irq_cause_offset);
  2812. ZERO(hpriv->irq_mask_offset);
  2813. ZERO(MV_PCI_ERR_LOW_ADDRESS);
  2814. ZERO(MV_PCI_ERR_HIGH_ADDRESS);
  2815. ZERO(MV_PCI_ERR_ATTRIBUTE);
  2816. ZERO(MV_PCI_ERR_COMMAND);
  2817. }
  2818. #undef ZERO
  2819. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2820. {
  2821. u32 tmp;
  2822. mv5_reset_flash(hpriv, mmio);
  2823. tmp = readl(mmio + GPIO_PORT_CTL);
  2824. tmp &= 0x3;
  2825. tmp |= (1 << 5) | (1 << 6);
  2826. writel(tmp, mmio + GPIO_PORT_CTL);
  2827. }
  2828. /**
  2829. * mv6_reset_hc - Perform the 6xxx global soft reset
  2830. * @mmio: base address of the HBA
  2831. *
  2832. * This routine only applies to 6xxx parts.
  2833. *
  2834. * LOCKING:
  2835. * Inherited from caller.
  2836. */
  2837. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2838. unsigned int n_hc)
  2839. {
  2840. void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
  2841. int i, rc = 0;
  2842. u32 t;
  2843. /* Following procedure defined in PCI "main command and status
  2844. * register" table.
  2845. */
  2846. t = readl(reg);
  2847. writel(t | STOP_PCI_MASTER, reg);
  2848. for (i = 0; i < 1000; i++) {
  2849. udelay(1);
  2850. t = readl(reg);
  2851. if (PCI_MASTER_EMPTY & t)
  2852. break;
  2853. }
  2854. if (!(PCI_MASTER_EMPTY & t)) {
  2855. printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
  2856. rc = 1;
  2857. goto done;
  2858. }
  2859. /* set reset */
  2860. i = 5;
  2861. do {
  2862. writel(t | GLOB_SFT_RST, reg);
  2863. t = readl(reg);
  2864. udelay(1);
  2865. } while (!(GLOB_SFT_RST & t) && (i-- > 0));
  2866. if (!(GLOB_SFT_RST & t)) {
  2867. printk(KERN_ERR DRV_NAME ": can't set global reset\n");
  2868. rc = 1;
  2869. goto done;
  2870. }
  2871. /* clear reset and *reenable the PCI master* (not mentioned in spec) */
  2872. i = 5;
  2873. do {
  2874. writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
  2875. t = readl(reg);
  2876. udelay(1);
  2877. } while ((GLOB_SFT_RST & t) && (i-- > 0));
  2878. if (GLOB_SFT_RST & t) {
  2879. printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
  2880. rc = 1;
  2881. }
  2882. done:
  2883. return rc;
  2884. }
  2885. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  2886. void __iomem *mmio)
  2887. {
  2888. void __iomem *port_mmio;
  2889. u32 tmp;
  2890. tmp = readl(mmio + RESET_CFG);
  2891. if ((tmp & (1 << 0)) == 0) {
  2892. hpriv->signal[idx].amps = 0x7 << 8;
  2893. hpriv->signal[idx].pre = 0x1 << 5;
  2894. return;
  2895. }
  2896. port_mmio = mv_port_base(mmio, idx);
  2897. tmp = readl(port_mmio + PHY_MODE2);
  2898. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2899. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2900. }
  2901. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2902. {
  2903. writel(0x00000060, mmio + GPIO_PORT_CTL);
  2904. }
  2905. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2906. unsigned int port)
  2907. {
  2908. void __iomem *port_mmio = mv_port_base(mmio, port);
  2909. u32 hp_flags = hpriv->hp_flags;
  2910. int fix_phy_mode2 =
  2911. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2912. int fix_phy_mode4 =
  2913. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2914. u32 m2, m3;
  2915. if (fix_phy_mode2) {
  2916. m2 = readl(port_mmio + PHY_MODE2);
  2917. m2 &= ~(1 << 16);
  2918. m2 |= (1 << 31);
  2919. writel(m2, port_mmio + PHY_MODE2);
  2920. udelay(200);
  2921. m2 = readl(port_mmio + PHY_MODE2);
  2922. m2 &= ~((1 << 16) | (1 << 31));
  2923. writel(m2, port_mmio + PHY_MODE2);
  2924. udelay(200);
  2925. }
  2926. /*
  2927. * Gen-II/IIe PHY_MODE3 errata RM#2:
  2928. * Achieves better receiver noise performance than the h/w default:
  2929. */
  2930. m3 = readl(port_mmio + PHY_MODE3);
  2931. m3 = (m3 & 0x1f) | (0x5555601 << 5);
  2932. /* Guideline 88F5182 (GL# SATA-S11) */
  2933. if (IS_SOC(hpriv))
  2934. m3 &= ~0x1c;
  2935. if (fix_phy_mode4) {
  2936. u32 m4 = readl(port_mmio + PHY_MODE4);
  2937. /*
  2938. * Enforce reserved-bit restrictions on GenIIe devices only.
  2939. * For earlier chipsets, force only the internal config field
  2940. * (workaround for errata FEr SATA#10 part 1).
  2941. */
  2942. if (IS_GEN_IIE(hpriv))
  2943. m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
  2944. else
  2945. m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
  2946. writel(m4, port_mmio + PHY_MODE4);
  2947. }
  2948. /*
  2949. * Workaround for 60x1-B2 errata SATA#13:
  2950. * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
  2951. * so we must always rewrite PHY_MODE3 after PHY_MODE4.
  2952. * Or ensure we use writelfl() when writing PHY_MODE4.
  2953. */
  2954. writel(m3, port_mmio + PHY_MODE3);
  2955. /* Revert values of pre-emphasis and signal amps to the saved ones */
  2956. m2 = readl(port_mmio + PHY_MODE2);
  2957. m2 &= ~MV_M2_PREAMP_MASK;
  2958. m2 |= hpriv->signal[port].amps;
  2959. m2 |= hpriv->signal[port].pre;
  2960. m2 &= ~(1 << 16);
  2961. /* according to mvSata 3.6.1, some IIE values are fixed */
  2962. if (IS_GEN_IIE(hpriv)) {
  2963. m2 &= ~0xC30FF01F;
  2964. m2 |= 0x0000900F;
  2965. }
  2966. writel(m2, port_mmio + PHY_MODE2);
  2967. }
  2968. /* TODO: use the generic LED interface to configure the SATA Presence */
  2969. /* & Acitivy LEDs on the board */
  2970. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  2971. void __iomem *mmio)
  2972. {
  2973. return;
  2974. }
  2975. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  2976. void __iomem *mmio)
  2977. {
  2978. void __iomem *port_mmio;
  2979. u32 tmp;
  2980. port_mmio = mv_port_base(mmio, idx);
  2981. tmp = readl(port_mmio + PHY_MODE2);
  2982. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2983. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2984. }
  2985. #undef ZERO
  2986. #define ZERO(reg) writel(0, port_mmio + (reg))
  2987. static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
  2988. void __iomem *mmio, unsigned int port)
  2989. {
  2990. void __iomem *port_mmio = mv_port_base(mmio, port);
  2991. mv_reset_channel(hpriv, mmio, port);
  2992. ZERO(0x028); /* command */
  2993. writel(0x101f, port_mmio + EDMA_CFG);
  2994. ZERO(0x004); /* timer */
  2995. ZERO(0x008); /* irq err cause */
  2996. ZERO(0x00c); /* irq err mask */
  2997. ZERO(0x010); /* rq bah */
  2998. ZERO(0x014); /* rq inp */
  2999. ZERO(0x018); /* rq outp */
  3000. ZERO(0x01c); /* respq bah */
  3001. ZERO(0x024); /* respq outp */
  3002. ZERO(0x020); /* respq inp */
  3003. ZERO(0x02c); /* test control */
  3004. writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
  3005. }
  3006. #undef ZERO
  3007. #define ZERO(reg) writel(0, hc_mmio + (reg))
  3008. static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
  3009. void __iomem *mmio)
  3010. {
  3011. void __iomem *hc_mmio = mv_hc_base(mmio, 0);
  3012. ZERO(0x00c);
  3013. ZERO(0x010);
  3014. ZERO(0x014);
  3015. }
  3016. #undef ZERO
  3017. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  3018. void __iomem *mmio, unsigned int n_hc)
  3019. {
  3020. unsigned int port;
  3021. for (port = 0; port < hpriv->n_ports; port++)
  3022. mv_soc_reset_hc_port(hpriv, mmio, port);
  3023. mv_soc_reset_one_hc(hpriv, mmio);
  3024. return 0;
  3025. }
  3026. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  3027. void __iomem *mmio)
  3028. {
  3029. return;
  3030. }
  3031. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
  3032. {
  3033. return;
  3034. }
  3035. static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
  3036. void __iomem *mmio, unsigned int port)
  3037. {
  3038. void __iomem *port_mmio = mv_port_base(mmio, port);
  3039. u32 reg;
  3040. reg = readl(port_mmio + PHY_MODE3);
  3041. reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
  3042. reg |= (0x1 << 27);
  3043. reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
  3044. reg |= (0x1 << 29);
  3045. writel(reg, port_mmio + PHY_MODE3);
  3046. reg = readl(port_mmio + PHY_MODE4);
  3047. reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
  3048. reg |= (0x1 << 16);
  3049. writel(reg, port_mmio + PHY_MODE4);
  3050. reg = readl(port_mmio + PHY_MODE9_GEN2);
  3051. reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
  3052. reg |= 0x8;
  3053. reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
  3054. writel(reg, port_mmio + PHY_MODE9_GEN2);
  3055. reg = readl(port_mmio + PHY_MODE9_GEN1);
  3056. reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
  3057. reg |= 0x8;
  3058. reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
  3059. writel(reg, port_mmio + PHY_MODE9_GEN1);
  3060. }
  3061. /**
  3062. * soc_is_65 - check if the soc is 65 nano device
  3063. *
  3064. * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
  3065. * register, this register should contain non-zero value and it exists only
  3066. * in the 65 nano devices, when reading it from older devices we get 0.
  3067. */
  3068. static bool soc_is_65n(struct mv_host_priv *hpriv)
  3069. {
  3070. void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
  3071. if (readl(port0_mmio + PHYCFG_OFS))
  3072. return true;
  3073. return false;
  3074. }
  3075. static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
  3076. {
  3077. u32 ifcfg = readl(port_mmio + SATA_IFCFG);
  3078. ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
  3079. if (want_gen2i)
  3080. ifcfg |= (1 << 7); /* enable gen2i speed */
  3081. writelfl(ifcfg, port_mmio + SATA_IFCFG);
  3082. }
  3083. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  3084. unsigned int port_no)
  3085. {
  3086. void __iomem *port_mmio = mv_port_base(mmio, port_no);
  3087. /*
  3088. * The datasheet warns against setting EDMA_RESET when EDMA is active
  3089. * (but doesn't say what the problem might be). So we first try
  3090. * to disable the EDMA engine before doing the EDMA_RESET operation.
  3091. */
  3092. mv_stop_edma_engine(port_mmio);
  3093. writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
  3094. if (!IS_GEN_I(hpriv)) {
  3095. /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
  3096. mv_setup_ifcfg(port_mmio, 1);
  3097. }
  3098. /*
  3099. * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
  3100. * link, and physical layers. It resets all SATA interface registers
  3101. * (except for SATA_IFCFG), and issues a COMRESET to the dev.
  3102. */
  3103. writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
  3104. udelay(25); /* allow reset propagation */
  3105. writelfl(0, port_mmio + EDMA_CMD);
  3106. hpriv->ops->phy_errata(hpriv, mmio, port_no);
  3107. if (IS_GEN_I(hpriv))
  3108. mdelay(1);
  3109. }
  3110. static void mv_pmp_select(struct ata_port *ap, int pmp)
  3111. {
  3112. if (sata_pmp_supported(ap)) {
  3113. void __iomem *port_mmio = mv_ap_base(ap);
  3114. u32 reg = readl(port_mmio + SATA_IFCTL);
  3115. int old = reg & 0xf;
  3116. if (old != pmp) {
  3117. reg = (reg & ~0xf) | pmp;
  3118. writelfl(reg, port_mmio + SATA_IFCTL);
  3119. }
  3120. }
  3121. }
  3122. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  3123. unsigned long deadline)
  3124. {
  3125. mv_pmp_select(link->ap, sata_srst_pmp(link));
  3126. return sata_std_hardreset(link, class, deadline);
  3127. }
  3128. static int mv_softreset(struct ata_link *link, unsigned int *class,
  3129. unsigned long deadline)
  3130. {
  3131. mv_pmp_select(link->ap, sata_srst_pmp(link));
  3132. return ata_sff_softreset(link, class, deadline);
  3133. }
  3134. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  3135. unsigned long deadline)
  3136. {
  3137. struct ata_port *ap = link->ap;
  3138. struct mv_host_priv *hpriv = ap->host->private_data;
  3139. struct mv_port_priv *pp = ap->private_data;
  3140. void __iomem *mmio = hpriv->base;
  3141. int rc, attempts = 0, extra = 0;
  3142. u32 sstatus;
  3143. bool online;
  3144. mv_reset_channel(hpriv, mmio, ap->port_no);
  3145. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  3146. pp->pp_flags &=
  3147. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  3148. /* Workaround for errata FEr SATA#10 (part 2) */
  3149. do {
  3150. const unsigned long *timing =
  3151. sata_ehc_deb_timing(&link->eh_context);
  3152. rc = sata_link_hardreset(link, timing, deadline + extra,
  3153. &online, NULL);
  3154. rc = online ? -EAGAIN : rc;
  3155. if (rc)
  3156. return rc;
  3157. sata_scr_read(link, SCR_STATUS, &sstatus);
  3158. if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
  3159. /* Force 1.5gb/s link speed and try again */
  3160. mv_setup_ifcfg(mv_ap_base(ap), 0);
  3161. if (time_after(jiffies + HZ, deadline))
  3162. extra = HZ; /* only extend it once, max */
  3163. }
  3164. } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
  3165. mv_save_cached_regs(ap);
  3166. mv_edma_cfg(ap, 0, 0);
  3167. return rc;
  3168. }
  3169. static void mv_eh_freeze(struct ata_port *ap)
  3170. {
  3171. mv_stop_edma(ap);
  3172. mv_enable_port_irqs(ap, 0);
  3173. }
  3174. static void mv_eh_thaw(struct ata_port *ap)
  3175. {
  3176. struct mv_host_priv *hpriv = ap->host->private_data;
  3177. unsigned int port = ap->port_no;
  3178. unsigned int hardport = mv_hardport_from_port(port);
  3179. void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
  3180. void __iomem *port_mmio = mv_ap_base(ap);
  3181. u32 hc_irq_cause;
  3182. /* clear EDMA errors on this port */
  3183. writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
  3184. /* clear pending irq events */
  3185. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  3186. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
  3187. mv_enable_port_irqs(ap, ERR_IRQ);
  3188. }
  3189. /**
  3190. * mv_port_init - Perform some early initialization on a single port.
  3191. * @port: libata data structure storing shadow register addresses
  3192. * @port_mmio: base address of the port
  3193. *
  3194. * Initialize shadow register mmio addresses, clear outstanding
  3195. * interrupts on the port, and unmask interrupts for the future
  3196. * start of the port.
  3197. *
  3198. * LOCKING:
  3199. * Inherited from caller.
  3200. */
  3201. static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
  3202. {
  3203. void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
  3204. /* PIO related setup
  3205. */
  3206. port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
  3207. port->error_addr =
  3208. port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
  3209. port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
  3210. port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
  3211. port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
  3212. port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
  3213. port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
  3214. port->status_addr =
  3215. port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
  3216. /* special case: control/altstatus doesn't have ATA_REG_ address */
  3217. port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
  3218. /* Clear any currently outstanding port interrupt conditions */
  3219. serr = port_mmio + mv_scr_offset(SCR_ERROR);
  3220. writelfl(readl(serr), serr);
  3221. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
  3222. /* unmask all non-transient EDMA error interrupts */
  3223. writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
  3224. VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
  3225. readl(port_mmio + EDMA_CFG),
  3226. readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
  3227. readl(port_mmio + EDMA_ERR_IRQ_MASK));
  3228. }
  3229. static unsigned int mv_in_pcix_mode(struct ata_host *host)
  3230. {
  3231. struct mv_host_priv *hpriv = host->private_data;
  3232. void __iomem *mmio = hpriv->base;
  3233. u32 reg;
  3234. if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
  3235. return 0; /* not PCI-X capable */
  3236. reg = readl(mmio + MV_PCI_MODE);
  3237. if ((reg & MV_PCI_MODE_MASK) == 0)
  3238. return 0; /* conventional PCI mode */
  3239. return 1; /* chip is in PCI-X mode */
  3240. }
  3241. static int mv_pci_cut_through_okay(struct ata_host *host)
  3242. {
  3243. struct mv_host_priv *hpriv = host->private_data;
  3244. void __iomem *mmio = hpriv->base;
  3245. u32 reg;
  3246. if (!mv_in_pcix_mode(host)) {
  3247. reg = readl(mmio + MV_PCI_COMMAND);
  3248. if (reg & MV_PCI_COMMAND_MRDTRIG)
  3249. return 0; /* not okay */
  3250. }
  3251. return 1; /* okay */
  3252. }
  3253. static void mv_60x1b2_errata_pci7(struct ata_host *host)
  3254. {
  3255. struct mv_host_priv *hpriv = host->private_data;
  3256. void __iomem *mmio = hpriv->base;
  3257. /* workaround for 60x1-B2 errata PCI#7 */
  3258. if (mv_in_pcix_mode(host)) {
  3259. u32 reg = readl(mmio + MV_PCI_COMMAND);
  3260. writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
  3261. }
  3262. }
  3263. static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
  3264. {
  3265. struct pci_dev *pdev = to_pci_dev(host->dev);
  3266. struct mv_host_priv *hpriv = host->private_data;
  3267. u32 hp_flags = hpriv->hp_flags;
  3268. switch (board_idx) {
  3269. case chip_5080:
  3270. hpriv->ops = &mv5xxx_ops;
  3271. hp_flags |= MV_HP_GEN_I;
  3272. switch (pdev->revision) {
  3273. case 0x1:
  3274. hp_flags |= MV_HP_ERRATA_50XXB0;
  3275. break;
  3276. case 0x3:
  3277. hp_flags |= MV_HP_ERRATA_50XXB2;
  3278. break;
  3279. default:
  3280. dev_warn(&pdev->dev,
  3281. "Applying 50XXB2 workarounds to unknown rev\n");
  3282. hp_flags |= MV_HP_ERRATA_50XXB2;
  3283. break;
  3284. }
  3285. break;
  3286. case chip_504x:
  3287. case chip_508x:
  3288. hpriv->ops = &mv5xxx_ops;
  3289. hp_flags |= MV_HP_GEN_I;
  3290. switch (pdev->revision) {
  3291. case 0x0:
  3292. hp_flags |= MV_HP_ERRATA_50XXB0;
  3293. break;
  3294. case 0x3:
  3295. hp_flags |= MV_HP_ERRATA_50XXB2;
  3296. break;
  3297. default:
  3298. dev_warn(&pdev->dev,
  3299. "Applying B2 workarounds to unknown rev\n");
  3300. hp_flags |= MV_HP_ERRATA_50XXB2;
  3301. break;
  3302. }
  3303. break;
  3304. case chip_604x:
  3305. case chip_608x:
  3306. hpriv->ops = &mv6xxx_ops;
  3307. hp_flags |= MV_HP_GEN_II;
  3308. switch (pdev->revision) {
  3309. case 0x7:
  3310. mv_60x1b2_errata_pci7(host);
  3311. hp_flags |= MV_HP_ERRATA_60X1B2;
  3312. break;
  3313. case 0x9:
  3314. hp_flags |= MV_HP_ERRATA_60X1C0;
  3315. break;
  3316. default:
  3317. dev_warn(&pdev->dev,
  3318. "Applying B2 workarounds to unknown rev\n");
  3319. hp_flags |= MV_HP_ERRATA_60X1B2;
  3320. break;
  3321. }
  3322. break;
  3323. case chip_7042:
  3324. hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
  3325. if (pdev->vendor == PCI_VENDOR_ID_TTI &&
  3326. (pdev->device == 0x2300 || pdev->device == 0x2310))
  3327. {
  3328. /*
  3329. * Highpoint RocketRAID PCIe 23xx series cards:
  3330. *
  3331. * Unconfigured drives are treated as "Legacy"
  3332. * by the BIOS, and it overwrites sector 8 with
  3333. * a "Lgcy" metadata block prior to Linux boot.
  3334. *
  3335. * Configured drives (RAID or JBOD) leave sector 8
  3336. * alone, but instead overwrite a high numbered
  3337. * sector for the RAID metadata. This sector can
  3338. * be determined exactly, by truncating the physical
  3339. * drive capacity to a nice even GB value.
  3340. *
  3341. * RAID metadata is at: (dev->n_sectors & ~0xfffff)
  3342. *
  3343. * Warn the user, lest they think we're just buggy.
  3344. */
  3345. printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
  3346. " BIOS CORRUPTS DATA on all attached drives,"
  3347. " regardless of if/how they are configured."
  3348. " BEWARE!\n");
  3349. printk(KERN_WARNING DRV_NAME ": For data safety, do not"
  3350. " use sectors 8-9 on \"Legacy\" drives,"
  3351. " and avoid the final two gigabytes on"
  3352. " all RocketRAID BIOS initialized drives.\n");
  3353. }
  3354. /* drop through */
  3355. case chip_6042:
  3356. hpriv->ops = &mv6xxx_ops;
  3357. hp_flags |= MV_HP_GEN_IIE;
  3358. if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
  3359. hp_flags |= MV_HP_CUT_THROUGH;
  3360. switch (pdev->revision) {
  3361. case 0x2: /* Rev.B0: the first/only public release */
  3362. hp_flags |= MV_HP_ERRATA_60X1C0;
  3363. break;
  3364. default:
  3365. dev_warn(&pdev->dev,
  3366. "Applying 60X1C0 workarounds to unknown rev\n");
  3367. hp_flags |= MV_HP_ERRATA_60X1C0;
  3368. break;
  3369. }
  3370. break;
  3371. case chip_soc:
  3372. if (soc_is_65n(hpriv))
  3373. hpriv->ops = &mv_soc_65n_ops;
  3374. else
  3375. hpriv->ops = &mv_soc_ops;
  3376. hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
  3377. MV_HP_ERRATA_60X1C0;
  3378. break;
  3379. default:
  3380. dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
  3381. return 1;
  3382. }
  3383. hpriv->hp_flags = hp_flags;
  3384. if (hp_flags & MV_HP_PCIE) {
  3385. hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
  3386. hpriv->irq_mask_offset = PCIE_IRQ_MASK;
  3387. hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
  3388. } else {
  3389. hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
  3390. hpriv->irq_mask_offset = PCI_IRQ_MASK;
  3391. hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
  3392. }
  3393. return 0;
  3394. }
  3395. /**
  3396. * mv_init_host - Perform some early initialization of the host.
  3397. * @host: ATA host to initialize
  3398. *
  3399. * If possible, do an early global reset of the host. Then do
  3400. * our port init and clear/unmask all/relevant host interrupts.
  3401. *
  3402. * LOCKING:
  3403. * Inherited from caller.
  3404. */
  3405. static int mv_init_host(struct ata_host *host)
  3406. {
  3407. int rc = 0, n_hc, port, hc;
  3408. struct mv_host_priv *hpriv = host->private_data;
  3409. void __iomem *mmio = hpriv->base;
  3410. rc = mv_chip_id(host, hpriv->board_idx);
  3411. if (rc)
  3412. goto done;
  3413. if (IS_SOC(hpriv)) {
  3414. hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
  3415. hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
  3416. } else {
  3417. hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
  3418. hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
  3419. }
  3420. /* initialize shadow irq mask with register's value */
  3421. hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
  3422. /* global interrupt mask: 0 == mask everything */
  3423. mv_set_main_irq_mask(host, ~0, 0);
  3424. n_hc = mv_get_hc_count(host->ports[0]->flags);
  3425. for (port = 0; port < host->n_ports; port++)
  3426. if (hpriv->ops->read_preamp)
  3427. hpriv->ops->read_preamp(hpriv, port, mmio);
  3428. rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
  3429. if (rc)
  3430. goto done;
  3431. hpriv->ops->reset_flash(hpriv, mmio);
  3432. hpriv->ops->reset_bus(host, mmio);
  3433. hpriv->ops->enable_leds(hpriv, mmio);
  3434. for (port = 0; port < host->n_ports; port++) {
  3435. struct ata_port *ap = host->ports[port];
  3436. void __iomem *port_mmio = mv_port_base(mmio, port);
  3437. mv_port_init(&ap->ioaddr, port_mmio);
  3438. }
  3439. for (hc = 0; hc < n_hc; hc++) {
  3440. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  3441. VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
  3442. "(before clear)=0x%08x\n", hc,
  3443. readl(hc_mmio + HC_CFG),
  3444. readl(hc_mmio + HC_IRQ_CAUSE));
  3445. /* Clear any currently outstanding hc interrupt conditions */
  3446. writelfl(0, hc_mmio + HC_IRQ_CAUSE);
  3447. }
  3448. if (!IS_SOC(hpriv)) {
  3449. /* Clear any currently outstanding host interrupt conditions */
  3450. writelfl(0, mmio + hpriv->irq_cause_offset);
  3451. /* and unmask interrupt generation for host regs */
  3452. writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
  3453. }
  3454. /*
  3455. * enable only global host interrupts for now.
  3456. * The per-port interrupts get done later as ports are set up.
  3457. */
  3458. mv_set_main_irq_mask(host, 0, PCI_ERR);
  3459. mv_set_irq_coalescing(host, irq_coalescing_io_count,
  3460. irq_coalescing_usecs);
  3461. done:
  3462. return rc;
  3463. }
  3464. static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
  3465. {
  3466. hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
  3467. MV_CRQB_Q_SZ, 0);
  3468. if (!hpriv->crqb_pool)
  3469. return -ENOMEM;
  3470. hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
  3471. MV_CRPB_Q_SZ, 0);
  3472. if (!hpriv->crpb_pool)
  3473. return -ENOMEM;
  3474. hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
  3475. MV_SG_TBL_SZ, 0);
  3476. if (!hpriv->sg_tbl_pool)
  3477. return -ENOMEM;
  3478. return 0;
  3479. }
  3480. static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
  3481. const struct mbus_dram_target_info *dram)
  3482. {
  3483. int i;
  3484. for (i = 0; i < 4; i++) {
  3485. writel(0, hpriv->base + WINDOW_CTRL(i));
  3486. writel(0, hpriv->base + WINDOW_BASE(i));
  3487. }
  3488. for (i = 0; i < dram->num_cs; i++) {
  3489. const struct mbus_dram_window *cs = dram->cs + i;
  3490. writel(((cs->size - 1) & 0xffff0000) |
  3491. (cs->mbus_attr << 8) |
  3492. (dram->mbus_dram_target_id << 4) | 1,
  3493. hpriv->base + WINDOW_CTRL(i));
  3494. writel(cs->base, hpriv->base + WINDOW_BASE(i));
  3495. }
  3496. }
  3497. /**
  3498. * mv_platform_probe - handle a positive probe of an soc Marvell
  3499. * host
  3500. * @pdev: platform device found
  3501. *
  3502. * LOCKING:
  3503. * Inherited from caller.
  3504. */
  3505. static int mv_platform_probe(struct platform_device *pdev)
  3506. {
  3507. const struct mv_sata_platform_data *mv_platform_data;
  3508. const struct mbus_dram_target_info *dram;
  3509. const struct ata_port_info *ppi[] =
  3510. { &mv_port_info[chip_soc], NULL };
  3511. struct ata_host *host;
  3512. struct mv_host_priv *hpriv;
  3513. struct resource *res;
  3514. int n_ports = 0;
  3515. int rc;
  3516. ata_print_version_once(&pdev->dev, DRV_VERSION);
  3517. /*
  3518. * Simple resource validation ..
  3519. */
  3520. if (unlikely(pdev->num_resources != 2)) {
  3521. dev_err(&pdev->dev, "invalid number of resources\n");
  3522. return -EINVAL;
  3523. }
  3524. /*
  3525. * Get the register base first
  3526. */
  3527. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  3528. if (res == NULL)
  3529. return -EINVAL;
  3530. /* allocate host */
  3531. mv_platform_data = pdev->dev.platform_data;
  3532. n_ports = mv_platform_data->n_ports;
  3533. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3534. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3535. if (!host || !hpriv)
  3536. return -ENOMEM;
  3537. host->private_data = hpriv;
  3538. hpriv->n_ports = n_ports;
  3539. hpriv->board_idx = chip_soc;
  3540. host->iomap = NULL;
  3541. hpriv->base = devm_ioremap(&pdev->dev, res->start,
  3542. resource_size(res));
  3543. hpriv->base -= SATAHC0_REG_BASE;
  3544. #if defined(CONFIG_HAVE_CLK)
  3545. hpriv->clk = clk_get(&pdev->dev, NULL);
  3546. if (IS_ERR(hpriv->clk))
  3547. dev_notice(&pdev->dev, "cannot get clkdev\n");
  3548. else
  3549. clk_enable(hpriv->clk);
  3550. #endif
  3551. /*
  3552. * (Re-)program MBUS remapping windows if we are asked to.
  3553. */
  3554. dram = mv_mbus_dram_info();
  3555. if (dram)
  3556. mv_conf_mbus_windows(hpriv, dram);
  3557. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3558. if (rc)
  3559. goto err;
  3560. /* initialize adapter */
  3561. rc = mv_init_host(host);
  3562. if (rc)
  3563. goto err;
  3564. dev_info(&pdev->dev, "slots %u ports %d\n",
  3565. (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
  3566. rc = ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
  3567. IRQF_SHARED, &mv6_sht);
  3568. if (!rc)
  3569. return 0;
  3570. err:
  3571. #if defined(CONFIG_HAVE_CLK)
  3572. if (!IS_ERR(hpriv->clk)) {
  3573. clk_disable(hpriv->clk);
  3574. clk_put(hpriv->clk);
  3575. }
  3576. #endif
  3577. return rc;
  3578. }
  3579. /*
  3580. *
  3581. * mv_platform_remove - unplug a platform interface
  3582. * @pdev: platform device
  3583. *
  3584. * A platform bus SATA device has been unplugged. Perform the needed
  3585. * cleanup. Also called on module unload for any active devices.
  3586. */
  3587. static int __devexit mv_platform_remove(struct platform_device *pdev)
  3588. {
  3589. struct ata_host *host = platform_get_drvdata(pdev);
  3590. #if defined(CONFIG_HAVE_CLK)
  3591. struct mv_host_priv *hpriv = host->private_data;
  3592. #endif
  3593. ata_host_detach(host);
  3594. #if defined(CONFIG_HAVE_CLK)
  3595. if (!IS_ERR(hpriv->clk)) {
  3596. clk_disable(hpriv->clk);
  3597. clk_put(hpriv->clk);
  3598. }
  3599. #endif
  3600. return 0;
  3601. }
  3602. #ifdef CONFIG_PM
  3603. static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
  3604. {
  3605. struct ata_host *host = platform_get_drvdata(pdev);
  3606. if (host)
  3607. return ata_host_suspend(host, state);
  3608. else
  3609. return 0;
  3610. }
  3611. static int mv_platform_resume(struct platform_device *pdev)
  3612. {
  3613. struct ata_host *host = platform_get_drvdata(pdev);
  3614. const struct mbus_dram_target_info *dram;
  3615. int ret;
  3616. if (host) {
  3617. struct mv_host_priv *hpriv = host->private_data;
  3618. /*
  3619. * (Re-)program MBUS remapping windows if we are asked to.
  3620. */
  3621. dram = mv_mbus_dram_info();
  3622. if (dram)
  3623. mv_conf_mbus_windows(hpriv, dram);
  3624. /* initialize adapter */
  3625. ret = mv_init_host(host);
  3626. if (ret) {
  3627. printk(KERN_ERR DRV_NAME ": Error during HW init\n");
  3628. return ret;
  3629. }
  3630. ata_host_resume(host);
  3631. }
  3632. return 0;
  3633. }
  3634. #else
  3635. #define mv_platform_suspend NULL
  3636. #define mv_platform_resume NULL
  3637. #endif
  3638. static struct platform_driver mv_platform_driver = {
  3639. .probe = mv_platform_probe,
  3640. .remove = __devexit_p(mv_platform_remove),
  3641. .suspend = mv_platform_suspend,
  3642. .resume = mv_platform_resume,
  3643. .driver = {
  3644. .name = DRV_NAME,
  3645. .owner = THIS_MODULE,
  3646. },
  3647. };
  3648. #ifdef CONFIG_PCI
  3649. static int mv_pci_init_one(struct pci_dev *pdev,
  3650. const struct pci_device_id *ent);
  3651. #ifdef CONFIG_PM
  3652. static int mv_pci_device_resume(struct pci_dev *pdev);
  3653. #endif
  3654. static struct pci_driver mv_pci_driver = {
  3655. .name = DRV_NAME,
  3656. .id_table = mv_pci_tbl,
  3657. .probe = mv_pci_init_one,
  3658. .remove = ata_pci_remove_one,
  3659. #ifdef CONFIG_PM
  3660. .suspend = ata_pci_device_suspend,
  3661. .resume = mv_pci_device_resume,
  3662. #endif
  3663. };
  3664. /* move to PCI layer or libata core? */
  3665. static int pci_go_64(struct pci_dev *pdev)
  3666. {
  3667. int rc;
  3668. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3669. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3670. if (rc) {
  3671. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3672. if (rc) {
  3673. dev_err(&pdev->dev,
  3674. "64-bit DMA enable failed\n");
  3675. return rc;
  3676. }
  3677. }
  3678. } else {
  3679. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3680. if (rc) {
  3681. dev_err(&pdev->dev, "32-bit DMA enable failed\n");
  3682. return rc;
  3683. }
  3684. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3685. if (rc) {
  3686. dev_err(&pdev->dev,
  3687. "32-bit consistent DMA enable failed\n");
  3688. return rc;
  3689. }
  3690. }
  3691. return rc;
  3692. }
  3693. /**
  3694. * mv_print_info - Dump key info to kernel log for perusal.
  3695. * @host: ATA host to print info about
  3696. *
  3697. * FIXME: complete this.
  3698. *
  3699. * LOCKING:
  3700. * Inherited from caller.
  3701. */
  3702. static void mv_print_info(struct ata_host *host)
  3703. {
  3704. struct pci_dev *pdev = to_pci_dev(host->dev);
  3705. struct mv_host_priv *hpriv = host->private_data;
  3706. u8 scc;
  3707. const char *scc_s, *gen;
  3708. /* Use this to determine the HW stepping of the chip so we know
  3709. * what errata to workaround
  3710. */
  3711. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
  3712. if (scc == 0)
  3713. scc_s = "SCSI";
  3714. else if (scc == 0x01)
  3715. scc_s = "RAID";
  3716. else
  3717. scc_s = "?";
  3718. if (IS_GEN_I(hpriv))
  3719. gen = "I";
  3720. else if (IS_GEN_II(hpriv))
  3721. gen = "II";
  3722. else if (IS_GEN_IIE(hpriv))
  3723. gen = "IIE";
  3724. else
  3725. gen = "?";
  3726. dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
  3727. gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
  3728. scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
  3729. }
  3730. /**
  3731. * mv_pci_init_one - handle a positive probe of a PCI Marvell host
  3732. * @pdev: PCI device found
  3733. * @ent: PCI device ID entry for the matched host
  3734. *
  3735. * LOCKING:
  3736. * Inherited from caller.
  3737. */
  3738. static int mv_pci_init_one(struct pci_dev *pdev,
  3739. const struct pci_device_id *ent)
  3740. {
  3741. unsigned int board_idx = (unsigned int)ent->driver_data;
  3742. const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
  3743. struct ata_host *host;
  3744. struct mv_host_priv *hpriv;
  3745. int n_ports, port, rc;
  3746. ata_print_version_once(&pdev->dev, DRV_VERSION);
  3747. /* allocate host */
  3748. n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
  3749. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3750. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3751. if (!host || !hpriv)
  3752. return -ENOMEM;
  3753. host->private_data = hpriv;
  3754. hpriv->n_ports = n_ports;
  3755. hpriv->board_idx = board_idx;
  3756. /* acquire resources */
  3757. rc = pcim_enable_device(pdev);
  3758. if (rc)
  3759. return rc;
  3760. rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
  3761. if (rc == -EBUSY)
  3762. pcim_pin_device(pdev);
  3763. if (rc)
  3764. return rc;
  3765. host->iomap = pcim_iomap_table(pdev);
  3766. hpriv->base = host->iomap[MV_PRIMARY_BAR];
  3767. rc = pci_go_64(pdev);
  3768. if (rc)
  3769. return rc;
  3770. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3771. if (rc)
  3772. return rc;
  3773. for (port = 0; port < host->n_ports; port++) {
  3774. struct ata_port *ap = host->ports[port];
  3775. void __iomem *port_mmio = mv_port_base(hpriv->base, port);
  3776. unsigned int offset = port_mmio - hpriv->base;
  3777. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
  3778. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
  3779. }
  3780. /* initialize adapter */
  3781. rc = mv_init_host(host);
  3782. if (rc)
  3783. return rc;
  3784. /* Enable message-switched interrupts, if requested */
  3785. if (msi && pci_enable_msi(pdev) == 0)
  3786. hpriv->hp_flags |= MV_HP_FLAG_MSI;
  3787. mv_dump_pci_cfg(pdev, 0x68);
  3788. mv_print_info(host);
  3789. pci_set_master(pdev);
  3790. pci_try_set_mwi(pdev);
  3791. return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
  3792. IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
  3793. }
  3794. #ifdef CONFIG_PM
  3795. static int mv_pci_device_resume(struct pci_dev *pdev)
  3796. {
  3797. struct ata_host *host = pci_get_drvdata(pdev);
  3798. int rc;
  3799. rc = ata_pci_device_do_resume(pdev);
  3800. if (rc)
  3801. return rc;
  3802. /* initialize adapter */
  3803. rc = mv_init_host(host);
  3804. if (rc)
  3805. return rc;
  3806. ata_host_resume(host);
  3807. return 0;
  3808. }
  3809. #endif
  3810. #endif
  3811. static int mv_platform_probe(struct platform_device *pdev);
  3812. static int __devexit mv_platform_remove(struct platform_device *pdev);
  3813. static int __init mv_init(void)
  3814. {
  3815. int rc = -ENODEV;
  3816. #ifdef CONFIG_PCI
  3817. rc = pci_register_driver(&mv_pci_driver);
  3818. if (rc < 0)
  3819. return rc;
  3820. #endif
  3821. rc = platform_driver_register(&mv_platform_driver);
  3822. #ifdef CONFIG_PCI
  3823. if (rc < 0)
  3824. pci_unregister_driver(&mv_pci_driver);
  3825. #endif
  3826. return rc;
  3827. }
  3828. static void __exit mv_exit(void)
  3829. {
  3830. #ifdef CONFIG_PCI
  3831. pci_unregister_driver(&mv_pci_driver);
  3832. #endif
  3833. platform_driver_unregister(&mv_platform_driver);
  3834. }
  3835. MODULE_AUTHOR("Brett Russ");
  3836. MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
  3837. MODULE_LICENSE("GPL");
  3838. MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
  3839. MODULE_VERSION(DRV_VERSION);
  3840. MODULE_ALIAS("platform:" DRV_NAME);
  3841. module_init(mv_init);
  3842. module_exit(mv_exit);