pdc_adma.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681
  1. /*
  2. * pdc_adma.c - Pacific Digital Corporation ADMA
  3. *
  4. * Maintained by: Mark Lord <mlord@pobox.com>
  5. *
  6. * Copyright 2005 Mark Lord
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; see the file COPYING. If not, write to
  20. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  21. *
  22. *
  23. * libata documentation is available via 'make {ps|pdf}docs',
  24. * as Documentation/DocBook/libata.*
  25. *
  26. *
  27. * Supports ATA disks in single-packet ADMA mode.
  28. * Uses PIO for everything else.
  29. *
  30. * TODO: Use ADMA transfers for ATAPI devices, when possible.
  31. * This requires careful attention to a number of quirks of the chip.
  32. *
  33. */
  34. #include <linux/kernel.h>
  35. #include <linux/module.h>
  36. #include <linux/gfp.h>
  37. #include <linux/pci.h>
  38. #include <linux/init.h>
  39. #include <linux/blkdev.h>
  40. #include <linux/delay.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/device.h>
  43. #include <scsi/scsi_host.h>
  44. #include <linux/libata.h>
  45. #define DRV_NAME "pdc_adma"
  46. #define DRV_VERSION "1.0"
  47. /* macro to calculate base address for ATA regs */
  48. #define ADMA_ATA_REGS(base, port_no) ((base) + ((port_no) * 0x40))
  49. /* macro to calculate base address for ADMA regs */
  50. #define ADMA_REGS(base, port_no) ((base) + 0x80 + ((port_no) * 0x20))
  51. /* macro to obtain addresses from ata_port */
  52. #define ADMA_PORT_REGS(ap) \
  53. ADMA_REGS((ap)->host->iomap[ADMA_MMIO_BAR], ap->port_no)
  54. enum {
  55. ADMA_MMIO_BAR = 4,
  56. ADMA_PORTS = 2,
  57. ADMA_CPB_BYTES = 40,
  58. ADMA_PRD_BYTES = LIBATA_MAX_PRD * 16,
  59. ADMA_PKT_BYTES = ADMA_CPB_BYTES + ADMA_PRD_BYTES,
  60. ADMA_DMA_BOUNDARY = 0xffffffff,
  61. /* global register offsets */
  62. ADMA_MODE_LOCK = 0x00c7,
  63. /* per-channel register offsets */
  64. ADMA_CONTROL = 0x0000, /* ADMA control */
  65. ADMA_STATUS = 0x0002, /* ADMA status */
  66. ADMA_CPB_COUNT = 0x0004, /* CPB count */
  67. ADMA_CPB_CURRENT = 0x000c, /* current CPB address */
  68. ADMA_CPB_NEXT = 0x000c, /* next CPB address */
  69. ADMA_CPB_LOOKUP = 0x0010, /* CPB lookup table */
  70. ADMA_FIFO_IN = 0x0014, /* input FIFO threshold */
  71. ADMA_FIFO_OUT = 0x0016, /* output FIFO threshold */
  72. /* ADMA_CONTROL register bits */
  73. aNIEN = (1 << 8), /* irq mask: 1==masked */
  74. aGO = (1 << 7), /* packet trigger ("Go!") */
  75. aRSTADM = (1 << 5), /* ADMA logic reset */
  76. aPIOMD4 = 0x0003, /* PIO mode 4 */
  77. /* ADMA_STATUS register bits */
  78. aPSD = (1 << 6),
  79. aUIRQ = (1 << 4),
  80. aPERR = (1 << 0),
  81. /* CPB bits */
  82. cDONE = (1 << 0),
  83. cATERR = (1 << 3),
  84. cVLD = (1 << 0),
  85. cDAT = (1 << 2),
  86. cIEN = (1 << 3),
  87. /* PRD bits */
  88. pORD = (1 << 4),
  89. pDIRO = (1 << 5),
  90. pEND = (1 << 7),
  91. /* ATA register flags */
  92. rIGN = (1 << 5),
  93. rEND = (1 << 7),
  94. /* ATA register addresses */
  95. ADMA_REGS_CONTROL = 0x0e,
  96. ADMA_REGS_SECTOR_COUNT = 0x12,
  97. ADMA_REGS_LBA_LOW = 0x13,
  98. ADMA_REGS_LBA_MID = 0x14,
  99. ADMA_REGS_LBA_HIGH = 0x15,
  100. ADMA_REGS_DEVICE = 0x16,
  101. ADMA_REGS_COMMAND = 0x17,
  102. /* PCI device IDs */
  103. board_1841_idx = 0, /* ADMA 2-port controller */
  104. };
  105. typedef enum { adma_state_idle, adma_state_pkt, adma_state_mmio } adma_state_t;
  106. struct adma_port_priv {
  107. u8 *pkt;
  108. dma_addr_t pkt_dma;
  109. adma_state_t state;
  110. };
  111. static int adma_ata_init_one(struct pci_dev *pdev,
  112. const struct pci_device_id *ent);
  113. static int adma_port_start(struct ata_port *ap);
  114. static void adma_port_stop(struct ata_port *ap);
  115. static void adma_qc_prep(struct ata_queued_cmd *qc);
  116. static unsigned int adma_qc_issue(struct ata_queued_cmd *qc);
  117. static int adma_check_atapi_dma(struct ata_queued_cmd *qc);
  118. static void adma_freeze(struct ata_port *ap);
  119. static void adma_thaw(struct ata_port *ap);
  120. static int adma_prereset(struct ata_link *link, unsigned long deadline);
  121. static struct scsi_host_template adma_ata_sht = {
  122. ATA_BASE_SHT(DRV_NAME),
  123. .sg_tablesize = LIBATA_MAX_PRD,
  124. .dma_boundary = ADMA_DMA_BOUNDARY,
  125. };
  126. static struct ata_port_operations adma_ata_ops = {
  127. .inherits = &ata_sff_port_ops,
  128. .lost_interrupt = ATA_OP_NULL,
  129. .check_atapi_dma = adma_check_atapi_dma,
  130. .qc_prep = adma_qc_prep,
  131. .qc_issue = adma_qc_issue,
  132. .freeze = adma_freeze,
  133. .thaw = adma_thaw,
  134. .prereset = adma_prereset,
  135. .port_start = adma_port_start,
  136. .port_stop = adma_port_stop,
  137. };
  138. static struct ata_port_info adma_port_info[] = {
  139. /* board_1841_idx */
  140. {
  141. .flags = ATA_FLAG_SLAVE_POSS | ATA_FLAG_PIO_POLLING,
  142. .pio_mask = ATA_PIO4_ONLY,
  143. .udma_mask = ATA_UDMA4,
  144. .port_ops = &adma_ata_ops,
  145. },
  146. };
  147. static const struct pci_device_id adma_ata_pci_tbl[] = {
  148. { PCI_VDEVICE(PDC, 0x1841), board_1841_idx },
  149. { } /* terminate list */
  150. };
  151. static struct pci_driver adma_ata_pci_driver = {
  152. .name = DRV_NAME,
  153. .id_table = adma_ata_pci_tbl,
  154. .probe = adma_ata_init_one,
  155. .remove = ata_pci_remove_one,
  156. };
  157. static int adma_check_atapi_dma(struct ata_queued_cmd *qc)
  158. {
  159. return 1; /* ATAPI DMA not yet supported */
  160. }
  161. static void adma_reset_engine(struct ata_port *ap)
  162. {
  163. void __iomem *chan = ADMA_PORT_REGS(ap);
  164. /* reset ADMA to idle state */
  165. writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL);
  166. udelay(2);
  167. writew(aPIOMD4, chan + ADMA_CONTROL);
  168. udelay(2);
  169. }
  170. static void adma_reinit_engine(struct ata_port *ap)
  171. {
  172. struct adma_port_priv *pp = ap->private_data;
  173. void __iomem *chan = ADMA_PORT_REGS(ap);
  174. /* mask/clear ATA interrupts */
  175. writeb(ATA_NIEN, ap->ioaddr.ctl_addr);
  176. ata_sff_check_status(ap);
  177. /* reset the ADMA engine */
  178. adma_reset_engine(ap);
  179. /* set in-FIFO threshold to 0x100 */
  180. writew(0x100, chan + ADMA_FIFO_IN);
  181. /* set CPB pointer */
  182. writel((u32)pp->pkt_dma, chan + ADMA_CPB_NEXT);
  183. /* set out-FIFO threshold to 0x100 */
  184. writew(0x100, chan + ADMA_FIFO_OUT);
  185. /* set CPB count */
  186. writew(1, chan + ADMA_CPB_COUNT);
  187. /* read/discard ADMA status */
  188. readb(chan + ADMA_STATUS);
  189. }
  190. static inline void adma_enter_reg_mode(struct ata_port *ap)
  191. {
  192. void __iomem *chan = ADMA_PORT_REGS(ap);
  193. writew(aPIOMD4, chan + ADMA_CONTROL);
  194. readb(chan + ADMA_STATUS); /* flush */
  195. }
  196. static void adma_freeze(struct ata_port *ap)
  197. {
  198. void __iomem *chan = ADMA_PORT_REGS(ap);
  199. /* mask/clear ATA interrupts */
  200. writeb(ATA_NIEN, ap->ioaddr.ctl_addr);
  201. ata_sff_check_status(ap);
  202. /* reset ADMA to idle state */
  203. writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL);
  204. udelay(2);
  205. writew(aPIOMD4 | aNIEN, chan + ADMA_CONTROL);
  206. udelay(2);
  207. }
  208. static void adma_thaw(struct ata_port *ap)
  209. {
  210. adma_reinit_engine(ap);
  211. }
  212. static int adma_prereset(struct ata_link *link, unsigned long deadline)
  213. {
  214. struct ata_port *ap = link->ap;
  215. struct adma_port_priv *pp = ap->private_data;
  216. if (pp->state != adma_state_idle) /* healthy paranoia */
  217. pp->state = adma_state_mmio;
  218. adma_reinit_engine(ap);
  219. return ata_sff_prereset(link, deadline);
  220. }
  221. static int adma_fill_sg(struct ata_queued_cmd *qc)
  222. {
  223. struct scatterlist *sg;
  224. struct ata_port *ap = qc->ap;
  225. struct adma_port_priv *pp = ap->private_data;
  226. u8 *buf = pp->pkt, *last_buf = NULL;
  227. int i = (2 + buf[3]) * 8;
  228. u8 pFLAGS = pORD | ((qc->tf.flags & ATA_TFLAG_WRITE) ? pDIRO : 0);
  229. unsigned int si;
  230. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  231. u32 addr;
  232. u32 len;
  233. addr = (u32)sg_dma_address(sg);
  234. *(__le32 *)(buf + i) = cpu_to_le32(addr);
  235. i += 4;
  236. len = sg_dma_len(sg) >> 3;
  237. *(__le32 *)(buf + i) = cpu_to_le32(len);
  238. i += 4;
  239. last_buf = &buf[i];
  240. buf[i++] = pFLAGS;
  241. buf[i++] = qc->dev->dma_mode & 0xf;
  242. buf[i++] = 0; /* pPKLW */
  243. buf[i++] = 0; /* reserved */
  244. *(__le32 *)(buf + i) =
  245. (pFLAGS & pEND) ? 0 : cpu_to_le32(pp->pkt_dma + i + 4);
  246. i += 4;
  247. VPRINTK("PRD[%u] = (0x%lX, 0x%X)\n", i/4,
  248. (unsigned long)addr, len);
  249. }
  250. if (likely(last_buf))
  251. *last_buf |= pEND;
  252. return i;
  253. }
  254. static void adma_qc_prep(struct ata_queued_cmd *qc)
  255. {
  256. struct adma_port_priv *pp = qc->ap->private_data;
  257. u8 *buf = pp->pkt;
  258. u32 pkt_dma = (u32)pp->pkt_dma;
  259. int i = 0;
  260. VPRINTK("ENTER\n");
  261. adma_enter_reg_mode(qc->ap);
  262. if (qc->tf.protocol != ATA_PROT_DMA)
  263. return;
  264. buf[i++] = 0; /* Response flags */
  265. buf[i++] = 0; /* reserved */
  266. buf[i++] = cVLD | cDAT | cIEN;
  267. i++; /* cLEN, gets filled in below */
  268. *(__le32 *)(buf+i) = cpu_to_le32(pkt_dma); /* cNCPB */
  269. i += 4; /* cNCPB */
  270. i += 4; /* cPRD, gets filled in below */
  271. buf[i++] = 0; /* reserved */
  272. buf[i++] = 0; /* reserved */
  273. buf[i++] = 0; /* reserved */
  274. buf[i++] = 0; /* reserved */
  275. /* ATA registers; must be a multiple of 4 */
  276. buf[i++] = qc->tf.device;
  277. buf[i++] = ADMA_REGS_DEVICE;
  278. if ((qc->tf.flags & ATA_TFLAG_LBA48)) {
  279. buf[i++] = qc->tf.hob_nsect;
  280. buf[i++] = ADMA_REGS_SECTOR_COUNT;
  281. buf[i++] = qc->tf.hob_lbal;
  282. buf[i++] = ADMA_REGS_LBA_LOW;
  283. buf[i++] = qc->tf.hob_lbam;
  284. buf[i++] = ADMA_REGS_LBA_MID;
  285. buf[i++] = qc->tf.hob_lbah;
  286. buf[i++] = ADMA_REGS_LBA_HIGH;
  287. }
  288. buf[i++] = qc->tf.nsect;
  289. buf[i++] = ADMA_REGS_SECTOR_COUNT;
  290. buf[i++] = qc->tf.lbal;
  291. buf[i++] = ADMA_REGS_LBA_LOW;
  292. buf[i++] = qc->tf.lbam;
  293. buf[i++] = ADMA_REGS_LBA_MID;
  294. buf[i++] = qc->tf.lbah;
  295. buf[i++] = ADMA_REGS_LBA_HIGH;
  296. buf[i++] = 0;
  297. buf[i++] = ADMA_REGS_CONTROL;
  298. buf[i++] = rIGN;
  299. buf[i++] = 0;
  300. buf[i++] = qc->tf.command;
  301. buf[i++] = ADMA_REGS_COMMAND | rEND;
  302. buf[3] = (i >> 3) - 2; /* cLEN */
  303. *(__le32 *)(buf+8) = cpu_to_le32(pkt_dma + i); /* cPRD */
  304. i = adma_fill_sg(qc);
  305. wmb(); /* flush PRDs and pkt to memory */
  306. #if 0
  307. /* dump out CPB + PRDs for debug */
  308. {
  309. int j, len = 0;
  310. static char obuf[2048];
  311. for (j = 0; j < i; ++j) {
  312. len += sprintf(obuf+len, "%02x ", buf[j]);
  313. if ((j & 7) == 7) {
  314. printk("%s\n", obuf);
  315. len = 0;
  316. }
  317. }
  318. if (len)
  319. printk("%s\n", obuf);
  320. }
  321. #endif
  322. }
  323. static inline void adma_packet_start(struct ata_queued_cmd *qc)
  324. {
  325. struct ata_port *ap = qc->ap;
  326. void __iomem *chan = ADMA_PORT_REGS(ap);
  327. VPRINTK("ENTER, ap %p\n", ap);
  328. /* fire up the ADMA engine */
  329. writew(aPIOMD4 | aGO, chan + ADMA_CONTROL);
  330. }
  331. static unsigned int adma_qc_issue(struct ata_queued_cmd *qc)
  332. {
  333. struct adma_port_priv *pp = qc->ap->private_data;
  334. switch (qc->tf.protocol) {
  335. case ATA_PROT_DMA:
  336. pp->state = adma_state_pkt;
  337. adma_packet_start(qc);
  338. return 0;
  339. case ATAPI_PROT_DMA:
  340. BUG();
  341. break;
  342. default:
  343. break;
  344. }
  345. pp->state = adma_state_mmio;
  346. return ata_sff_qc_issue(qc);
  347. }
  348. static inline unsigned int adma_intr_pkt(struct ata_host *host)
  349. {
  350. unsigned int handled = 0, port_no;
  351. for (port_no = 0; port_no < host->n_ports; ++port_no) {
  352. struct ata_port *ap = host->ports[port_no];
  353. struct adma_port_priv *pp;
  354. struct ata_queued_cmd *qc;
  355. void __iomem *chan = ADMA_PORT_REGS(ap);
  356. u8 status = readb(chan + ADMA_STATUS);
  357. if (status == 0)
  358. continue;
  359. handled = 1;
  360. adma_enter_reg_mode(ap);
  361. pp = ap->private_data;
  362. if (!pp || pp->state != adma_state_pkt)
  363. continue;
  364. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  365. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
  366. if (status & aPERR)
  367. qc->err_mask |= AC_ERR_HOST_BUS;
  368. else if ((status & (aPSD | aUIRQ)))
  369. qc->err_mask |= AC_ERR_OTHER;
  370. if (pp->pkt[0] & cATERR)
  371. qc->err_mask |= AC_ERR_DEV;
  372. else if (pp->pkt[0] != cDONE)
  373. qc->err_mask |= AC_ERR_OTHER;
  374. if (!qc->err_mask)
  375. ata_qc_complete(qc);
  376. else {
  377. struct ata_eh_info *ehi = &ap->link.eh_info;
  378. ata_ehi_clear_desc(ehi);
  379. ata_ehi_push_desc(ehi,
  380. "ADMA-status 0x%02X", status);
  381. ata_ehi_push_desc(ehi,
  382. "pkt[0] 0x%02X", pp->pkt[0]);
  383. if (qc->err_mask == AC_ERR_DEV)
  384. ata_port_abort(ap);
  385. else
  386. ata_port_freeze(ap);
  387. }
  388. }
  389. }
  390. return handled;
  391. }
  392. static inline unsigned int adma_intr_mmio(struct ata_host *host)
  393. {
  394. unsigned int handled = 0, port_no;
  395. for (port_no = 0; port_no < host->n_ports; ++port_no) {
  396. struct ata_port *ap = host->ports[port_no];
  397. struct adma_port_priv *pp = ap->private_data;
  398. struct ata_queued_cmd *qc;
  399. if (!pp || pp->state != adma_state_mmio)
  400. continue;
  401. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  402. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
  403. /* check main status, clearing INTRQ */
  404. u8 status = ata_sff_check_status(ap);
  405. if ((status & ATA_BUSY))
  406. continue;
  407. DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
  408. ap->print_id, qc->tf.protocol, status);
  409. /* complete taskfile transaction */
  410. pp->state = adma_state_idle;
  411. qc->err_mask |= ac_err_mask(status);
  412. if (!qc->err_mask)
  413. ata_qc_complete(qc);
  414. else {
  415. struct ata_eh_info *ehi = &ap->link.eh_info;
  416. ata_ehi_clear_desc(ehi);
  417. ata_ehi_push_desc(ehi, "status 0x%02X", status);
  418. if (qc->err_mask == AC_ERR_DEV)
  419. ata_port_abort(ap);
  420. else
  421. ata_port_freeze(ap);
  422. }
  423. handled = 1;
  424. }
  425. }
  426. return handled;
  427. }
  428. static irqreturn_t adma_intr(int irq, void *dev_instance)
  429. {
  430. struct ata_host *host = dev_instance;
  431. unsigned int handled = 0;
  432. VPRINTK("ENTER\n");
  433. spin_lock(&host->lock);
  434. handled = adma_intr_pkt(host) | adma_intr_mmio(host);
  435. spin_unlock(&host->lock);
  436. VPRINTK("EXIT\n");
  437. return IRQ_RETVAL(handled);
  438. }
  439. static void adma_ata_setup_port(struct ata_ioports *port, void __iomem *base)
  440. {
  441. port->cmd_addr =
  442. port->data_addr = base + 0x000;
  443. port->error_addr =
  444. port->feature_addr = base + 0x004;
  445. port->nsect_addr = base + 0x008;
  446. port->lbal_addr = base + 0x00c;
  447. port->lbam_addr = base + 0x010;
  448. port->lbah_addr = base + 0x014;
  449. port->device_addr = base + 0x018;
  450. port->status_addr =
  451. port->command_addr = base + 0x01c;
  452. port->altstatus_addr =
  453. port->ctl_addr = base + 0x038;
  454. }
  455. static int adma_port_start(struct ata_port *ap)
  456. {
  457. struct device *dev = ap->host->dev;
  458. struct adma_port_priv *pp;
  459. adma_enter_reg_mode(ap);
  460. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  461. if (!pp)
  462. return -ENOMEM;
  463. pp->pkt = dmam_alloc_coherent(dev, ADMA_PKT_BYTES, &pp->pkt_dma,
  464. GFP_KERNEL);
  465. if (!pp->pkt)
  466. return -ENOMEM;
  467. /* paranoia? */
  468. if ((pp->pkt_dma & 7) != 0) {
  469. printk(KERN_ERR "bad alignment for pp->pkt_dma: %08x\n",
  470. (u32)pp->pkt_dma);
  471. return -ENOMEM;
  472. }
  473. memset(pp->pkt, 0, ADMA_PKT_BYTES);
  474. ap->private_data = pp;
  475. adma_reinit_engine(ap);
  476. return 0;
  477. }
  478. static void adma_port_stop(struct ata_port *ap)
  479. {
  480. adma_reset_engine(ap);
  481. }
  482. static void adma_host_init(struct ata_host *host, unsigned int chip_id)
  483. {
  484. unsigned int port_no;
  485. /* enable/lock aGO operation */
  486. writeb(7, host->iomap[ADMA_MMIO_BAR] + ADMA_MODE_LOCK);
  487. /* reset the ADMA logic */
  488. for (port_no = 0; port_no < ADMA_PORTS; ++port_no)
  489. adma_reset_engine(host->ports[port_no]);
  490. }
  491. static int adma_set_dma_masks(struct pci_dev *pdev, void __iomem *mmio_base)
  492. {
  493. int rc;
  494. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  495. if (rc) {
  496. dev_err(&pdev->dev, "32-bit DMA enable failed\n");
  497. return rc;
  498. }
  499. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  500. if (rc) {
  501. dev_err(&pdev->dev, "32-bit consistent DMA enable failed\n");
  502. return rc;
  503. }
  504. return 0;
  505. }
  506. static int adma_ata_init_one(struct pci_dev *pdev,
  507. const struct pci_device_id *ent)
  508. {
  509. unsigned int board_idx = (unsigned int) ent->driver_data;
  510. const struct ata_port_info *ppi[] = { &adma_port_info[board_idx], NULL };
  511. struct ata_host *host;
  512. void __iomem *mmio_base;
  513. int rc, port_no;
  514. ata_print_version_once(&pdev->dev, DRV_VERSION);
  515. /* alloc host */
  516. host = ata_host_alloc_pinfo(&pdev->dev, ppi, ADMA_PORTS);
  517. if (!host)
  518. return -ENOMEM;
  519. /* acquire resources and fill host */
  520. rc = pcim_enable_device(pdev);
  521. if (rc)
  522. return rc;
  523. if ((pci_resource_flags(pdev, 4) & IORESOURCE_MEM) == 0)
  524. return -ENODEV;
  525. rc = pcim_iomap_regions(pdev, 1 << ADMA_MMIO_BAR, DRV_NAME);
  526. if (rc)
  527. return rc;
  528. host->iomap = pcim_iomap_table(pdev);
  529. mmio_base = host->iomap[ADMA_MMIO_BAR];
  530. rc = adma_set_dma_masks(pdev, mmio_base);
  531. if (rc)
  532. return rc;
  533. for (port_no = 0; port_no < ADMA_PORTS; ++port_no) {
  534. struct ata_port *ap = host->ports[port_no];
  535. void __iomem *port_base = ADMA_ATA_REGS(mmio_base, port_no);
  536. unsigned int offset = port_base - mmio_base;
  537. adma_ata_setup_port(&ap->ioaddr, port_base);
  538. ata_port_pbar_desc(ap, ADMA_MMIO_BAR, -1, "mmio");
  539. ata_port_pbar_desc(ap, ADMA_MMIO_BAR, offset, "port");
  540. }
  541. /* initialize adapter */
  542. adma_host_init(host, board_idx);
  543. pci_set_master(pdev);
  544. return ata_host_activate(host, pdev->irq, adma_intr, IRQF_SHARED,
  545. &adma_ata_sht);
  546. }
  547. static int __init adma_ata_init(void)
  548. {
  549. return pci_register_driver(&adma_ata_pci_driver);
  550. }
  551. static void __exit adma_ata_exit(void)
  552. {
  553. pci_unregister_driver(&adma_ata_pci_driver);
  554. }
  555. MODULE_AUTHOR("Mark Lord");
  556. MODULE_DESCRIPTION("Pacific Digital Corporation ADMA low-level driver");
  557. MODULE_LICENSE("GPL");
  558. MODULE_DEVICE_TABLE(pci, adma_ata_pci_tbl);
  559. MODULE_VERSION(DRV_VERSION);
  560. module_init(adma_ata_init);
  561. module_exit(adma_ata_exit);