pid.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 William Irwin, IBM
  5. * (C) 2004 William Irwin, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #define pid_hashfn(nr, ns) \
  39. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  40. static struct hlist_head *pid_hash;
  41. static unsigned int pidhash_shift = 4;
  42. struct pid init_struct_pid = INIT_STRUCT_PID;
  43. int pid_max = PID_MAX_DEFAULT;
  44. #define RESERVED_PIDS 300
  45. int pid_max_min = RESERVED_PIDS + 1;
  46. int pid_max_max = PID_MAX_LIMIT;
  47. #define BITS_PER_PAGE (PAGE_SIZE*8)
  48. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  49. static inline int mk_pid(struct pid_namespace *pid_ns,
  50. struct pidmap *map, int off)
  51. {
  52. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  53. }
  54. #define find_next_offset(map, off) \
  55. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  56. /*
  57. * PID-map pages start out as NULL, they get allocated upon
  58. * first use and are never deallocated. This way a low pid_max
  59. * value does not cause lots of bitmaps to be allocated, but
  60. * the scheme scales to up to 4 million PIDs, runtime.
  61. */
  62. struct pid_namespace init_pid_ns = {
  63. .kref = {
  64. .refcount = ATOMIC_INIT(2),
  65. },
  66. .pidmap = {
  67. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  68. },
  69. .last_pid = 0,
  70. .level = 0,
  71. .child_reaper = &init_task,
  72. .proc_inum = PROC_PID_INIT_INO,
  73. };
  74. EXPORT_SYMBOL_GPL(init_pid_ns);
  75. int is_container_init(struct task_struct *tsk)
  76. {
  77. int ret = 0;
  78. struct pid *pid;
  79. rcu_read_lock();
  80. pid = task_pid(tsk);
  81. if (pid != NULL && pid->numbers[pid->level].nr == 1)
  82. ret = 1;
  83. rcu_read_unlock();
  84. return ret;
  85. }
  86. EXPORT_SYMBOL(is_container_init);
  87. /*
  88. * Note: disable interrupts while the pidmap_lock is held as an
  89. * interrupt might come in and do read_lock(&tasklist_lock).
  90. *
  91. * If we don't disable interrupts there is a nasty deadlock between
  92. * detach_pid()->free_pid() and another cpu that does
  93. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  94. * read_lock(&tasklist_lock);
  95. *
  96. * After we clean up the tasklist_lock and know there are no
  97. * irq handlers that take it we can leave the interrupts enabled.
  98. * For now it is easier to be safe than to prove it can't happen.
  99. */
  100. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  101. static void free_pidmap(struct upid *upid)
  102. {
  103. int nr = upid->nr;
  104. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  105. int offset = nr & BITS_PER_PAGE_MASK;
  106. clear_bit(offset, map->page);
  107. atomic_inc(&map->nr_free);
  108. }
  109. /*
  110. * If we started walking pids at 'base', is 'a' seen before 'b'?
  111. */
  112. static int pid_before(int base, int a, int b)
  113. {
  114. /*
  115. * This is the same as saying
  116. *
  117. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  118. * and that mapping orders 'a' and 'b' with respect to 'base'.
  119. */
  120. return (unsigned)(a - base) < (unsigned)(b - base);
  121. }
  122. /*
  123. * We might be racing with someone else trying to set pid_ns->last_pid
  124. * at the pid allocation time (there's also a sysctl for this, but racing
  125. * with this one is OK, see comment in kernel/pid_namespace.c about it).
  126. * We want the winner to have the "later" value, because if the
  127. * "earlier" value prevails, then a pid may get reused immediately.
  128. *
  129. * Since pids rollover, it is not sufficient to just pick the bigger
  130. * value. We have to consider where we started counting from.
  131. *
  132. * 'base' is the value of pid_ns->last_pid that we observed when
  133. * we started looking for a pid.
  134. *
  135. * 'pid' is the pid that we eventually found.
  136. */
  137. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  138. {
  139. int prev;
  140. int last_write = base;
  141. do {
  142. prev = last_write;
  143. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  144. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  145. }
  146. static int alloc_pidmap(struct pid_namespace *pid_ns)
  147. {
  148. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  149. struct pidmap *map;
  150. pid = last + 1;
  151. if (pid >= pid_max)
  152. pid = RESERVED_PIDS;
  153. offset = pid & BITS_PER_PAGE_MASK;
  154. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  155. /*
  156. * If last_pid points into the middle of the map->page we
  157. * want to scan this bitmap block twice, the second time
  158. * we start with offset == 0 (or RESERVED_PIDS).
  159. */
  160. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  161. for (i = 0; i <= max_scan; ++i) {
  162. if (unlikely(!map->page)) {
  163. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  164. /*
  165. * Free the page if someone raced with us
  166. * installing it:
  167. */
  168. spin_lock_irq(&pidmap_lock);
  169. if (!map->page) {
  170. map->page = page;
  171. page = NULL;
  172. }
  173. spin_unlock_irq(&pidmap_lock);
  174. kfree(page);
  175. if (unlikely(!map->page))
  176. break;
  177. }
  178. if (likely(atomic_read(&map->nr_free))) {
  179. do {
  180. if (!test_and_set_bit(offset, map->page)) {
  181. atomic_dec(&map->nr_free);
  182. set_last_pid(pid_ns, last, pid);
  183. return pid;
  184. }
  185. offset = find_next_offset(map, offset);
  186. pid = mk_pid(pid_ns, map, offset);
  187. } while (offset < BITS_PER_PAGE && pid < pid_max);
  188. }
  189. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  190. ++map;
  191. offset = 0;
  192. } else {
  193. map = &pid_ns->pidmap[0];
  194. offset = RESERVED_PIDS;
  195. if (unlikely(last == offset))
  196. break;
  197. }
  198. pid = mk_pid(pid_ns, map, offset);
  199. }
  200. return -1;
  201. }
  202. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  203. {
  204. int offset;
  205. struct pidmap *map, *end;
  206. if (last >= PID_MAX_LIMIT)
  207. return -1;
  208. offset = (last + 1) & BITS_PER_PAGE_MASK;
  209. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  210. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  211. for (; map < end; map++, offset = 0) {
  212. if (unlikely(!map->page))
  213. continue;
  214. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  215. if (offset < BITS_PER_PAGE)
  216. return mk_pid(pid_ns, map, offset);
  217. }
  218. return -1;
  219. }
  220. void put_pid(struct pid *pid)
  221. {
  222. struct pid_namespace *ns;
  223. if (!pid)
  224. return;
  225. ns = pid->numbers[pid->level].ns;
  226. if ((atomic_read(&pid->count) == 1) ||
  227. atomic_dec_and_test(&pid->count)) {
  228. kmem_cache_free(ns->pid_cachep, pid);
  229. put_pid_ns(ns);
  230. }
  231. }
  232. EXPORT_SYMBOL_GPL(put_pid);
  233. static void delayed_put_pid(struct rcu_head *rhp)
  234. {
  235. struct pid *pid = container_of(rhp, struct pid, rcu);
  236. put_pid(pid);
  237. }
  238. void free_pid(struct pid *pid)
  239. {
  240. /* We can be called with write_lock_irq(&tasklist_lock) held */
  241. int i;
  242. unsigned long flags;
  243. spin_lock_irqsave(&pidmap_lock, flags);
  244. for (i = 0; i <= pid->level; i++)
  245. hlist_del_rcu(&pid->numbers[i].pid_chain);
  246. spin_unlock_irqrestore(&pidmap_lock, flags);
  247. for (i = 0; i <= pid->level; i++)
  248. free_pidmap(pid->numbers + i);
  249. call_rcu(&pid->rcu, delayed_put_pid);
  250. }
  251. struct pid *alloc_pid(struct pid_namespace *ns)
  252. {
  253. struct pid *pid;
  254. enum pid_type type;
  255. int i, nr;
  256. struct pid_namespace *tmp;
  257. struct upid *upid;
  258. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  259. if (!pid)
  260. goto out;
  261. tmp = ns;
  262. for (i = ns->level; i >= 0; i--) {
  263. nr = alloc_pidmap(tmp);
  264. if (nr < 0)
  265. goto out_free;
  266. pid->numbers[i].nr = nr;
  267. pid->numbers[i].ns = tmp;
  268. tmp = tmp->parent;
  269. }
  270. get_pid_ns(ns);
  271. pid->level = ns->level;
  272. atomic_set(&pid->count, 1);
  273. for (type = 0; type < PIDTYPE_MAX; ++type)
  274. INIT_HLIST_HEAD(&pid->tasks[type]);
  275. upid = pid->numbers + ns->level;
  276. spin_lock_irq(&pidmap_lock);
  277. for ( ; upid >= pid->numbers; --upid)
  278. hlist_add_head_rcu(&upid->pid_chain,
  279. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  280. spin_unlock_irq(&pidmap_lock);
  281. out:
  282. return pid;
  283. out_free:
  284. while (++i <= ns->level)
  285. free_pidmap(pid->numbers + i);
  286. kmem_cache_free(ns->pid_cachep, pid);
  287. pid = NULL;
  288. goto out;
  289. }
  290. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  291. {
  292. struct hlist_node *elem;
  293. struct upid *pnr;
  294. hlist_for_each_entry_rcu(pnr, elem,
  295. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  296. if (pnr->nr == nr && pnr->ns == ns)
  297. return container_of(pnr, struct pid,
  298. numbers[ns->level]);
  299. return NULL;
  300. }
  301. EXPORT_SYMBOL_GPL(find_pid_ns);
  302. struct pid *find_vpid(int nr)
  303. {
  304. return find_pid_ns(nr, current->nsproxy->pid_ns);
  305. }
  306. EXPORT_SYMBOL_GPL(find_vpid);
  307. /*
  308. * attach_pid() must be called with the tasklist_lock write-held.
  309. */
  310. void attach_pid(struct task_struct *task, enum pid_type type,
  311. struct pid *pid)
  312. {
  313. struct pid_link *link;
  314. link = &task->pids[type];
  315. link->pid = pid;
  316. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  317. }
  318. static void __change_pid(struct task_struct *task, enum pid_type type,
  319. struct pid *new)
  320. {
  321. struct pid_link *link;
  322. struct pid *pid;
  323. int tmp;
  324. link = &task->pids[type];
  325. pid = link->pid;
  326. hlist_del_rcu(&link->node);
  327. link->pid = new;
  328. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  329. if (!hlist_empty(&pid->tasks[tmp]))
  330. return;
  331. free_pid(pid);
  332. }
  333. void detach_pid(struct task_struct *task, enum pid_type type)
  334. {
  335. __change_pid(task, type, NULL);
  336. }
  337. void change_pid(struct task_struct *task, enum pid_type type,
  338. struct pid *pid)
  339. {
  340. __change_pid(task, type, pid);
  341. attach_pid(task, type, pid);
  342. }
  343. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  344. void transfer_pid(struct task_struct *old, struct task_struct *new,
  345. enum pid_type type)
  346. {
  347. new->pids[type].pid = old->pids[type].pid;
  348. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  349. }
  350. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  351. {
  352. struct task_struct *result = NULL;
  353. if (pid) {
  354. struct hlist_node *first;
  355. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  356. lockdep_tasklist_lock_is_held());
  357. if (first)
  358. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  359. }
  360. return result;
  361. }
  362. EXPORT_SYMBOL(pid_task);
  363. /*
  364. * Must be called under rcu_read_lock().
  365. */
  366. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  367. {
  368. rcu_lockdep_assert(rcu_read_lock_held(),
  369. "find_task_by_pid_ns() needs rcu_read_lock()"
  370. " protection");
  371. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  372. }
  373. struct task_struct *find_task_by_vpid(pid_t vnr)
  374. {
  375. return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
  376. }
  377. EXPORT_SYMBOL_GPL(find_task_by_vpid);
  378. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  379. {
  380. struct pid *pid;
  381. rcu_read_lock();
  382. if (type != PIDTYPE_PID)
  383. task = task->group_leader;
  384. pid = get_pid(task->pids[type].pid);
  385. rcu_read_unlock();
  386. return pid;
  387. }
  388. EXPORT_SYMBOL_GPL(get_task_pid);
  389. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  390. {
  391. struct task_struct *result;
  392. rcu_read_lock();
  393. result = pid_task(pid, type);
  394. if (result)
  395. get_task_struct(result);
  396. rcu_read_unlock();
  397. return result;
  398. }
  399. EXPORT_SYMBOL_GPL(get_pid_task);
  400. struct pid *find_get_pid(pid_t nr)
  401. {
  402. struct pid *pid;
  403. rcu_read_lock();
  404. pid = get_pid(find_vpid(nr));
  405. rcu_read_unlock();
  406. return pid;
  407. }
  408. EXPORT_SYMBOL_GPL(find_get_pid);
  409. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  410. {
  411. struct upid *upid;
  412. pid_t nr = 0;
  413. if (pid && ns->level <= pid->level) {
  414. upid = &pid->numbers[ns->level];
  415. if (upid->ns == ns)
  416. nr = upid->nr;
  417. }
  418. return nr;
  419. }
  420. pid_t pid_vnr(struct pid *pid)
  421. {
  422. return pid_nr_ns(pid, current->nsproxy->pid_ns);
  423. }
  424. EXPORT_SYMBOL_GPL(pid_vnr);
  425. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  426. struct pid_namespace *ns)
  427. {
  428. pid_t nr = 0;
  429. rcu_read_lock();
  430. if (!ns)
  431. ns = current->nsproxy->pid_ns;
  432. if (likely(pid_alive(task))) {
  433. if (type != PIDTYPE_PID) {
  434. if (type == __PIDTYPE_TGID)
  435. type = PIDTYPE_PID;
  436. task = task->group_leader;
  437. }
  438. nr = pid_nr_ns(task->pids[type].pid, ns);
  439. }
  440. rcu_read_unlock();
  441. return nr;
  442. }
  443. EXPORT_SYMBOL(__task_pid_nr_ns);
  444. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  445. {
  446. return ns_of_pid(task_pid(tsk));
  447. }
  448. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  449. /*
  450. * Used by proc to find the first pid that is greater than or equal to nr.
  451. *
  452. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  453. */
  454. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  455. {
  456. struct pid *pid;
  457. do {
  458. pid = find_pid_ns(nr, ns);
  459. if (pid)
  460. break;
  461. nr = next_pidmap(ns, nr);
  462. } while (nr > 0);
  463. return pid;
  464. }
  465. /*
  466. * The pid hash table is scaled according to the amount of memory in the
  467. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  468. * more.
  469. */
  470. void __init pidhash_init(void)
  471. {
  472. unsigned int i, pidhash_size;
  473. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  474. HASH_EARLY | HASH_SMALL,
  475. &pidhash_shift, NULL,
  476. 0, 4096);
  477. pidhash_size = 1U << pidhash_shift;
  478. for (i = 0; i < pidhash_size; i++)
  479. INIT_HLIST_HEAD(&pid_hash[i]);
  480. }
  481. void __init pidmap_init(void)
  482. {
  483. /* bump default and minimum pid_max based on number of cpus */
  484. pid_max = min(pid_max_max, max_t(int, pid_max,
  485. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  486. pid_max_min = max_t(int, pid_max_min,
  487. PIDS_PER_CPU_MIN * num_possible_cpus());
  488. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  489. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  490. /* Reserve PID 0. We never call free_pidmap(0) */
  491. set_bit(0, init_pid_ns.pidmap[0].page);
  492. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  493. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  494. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  495. }