123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574 |
- /*
- * Generic pidhash and scalable, time-bounded PID allocator
- *
- * (C) 2002-2003 William Irwin, IBM
- * (C) 2004 William Irwin, Oracle
- * (C) 2002-2004 Ingo Molnar, Red Hat
- *
- * pid-structures are backing objects for tasks sharing a given ID to chain
- * against. There is very little to them aside from hashing them and
- * parking tasks using given ID's on a list.
- *
- * The hash is always changed with the tasklist_lock write-acquired,
- * and the hash is only accessed with the tasklist_lock at least
- * read-acquired, so there's no additional SMP locking needed here.
- *
- * We have a list of bitmap pages, which bitmaps represent the PID space.
- * Allocating and freeing PIDs is completely lockless. The worst-case
- * allocation scenario when all but one out of 1 million PIDs possible are
- * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
- * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
- *
- * Pid namespaces:
- * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
- * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
- * Many thanks to Oleg Nesterov for comments and help
- *
- */
- #include <linux/mm.h>
- #include <linux/export.h>
- #include <linux/slab.h>
- #include <linux/init.h>
- #include <linux/rculist.h>
- #include <linux/bootmem.h>
- #include <linux/hash.h>
- #include <linux/pid_namespace.h>
- #include <linux/init_task.h>
- #include <linux/syscalls.h>
- #define pid_hashfn(nr, ns) \
- hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
- static struct hlist_head *pid_hash;
- static unsigned int pidhash_shift = 4;
- struct pid init_struct_pid = INIT_STRUCT_PID;
- int pid_max = PID_MAX_DEFAULT;
- #define RESERVED_PIDS 300
- int pid_max_min = RESERVED_PIDS + 1;
- int pid_max_max = PID_MAX_LIMIT;
- #define BITS_PER_PAGE (PAGE_SIZE*8)
- #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
- static inline int mk_pid(struct pid_namespace *pid_ns,
- struct pidmap *map, int off)
- {
- return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
- }
- #define find_next_offset(map, off) \
- find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
- /*
- * PID-map pages start out as NULL, they get allocated upon
- * first use and are never deallocated. This way a low pid_max
- * value does not cause lots of bitmaps to be allocated, but
- * the scheme scales to up to 4 million PIDs, runtime.
- */
- struct pid_namespace init_pid_ns = {
- .kref = {
- .refcount = ATOMIC_INIT(2),
- },
- .pidmap = {
- [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
- },
- .last_pid = 0,
- .level = 0,
- .child_reaper = &init_task,
- .proc_inum = PROC_PID_INIT_INO,
- };
- EXPORT_SYMBOL_GPL(init_pid_ns);
- int is_container_init(struct task_struct *tsk)
- {
- int ret = 0;
- struct pid *pid;
- rcu_read_lock();
- pid = task_pid(tsk);
- if (pid != NULL && pid->numbers[pid->level].nr == 1)
- ret = 1;
- rcu_read_unlock();
- return ret;
- }
- EXPORT_SYMBOL(is_container_init);
- /*
- * Note: disable interrupts while the pidmap_lock is held as an
- * interrupt might come in and do read_lock(&tasklist_lock).
- *
- * If we don't disable interrupts there is a nasty deadlock between
- * detach_pid()->free_pid() and another cpu that does
- * spin_lock(&pidmap_lock) followed by an interrupt routine that does
- * read_lock(&tasklist_lock);
- *
- * After we clean up the tasklist_lock and know there are no
- * irq handlers that take it we can leave the interrupts enabled.
- * For now it is easier to be safe than to prove it can't happen.
- */
- static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
- static void free_pidmap(struct upid *upid)
- {
- int nr = upid->nr;
- struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
- int offset = nr & BITS_PER_PAGE_MASK;
- clear_bit(offset, map->page);
- atomic_inc(&map->nr_free);
- }
- /*
- * If we started walking pids at 'base', is 'a' seen before 'b'?
- */
- static int pid_before(int base, int a, int b)
- {
- /*
- * This is the same as saying
- *
- * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
- * and that mapping orders 'a' and 'b' with respect to 'base'.
- */
- return (unsigned)(a - base) < (unsigned)(b - base);
- }
- /*
- * We might be racing with someone else trying to set pid_ns->last_pid
- * at the pid allocation time (there's also a sysctl for this, but racing
- * with this one is OK, see comment in kernel/pid_namespace.c about it).
- * We want the winner to have the "later" value, because if the
- * "earlier" value prevails, then a pid may get reused immediately.
- *
- * Since pids rollover, it is not sufficient to just pick the bigger
- * value. We have to consider where we started counting from.
- *
- * 'base' is the value of pid_ns->last_pid that we observed when
- * we started looking for a pid.
- *
- * 'pid' is the pid that we eventually found.
- */
- static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
- {
- int prev;
- int last_write = base;
- do {
- prev = last_write;
- last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
- } while ((prev != last_write) && (pid_before(base, last_write, pid)));
- }
- static int alloc_pidmap(struct pid_namespace *pid_ns)
- {
- int i, offset, max_scan, pid, last = pid_ns->last_pid;
- struct pidmap *map;
- pid = last + 1;
- if (pid >= pid_max)
- pid = RESERVED_PIDS;
- offset = pid & BITS_PER_PAGE_MASK;
- map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
- /*
- * If last_pid points into the middle of the map->page we
- * want to scan this bitmap block twice, the second time
- * we start with offset == 0 (or RESERVED_PIDS).
- */
- max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
- for (i = 0; i <= max_scan; ++i) {
- if (unlikely(!map->page)) {
- void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
- /*
- * Free the page if someone raced with us
- * installing it:
- */
- spin_lock_irq(&pidmap_lock);
- if (!map->page) {
- map->page = page;
- page = NULL;
- }
- spin_unlock_irq(&pidmap_lock);
- kfree(page);
- if (unlikely(!map->page))
- break;
- }
- if (likely(atomic_read(&map->nr_free))) {
- do {
- if (!test_and_set_bit(offset, map->page)) {
- atomic_dec(&map->nr_free);
- set_last_pid(pid_ns, last, pid);
- return pid;
- }
- offset = find_next_offset(map, offset);
- pid = mk_pid(pid_ns, map, offset);
- } while (offset < BITS_PER_PAGE && pid < pid_max);
- }
- if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
- ++map;
- offset = 0;
- } else {
- map = &pid_ns->pidmap[0];
- offset = RESERVED_PIDS;
- if (unlikely(last == offset))
- break;
- }
- pid = mk_pid(pid_ns, map, offset);
- }
- return -1;
- }
- int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
- {
- int offset;
- struct pidmap *map, *end;
- if (last >= PID_MAX_LIMIT)
- return -1;
- offset = (last + 1) & BITS_PER_PAGE_MASK;
- map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
- end = &pid_ns->pidmap[PIDMAP_ENTRIES];
- for (; map < end; map++, offset = 0) {
- if (unlikely(!map->page))
- continue;
- offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
- if (offset < BITS_PER_PAGE)
- return mk_pid(pid_ns, map, offset);
- }
- return -1;
- }
- void put_pid(struct pid *pid)
- {
- struct pid_namespace *ns;
- if (!pid)
- return;
- ns = pid->numbers[pid->level].ns;
- if ((atomic_read(&pid->count) == 1) ||
- atomic_dec_and_test(&pid->count)) {
- kmem_cache_free(ns->pid_cachep, pid);
- put_pid_ns(ns);
- }
- }
- EXPORT_SYMBOL_GPL(put_pid);
- static void delayed_put_pid(struct rcu_head *rhp)
- {
- struct pid *pid = container_of(rhp, struct pid, rcu);
- put_pid(pid);
- }
- void free_pid(struct pid *pid)
- {
- /* We can be called with write_lock_irq(&tasklist_lock) held */
- int i;
- unsigned long flags;
- spin_lock_irqsave(&pidmap_lock, flags);
- for (i = 0; i <= pid->level; i++)
- hlist_del_rcu(&pid->numbers[i].pid_chain);
- spin_unlock_irqrestore(&pidmap_lock, flags);
- for (i = 0; i <= pid->level; i++)
- free_pidmap(pid->numbers + i);
- call_rcu(&pid->rcu, delayed_put_pid);
- }
- struct pid *alloc_pid(struct pid_namespace *ns)
- {
- struct pid *pid;
- enum pid_type type;
- int i, nr;
- struct pid_namespace *tmp;
- struct upid *upid;
- pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
- if (!pid)
- goto out;
- tmp = ns;
- for (i = ns->level; i >= 0; i--) {
- nr = alloc_pidmap(tmp);
- if (nr < 0)
- goto out_free;
- pid->numbers[i].nr = nr;
- pid->numbers[i].ns = tmp;
- tmp = tmp->parent;
- }
- get_pid_ns(ns);
- pid->level = ns->level;
- atomic_set(&pid->count, 1);
- for (type = 0; type < PIDTYPE_MAX; ++type)
- INIT_HLIST_HEAD(&pid->tasks[type]);
- upid = pid->numbers + ns->level;
- spin_lock_irq(&pidmap_lock);
- for ( ; upid >= pid->numbers; --upid)
- hlist_add_head_rcu(&upid->pid_chain,
- &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
- spin_unlock_irq(&pidmap_lock);
- out:
- return pid;
- out_free:
- while (++i <= ns->level)
- free_pidmap(pid->numbers + i);
- kmem_cache_free(ns->pid_cachep, pid);
- pid = NULL;
- goto out;
- }
- struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
- {
- struct hlist_node *elem;
- struct upid *pnr;
- hlist_for_each_entry_rcu(pnr, elem,
- &pid_hash[pid_hashfn(nr, ns)], pid_chain)
- if (pnr->nr == nr && pnr->ns == ns)
- return container_of(pnr, struct pid,
- numbers[ns->level]);
- return NULL;
- }
- EXPORT_SYMBOL_GPL(find_pid_ns);
- struct pid *find_vpid(int nr)
- {
- return find_pid_ns(nr, current->nsproxy->pid_ns);
- }
- EXPORT_SYMBOL_GPL(find_vpid);
- /*
- * attach_pid() must be called with the tasklist_lock write-held.
- */
- void attach_pid(struct task_struct *task, enum pid_type type,
- struct pid *pid)
- {
- struct pid_link *link;
- link = &task->pids[type];
- link->pid = pid;
- hlist_add_head_rcu(&link->node, &pid->tasks[type]);
- }
- static void __change_pid(struct task_struct *task, enum pid_type type,
- struct pid *new)
- {
- struct pid_link *link;
- struct pid *pid;
- int tmp;
- link = &task->pids[type];
- pid = link->pid;
- hlist_del_rcu(&link->node);
- link->pid = new;
- for (tmp = PIDTYPE_MAX; --tmp >= 0; )
- if (!hlist_empty(&pid->tasks[tmp]))
- return;
- free_pid(pid);
- }
- void detach_pid(struct task_struct *task, enum pid_type type)
- {
- __change_pid(task, type, NULL);
- }
- void change_pid(struct task_struct *task, enum pid_type type,
- struct pid *pid)
- {
- __change_pid(task, type, pid);
- attach_pid(task, type, pid);
- }
- /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
- void transfer_pid(struct task_struct *old, struct task_struct *new,
- enum pid_type type)
- {
- new->pids[type].pid = old->pids[type].pid;
- hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
- }
- struct task_struct *pid_task(struct pid *pid, enum pid_type type)
- {
- struct task_struct *result = NULL;
- if (pid) {
- struct hlist_node *first;
- first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
- lockdep_tasklist_lock_is_held());
- if (first)
- result = hlist_entry(first, struct task_struct, pids[(type)].node);
- }
- return result;
- }
- EXPORT_SYMBOL(pid_task);
- /*
- * Must be called under rcu_read_lock().
- */
- struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
- {
- rcu_lockdep_assert(rcu_read_lock_held(),
- "find_task_by_pid_ns() needs rcu_read_lock()"
- " protection");
- return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
- }
- struct task_struct *find_task_by_vpid(pid_t vnr)
- {
- return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
- }
- EXPORT_SYMBOL_GPL(find_task_by_vpid);
- struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
- {
- struct pid *pid;
- rcu_read_lock();
- if (type != PIDTYPE_PID)
- task = task->group_leader;
- pid = get_pid(task->pids[type].pid);
- rcu_read_unlock();
- return pid;
- }
- EXPORT_SYMBOL_GPL(get_task_pid);
- struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
- {
- struct task_struct *result;
- rcu_read_lock();
- result = pid_task(pid, type);
- if (result)
- get_task_struct(result);
- rcu_read_unlock();
- return result;
- }
- EXPORT_SYMBOL_GPL(get_pid_task);
- struct pid *find_get_pid(pid_t nr)
- {
- struct pid *pid;
- rcu_read_lock();
- pid = get_pid(find_vpid(nr));
- rcu_read_unlock();
- return pid;
- }
- EXPORT_SYMBOL_GPL(find_get_pid);
- pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
- {
- struct upid *upid;
- pid_t nr = 0;
- if (pid && ns->level <= pid->level) {
- upid = &pid->numbers[ns->level];
- if (upid->ns == ns)
- nr = upid->nr;
- }
- return nr;
- }
- pid_t pid_vnr(struct pid *pid)
- {
- return pid_nr_ns(pid, current->nsproxy->pid_ns);
- }
- EXPORT_SYMBOL_GPL(pid_vnr);
- pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
- struct pid_namespace *ns)
- {
- pid_t nr = 0;
- rcu_read_lock();
- if (!ns)
- ns = current->nsproxy->pid_ns;
- if (likely(pid_alive(task))) {
- if (type != PIDTYPE_PID) {
- if (type == __PIDTYPE_TGID)
- type = PIDTYPE_PID;
- task = task->group_leader;
- }
- nr = pid_nr_ns(task->pids[type].pid, ns);
- }
- rcu_read_unlock();
- return nr;
- }
- EXPORT_SYMBOL(__task_pid_nr_ns);
- struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
- {
- return ns_of_pid(task_pid(tsk));
- }
- EXPORT_SYMBOL_GPL(task_active_pid_ns);
- /*
- * Used by proc to find the first pid that is greater than or equal to nr.
- *
- * If there is a pid at nr this function is exactly the same as find_pid_ns.
- */
- struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
- {
- struct pid *pid;
- do {
- pid = find_pid_ns(nr, ns);
- if (pid)
- break;
- nr = next_pidmap(ns, nr);
- } while (nr > 0);
- return pid;
- }
- /*
- * The pid hash table is scaled according to the amount of memory in the
- * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
- * more.
- */
- void __init pidhash_init(void)
- {
- unsigned int i, pidhash_size;
- pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
- HASH_EARLY | HASH_SMALL,
- &pidhash_shift, NULL,
- 0, 4096);
- pidhash_size = 1U << pidhash_shift;
- for (i = 0; i < pidhash_size; i++)
- INIT_HLIST_HEAD(&pid_hash[i]);
- }
- void __init pidmap_init(void)
- {
- /* bump default and minimum pid_max based on number of cpus */
- pid_max = min(pid_max_max, max_t(int, pid_max,
- PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
- pid_max_min = max_t(int, pid_max_min,
- PIDS_PER_CPU_MIN * num_possible_cpus());
- pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
- init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
- /* Reserve PID 0. We never call free_pidmap(0) */
- set_bit(0, init_pid_ns.pidmap[0].page);
- atomic_dec(&init_pid_ns.pidmap[0].nr_free);
- init_pid_ns.pid_cachep = KMEM_CACHE(pid,
- SLAB_HWCACHE_ALIGN | SLAB_PANIC);
- }
|